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1 Introduction

Despite considerable progress on several fronts, and a concerted e�ort experimentally and
theoretically, the properties of particle dark matter (DM) are still unknown. One of the
key tools in the hunt for DM is direct detection experiments. These experiments search for
the signs of DM in our galactic halo scattering o� Standard Model (SM) particles in the
(typically underground) lab. Motivated by the WIMP paradigm, these experiments originally
focused on DM scattering o� nuclei and were best suited for DM masses above ≥ 1 GeV.
More recently there has been a surge of interest and progress in DM-electron scattering
experiments, to search for sub-GeV dark matter [1].

The expected scattering rate at direct detection experiments depends upon details of the
target material, the nature of the DM-SM couplings, and the local DM distribution. The first
of these, while challenging to compute, can be determined from experiment and theory. The
second is presently unknown but at the low energies involved in the scattering there are only
a finite number of possibilities to explore. The last unknown consists of the DM’s distribution
in both position and velocity space. Typical distributions can be determined from numerical
simulations [2–5] and in our own galaxy the average DM density at the Sun’s galactic radius
is constrained by observations of stellar kinematics [6]. However, neither approach has the
resolution to determine the DM distribution in our local neighborhood. When interpreting
results from direct detection experiments, it is typically assumed that the speed of the DM
impinging on the detector follows a Maxwell-Boltzmann distribution.
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For DM scattering o� nuclei, techniques have been developed to allow interpretation
of direct detection results without needing to make this assumption [7–14] and thus cir-
cumventing the large uncertainty on the DM distribution. This is done by noticing that
for nuclear scattering the rate factorizes into a product of a target-dependent term and a
target-independent, but halo-dependent, term. This then allows the extraction of (integrals
of) the halo velocity distribution from experimental data and the direct comparison of two
direct detection rates measured, or bounded, in di�erent materials.

As with nuclear recoil experiments, astrophysical uncertainties have a significant e�ect
on the interpretation of DM-electron scattering data [15, 16]. For DM-electron scattering the
target electron’s momentum is unknown and must be integrated over. For a given observed
recoil energy the range of possible electron momenta depends upon the incoming DM velocity.
This means that the scattering rate no longer cleanly factorizes. Instead, the rate involves a
convolution of the electron wavefunction with the halo velocity distribution. However, it is
still possible to extend halo-independent techniques to the case of electron scattering [17, 18].

Heuristically, the dependence of the scattering rate for nuclear recoils on astrophysics,
i.e. the DM velocity distribution in the galactic frame f‰, is

dRn

dE
Ã

⁄
vmax

v
nuc
min(E)

d3v
f‰(v̨ + v̨E)

v
, (1.1)

with vmax the maximal DM speed in the Earth’s frame and we have suppressed the terms
independent of astrophysics. There is a one-to-one correspondence between the nuclear
recoil energy ER and the minimum necessary incoming DM speed vnuc

min =
Ú

mN ER
2µ

2
‰N

, with mN

denoting the mass of the nucleus and µ‰N the reduced mass of the DM-nucleus system. Thus,
the results of di�erent experiments can be compared by analyzing their results in vmin-space.

This situation is to be contrasted to electron recoils where the velocity distribution
enters in a convolution,

dRe

dE
Ã

⁄
dq

⁄
vmax

vmin(E,q)

d3v
f‰(v̨ + v̨E)

v
, (1.2)

with vmin given below, in (2.4).
In section 2 we describe the formalism and our statistical approach to finding the best-fit

DM mass and velocity distributions. In this work, we focus on semiconductor targets, but
our approach can be readily applied to other detector materials. In section 3 we apply the
method to mock data generated for several di�erent DM models. Our ability to uncover
the DM parameters used to generate the mock data improves with the number of populated
electron-hole bins. In section 4 we use our approach to compare the consistency of results
from SENSEI and EDELWEISS, concluding that their excesses cannot be simultaneously
explained as coming entirely from dark matter events. In addition, we predict the rate in
a future GaAs detector under the assumption that the SENSEI observations are due to
dark matter. We conclude in section 5.

2 Formalism

In this section we present the method for calculating the scattering rate of DM o� of electrons
for an arbitrary velocity distribution. A general velocity distribution can be thought of as
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a sum of DM streams. Following the approach previously applied to nuclear recoils [7–14],
we show how an observed signal can be used to extract the parameters associated with
these streams. We discuss the statistical techniques we use to do this, along with their
associated uncertainties.

2.1 Dark-matter-electron scattering rate

To begin, we review the calculations behind the DM-electron scattering rate. The general
form for the di�erential scattering rate is given by [19]

dR

d ln Ee

= fl‰

m‰

‡e

8µ2
‰e

⁄
dq q |FDM(q)|2|fres(Ee, q)|2÷ (vmin) (2.1)

where Ee and q are the final electron’s energy and the momentum transfer, respectively.
m‰ is the DM mass, while fl‰ = 0.4 GeV/cm3 is the local DM density. µ‰e is the reduced
mass of the DM-e system. ‡e denotes the DM-free electron scattering cross section at fixed
momentum transfer q0 = –me, where me is the electron mass. FDM(q) = (–me/q)n encodes
the momentum dependence of the interaction, where n = 0 (2) corresponds to a heavy (light)
mediator. We assume that the interaction cross section does not directly depend on the DM
velocity. fres(Ee, q) is the material-dependent, dimensionless response function for an electron
excitation with momentum q and energy Ee. For a crystal target, we have,

|fres(Ee, q)|2 ©
8–m2

eEe

q3
◊ |fcrystal(Ee, q)|2 , (2.2)

where – ƒ 1/137 is the fine-structure constant and fcrystal(Ee, q) is the dimensionless crystal
form factor1 as defined in [19]. Lastly, the DM velocity distribution in the galactic frame,
f‰(v̨), enters through ÷(vmin),

÷(vmin) =
⁄

vmin
d3v

f‰(v̨ + v̨E)
v

, (2.3)

where v̨E is the Earth’s velocity, also in the galactic frame, and we have ignored the small
amount of annual time dependence induced by the Earth’s orbit around the Sun. For
DM-electron scattering the minimum speed for scattering is

vmin(q) = q

2m‰

+ Ee

q
. (2.4)

Thus, in contrast to the DM-nuclear case where vnucl
min =

Ú
mN ER
2µ

2
‰N

, there is not a clear mapping

between recoil energy and vmin, as (2.4) also depends on q. Instead, a fixed Ee leads to
a range of vmin as a function of q. Alternatively, for a fixed v and Ee, q must lie in the
range q≠ Æ q Æ q+ with

q±(v) = m‰v ±

Ò
m2

‰v2 ≠ 2Eem‰ . (2.5)

1For an atomic target, |fres(Ee, q)|2 © |f ion
nl (Ee, q)|2 , where (n, l) are the quantum numbers for the

initial-state bound electron [20, 21].
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Figure 1. Left: the region in q ≠ v space that must be integrated over (shaded) for a 10 MeV DM
candidate scattering o� germanium, depositing 5.05 eV energy. The black line is vmin as a function of
momentum exchange q. At fixed q the integral over v is from vmin to vesc, denoted by the dotted line. At
fixed v the integral is over q≠ Æ q Æ q+, denoted by the dashed red/blue lines. The smallest SM speed
probed and its corresponding momentum exchange are marked with vú, qú, respectively. Right: the
dimensionless response function fres and the ranges of q probed for the two choices of v in the left panel.

Furthermore, at fixed recoil energy there is a smallest possible speed allowed for scattering,
and an associated momentum transfer to the electron,

v2

ú = 2Ee

m‰

and qú = m‰vú . (2.6)

An example of the region in (q, v) space that must be integrated over, at fixed recoil
energy, is shown in figure 1. Note that the response function fres is a relatively peaked
function. In the limit that fres(q) æ ”(q ≠ q0) the relationship between vmin and the recoil
energy becomes one-to-one. In this case the behavior is much like for nuclear recoils where
experiments that probe the same range of vmin-space provide cross-checks of one another.
The ability to directly compare the results of di�erent experiments depends upon the details
of the broader (physical) response functions. Furthermore, the relationship between recoil
energy and vmin (2.4) becomes independent of DM mass when this mass is large and thus it
is not possible to separate between di�erent mass hypotheses in this regime.

Typically, one imposes that the velocity distribution of the DM halo, f‰(v), follows a
standard Maxwell-Boltzmann form, which depends on the circular velocity v0 and galactic
escape velocity vesc. However, as demonstrated in [15], the DM-electron scattering rate and,
accordingly, the cross-section constraints and projections are highly sensitive to the choice of
underlying halo model and halo parameters. Therefore, we propose a method in which one
can interpret the results of DM-electron scattering experiments in a halo-independent manner.

2.2 Halo-independent method

We begin by parameterizing the rate as follows,

dR

d ln Ee

©
1

8µ2
‰e

⁄
dq q |FDM(q)|2|fres(Ee, q)|2÷̃ (vmin) (2.7)
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where
÷̃(vmin) = fl‰‡e

m‰

÷(vmin) . (2.8)

Since ÷(vmin) is given as the integral (2.3) over the velocity distribution, ÷(vmin) and, therefore,
÷̃(vmin) are monotonically-decreasing functions of vmin. We adopt a conservative ansatz by
approximating ÷̃(vmin) as a series of step functions [11–13]. The intervals are defined by
dividing up vmin-space into Ns intervals of the form [vi, vi+1], with vi Æ vi+1. This corresponds
to the scenario in which the velocity distribution of the DM halo is given by a series of
streams with speeds {vi} and thus

÷̃(vmin) =
ÿ

i

÷̃i �(vi ≠ vmin) . (2.9)

Note that, by construction, ÷̃ is monotonically decreasing with vmin. As vmin decreases,
the step across speed vi is of height ÷̃i. We discuss the technical details of our numerical
procedure below, see section 2.3.

For several sub-GeV DM experiments, the observed event rates are given as a function of
the number of detected electrons, ne. We use a simple model to determine the correspondence
between the electron energy and ne, given by

ne = 1 + Â(Ee ≠ Egap)/ÁÊ , (2.10)

where ÂxÊ rounds x down to the nearest integer, Egap is the bandgap energy of the material,
and Á is the mean energy per electron-hole pair. For silicon, {Egap, Á} = {1.2, 3.8} eV, while for
germanium {Egap, Á} = {0.67, 3.0} eV. The observed rate for ne detected electrons is given by
integrating the di�erential rate (2.7) over the energies associated with that number of electrons,

R(ne) = 1
8µ2

‰e

⁄
Emax

Emin

dEe

Ee

⁄
q+

q≠
dq q |FDM(q)|2|fres(Ee, q)|2

ÿ

i

÷̃i�(vi ≠ vmin) , (2.11)

where Emin = Egap + (ne ≠ 1)Á and Emax = Egap + neÁ. The limits of q are determined by
kinematics, and are given by q± in (2.5).

2.3 Statistics

In order to determine the constants ÷̃i, we introduce a likelihood function which compares
the observed number of events to the number predicted for a given choice of ÷̃i. For our
purposes, we will use a binned likelihood function for an experiment with N bins,

≠2 log L = 2
Nÿ

i=1

5
Ri + Bi ≠ Ni + Ni log Ni

Ri + Bi

6
, (2.12)

where Ri, Bi, Ni are the expected signal, expected background, and the observed number
of events for the i-th bin of the experiment, respectively. The expected signal rate Ri in
each bin is determined using (2.11), and any known sources of background can be accounted
for with Bi. For the case where Ni = 0, we set

Ë
Ni log Ni

Ri+Bi

È
= 0. For more than one
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experiment we label each likelihood with an index –, and the results of all experiments are
combined by multiplying (adding) their (log-) likelihoods,

L =
Ÿ

–

L
(–) . (2.13)

Given this likelihood, we can determine, for a fixed m‰, the step heights ÷̃i which minimize
≠2 log L (i.e. maximize the likelihood). From this, we can define the profile likelihood function,

L̂(m‰) = max
÷̃

L(m‰, ÷̃) . (2.14)

The linearity of the rate (2.11) with respect to all ÷̃i ensures that any minimum of the
likelihood in ÷̃ space is a global minimum. To solve this minimization problem in practice, we
discretize the function ÷̃(vmin) in 100 velocity steps of equal size �vmin between vmin = 0 km/s
and vmin=1000 km/s. In the galactic frame the maximal speed of dark matter bound in
our halo is expected to be O(500 ≠ 700)km/s. In the Earth’s frame the maximal speed
is about 200 km/s higher. We consider 1000 km/s a conservative cut o�, but it is simple
to extend the range to higher speeds. Concretely, we take the step-function ansatz (2.9)
and write the step heights as

÷̃i © exp(g̃i) ◊ 1 year≠1 , (2.15)

with real parameters g̃i, where i = 1 . . . 100. This parameterization ensures that the step
heights are non-negative, as dictated by the monotonicity of ÷̃(vmin).

To find the values g̃i that minimize the log-likelihood (2.12), we use the ADAM op-
timizer [22] implemented in TensorFlow 2.10.0 [23] with its default settings, a learning
rate of 0.001, and the log-likelihood as the loss function. After removing an overall nor-
malization of 10≠20 year≠1, we initialize the g̃i to a random value between 0 and 1. We
then perform 105 minimization steps, which was su�cient for the optimizer to converge
in all cases studied in this work.

While we always use the log-likelihood as a loss function for our optimizer, we will also
use the ‰2 as a test statistic, which is given by

‰2 =
Nÿ

i=1

(Ni ≠ Ri ≠ Bi)2

Ri + Bi

, (2.16)

where all quantities are defined like in (2.12). Compared with the likelihood, the ‰2 has
the advantage that it provides an absolute measure of the compatibility of the data with
a given model hypothesis.

2.4 Linear algebra and flat directions

The rate (2.11) depends linearly on ÷̃i. So for fixed dark matter mass the expected rate for
a given velocity distribution, corresponding to ÷̃, is given by

Ri(÷̃) =
ÿ

j

Aij ÷̃j , (2.17)
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with

Aij(m‰) = 1
8µ2

‰e

⁄
E

(i)
max

E
(i)
min

dEe

Ee

⁄
q+

q≠
dq q |FDM(q)|2|fres(Ee, q)|2�(vj ≠ vmin) . (2.18)

The index i refers to the di�erent observables, and A(m‰) encodes how much the jth velocity
bin contributes to the ith observable, assuming some fixed value for m‰. If A is an invertible
square matrix, as would be the case if the number of observed energy bins was equal to
the number of steps in the velocity distribution, then a best-fit solution for ÷̃j given some
observed rates Ri could be found simply by inverting A: ÷̃j = (A≠1)jiRi.

When the number, n, of continuous parameters ÷̃i is larger than the number of observables,
m, the matrix A is not invertible in the usual fashion. Instead one may introduce the concept of
a pseudoinverse2

A
+. The pseudoinverse can be found from the singular value decomposition

(SVD) of A. The SVD identifies orthonormal matrices U and V such that

A = UDV T . (2.19)

If A is of size (m ◊ n) then U(V ) are square matrices of size m(n), respectively, and
D = D ü 0 is of size (m ◊ n), with D a diagonal (n ◊ n) matrix and 0 a zero matrix. Defining
D

+ = D≠1
ü 0 the pseudoinverse of A is defined as

A
+ = V D

+UT . (2.20)

Using the pseudoinverse a solution can be found:

÷̃ú = A
+R . (2.21)

It is shown, in appendix B, that this solution minimizes |R ≠ A÷̃|
2.3 For the case of interest

here, with more parameters than constraints, this minimum is at zero. Thus, ÷̃ is the best-fit
solution. However, there is no guarantee that the solution is physical i.e. that the resulting ÷̃

is monotonic. Furthermore, there are flat directions in the parameter space: perturbations to
the vector ÷̃ that leave every observable Ri unchanged. These flat directions are spanned by
the vectors that lie in the kernel of A. Thus, there is a family of solutions related to ÷̃ú by

÷̃ú æ ÷̃ú +
1
1 ≠ A

+
A

2
–̨ , (2.22)

with –̨ an arbitrary vector that is projected down to ker(A). By moving around in these flat
directions an equally good, but physical, solution for ÷̃ may be found.

Bands of 1‡ or 2‡ can be generated by a related two-step procedure. First, starting
from a best-fit point ÷̃ú, the vector ÷̃ is varied in all of the directions perpendicular to ker(A),
until the ‰2 of the fit reaches a 1‡ (or 2‡) threshold. These results for ÷̃ generate a partial
contour, surrounding the best-fit point. Next, every point on this contour is extended along
the flat directions, using the same method as (2.22). This complete 1‡ or 2‡ contour encloses
a volume, with ÷̃ú and all of the points generated by (2.22) contained in the center.

2For a brief introduction on the properties of the pseudoinverse, see appendix B.
3By rescaling R and ÷̃ the quantity being minimized can be made into ‰2. In the limit where the number of

events is large — where the Poisson distribution approaches a Gaussian — this quantity approaches ≠2 log L.
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With a large number of flat directions, determining in which direction to move to go from
the unphysical solution ÷̃ú to a physical one can be numerically challenging. However, once a
physically allowed solution has been determined, for instance using the techniques outlined in
the previous subsection, the pseudoinverse and its associated flat directions can be employed
to determine the boundaries of the physically allowed region which yields the same rate as
the original solution. In high-dimensional applications it may be more tractable to explore a
subspace of the flat directions. In section 3 we employ a coarse-graining method, where k

neighboring bins in the distribution are varied in parallel, ”÷i = ”÷i+1 = . . . = ”÷i+k. This
makes it easier to explore a larger range of the physically-allowed region, or at least those
perturbations to ÷̃ú that do not involve significant changes at the smallest scales. Through
this technique, we can then define a Region of Equivalent Statistical Test (REST) that
encapsulates the degeneracy in the underlying velocity distribution by containing all velocity
distributions that yield the same rate.

3 Application to simulated rates

As an application of the formalism described in the previous sections, we simulate mock
data under various DM model assumptions and apply the formalism to this data set. This
provides an opportunity to measure the utility of this approach, under controlled conditions.
We calculate mock data for both silicon and germanium targets. To compute the rate (2.1)
we use crystal form factors (2.2) calculated by QEdark [19], but the procedure can be applied
using rates from other codes, such as DarkELF [24], EXCEED-DM [25], and QCDark [26]. We
simulated two representative halo models: the Standard Halo Model (SHM) and a stream
of DM at a fixed velocity.

We take the SHM to have the form [27]

f‰(v̨‰) = 1
KSHM

e≠v
2
‰/v

2
0 �(vesc ≠ v‰) , (3.1)

where v̨‰ is the DM velocity in the galactic frame. We take the velocity dispersion to be
v0 = 220 km/s and vesc = 544 km/s for the escape velocity. The distribution is normalized
such that

s
d3v‰f‰(v‰) = 1. The analytic expression for the normalization factor KSHM

is derived in appendix A. To determine the rate in a direct detection experiment we must
boost to the Earth’s frame. To do so, we use the average of the Earth’s speed relative to
the DM halo, vE = 232 km/s, and ignore its time dependence.

In the galactic frame a stream with zero velocity dispersion is a delta function in velocity
space, f‰(v̨‰) = ”(3)(v̨‰ ≠ v̨ gal

str ). Here, we model the DM velocity distribution as a Gaussian
with small dispersion, ‡. Furthermore, we define the stream’s mean velocity in the Earth’s
frame v̨str = v̨ gal

str ≠ v̨E . Thus, in the Earth’s frame the velocity distribution for the stream is

f(v̨) = 1
Ô

8fi3‡3
e≠ (v̨≠v̨str)2

2‡2 , (3.2)

where we take the speed of the stream to be vstr = 300 km/s and the dispersion ‡ = 20 km/s.
We are interested in the limit where the stream’s dispersion is small and its speed is far from

– 8 –
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model name m‰ [MeV] FDM halo model
A 50 1 SHM
B 10 1 SHM
C 50 (–me/q)2 SHM
D 50 1 stream

Table 1. The DM mass, DM form factor, and DM halo model assumed for each of the generated
mock data sets.

the escape speed, thus we ignore the cuto� at the galactic escape speed. See appendix A for
more discussion about the function ÷ for the cases of a SHM and a stream.

The DM can couple to electrons either through a contact interaction or through the
exchange of a light mediator. For these two cases we parameterize the DM form factor [28]
as FDM = 1 and FDM = (–me/q)2, respectively.

Using these velocity distributions, the DM form factors, and the crystal form factors (2.2)
calculated by QEdark, we simulate four di�erent DM models, whose parameter choices are
listed in table 1. In this analysis of mock data, for simplicity, we do not include backgrounds
and hence always set Bi = 0.

3.1 Best-fit dark matter particle and astrophysical properties

Armed with the mock data, we can now employ our formalism to find the best-fit DM velocity
distribution for the two elements, silicon and germanium, independently as well as the joint
fit of the two rates. In figures 2 and 3, we show the value of ‰2 profiled over the DM velocity
distribution as a function of the hypothesized DM mass for the mock data from models A–D.
In each fit of figure 2, the DM form factor FDM is set to its true value for the respective
model, while in figure 3, the DM form factor is set to the wrong value.

Using the method described in section 2, we carry out separate fits of simulated silicon
and germanium rates as well as a joint fit of the events from both elements. For the case of
the joint fit with the correct FDM, we see that the minimum of the ‰2 statistic, i.e. the best
fit, lies exactly at the true DM mass for models A, B and D, and nearly at the correct mass
for model C. In each case, the ‰2 value at the minimum is negligible. That is, for the correct
mass we can fit the simulated data perfectly, as expected. At incorrect masses, on the other
hand, a perfect joint fit of both silicon and germanium data cannot be achieved with any
physical velocity distribution for models A, B and D. This demonstrates that our formalism is
successful at identifying the correct DM mass for models with a heavy mediator, i.e. FDM = 1.

Only for model C, which has a light mediator, can we find some velocity distribution that
fits the data perfectly for any DM mass m‰ & 10 MeV. Here, the light mediator, corresponding
to FDM ≥ 1/q2, biases the electron recoil spectrum towards small energies largely irrespective
of m‰, erasing information about the DM mass from the resulting event rates. The value of
‰2 only increases at m‰ . 10 MeV, where fitting the event rates of model C would require
velocities above 1000 km/s, which we impose as a hard cuto� in our fits.
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Figure 2. Best-fit ‰2 as a function of m‰ from a fit (profiled over the DM velocity distribution) of
simulated Si and Ge rates at 1 kg·yr exposure for di�erent DM and halo models. Shown are separate
fits of the Si rate (blue) and the Ge rate (orange), and a joint fit of both (red). Each fit is carried out
with the correct FDM for the respective DM model. The vertical dashed line shows the true DM mass
used in creating the mock data, while ı denotes the DM mass that gives the best joint fit to the two
mock data sets. For a version of these plots with a logarithmic y-axis, see the dashed curves in figure 3.

For a heavy DM mediator, our method correctly infers the underlying DM mass via a
joint fit of silicon and germanium data. However, when fitting silicon and germanium rates
individually, we find in almost every case (the Ge fit of model A being the only exception)
a broad range of masses for which some velocity distribution yields negligible ‰2. This
demonstrates that it is essential to combine event rates from multiple electron-scattering
experiments with di�erent materials to infer DM properties in a halo-independent manner.

Results for incorrect choices of the form factor (i.e. FDM ≥ 1/q2 for models A, B, D, and
FDM = 1 for model C) are displayed in figure 3. As in the previous figure, we again show
‰2 for the best-fit velocity distribution for each DM mass. For comparison, we also show
the ‰2 curves with the correct form factor from figure 2 as dashed lines.

When fitting silicon and germanium data simultaneously with the incorrect form factor
choices, we observe best-fit values of ‰2 between 103 and 104 over the entire mass range for
models A, B and D. Only for the light-mediator model C there is a narrow range of masses
below approximately 10 MeV where we obtain a good fit despite the wrong DM form factor.
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Figure 3. Same as figure 2, but with the incorrect DM form factors, i.e. FDM ≥ 1/q2 for models A,
B and D, and FDM = 1 for model C. The results from figure 2, which use the correct form factors, are
shown with dashed lines (note the change to a logarithmic scale).

This indicates that a light DM particle with a heavy mediator can mimic the event rates of
a heavier DM particle with a light mediator. This is not unexpected, since both scenarios
lead to a concentration of events at low energies.

The results for models A, B, and D, on the other hand, show that the combined rates in
silicon and germanium from a heavy-mediator model cannot be explained by a light-mediator
model with any DM mass or velocity distribution. This implies that our halo-independent
analysis method can correctly identify that the coupling is through a heavy mediator even
without any input about the DM mass or velocity.

Having studied the ability of our formalism to identify the particle properties of dark
matter, we next turn to the DM velocity distribution. The best-fit results for ÷̃ for the correct
masses of models A–D are shown in figure 4 alongside the ÷̃ of the true velocity distributions
for each model. These are the Standard Halo Model defined in (3.1) for models A–C and
a stream localized at vstr = 300 km/s for model D, see (3.2). Around each best-fit velocity
distribution we also show the corresponding REST, which accounts for the flat directions
in velocity space, as discussed in section 2.4.

For all four models considered here we find that the best-fit velocity distribution follows
the true velocity distribution nearly perfectly. Note that the part of the velocity spectrum
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Figure 4. Best-fit velocity distributions, shown in the form of ÷̃(vmin), for the correct DM masses
and DM form factors for the models from figure 2 inferred from a joint fit of simulated Si and Ge
rates. The threshold velocities (as given in (2.6)) for Si and Ge are shown as blue and orange dashed
lines, respectively. The bands are defined by the REST procedure described in section 2.4.

below the threshold vú(Egap) (as defined in (2.6)) does not a�ect the observed event numbers
and therefore remains at its arbitrary initial value throughout the minimization process. Hence
the best-fit ÷̃ curves reach a plateau at the lowest velocities shown in figure 4. Accounting
for this, the ÷̃ of the true velocity distribution above threshold is contained inside the REST
for all models.

3.2 Limits on the dark matter mass

So far we have discussed the best-fit ‰2 only in terms of its qualitative behavior as a function
of DM mass. In this section, we proceed to use it quantitatively as a test statistic in order
to set limits on the DM mass based on our simulated data. Figure 5 shows the ‰2 curves
of the Asimov4 datasets for models A–D (dashed red lines) together with the ‰2 value that
corresponds to a 90% CL exclusion for each dataset (dotted black line). The number of
degrees of freedom of the ‰2 distribution underlying each of these thresholds is equal to the
sum of the number of silicon bins and the number of germanium bins taken into account in

4In the Asimov dataset [29] the number of observed events is exactly the number of expected events, i.e. the
Poisson distribution in the limit of infinite exposure.
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Figure 5. Joint Ge and Si ‰2 for the best-fit velocity distribution as a function of the DM mass
for the Asimov dataset (dashed red line) and 50 Poisson draws (solid red lines) at an exposure of
1 kg-yr. The dashed black line indicates the ‰2 that corresponds to a 90% CL exclusion limit for
the relevant number of degrees of freedom (see table 2). The dark gray shaded region indicates the
associated excluded mass range based on the Asimov dataset. The light gray shaded region is the
median excluded mass range derived from the Poisson draws.

model d.o.f. (Si+Ge) ‰2

90%
m‰ [MeV] m‰ lower limit [MeV] m‰ upper limit [MeV]

A 9+10 27.2 50 15 —
B 6+7 19.8 10 5 16
C 5+5 16.0 50 6 —
D 5+5 16.0 50 17 83

Table 2. Number of degrees of freedom relevant for setting a limit on m‰, associated 90% CL ‰2 thresh-
old, and upper and lower bounds from the Asimov dataset at an exposure of 1 kg-yr for each model.

the analysis. Here, we only use bins with an expected rate Ø 5 events to ensure that our test
statistic is ‰2-distributed to good approximation. The resulting numbers of degrees of freedom
and the corresponding 90% CL ‰2 thresholds for each model are summarized in table 2.

Using the best-fit ‰2 curve as a function of m‰, we can translate the ‰2 thresholds into
90% CL exclusion limits on the DM mass. For the Asimov datasets of models A–D, this
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Figure 6. Relative precision rp for the upper bound (solid lines) and lower bound (dashed lines) on the
mass at 90% CL as a function of exposure for each model. The relative precision is defined as the ratio
of the limit to the true mass (the true mass to the limit) for the upper (lower) bound (see main text for
details). Future exposure targets of 0.1 kg-yr, 1 kg-yr and 30 kg-yr are indicated by vertical dotted lines.

yields the exclusion shaded in dark gray in figure 5. The lower and upper bound of the
allowed mass range for each model are given in the last column of table 2.

In the Asimov dataset the number of observed events is exactly equal to the expected rate.
To check how the mass limits obtained from this idealized construction compare to a more
realistic scenario with Poisson fluctuations in the data, we generate 50 Poisson draws from
the expected rates for each model. To this end, we draw event numbers for each model and
experimental bin from the Poisson distribution with mean equal to the expected rate in the
respective bin. We then derive mass limits based on each associated ‰2 curve, which are all
shown in figure 5. The median excluded mass range, corresponding to the median of the lower
limits of the 50 draws and the median of their upper limits, is shaded in gray. For all of our
models we find that the median exclusion from the Poisson draws is almost identical to the
exclusion constructed from the Asimov dataset. This confirms that the latter is robust under
statistical fluctuations and hence provides a good approximation to a realistic projected limit.

For models B and D we obtain an upper as well as a lower bound at 90% CL from the
Asimov dataset for the exposure of 1 kg-yr used in figure 5. For model A an approximately
twice as large exposure is necessary to find an upper bound. This can be read o� figure 6,
which for each model shows the minimum exposure that yields a certain relative precision for
the upper and lower limits on the DM mass. For the upper and lower bound we define the
relative precision as rp © mmax

‰ /m‰ and rp © m‰/mmin
‰ , respectively, where mmax

‰ denotes the
upper limit on the DM mass, mmin

‰ the lower limit and m‰ the true value. Larger exposures
yield smaller values of rp, i.e. more precise limits.

For the light-mediator model C no upper bound can be obtained for any exposure since
arbitrarily large DM masses still yield a perfect fit to the Asimov dataset for some velocity
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Figure 7. Best-fit velocity distributions inferred from fits of data from SENSEI, EDELWEISS, and
both experiments simultaneously, shown for m‰ = 4.9 MeV (top) m‰ = 50.0 MeV (bottom) and for a
heavy (left) or light (right) mediator. The bands denote the REST regions, as defined in section 2.4.
We show these only for best fits with negligible ‰2.

distribution (see figure 5). For the other models there exists a minimum exposure above
which an upper limit at a given confidence level can be found. In the case of a 90% CL
bound, this minimum exposure lies below the value of 1 kg-yr chosen for figure 5 for models
B and D, and above it for model A.

4 Application to data

The mock-data based examples in the previous section provide a closure test which demon-
strates that our procedure can reliably find the true dark matter model. We now apply our
procedure to actual experimental data. There are multiple experiments which have searched
for DM-electron recoils: DAMIC [30], DarkSide-50 [31], EDELWEISS [32], PandaX [33], SEN-
SEI [34], SuperCDMS [35], XENON10 [21], and XENON1T [36, 37]. So far, none has found
definitive evidence for DM-electron recoils. Rather than carry out a comprehensive comparison
across all experiments we illustrate our technique by focusing on two recent semiconductor-
based searches, one using silicon (SENSEI) and one using germanium (EDELWEISS) as the
target. However, our procedure can be easily expanded to include more searches.
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Figure 8. Predictions of the signal rates in EDELWEISS and a future GaAs detector based on the
best-fit velocity distribution from SENSEI data, shown for m‰ = 4.9 MeV (top) and m‰ = 50 MeV
(bottom) and for a heavy (left) or light (right) mediator. For the second, third and fourth SENSEI bin
the 90% CL upper limit on the rate is indicated with downward arrows. The shaded areas indicate
the span of the predictions for EDELWEISS and GaAs from the REST band of the SENSEI fit.

SENSEI uses silicon Skipper CCDs to search for low-energy electron recoils [38]. Silicon
has a band gap of 1.2 eV and requires 3.8 eV for the creation of an additional electron-hole pair.
In 2020, the collaboration took varying amounts of data up to the 4-electron bin [34]. After
adjusting for exposure and misclassification of 1e≠ events the observed number of events in the
(1e≠, 2e≠, 3e≠, 4e≠) bins was (1311.7, 5, 0, 0). After subtracting spurious-charge background
events from the first bin, this translates5 to a rate of (549, 2.39, 0, 0)/(g · day). Note that
the properties of the materials used in experiments, e.g. the band gap and the crystal form
factor, are subject to systematic uncertainties. For simplicity, we do not vary these quantities
within their uncertainties in the present demonstration of the halo-independent method, but
a combined scan over material form factors and velocity distributions could be conducted
e�ciently using the vector space integration method of [39].

5To be conservative, we subtract the 2‡ lower bound on the spurious-charge background, 554 events. Note
that to convert the number of observed events to a rate the exposure, which varies across electron bins, must
be taken into account.
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EDELWEISS uses germanium detectors utilizing Neganov-Trofimov-Luke amplification
to go beyond electron-hole pair resolution [40, 41]. Germanium has a somewhat smaller
band gap and excitation energy than silicon, of 0.67 eV and 3 eV, respectively. In 2020, the
EDELWEISS collaboration performed a search for DM-electron scattering using 33.4 g of
germanium [32] and 58 hours of data collection. In this search, the DM signal region extended
to 30 eVee, but here we only consider the data from the first 5 electron bins. Adjusting for
the e�ciency of signals to pass selection cuts and integrating the observed energy spectrum
across each electron bin, we find a rate for electron recoils of (1e≠, 2e≠, 3e≠, 4e≠, 5e≠) =
(2840, 5260, 126, 5.7, 1.9) events/(g · day). Since there is presently not a model for possible
backgrounds, we do not carry out any background subtraction.

There are hypothesized sources of background for these experiments, see e.g. [42, 43]
for discussions of potential sources of single-electron events in Skipper-CCDs. Nevertheless,
one can ask what DM velocity distribution is required if these rates are pure signal and
whether they can be compatible with one another.

For the SENSEI dataset it is possible to find a physically viable velocity distribution that
perfectly fits the observed data for any DM mass; for both a contact interaction FDM = 1
and a long-range interaction FDM ≥ q≠2. EDELWEISS has a considerably larger event rate
and has events out to higher energies than SENSEI. Thus, their best-fit velocity distribution
extends to higher speeds, and has a larger normalization. Moreover, only a heavy mediator
(FDM = 1) and DM masses m‰ . 20 MeV result in a good fit to the EDELWEISS data. For
other DM hypotheses, a portion of the observed events has to originate from background,
independent of the DM velocity distribution. Finally, when taken together, both experiments
cannot be simultaneously fit for any choice of mass or coupling structure.

We illustrate these findings in figure 7, where we show the best-fit velocity curves for
SENSEI and EDELWEISS, as well as the joint fit for a selection of DM parameter choices. A
DM mass of 4.9 MeV, shown in the top panels, provided the best joint fit, while a heavier
mass of 50 MeV is shown for comparison in the lower panels. We see that even for the best-fit
point of m‰ = 4.9 MeV, with the REST bands, the velocity distributions are incompatible, as
demonstrated by the large ‰2 value of ‰2 = 1.6 (2.1) ◊ 104 for the heavy (light) mediator,
respectively. Although we did not calculate beyond REST, in principle one can go beyond
REST by following the procedure discussed in section 2.4. However, given the large size of the
‰2 value in this example, going beyond REST does not provide any additional information.

Many of the best-fit velocity distributions in figure 7 are very di�erent from the Standard
Halo Model. In fact, only the m‰ = 4.9 MeV, FDM = 1 fit to the EDELWEISS data resembles
the SHM (see models A–C in figure 4 for a comparison). With m‰ = 50 MeV, for example,
the best fit to the SENSEI data is a co-rotating halo or disc with unexpectedly low dispersion.
The power of the halo-independent approach is its ability to check the consistency of possible
signals from multiple experiments, without imposing any prior for the distribution other than
it be physical. Thus, if the halo-independent approach finds two datasets to be inconsistent
there is no physically allowed distribution that explains them both.

When comparing two experiments, there is another question one can ask; given a best-fit
velocity profile for one set of experimental data, what should we expect in a di�erent exper-
iment? Specifically, we use the smaller velocity distribution required by SENSEI to predict
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a rate at EDELWEISS, under the (unlikely) assumption that SENSEI has no background
events in their data. The expected rates at EDELWEISS for a DM particle of 4.9 MeV and
50 MeV are shown in figure 8, for two choices of the DM form-factor. The intervals between
the lowest and the highest rate predicted by velocity distributions within the REST band
of the fit to SENSEI data are shown as shaded areas in each bin. The large shortfall between
the predicted EDELWEISS rate and the observed rate points to a substantial background.

As a complementary exercise, we also show the predicted rate in a third, hypothetical
experiment using GaAs. We see that the predicted rate for GaAs is lower than that of SENSEI.
Thus, if this hypothetical GaAs experiment observes a higher rate than this prediction, then
the experiment has a non-trivial background. On the other hand, if the GaAs experiment
observes a lower rate, then this implies that the observed events in the SENSEI data are
also contaminated by some background.

5 Discussion and conclusions

The astrophysical DM-velocity halo distribution is a key ingredient to predicting the rate
at dark matter direct detection experiments. Equivalently, converting direct detection
experimental data into insights about the particle physics properties of dark matter, such
as its mass and couplings, depends upon assumptions about the astrophysics. However, the
halo model is subject to large uncertainties. These uncertainties propagate to the predictions
for DM direct detection rates, which motivates a formalism in which one can present the
results of DM direct detection experiments in a halo-independent manner.

In this work, we presented a procedure which extends the halo-independent formalism,
previously applied to DM-nuclear recoils, to DM-electron scattering. We use this approach
to find the best-fit halo velocity distribution for a given set of data and DM parameters.
Profiling over these velocity distributions it is possible to determine the DM parameters that
yield the best fit to the data, as well as exclude masses which do not fit the data for any
physically-allowed velocity distribution. Our procedure includes the Region of Equivalent
Statistical Test (REST), which encapsulates the velocity models which report the same
best-fit ‰2 values and thus cannot be distinguished on the basis of the data (see section 2.4).

We first performed a closure test in which we created mock data and then demonstrated
that our procedure can accurately determine the true DM parameters and halo velocity
distribution used to simulate the data. Secondly, we applied our procedure to two current
experiments, EDELWEISS and SENSEI, to determine if there exists a viable DM model
and halo velocity distribution which can simultaneously explain all the observed events at
both experiments.

From the closure test, we observed that the procedure works well for DM models with
a heavy mediator, but is not as constraining for a light mediator. Rates from DM models
with a light mediator are enhanced at low-momentum transfer, and therefore low energies.
As a consequence, they will only populate the lowest few energy bins. In contrast, a heavy
mediator will populate more energy bins, which provides more information for the analysis.
Generally, the e�cacy of our halo-independent approach increases with the number of non-
zero data bins. For similar reasons our procedure provides tighter constraints as the dark
matter mass increases.
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The result of our halo-independent analysis of the SENSEI and EDELWEISS data
indicates that the data cannot be explained by DM-electron scattering for any DM velocity
distribution if both experiments are free of background. Furthermore, if the lower rate observed
at SENSEI is due entirely to dark matter, EDELWEISS has a substantial background. Finally,
we predict that a GaAs experiment searching for DM-electron scattering [44, 45] should
see a DM rate between ≥ 3 events/(g-day) and ≥ 20 events/(g-day), if SENSEI’s rate is
entirely due to dark matter.

Although we only analyzed data from semiconductor experiments, the technique outlined
above is applicable to noble gas detectors, once the analogous ion form factors are calculated.
The rates in this work were generated using the QEDark code. However, our procedure can
be readily adapted to other codes, which can also compute fres (2.2). The remainder of the
procedure is una�ected by the choice of DM-electron scattering code. The procedure we
outline parameterizes the velocity distribution as a piecewise-constant monotonic function
with O(100) coe�cients that must be determined. Despite the large number of parameters,
this minimization procedure is fast and takes only O(10 min) per model point.

The halo-independent DM-electron scattering formalism presented here can also be
extended to other types of DM models, such as inelastic DM, or to anisotropic detector
materials. The formalism for inelastic DM-nuclear scattering was studied in [46, 47], where
the authors extended the elastic nuclear recoil halo-independent formalism to account for
the fact that the nuclear recoil energy does not uniquely map to vmin, but instead has 2
solutions. For anisotropic detector materials, the wavelet-harmonic method of [48] provides
a suitable basis for the 3d velocity distributions and detector form factors, analogous to
the linear basis of velocity functions in (2.9).

If a robust DM signal is observed, the proposed formalism should be used to extract
rigorous conclusions about the properties of DM. Additionally, it will be the only way to
measure the local DM velocity distribution. The insights gained through this formalism
could then inform the next experimental steps, including which other materials should be
used to build follow-up detectors.
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A Halo models

Here, we present the analytic expressions for our two representative halo models, used in
generating our mock data.
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Standard Halo Model. In the galactic frame the standard halo model is a Maxwell-
Boltzmann distribution with a cuto�

f‰(v̨‰) = 1
KSHM

e≠v
2
‰/v

2
0 �(vesc ≠ v‰). (A.1)

The normalization factor KSHM is determined by requiring
s

d3vf‰(v̨) = 1, giving

KSHM = v3

0fi

S

UÔ
fiErf

3
vesc

v0

4
≠ 2vesc

v0

e
≠

1
vesc
v0

22T

V . (A.2)

We define the function ÷(vmin), as in (2.3),

÷(vmin) =
⁄

d3v
e≠(v̨+v̨E)

2
/v

2
0

v KSHM

�(v ≠ vmin) �(vesc ≠ |v̨ + v̨E |) . (A.3)

The result of the integral takes a di�erent form depending on whether vmin is bigger or
smaller than vesc ≠ vE . For vmin < vesc ≠ vE ,

÷(vmin) = v2
0fi

2vEKSHM
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while for vesc ≠ vE < vmin < vesc + vE

÷(vmin) = v2
0fi

2vEKSHM
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≠2e≠v
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esc/v
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0 (vesc ≠ vmin + vE)

+
Ô

fiv0

3
erf

3
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4
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3
vmin ≠ vE

v0
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. (A.5)

Stream. We approximate the stream’s velocity distribution as a narrow Gaussian, which
in the Earth’s frame takes the form

f(v̨) = 1
Ô

8fi3‡3
e≠ (v̨≠v̨str)2

2‡2 . (A.6)

We are focused on the case where the stream’s velocity is well below the galactic escape speed,
vesc ≠ |v̨str ≠ v̨E | ∫ ‡, and it is a reasonable approximation to integrate over all speeds in the
Earth’s frame, i.e. we do not include a Heaviside cuto�. As before, the velocity distribution is
normalized such that

s
d3vf(v) = 1. The function ÷ can be found by using (A.5) and making

the substitutions vE æ vstr, v0 æ
Ô

2‡ and taking the limit vesc æ Œ resulting in

÷(vmin) = 1
2vstr

3
erf

3
vmin + vstr

Ô
2‡

4
≠ erf

3
vmin ≠ vstr

Ô
2‡

44
. (A.7)

B The pseudoinverse

Consider an (m ◊ n) matrix A with rank k whose, singular value decomposition is

A = UDV T , (B.1)
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with U an orthogonal (m ◊ m) matrix, V an orthogonal (n ◊ n) matrix and D a diagonal
(m ◊ n) matrix, of the form

D =

Q

aDk 0
0 0

R

b . (B.2)

The rank k square matrix Dk is diagonal, with (Dk)ii ”= 0. The singular values of A are the
diagonal entries of D, while Dk includes only the nonzero singular values of A. By definition,
det Dk ”= 0. The pseudoinverse of D is defined as

D+ =

Q

aD≠1

k
0

0 0

R

b . (B.3)

The pseudoinverse of A is defined in terms of D+,

A+ = V D+UT . (B.4)

This pseudoinverse is the unique matrix [49] with the properties

AA+A = A , A+AA+ = A+ , (B.5)
(AA+)T = AA+ , (A+A)T = A+A . (B.6)

Furthermore, AA+ acts as a projection operator, so that any vector can be projected into
orthogonal image spaces using AA+ and 1 ≠ AA+, for example (1 ≠ AA+)x œ ker(A).

Finally, the least squares solution to the equation Ax = b is given by x0 = A+b. This
can be seen by using the properties of the pseudoinverse to write

Ax ≠ b = AA+
Ë
A

1
x ≠ A+b

2È
≠

1
1 ≠ AA+

2
b , (B.7)

where we have used the projection operators to split the expression into pieces sitting in
the two orthogonal spaces. Thus, the norm of Ax ≠ b is

|Ax ≠ b|
2 = |A

1
x ≠ A+b

2
|
2 + |Ax0 ≠ b|

2
Ø |Ax0 ≠ b|

2 . (B.8)

This shows that the pseudoinverse provides us with the least squares solution, and x0 is
the solution of minimum norm. There may be other solutions, with larger norm, related
to x0 by an arbitrary vector in the kernel of A:

x æ x0 +
1
1 ≠ AA+

2
y . (B.9)

For the case of an underdetermined system (n > m) an exact solution Ax0 = b can always be
found, provided the SVD of A has at least m nonzero singular values. For an overdetermined
system (n < m) there is no guarantee of an exact solution but x0 is the least squares solution.
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