
FINDING POINTS ON VARIETIES WITH MACAULAY2

SANKHANEEL BISUI, ZHAN JIANG, SARASIJ MAITRA, THÁI THÀNH NGUY
˜̂
EN, AND KARL SCHWEDE

Abstract. We present RandomPoints, a package in Macaulay2 designed mainly to identify rational
and geometric points in a variety over a finite field. We provide tools to estimate the dimension of a
variety. We also present methods to obtain non-vanishing minors of a given size in a given matrix,
by evaluating the matrix at a point.

1. Introduction

Let I be an ideal in a polynomial ring k[x1, . . . , xn] over a finite field k. Let X := V (I) denote the
corresponding set of rational points in affine n-space. Finding one such rational point or geometric
point (geometric meaning a point over some finite field extension), in an algorithmically efficient
manner, is our primary motivation for this package. The authors of the package are Sankhaneel
Bisui, Zhan Jiang, Sarasij Maitra, Thái Thành Nguy˜̂en, Frank-Olaf Schreyer, and Karl Schwede.

There is an existing package called RationalPoints [Sta09], which we took inspiration from,
which aims to find all the rational points of a variety; our aim here is to find one or more random
rational or geometric points on a variety quickly. We also note that the package Cremona [Sta21]
can find rational points on projective varieties, as can the core function randomKRationalPoint

[GS] – our methods frequently appear to be faster and apply in the affine setting as well.
We develop functions that apply various strategies to generate random rational and geometric

points on the given variety. We also provide functions that will expedite the process of determining
properties of the singular locus of X.

We provide the following core functions:

• randomPoints: This tries to find a point in the vanishing set of an ideal. (Section 2)
• dimViaBezout: This tries to compute the dimension of an algebraic set by intersecting with

hyperplanes. (Section 3.1)
• projectionToHypersurface and genericProjection: These functions provide customiz-

able projection. (Section 4)
• findANonZeroMinor and extendIdealByNonZeroMinor: The first function finds a subma-

trix of a given matrix that is nonsingular at a point of a given ideal. The second adds said
submatrix to an ideal, which is useful for computing partial Jacobian ideals. (Section 5.1)

All polynomial rings considered here will be over finite fields. In the subsequent sections, we
explain the core and helper functions and describe the strategies that we have implemented.

Acknowledgements: The authors would like to thank David Eisenbud and Mike Stillman for
useful conversations and comments on the development of this package. The authors began work
on this package at the virtual Cleveland 2020 Macaulay2 workshop. The authors are also grateful
to the reviewers for suggesting and providing preliminary codes to speed up computations, thereby
improving the efficacy of the package substantially. Frank-Olaf Schreyer is also an author on this

Key words and phrases. RandomPoints, Macaulay2.
Schwede was supported by NSF Grants #1801849, #2101800, FRG #1952522 and a Fellowship from the Simons

Foundation.

1

package, as he provided code related to the MultiplicationTable decomposition strategy and
suggested using a probabilistic approach to compute dimension.

2. Our primary purpose: randomPoints

We start with the core function in this package: randomPoints is a function to find rational or
geometric points in a variety. The typical usages are as follows:

– randomPoints(I),
– randomPoints(n, I)

where n is a positive integer denoting the number of points desired, and I is an ideal inside a
polynomial ring. If n is omitted, then it is assumed to be 1.

2.1. Options. The user may also choose to provide some additional information, which may ac-
celerate the computation and improve the probability that a point is found.

Strategy => •: Here the • can be Default, BruteForce or LinearIntersection
.
• Default performs the strategies below in a sequence, with the aim of finding a point

quickly. It begins begins with brute force and moves to linear intersections with par-
ticularly simple linear forms, and gradually ramps up the randomness of the linear
forms.
• BruteForce simply tries random points and sees if they are on the variety.
• LinearIntersection intersects with a random linear space.
The speed and the probability of success depend on the strategy (see also Section 3).

Example 2.1. Consider the following example.
i2 : R = ZZ/101[x, y, z];

i3 : J = ideal(x^3 + y^2 + 1, z^3 - x^2 - y^2 + 2);

o3 : Ideal of R

i4 : time randomPoints(J,Strategy=>BruteForce, PointCheckAttempts=>10)

-- used 0.00186098 seconds

o4 = {}

o4 : List

i5 : time randomPoints(J)

-- used 0.0205099 seconds

o5 = {{-1, 0, -1}}

o5 : List

i6 : time randomPoints(J, Strategy=>LinearIntersection)

-- used 0.0334881 seconds

o6 = {{0, 10, 48}}

ExtendField => Boolean: Intersection with a general linear space will naturally find scheme
theoretic points that are not rational over the base field. Setting ExtendField => true

will tell the function that such points are valid. Setting ExtendField => false will tell the
2

function to ignore such points. In fact, ExtendField => true will also tell Macaulay2 to
use linear spaces defined over a field extension, which can improve randomness properties.
This sometimes can slow computation, and other times can substantially speed it up when
the variety has few rational points. For some applications, points over extended fields may
also have better randomness properties.

DecompositionStrategy: Within the LinearIntersection strategy, one can also specify the
option DecompositionStrategy. Valid values are Decompose and MultiplicationTable,
the latter of which is currently only implemented for homogeneous ideals. The point is, after
intersecting the linear space and obtaining an ideal defining a set of (possibly thickened)
points, we need to find the minimal associated primes. By default we use Macaulay2’s built-
in decompose command. We also have implemented a MultiplicationTable algorithm,
as provided by Frank-Olaf Schreyer, which utilizes the action of a variable on the residue
fields of these points computed in more than one way. This method is frequently faster for
rings with smaller numbers of variables.

The Default strategy switches back and forth between Decompose and MultiplicationTable

for homogeneous ideals (starting with one the function thinks will be fastest). Setting this
to Decompose in the default strategy will force only Decompose to be used; setting it to
MultiplicationTable will force only MultiplicationTable to be used (if the ideal is
homogeneous).

Homogeneous: Setting this true specifies that the origin (corresponding to the irrelevant ideal)
is not a valid point.

Replacement => Monomial, Binomial, Trinomial, Full: When intersecting with a ran-
dom linear space, it is frequently much faster to use a linear space defined by relatively
sparse equations (ie, equations that do not involve all variables). Specifying Monomial will
mean linear forms such as ax+ b are used (for constants a and b), involving only one vari-
able. Binomial means forms like ax + by + c, using two variables. Trinomial means forms
like ax+ by + cz + d. Full means all variables will have coefficients.

DimensionFunction => Function: Our current implementation does not need to know the
dimension of V (I). However, there are places where we try to verify the dimension of an
ideal before we decompose the ideal. You can pass this function dim (the default) or our
probabilistic dimViaBezout or any other dimension function you might prefer.

PointCheckAttempts => ZZ: When calling randomPoints with a BruteForce strategy, this
denotes the number of trials for brute force point checking. It also controls how many linear
spaces to simultaneously study in the LinearIntersection strategy.

Example 2.2. We re-compute Example 2.1 this time specifying more attempts.
i7 : time randomPoints(J, Strategy => BruteForce, PointCheckAttempts => 10000)

-- used 1.16294 seconds

o7 = {{-43, 25, 29}}

NumThreadsToUse => ZZ: When calling randomPoints and functions that call it with a
BruteForce strategy, this options allows the user to specify the number of threads to use
in brute force point checking.

2.2. Comments on performance and implementation. When working over very small fields,
especially with hypersurfaces, frequently BruteForce is most efficient. This is not surprising as
there may not be many points to check. However, if the field size is larger, BruteForce will perform
poorly. Even for some simple examples, it could not provide any rational points if the number of

3

trials is not large enough. Other strategies work differently on different examples, and the same
strategy can sometimes work very quickly even if it typically works very slowly.

The current version of the LinearIntersection strategy no longer computes the dimension of
the algebraic set. Instead, it first finds a point defined by linear equations. If the point is on the
algebraic set, we are done. If not, we throw away one of the forms and so now have a line and we see
if this line intersects our algebraic set. We continue in this way until we find a point. This appears
to avoid a number of bottlenecks in our previous implementation since Macaulay2 is relatively fast
at identifying when a linear space and a variety do not intersect.

Example 2.3. We begin with an example over a small field.

i2 : R = ZZ/7[x_1..x_10];

i3 : I = ideal(random(2, R), random(3, R));

o3 : Ideal of R

i4 : time randomPoints(I, Strategy => BruteForce, PointCheckAttempts => 20000)

-- used 0.00311884 seconds

o4 = {{-1, -1, 0, 2, 2, -2, -2, -3, -3, -3}}

o4 : List

i5 : time randomPoints(I, Strategy => Default)

-- used 0.081349 seconds

o5 = {{3, 0, 3, 3, 2, -2, 1, -1, 3, 1}}
Example 2.4. Now we work over a larger field.

i6 : S = ZZ/211[x_1..x_10];

i7 : J = ideal(random(2, S), random(3, S));

o7 : Ideal of S

i8 : time randomPoints(J, Strategy => BruteForce, PointCheckAttempts => 2000000)

-- used 17.7988 seconds

o8 = {{15, 67, -27, -103, 56, 66, -23, 28, -50, 13}}

o8 : List

i9 : time randomPoints(J, Strategy => Default)

-- used 0.0864013 seconds

o9 = {{0, 0, 0, 0, 34, 76, 51, 0, 1, 0}}

Example 2.5. Finally, we can allow our functions to extend our field.

i11 : time randomPoints(J, Strategy => Default, ExtendField => true)

-- used 0.144332 seconds

3 2 3 2

o11 = {{0, - a + 62a - 47a - 76, 0, 0, 13a - 18a + 63a - 31, 0, 0,

3 2 3 2

- 20a - 82a + 35a - 19, 55a - 64a - 8a - 50, 1}}

4

i12 : coefficientRing ring first first o11

o12 = GF 1982119441

i13 : log_211 1982119441

o13 = 4

In this case, we found a degree 4 point.

Remark 2.2.1 (Comments on the probability of finding a point). In the case of an absolutely
irreducible hypersurface in An

Fq
(defined by f say), there is significant discussion in the literature

estimating lower bounds of number of rational points (see for instance, [Sch, LW54, GL02, CM06])
all of which point to the fact that there is “good probability” of finding a rational point in this case
when we intersect with a random line. Heuristically, we can make the following rough estimation.
We expect that each equation f = λ for λ ∈ Fq has approximately the same number of solutions.
Since each point on Fn

q solves exactly one of these equations, we expect that f = 0 has approximately

qn−1 solutions, or in other words, our hypersurface has qn−1-points. Now, a random line L has q
points. We want to find the probability that one of these points is rational for V (f). We would
expect that if these points are randomly distributed, then the probability that our line contains
one of those points 1− (1− 1

q)q which tends to 1− e−1 ≈ 0.63 for q large. Alternately, one can use

the proof of [BS05, Proposition 2.12] for a more precise statement. For each point of L, we see that
the probability that the chosen point does not lie in the intersection, L ∩ V (f), is 1− 1

q . We then

exhaust this search over all the points on L to get the probability that there is indeed a successful
intersection is 1− (1− 1

q)q. As q gets larger, this value tends to 1 − e−1 ≈ 0.63.

Of course, there are schemes over Fq with no rational points at all, even for plane curves.

Remark 2.2.2 (Projecting to a hypersurface first). Suppose X ⊆ An is an algebraic set. In
a number of existing algorithms, one first does a generic (or even not very generic) projection
h : An → Am and so that h(X) is a hypersurface (at least set theoretically). Then one finds a
point x ∈ h(X) (say as above), and computes h−1({x}), which is a linear space in An that typically
intersects X in a rational point. For example, this is done in randomKRationalPoint in core
Macaulay2. Note that projecting to a hypersurface still is intersecting with a linear space, since
h−1({x}) is linear, but it tries to choose the linear space intelligently.

However, in our experience, doing this generic projection first yields slower results. First, one
has to compute the dimension. There are also numerous cases where computing this hypersurface
h(X) can be quite slow. This particularly appears in cases when one is computing successive minors
to identify the locus where some variety is nonsingular.

On the other hand, instead of using a truly random linear space to intersect with, in the default
strategy we initially try linear spaces whose defining equations have as few terms as possible For
example, in a ring with 10 variables, we first try binomial linear forms like

−27x2 + 38x7

instead of a random linear form like

−28x1 − 27x2 + 29x3 + 27x4 − 28x5 + 27x6 + 38x7 − 13x8 + 21x9 − 3x10.

Such simple linear spaces are the ones implicitly considered in randomKRationalPoint for instance
since that generic projection is so simple. In practice, our approach seems to give at least as good
performance compared to projecting to a hypersurface, without the chance of the code getting hung
up on the generic projection or dimension computations. We also do successive intersections in a
way that avoids computing the dimension as described above in Section 2.2.

5

3. Useful functions dimViaBezout and randomCoordinateChange

3.1. dimViaBezout: We thank Frank-Olaf Scheyer for pointing out that in most of the compu-
tations, computing the codimension of the given ideal is a significant bottleneck. While we have
avoided most dimension computations in our current implementation, we have also implemented a
probibalistic dimension computation of V (I). This function takes as input an ideal I in a polyno-
mial ring over a field and intersects V (I) with random linear spaces of increasing dimension until
there is an intersection. For example, if the intersection of V (I) with a random line has a point,
then we expect that V (I) contains a hypersurface. If there was no intersection, this function tries a
2-dimensional linear space, and so on. This can speed up a number of computations. The function
also takes in optional inputs as described below:

• DimensionIntersectionAttempts: Our function actually estimates dimension several times
and then averages the result (rounding down) since we tend to overestimate the dimension
by the above. By default it does this 3 times unless the Homogeneous flag is set, in which
case it is done 5 times.
• MinimumFieldSize: If the ambient field is smaller than this integer value, it will automati-

cally be replaced with an extension field. For instance, there are relatively few linear spaces
over a field of characteristic 2, and this can cause incorrect results to be returned to the
user. The user may set the MinimumFieldSize to ensure that the field being worked over
is big enough. If this is not set, the program tries to choose a reasonable minimum field
size based on the ambient ring.
• Homogeneous: If the ideal is homogeneous, we can use homogeneous linear spaces to com-

pute dimension. Sometimes this is faster and other times slower.

Example 3.1. We illustrate the speed difference in this example.

i2 : S = ZZ/101[y_0..y_9];

i3 : I=ideal random(S^1,S^{-2,-2,-2,-3})+(ideal random(2,S))^2;

o3 : Ideal of S

i4 : time dimViaBezout I

-- used 0.837359 seconds

o4 = 5

i5 : time dim I

-- used 36.8496 seconds

o5 = 5

i6 : time dimViaBezout(I, DimensionIntersectionAttempts=>1)

-- used 0.280803 seconds

o6 = 5

As you can see doing a single intersection attempt is about three times faster, and it usually
gives the right answer (far more than 99% of the time in this particular example, but in others
doing the computation in triplicate avoids returning incorrect answers).

3.2. randomCoordinateChange: This function takes a polynomial ring as an input and outputs a
coordinate change map, i.e. given a polynomial ring, this will produce a linear automorphism of
the ring. This function checks whether the map is an isomorphism by computing the Jacobian.

6

In some applications, a full random change of coordinates is not desired, as it might cause code
to run very slowly. A binomial change of coordinates might be preferred, or we might only replace
some monomials by other monomials. This is controlled with the following options.

• Replacement: This works like the Replacement option for RandomPoints.
• MaxCoordinatesToReplace: The user can specify that only a specified number of coordi-

nates should be non-monomial (assuming Homogeneous => true).
• Homogeneous: Setting Homogeneous => false will cause degree zero terms to be added to

modified coordinates (including monomial coordinates).

Example 3.2. We demonstrate some of these options.

i3 : R = ZZ/11[x, y, z];

i4 : randomCoordinateChange(R)

ZZ

o4 = map(R,--[x, y, z],{4x + 5y - 5z, 3x - 4y - 3z, 4x})

11

ZZ

o4 : RingMap R <--- --[x, y, z]

11

i5 : matrix randomCoordinateChange(R, MaxCoordinatesToReplace => 1)

o5 = | x -x-4y-5z y |

i6 : matrix randomCoordinateChange(R, MaxCoordinatesToReplace => 1,

Homogeneous => false)

o6 = | x-3 z-5 -x+3y-4z+2 |

4. Other functions: genericProjection, projectionToHypersurface

We include two functions providing customizable projections. We describe them here.

4.1. genericProjection. This function finds a random (somewhat, depending on options) generic
projection of the ring or ideal. The typical usages are as follows:

– genericProjection(n, I)

– genericProjection(n, R)

where I is an ideal in a polynomial ring, R can denote a quotient of a polynomial ring and n ∈ Z
is an integer specifying how many dimensions to drop. Note that this function makes no attempt
to verify that the projection is actually generic with respect to the ideal.

This gives the projection map from AN 7→ AN−n and the defining ideal of the projection of V (I).
If no integer n is provided then it acts as if n = 1.

Example 4.1. We project a curve in 4-space to one in 2-space.

i1 : R = ZZ/5[x, y, z, w];

i2 : I = ideal(x, y^2, w^3 + x^2);

i3 : genericProjection(2, I)

7

ZZ 2 2

o3 = (map(R,--[z, w],{- x - 2y - z, - y - 2z}), ideal(z - z*w - w))

5
Alternatively, instead of I, we may pass it a quotient ring. It will then return the inclusion of the
generic projection ring into the given ring, followed by the source of that inclusion.

This method works by calling randomCoordinateChange (Section 3) before dropping variables.
It passes the options Replacement, MaxCoordinatesToReplace, Homogeneous to that function.

4.2. projectionToHypersurface. This function creates a projection to a hypersurface. The typ-
ical usages are as follows:

– projectionToHypersurface I,
– projectionToHypersurface R

where I is an ideal in a polynomial ring, respectively, R is a quotient of a polynomial ring. The
output is a list with two entries: the generic projection map and the ideal (respectively the ring).

It differs from genericProjection(codim I - 1, I) as it only tries to find a hypersurface
equation that vanishes along the projection, instead of finding one that vanishes exactly at the
projection. This can be faster and can be useful for finding points. The same approach was used
in the point command in the Cremona package [Sta21]. If we already know the codimension is c,
we can set Codimension=>c so the function does not compute it.

5. An application: findANonZeroMinor, extendIdealByNonZeroMinor

As mentioned in the introduction, the two functions in this section will provide further tools for
computing singular locus, in addition to those available in the package FastLinAlg.

5.1. findANonZeroMinor: The typical usage of this function is as follows:

– findANonZeroMinor(n, M, I)

where I is an ideal in a polynomial ring over QQ or ZZ/p for p prime, M is a matrix over the
polynomial ring and n ∈ Z denotes the size of the minors of interest.

The function outputs the following:
– randomly chosen point P in V (I) which it finds using randomPoints.
– the indexes of the columns of M that stay linearly independent upon plugging P into M ,
– the indices of the linearly independent rows of the matrix extracted from M in the above step,
– a random n× n sub-matrix of M that has full rank at P .
Besides the options from randomPoints which are automatically passed to that function, the

user may also provide the following additional information:

MinorPointAttempts => ZZ: This controls how many points at which to check the rank.

Example 5.1. We demonstrate this function.

i3 : R = ZZ/5[x, y, z];

i4 : I = ideal(random(3, R) - 2, random(2, R))

3 2 2 3 2 2 2 2

o4 = ideal (2x - 2x y + 2x*y + y + x z - 2x*y*z + y z - 2x*z + 2y*z

3 2

- z - 2, - 2x*y - x*z - z)

o4 : Ideal of R

8

i5 : M = jacobian(I)

o5 = {1} | x2+xy+2y2+2xz-2yz-2z2 -2y-z |

{1} | -2x2-xy-2y2-2xz+2yz+2z2 -2x |

{1} | x2-2xy+y2+xz-yz+2z2 -x-2z |

3 2

o5 : Matrix R <--- R

i6 : findANonZeroMinor(2, M, I, Strategy => GenericProjection)

o6 = ({-2, 1, 1}, {0, 1}, {0, 1}, {1} | x2+xy+2y2+2xz-2yz-2z2 -2y-z |)

{1} | -2x2-xy-2y2-2xz+2yz+2z2 -2x |

5.2. extendIdealByNonZeroMinor: The typical usage is

– extendIdealByNonZeroMinor(n, M, I)

where n,M, I are same as before. This function finds a submatrix of size n× n using
findANonZeroMinor; it extracts the last entry of the output, finds its determinant and adds it to
the ideal I, thus extending I. It has the same options as findANonZeroMinor.

One can use this function to show that rings are regular in codimension 1, that is, satisfy Serre’s
condition (R1).

Example 5.2. Consider the following 3-dimensional example which is regular in codimension 1.
Note, in this example, computing the dimension of the singular locus takes around 30 seconds as
there are 15500 minors of size 4× 4 coming from the associated 7× 12 Jacobian matrix. However,
we can use our function to quickly find interesting minors.

i2 : T = ZZ/101[x1, x2, x3, x4, x5, x6, x7];

i3 : I = ideal(x5*x6-x4*x7,x1*x6-x2*x7,x5^2-x1*x7,x4*x5-x2*x7,x4^2-x2*x6,x1*x4-x2*x5,

x2*x3^3*x5+3*x2*x3^2*x7+8*x2^2*x5+3*x3*x4*x7-8*x4*x7+x6*x7,

x1*x3^3*x5+3*x1*x3^2*x7+8*x1*x2*x5+3*x3*x5*x7-8*x5*x7+x7^2,

x2*x3^3*x4+3*x2*x3^2*x6+8*x2^2*x4+3*x3*x4*x6-8*x4*x6+x6^2,

x2^2*x3^3+3*x2*x3^2*x4+8*x2^3+3*x2*x3*x6-8*x2*x6+x4*x6,

x1*x2*x3^3+3*x2*x3^2*x5+8*x1*x2^2+3*x2*x3*x7-8*x2*x7+x4*x7,

x1^2*x3^3+3*x1*x3^2*x5+8*x1^2*x2+3*x1*x3*x7-8*x1*x7+x5*x7);

o3 : Ideal of T

i4 : M = jacobian I;

7 12

o4 : Matrix T <--- T

i5 : i = 0; J = I;

o6 : Ideal of T

i7 : elapsedTime(while (i < 10) and dim J > 1 do (

i = i + 1;

J = extendIdealByNonZeroMinor(4, M, J)));

-- 0.640164 seconds elapsed

9

i8 : dim J

o8 = 1

i9 : i

o9 = 5

In this particular example, there tend to be about 5 associated primes when adding the first minor
to J , and so one expects about 5 steps as each minor will typically eliminate one of those primes.

There is some similar functionality for computing partial Jacobian ideals obtained via heuris-
tics (as opposed to actually finding rational or geometric points) in the package FastLinAlg, see
[MRSY]. That package now uses the functionality contained here in RandomPoints in some of its
functions.

6. The latest version

The latest version of the package is available in the FastLinAlg branch of

https://github.com/Macaulay2/Workshop-2020-Cleveland/blob/FastLinAlg/FastLinAlg/M2/RandomPoints.m2

References

[BS05] H-C Graf v Bothmer and F-O Schreyer. A quick and dirty irreducibility test for multivariate polynomials
over Fq. Experimental Mathematics, 14(4):415–422, 2005.

[CM06] Antonio Cafure and Guillermo Matera. Improved explicit estimates on the number of solutions of equations
over a finite field. Finite Fields and Their Applications, 12(2):155–185, 2006.

[GL02] Sudhir R Ghorpade and Gilles Lachaud. Number of solutions of equations over finite fields and a conjecture
of Lang and Weil. In Number theory and discrete mathematics, pages 269–291. Springer, 2002.

[GS] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in algebraic geometry.
Available at http://www.math.uiuc.edu/Macaulay2/.

[LW54] Serge Lang and André Weil. Number of points of varieties in finite fields. American Journal of Mathematics,
76(4):819–827, 1954.

[MRSY] Boyana Martinova, Marcus Robinson, Karl Schwede, and Yuhui (Wei) Yao. FastLinAlg: faster linear alge-
bra operations. Version 1.0. A Macaulay2 package available at https://github.com/Macaulay2/M2/tree/

master/M2/Macaulay2/packages.
[Sch] Frank Schreyer. randomKRationalPoint: A core Macaulay2 function. Available at http://www2.

macaulay2.com/Macaulay2/doc/Macaulay2-1.16/share/doc/Macaulay2/Macaulay2Doc/html/_random_

_K__Rational__Point.html.
[Sta09] Nathaniel Stapleton. RationalPoints: A Macaulay2 package. Version 0.95. A Macaulay2 package available

at https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages, 2009.
[Sta21] Giovanni Staglianò. Cremona: rational maps between projective varieties. Version 5.1. A Macaulay2 package

available at https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages, 2021.

Email address : Sankhaneel.Bisui@umanitoba.ca

Department of Mathematics, University of Manitoba, Winnipeg, MB R3T 2M8

Email address : zoeng@umich.edu

Department of Mathematics, University of Michigan, 530 Church St, Ann Arbor, MI 48109

Email address : maitra@math.utah.edu

Department of Mathematics, University of Utah, 155 S 1400 E Room 233, Salt Lake City, UT, 84112

Email address : nguyt161@mcmaster.ca

Department of Mathematics, McMaster University, Hamilton, Ontario, L8S 4L8

Email address : schwede@math.utah.edu

10

https://github.com/Macaulay2/Workshop-2020-Cleveland/blob/FastLinAlg/FastLinAlg/M2/RandomPoints.m2
http://www.math.uiuc.edu/Macaulay2/
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages
http://www2.macaulay2.com/Macaulay2/doc/Macaulay2-1.16/share/doc/Macaulay2/Macaulay2Doc/html/_random__K__Rational__Point.html
http://www2.macaulay2.com/Macaulay2/doc/Macaulay2-1.16/share/doc/Macaulay2/Macaulay2Doc/html/_random__K__Rational__Point.html
http://www2.macaulay2.com/Macaulay2/doc/Macaulay2-1.16/share/doc/Macaulay2/Macaulay2Doc/html/_random__K__Rational__Point.html
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages

Department of Mathematics, University of Utah, 155 S 1400 E Room 233, Salt Lake City, UT, 84112

11

	1. Introduction
	2. Our primary purpose: randomPoints
	2.1. Options
	2.2. Comments on performance and implementation

	3. Useful functions dimViaBezout and randomCoordinateChange
	3.1. dimViaBezout:
	3.2. randomCoordinateChange:

	4. Other functions: genericProjection, projectionToHypersurface
	4.1. genericProjection
	4.2. projectionToHypersurface

	5. An application: findANonZeroMinor, extendIdealByNonZeroMinor
	5.1. findANonZeroMinor:
	5.2. extendIdealByNonZeroMinor:

	6. The latest version
	References

