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This paper discusses quantum algorithms for the generator coordinate method (GCM) that can be used to
benchmark molecular systems. The GCM formalism defined by exponential operators with exponents defined
through generators of the fermionic U (N) Lie algebra (Thouless theorem) offers a possibility of probing large
subspaces using low-depth quantum circuits. In the present study, we illustrate the performance of the quantum
algorithm for constructing a discretized form of the Hill-Wheeler equation for ground- and excited-state energies.
We also generalize the standard GCM formulation to multiproduct extension that when collective paths are
properly probed can systematically introduce higher rank effects and provide elementary mechanisms for
symmetry purification when generator states break the spatial or spin symmetries. The GCM quantum algorithms
also can be viewed as an alternative to existing variational quantum eigensolvers, where multistep classical
optimization algorithms are replaced by a single-step procedure for solving the Hill-Wheeler eigenvalue problem.

DOLI: 10.1103/PhysRevResearch.5.023200

I. INTRODUCTION

The rapid development of quantum technologies and
quantum algorithms addresses long-standing computational
challenges of many-body physics and quantum chemistry.
While the primary target is to overcome exponential growth
in complexity associated with approaching the exact limit
in the simulations, the possibility of identifying physically
meaningful solutions to problems of interest is equally impor-
tant. Although Quantum Phase Estimation algorithms [1-7]
have been designed in a way that adequately addresses both
of these issues, their applicability is currently limited by
the necessity of using complex quantum circuits with cor-
responding depths that preclude its practical applications on
existing quantum computing platforms, dominated by Noisy
Intermediate-Scale Quantum (NISQ) devices. Instead, hybrid
algorithms such as various Variational Quantum Eigensolvers
(VQESs) [8-26] are currently being intensively tested on NISQ
quantum computers to characterize the properties of corre-
lated quantum systems. In this effort, in many aspects, the
VQE formulations, for example, based on the unitary coupled-
cluster (UCC) [27-31] representation of the wave function,
mirror the standard conventional formulations of CC theory,
where a large number of excitations are included in the cluster
operator and simultaneously optimized in the iterative pro-
cess. This algorithm leads to another set of challenges
associated with the potential problems with the convergence
of iterative processes (commonly referred to as the barren
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minimum problem) and representation of UCC ansatz on
quantum registers, which may result in long Trotter-like prod-
ucts of exponential operators defined by multiqubit gates.
Although several strategies mitigating these problems have
recently been proposed, utilizing VQE-UCC formulations and
extending these methods beyond specific system-size limits
may be challenging and require reformulation of the quantum
many-body problem into recently introduced quantum flow
equations [32], where large subspaces of Hilbert space can
be sampled through the constant-depth small-dimensionality
coupled eigenproblems.

Instead, in this paper we explore the applicability of the
Generator Coordinate Method (GCM) [33-39] as an alter-
native to popular VQE formulations. The main difference
with the VQE method is that the GCM method avoids highly
nonlinear parametrization of the wave function and provides
an efficient mean for direct extension of the probed subspaces.
Additionally, it offers an efficient utilization of ansatzes rep-
resented by low-depth quantum circuits.

The GCM method was one of the first attempts to combine
two distinct aspects of many-body theories: independent-
particle models and theories describing collective phenomena,
where the approximate eigenstates |Wgcym) of the Hamil-
tonian H are expressed using a family of N-body wave
functions |®(q)),

Weem) = /d(II@(q))f(Q), ey

where ( is a set of collective variables that describe correlation
effects in many-body systems, and, usually, the corresponding
|®(q)) is represented as a complicated linear combination
of Slater determinants. The scalar f(q) is referred to as the
weight function. The advantage of the GCM approach is ob-
taining ground states and classes of excited states described
by the chosen set of generator coordinates. In general, in
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the analogy to the coherent state representation [40,41], the
family |®(q)) forms an overcomplete basis. Upon substitut-
ing (1) into the Schrodinger equation one gets the so-called
Hill-Wheeler integral equations for unknown f(q) coeffi-
cients

[ dam@a) - ES@ @ =0, @
where the integral kernels H and S are defined as
H(q, q") = (P(@)|H|P(q), 3

S(q.q4) = (P(@IP(q). “

In typical applications, the Hill-Wheeler equation is usually
solved numerically by discretization, which transforms inte-
gral equation (3) into an algebraic eigenvalue problem.

There are two categories of GCM formulations in appli-
cations to many-body quantum systems. The first category’s
purpose is to restore broken symmetries of the |®(q)) states.
For example, Bardeen-Cooper-Schrieffer states are not eigen-
states of the particle number operator N. In this case, the
properties of f(qy) coefficients are determined by the prop-
erties of the symmetry (projection) operators (e.g., particle
number projection operator). In the second category of GCM
formulations, the unknown weight function is optimized to
capture correlation effects encoded in generator coordinates.
However, designing an adequate grid or path to probe the
Hill-Wheeler equation is a rather empirical procedure that re-
quires much intuition and prior knowledge of the sought-after
many-body system.

The appealing feature of the GCM method, especially from
the point of possible quantum computing applications, is the
possibility of combining low-depth representations of |®(q))
functions with simple, one-step optimization conditions for
weight function. In this approach, the role of quantum com-
puting is to map a discrete number of states {|<I:'(q1,))}’;’1=1
to a quantum register and to evaluate matrix elements for
Hamiltonian and overlap matrices [Egs. (3) and (4)]. In con-
trast, solving a generalized eigenvalue problem in a discrete
basis representation takes place only once on a classical
computer, avoiding multiple instances of quantum-classical
communication as in the VQE formalism. In the discussed
formalism, we follow an “algebraic” GCM formulation dis-
cussed by Fukutome in Ref. [42], extend the standard GCM
to multiproduct exponential formulas, and provide an algo-
rithm for sampling coordinate space in a way that provides
selective approaching classes of excited Slater determinants.
In this context, the multiproduct GCM formulation alleviates
some problems associated with the usage of high fidelity of
Trotter-type expansions.

We demonstrate the performance of the quantum GCM
algorithm on the example of the H4 benchmark system in vari-
ous configurations. We show that one can recover a high level
of accuracy in both weakly and strongly correlated regimes
using [®(q))’s that use the manifold of single excitations [or
U (N) Lie algebra generators]. The obtained level of accuracy
is similar to the one obtained with the advanced VQE formu-
lations.

II. THEORY

The GCM was initially introduced to describe collective
effects in nuclei [33,36,39,43]. Fukutome in his seminal paper
[42] considered the GCM from the Lie-algebra theoretical
standpoint. We use that language throughout this paper. Let
us assume that the fermion system is described by annihilation
and creation operators a, and a; that satisfy the following set
of anticommutation relations:

lap, agly = la}, afly =0, lap, ajly =8, (5)
As discussed in Ref. [42] there are several fermion
algebras including U(N), SO(2N), and SO(2N + 1) Lie al-
gebras, and Clifford algebras that can be used to characterize
approximate many-body wave functions (here N stands for
the number of single-particle states). These algebras can be
defined by the following set of operators:

El=a

_1 — Pqg —
g Opqr Epg = apay, EM =a

! al. (6

§
P
For example,

UWN): (E]),

SOQ2N): {El, E,;, EP},

SOQN + 1): {ay, a}, E], Eyq, EP}.
The U(N) algebra is the only algebra where particle num-
ber operator commutes with all operators belonging to U (N)
algebra. The Lie algebras listed above generate canonical
transformations on the fermion space and provide theoretical
language to construct independent particle and quasiparticle
models such as Hartree-Fock or Hartree-Fock-Bogoliubov
formalisms as well as higher-order formulations such as con-
figuration interaction or coupled cluster theories (more details
can be found in Refs. [36,42,44-46]). Recently, many-body
algebras have attracted much attention in the context of quan-
tum computing [47-49].

Let us focus attention on the U (N) algebra. By I'(Z) we
designate an anti-Hermitian operator defined as

I'Z) = ZZPqEqp = ZZM“;% s Zgp= "2 (D
p-q p-q

where Z can be viewed as an anti-Hermitian matrix [z,,]
yvhere Zgp = —Zpg OF set of indexed parameter {2pq) satisfy-
ing z;, = —z,¢. Canonical transformation U (Z) generated by
I'(Z) takes the form

U(Z) =D, (8)

Standard canonical Thouless transformation of the
Hartree-Fock (HF) determinant |®) can be obtained by
acting with U (Z) onto |®):

|0(Z)) = U(Z)|®) = " ?|D). ©)
The standard unitary CC model with singles (UCCS) is a
special case of (9) where z;; =z, = 0, where i, j, ... and

a, b, ... correspond to spin-orbital indices occupied and un-
occupied in the Slater determinant |®) (where Z can be
identified with the set of elements {z;,}). In comparison to
|®), |P(Z)) can contain certain classes of correlation effects
(that are Z dependent); it can contain elements of symmetry
breaking and effects responsible for the appearance of HF
instabilities (for the discussion of the role of the Thouless
theorem in identifying the instabilities of HF solutions; see
Appendix A).
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The parametrized states (9) can be viewed as a nonorthog-
onal (in general overcomplete) basis in the Hilbert space. The
generator coordinate method utilizes this fact by representing
the wave function in the form

baew) = [ dZI0@)/2) (10)
where collective variables q of Eq. (1) are now identified with
Z matrix:

q— Z. (11)

A typical way for solving Hill-Wheeler equations (2) is
through discretization of the Z domain. Let us introduce a set
of the Z points Q = {Zi}?il; then Eq. (2) takes the form of
nonorthogonal eigenvalue problem
Hf = E'St, (12)

where H and S (M x M matrices) and f (M-dimensional vec-
tor) are defined as follows:

H,, = (O(Z,)|H|P(Z,)), (13)
Spg = (P(Z))|P(Zy)), (14)
f, = f(Zy). (15)

Using this form of discretization, the optimal form of the wave
function (we assume the ground-state wave function in this
paper) is given by the expansion

M
[Woem) =~ Y fe" %), (16)
p=1

which is reminiscent of recently discussed nonorthogonal
variational approaches discussed in the context of quantum
computing [15], If M is equal for a given basis set to a
dimension of the full configuration interaction (FCI) problem
(for a given spin and spatial symmetry) and e'%»)|®) are
linearly independent, then the expansion (16) with optimized
f; coefficients describes the exact electronic wave function. In
the following part of the paper, Eq. (12) is used to calculate
ground- and excited-state energies.

III. MULTIPRODUCT EXTENSION OF THE GENERATOR
COORDINATE FORMALISM

A possible extension of the GCM expansion given by
Eq. (10) can be provided by the expansion involving mul-
tiple products (the product GCM formalism, abbreviated as
PGCM®) of k exponential operators (which is inspired by
a recent progress in the development of dynamical GCM
methods [39,43,50-52]). For example, one can introduce the
following expansion:

(WSoem) = /dZ(l) - dZ(k)
x [ @O Z(1), ..., ZU))) F(ZQ), ..., LKk)),
(17)
where

[ DR(Z(L), ..., Zk))) = "R .. LEZD) Py, (18)

In the above representation, I'(Z(7)) can belong to various Lie
algebras. In the following we will focus on the case where all
I'(Z@i))s(@i=1,...,k)belong to the same U (N) Lie algebra:

D(ZG0) =Y 2pg(DEL. 24p(i)* = —2pq ().

pq

19)

In fact, the PGCM formula may be viewed as a special case
of the GCM where

q— Z() x ... x Z(k). (20)

We will demonstrate that the U (N) case of PGCM lends
itself to an efficient way of representing higher-rank excita-
tions in quantum computing. In particular, this goal can be
achieved by using a simple algorithm for discretization of Z(i)
domains in the GCM method. In particular, we can show that
PGCM® can be used to approximate 2k-tuple excitations in
the configuration-interaction-type expansion.

Let us focus on the specific case when k=2 (ie.,
the PGCM®formalism). In this case we will represent the
|\IJ[(,ZG)CM) wave function, given by the following formulas:

W) = / dZ(1)dZ(2)|®?(Z(1), Z(2)))

x fZ(1), Z(2)) 21

and

[PPZ(), Z(2))) = " HDED @) (22)

The GCM algorithm can be adapted easily for the product
representation of the trial wave functions. Now the discretiza-
tion of the problem, in analogy to Eq. (12), involves a Q
set defined as Q = {Z;};, where Z; = Z(1), x Z(2),, where
we use composite index I = (p, g). Controllable sampling
algorithms of the subspaces of the Hilbert space correspond-
ing to higher-rank excitations with the PGCM formalism
based on the U (N) algebras requires careful selection of the
sampling points, which will be discussed in the following
section in the context of PGCM® method applications to the
H4 system.

IV. H4 MODEL: CHOICE OF GCM SAMPLING POINTS

We use the H4 model of Ref. [53] as a benchmark system,
which has been used in studies of strong correlation effects
in many-body systems, for example, in the analysis of mul-
tireference coupled-cluster theories, [54] and intruder-state
problems, stability of solutions of Hartree-Fock equations
[55], and quantum computing algorithms [56]. The system’s
geometry can be defined by a single parameter « (see Fig. 1).
For o = 0.5, the H4 model corresponds to a linear chain
of hydrogen atoms with distances between adjacent hydro-
gen atoms equal to 2.0 a.u.; for ¢ = 0.005, the system is
almost in a square configuration. The main difference be-
tween o = 0.5 and « = 0.005 H4 models is in the structure
of the corresponding ground-state wave function. While for
o = 0.5, the ground-state wave function is dominated by the
restricted Hartree-Fock (RHF) determinant, for a = 0.005,
the ground state is quasidegenerate. The contribution of the
RHF Slater determinant is almost the same as the doubly
excited configuration where two electrons from the highest
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RH—H

RH—H RH—H

FIG. 1. Schematic representation of the H4 model system. The
geometry of the system is defined by a single parameter «. The dis-
tance between contiguous hydrogen atoms is set to Ry_y = 2.0 a.u.

occupied orbital are promoted to the lowest-lying virtual or-
bital. The spin-orbital numbering scheme is shown in Fig. 2.
In the PGCM® formalism for H4, we will adopt the following
sampling scheme, where the choice of the cluster operators
is consistent with analyzing HF equation stability conditions
based on the Thouless theorem [44,58-60]:

|Ro) = [P), (23)

|R§i)([1)> _ e:l:r,R1|q)> _ e:i:tl[(a;a2+a;a4)f(a;a5+aia7)]|cb)’

(24)
|R;i)(t2)> _ e:l:zzR2|<D> _ eizz[(agal+a;a3)7(a}a6+a§a8)]|q))’
(25)
|Rgi)([3)> — e:tst3|q>> — eils[(a:,az+a;a4)f(a;as+aias)]|q))’
(26)
|Rii)(l4)) — eit4R4|q)> — eiu[(a;al+a'7;'a3)—(a'}'a5+a§a7)]|(D)’
27
Rs(t5)) = "™ | D), (28)
IRs(t)) = €fe'™ | @), (29)
@ virtual
spin-orbitals
1 I
@I ‘l’@ occupied
A I spin-orbitals
»\

FIG. 2. Schematic representation of the orbital energies and the
enumeration scheme for the corresponding spin orbitals for the H4
model in the STO-3G basis set [57]. Spin orbitals 1,2 and 3,4 cor-
respond to occupied o and S spin orbitals, respectively, while spin
orbitals 5,6 and 7,8 correspond to virtual « and g spin orbitals.

RERE (7))

— eitheith |<D)

_ eit7[(aga] +ajay)—(alag+aias)] ein[(a;az +alay)—(ajas+ajar)] D).
(30)

These sampling vectors can be naturally tied to the
general form of the |®@(Z(1),Z(2))) basis given by
Eq. (22). For example, |Ry) corresponds to Z(1) = Z(2) = 0.
For [R{"(1)), Z(2) =0, and z(1)s2 = z(1)5s = —z(1)ss =
—2z(1)47 = t; while remaining matrix elements are equal to
zero, etc. Another advantage of using this form of sam-
pling vectors is that their combinations provide a rudimentary
(yet not exact) mechanism for eliminating symmetry impuri-
ties when R; operators break the symmetry of the reference
state |®). For example, if in general Rgi)(tl) the operator
is expressed in terms of excitations that can produce broken
symmetry state when acting on the reference function, and
then this singly excited impurity (or instability) is eliminated
by taking a combination of |R§+) )+ IRE_) ) states,

IR () + [R7 (1)) = ("B + ™R )

= (2+t12Rf+%r;‘R]‘+...>|q>), 31
where linear “impurities” are eliminated. These combinations
also can allow us to selectively approach doubly ex-
cited configurations, or using combinations of |R§i)R§i)(t7)),
quadruply excited ones using manifold of single excitations
and very simple quantum circuits to represent ¢*'% opera-
tors. This analysis can be extended to higher-order PGCM®
formulations to include higher-rank excitations. It should be
stressed that #; parameters in Egs. (23)—(30) can be chosen at
random. The effects of random ¢#; parameters on ground-state
FCI energies are illustrated in Appendix B.

V. GENERAL OUTLINE OF QUANTUM ALGORITHM AND
POSTPROCESSING ON CONVENTIONAL COMPUTERS

After selecting GCM sampling points, the remaining work
involves computing matrices H and S through Egs. (13) and
(14) using quantum computers. To accommodate gate-based
quantum computers, the expectations are computed in the
form

Hy =Y hi(®|(e " Pie" %)) D) (32)
J

and S,, = (®|(e” " %)) @), (33)

where Hamiltonian matrix H is transformed to the linear com-
bination of Pauli strings H = }_; h;P; under Jordan-Wigner
(JW) transformation and |®) is the HF state. The expectations
can be easily evaluated using algorithms like the Hadamard
test on fault-tolerant quantum computers. A pure quantum
algorithm proposed for GCM and its complexity analysis is
given in Appendix C, where we propose to exploit a block
encoding for the operation S~! and use the phase estimation to
compute the eigenvalues for the nonorthogonal eigenproblem
(12). Note that the pure quantum algorithm gives a favorable
scaling but relies on the use of the controlled unitary circuits
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on | State || QWC Z_,
|0) Prep Rotat. | | Basis
— " Gates |-\ Meas,

FIG. 3. Shallow circuit for Algorithm 1. The circuit is com-
posed entirely of O(n) number of one-qubit gates, including
state-preparation gates that initialize the ground state to the HF state
and rotation gates for QWC, which employ one-qubit rotation gates
to measure each wire in the Pauli-X, Y, or Z basis while the actual
measurement is performed in the Pauli-Z basis.

that makes the quantum simulations on NISQ devices chal-
lenging.

For near-term devices, we focus on the hybrid quantum-
classical approach where there is a trade-off between the depth
of the quantum circuit and classical computation time. Note
that, following the JW transformation, each of the operators
R; to R4 in Egs. (24)—(27) can be transformed to four com-
muting Pauli strings. That is to say, the matrix exponential
etk for i € {1,2, 3,4} are exactly the linear combinations
of Pauli strings. So, for both H4 models, the calculations of
expectation in Eqgs. (32) and (33) are essentially equivalent
to (®|P|d) for some Pauli string P, while qubitwise com-
muting (QWC) terms are grouped to perform a simultaneous
measurement. The only implemented form of the circuit is
illustrated in Fig. 3, and the whole process is summarized in
Algorithm 1. The entire simulated quantum computation is
achieved using Qiskit [61]. We put a brief discussion about
trotterization under Qiskit in Appendix D, along with other
implementation details related to duplicated Pauli strings and
effects of random parameters in Appendix B.

VI. COMPLEXITY ANALYSIS AND EFFECTS OF FINITE
SAMPLINGS

Recall that M is the number of selected Z points, which is
equivalent to the number of sampling vectors. Let n be the
number of spin-orbitals. We know the Hamiltonian matrix,
H, consists of at most O(n*) Pauli strings, so operations for
multiplying matrices and solving the generalized eigenvalue
problem in Algorithm 1 dominate the classical part of the
operation complexity. If an exponent of a cluster operator
has up to ¢ number of Pauli strings after trotterization and
the multiplication between two length-n Pauli strings takes at
most O(n) operations, then the matrix multiplication in lines 9
and 10 of Algorithm 1 takes O(nc?n*) and O(nc?) operations,
respectively, because all matrices are decomposed into the
linear combinations of Pauli terms. As we have M? iterations
in Algorithm 1 and the final generalized eigenvalue problem
of M x M matrices takes O(M?) operations, QuGCM has the
overall classical part of the worst-case scaling of O(c?n’M? +
M?) operations.

The specific value of ¢ highly depends on how users want
to approximate the molecular models. It is affected by the
number of creation and annihilation operators pairs in each
single-excitation cluster operators, the value of k, and num-
ber of trotterization steps if it is necessary. As we discussed
earlier, we can properly choose two pairs of creation and
annihilation operators in each of single-excitation cluster op-

Algorithm 1. Quantum GCM (QuGCM) for near-term devices

Require: Hamiltonian matrix H = ) h;P;, HF state |®),

and a set {I"(Z;)}*, where the index i could be a composite
up to k terms as in Eq. (22)

1: Transform all {T'(Z;)}*,
2: Generate unitaries {V;}!, for V; := "%’ with Eq. (8) and
Eq. (19)

3: Trotterize each element in {V;}*2, to a linear combination
of Pauli strings

4: for each V, in {V;}2, do

Compute }°; h;P;V,, classically

6: foreach V, in {V;}), do

7. Compute }; th; (P;V,) classically

8

9

using JW transformation

e

Compute V; V, classically
Evaluate H,,, := Zj hj(<l>|V;Pqu|fD) in a quantum

10: Evaluate S, := (<I>|V;Vq|<1>) in a quantum device
11:  end for

12: end for

13: Solve the general eigenvalue problem Hf = ESf
classically

14: return interested eigenvalues and eigenvectors

erators without the requirements of trotterization. The results
in Sec. VII are promising enough when only single and double
excitations are considered, i.e., when k = 2.

Regarding the quantum part of the operation complexity,
it includes the number of circuits and the number of mea-
surements in every circuit. Naively, line 9 and line 10 in
Algorithm 1 indicate there are O(M*c?n*) number of and
every circuit contains only O(n) number of one-qubit gates.
Many existing methods can be applied to reduce the number
of terms associated with V; (HV,) and V; V,. For example, to

reduce the order O(M?*c*n*) to O(M?*c*n®*™3) for the num-
ber of circuits in every iteration, the linear combination of
unitaries technique [62], amplitude amplification approach
[63], Hamiltonian simulation [64], qubitization [65], or the di-
rect block-encoding [66] methods can be typically employed
at the cost of introducing deeper circuits and implementing
controlled unitary operations. Nevertheless, these approaches
come with a probability of failure and require advanced cir-
cuit and error mitigation that might go beyond the capability
of the current NISQ devices. Toward a more feasible NISQ
approach, in light of the unitary partitioning scheme proposed
by Izmaylov et al. [67], Peng and Kowalski recently pro-
posed a more efficient unitary partitioning approach guided
by the single-reference trial state used in the simulation [68].
In particular, through numerical tests over a wide range of
molecules in different bases, we found that the nonunitary
wave operators when acting on single-reference trial wave
function (such as e"%’|®) and He"%)|®) in the present dis-
cussion) can be represented by a much more compact unitary
basis, thus providing a more efficient route for performing the
general nonunitary quantum simulations.
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It is worth mentioning that the above discussion is focused
on the number of terms/operations that can be efficiently
reduced through groupings that feature the commutativity or
anticommutativity of Pauli strings, while the total number
of measurements required from the number of groups also
critically depends on the covariance between the contributing
terms, cov(F;, P;), and the desired precision €. Given that we
can always write a matrix operator as a linear combination of
Pauli strings, the total number of measurements for evaluating
the expectation value of an operator with respect to the trial
wave function can then be expressed as [69-71]

No. of Measurements

B (ZG \/Zi,j,eG hihjCOV(Pi’ Pj) )2

€

(34)

with G indexing the groups. Therefore, it is likely that the
number of groups decreases at the cost of introducing larger
covariances that could essentially increase the total number
of measurements required to achieve a desired precision. The
variance of an individual Pauli string P; can be bounded by

var(P) = (P?) — (P)> =1 — (P)* < 1, (35)

which provides bounds to the covariance of any contributing
terms

lcov(P;, Pj)| < var(P)var(P;) < 1. (36)

Thus, according to Eq. (34), the bounds for the standard devi-
ations of the matrix entry H,, and S,, under a finite number
of measurements are

< ZGHM Zi,j.eGHm hihj|
EH,,q X

, (37

No. of Measurements

ZGSM lej,e(iqu hihj|

No. of Measurements

€s (38)

pg X
Let ﬁpq and S g be the entries computed from a finite number
of measurements. We can empirically estimate the effects of
the uncertainty by considering H,, and S, as normal random
variables

H,, ~ N(H,,, €q,,) and Spq ~ N(Spq. egw). (39)

To illustrate the maximum possible fluctuations brought by
finite-sampling errors, we set each en,,, and €s,, to their maxi-
mum as in Eq. (37) and Eq. (38), and summarize the results in
Fig. 4. It is clear that to generally reach chemical accuracy, the
a = 0.005 case requires about two orders of magnitude more
measurements than the « = 0.500 case using Algorithm 1.

We also notice that there are also many other advanced
measurement schemes proposed recently. One example is to
simultaneously obtain expectation values of multiple observa-
tions by randomly measuring and projecting the quantum state
into classical shadows [72-81]. In principle, the algorithm
enables measurements of m low-weight observations using
only O(log, m) samples. The practical performance of the
algorithm for model and molecular Hamiltonians on NISQ
devices, in terms of accuracy and efficiency, is still under
intense study.

a=0.005
100
0 ‘ﬁw—df-;:mr:.-.;m WAL WA e
© -10°
T
S
~ 1011 1012
g
'-ll-l a=0.500
9 o
_100 A
§ 10
LEI- —10! \— Finite number of shots
5 | Infinite number of shots
—10 1010 1011 1012

Number of measurements per entry

FIG. 4. Differences between the ground-state energy estimations
from PGCM® and FCI formalism in millihartrees for a = 0.005
(up) and @ = 0.500 (down) H4 models, respectively. The variance of
each random sampling is set to the maximum according to Eq. (37)
and Eq. (38). The red-shaded region is the range of chemical accu-
racy +1.5936 mHa. The blue-shaded region is the 95% confidence
interval estimated from 100 simulations with the red bars marking
the rough number of measurement per entry at which the energy
difference would be within the chemical accuracy.

VII. RESULTS

The GCM results for the ground-state energies and ex-
citation energies corresponding to low-lying states of the
symmetry of the reference function (singlet A; states) are
collated in Tables I and II, respectively. To evaluate the
accuracy of ground-state simulations, we compared GCM
results with the results obtained with the RHF, multicon-
figurational self-consistent field (MCSCF) [82] formalism
for active space defined by four electrons and three active
orbitals [MCSCF(4e, 30)], configuration interaction method
with singles and doubles (CISD), [83] CC method with sin-
gles and doubles (CCSD), [84,85] VQE formalism, and FCI
formalism. We used the equation-of-motion CC approach
(EOMCCSD) [86,87] and FCI formalism for excited states.
Note that any quantum computation in VQE and GCM as-
sumes infinite number of measurements.

Inspection of the results in Table I indicates that for both
geometries, the GCM results are in very good agreement with
the FCI result despite the simplicity of the expansions given
by Egs. (23)—(30). Interestingly, the GCM energies are signif-
icantly better in both cases than the VQE ones. The excellent
performance of the GCM formalism is well illustrated by the

TABLE I. Differences (in millihartrees) with total ground-state
FCI energies.

FCI RHF MCSCF(4e, 30) CISD CCSD VQE GCM
H4 o = 0.005

—1.942993 151.407 82.645 5.507 3.331 0.905 0.147
H4 o = 0.500

—2.151007 75.764 43.276 1.866 0.003 0.058 0.022
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TABLE II. Singlet excitation energies in eV.

Method w1 wy w3
H4 a = 0.005

FCI 4.183 6.040 18.484

EOMCCSD 4.275 6.079 18.350

GCM 4.179 6.038 18.635
H4 « = 0.500

FCI 12.565 14.214 21.293

EOMCCSD 12.738 14.179 21.255

GCM 12.589 14.840 21.622

strongly correlated o = 0.005 case, where CISD and CCSD
methods struggle to capture needed correlation effects. For the
weakly correlated variant of H4 (o« = 0.500), the GCM for-
malism reproduces nearly FCI-level accuracy with an energy
error of 0.022 millihartree.

In Table II we juxtaposed the excitation energies (@i, w»,
and w3) obtained with the GCM approaches for three lowest-
lying 'A; symmetry states, of H4 model for o = 0.005 and
a = 0.500. For the w excitation energies, the GCM approach
provides consistently better estimates of their exact (FCI)
values than the ubiquitous EOMCCSD approach. While for
wy GCM prediction is better than the EOMCCSD one only
for the o = 0.005, for the nondegenerate case (o« = 0.500),
the GCM prediction is by 0.6 eV off the FCI value. For the
w3 excitation energies, the GCM is capable of providing esti-
mates within 0.160 eV («¢ = 0.005) and 0.33 eV (a = 0.500)
of error. Again, given the simplicity of the GCM formulations,
one should view the GCM estimates of the excitation energies
as quite satisfactory.

VIII. CONCLUSION

In this work we explored the use of the GCM in the context
of quantum computing. For this purpose, we introduced the
multiproduct extension of the GCM formalism that enables
one to construct state vectors in Hilbert space using various
types of the fermion Lie algebra and general quantum algo-
rithms that allow one to perform GCM calculations in a way
that can be viewed as a specific case of the quantum algo-
rithms for configuration interaction formalisms involving a
nonorthogonal basis. In the present study, we focused entirely
on the U(N) algebra, where resulting state vectors can be
interpreted in terms of the Thouless theorem. This analogy is
essential in the sampling process of the parametrized unitary
canonical transformations. It enables one to construct corre-
sponding state vectors and corresponding linear space where
higher-order excitations (e.g., double, triple, quadruple, etc.)
can be selectively approached using the language of single
excitations to define generators [I"(Z)] of the canonical trans-
formations. The discussed procedures can be easily related to
the searches of various type instabilities in independent parti-
cle formulations with the HF method as a specific example.

Using the H4 system as a benchmark, we showed that the
quantum GCM algorithm could provide ground-state energies
competitive to the VQE simulations involving the explicit
form of the double excitations. In contrast to standard VQE

algorithms, the GCM formalism also yields the values of
excited-state energies. We showed that GCM excitation en-
ergies corresponding to the low-lying excited states could be
competitive with the excitation energies obtained with the
popular EOMCCSD approach.

Although in the present form, the GCM formalism falls
into the category of hybrid formulations, unlike the VQE
method, it avoids multiple quantum-classical machine data
transfer and unstable and tedious iterative processes. Also,
our near-term implementation of the quantum GCM algorithm
can run in parallel easily using multiple quantum and classical
nodes.

Extension of the GCM-inspired quantum algorithms to
larger systems in their ground and excited states will
require the integrations of the recent advances in the de-
velopment of compact representations of the wave function
provided symmetry-projected Hartree-Fock (PHF) formula-
tions [88—94] used to strongly correlated systems. The GCM
and PHF-based methods are also well poised to be paired
with different types of active-space downfolded Hamiltoni-
ans [95-97] that integrate the out-of-active-space (dynamical)
correlation effects. In future studies, we plan to use the full
potential of the quantum algorithms based on the quantum
CI formulations and explore the possibility of using other
types of fermionic algebras, i.e., SO(2N) and SO2N + 1)
Lie algebras in the context of quantum simulations of strongly
correlated systems defined by Hubbard, Bose-Hubbard, Ising,
and various impurity models.

The code and data in the paper are openly available in the
GitHub repository [98].
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APPENDIX A: THOULESS THEOREM AND
INSTABILITIES OF HARTREE-FOCK SOLUTIONS

The use of the Thouless theorem in search of the insta-
bilities of HF solutions has been broadly discussed in the
literature (see, e.g., Refs. [44,58-60,99-101]). Here we dis-
cuss only the basic tenets of this approach.

The original form of the Thouless theorem states that two
nonorthogonal determinants |®) (corresponding to some HF
solution) and |®’) in its vicinity can be interrelated by the
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exponential ansatz
@) = e"|), (AD)

where the T; operator is defined as

T =) tlaa. (A2)

where indices i (a) refer to spin orbitals occupied (unoc-
cupied) in |®). Therefore the local behavior of the energy
functional in the neighborhood of the HF solution can be
parametrized as a function of scalar amplitudes #/:

a (@' ({tfDIH|D' ({t]"}))
E({ti }) = r([+a r([+a .
(@' ({ DI ({z'))
Its second-order variation, ¥ E, of (A3) (the first-order vari-

ation disappears as a consequence of the Brillouin condition)
can be expressed as

SPE = (T T) (% 1];) @)

= D'LD, (A4)

(A3)

where T is a vector of 7/ amplitudes and T is complex conju-
gate of T. The matrices A and B can be expressed as

Al (b = (azai¢|HN|aZaj<D>, (A5)

Biiayjm = (@.aiaja; ®|Hy|®), (A6)

where Hy designates the Hamiltonian operator in the normal
product form, Hy = H — (®|H|®). For the HF solution to be
stable, all eigenvalues of matrix L. must be positive. Other-
wise, there exists a Slater determinant in the vicinity of |®)
that provides lower energy than the HF energy corresponding
to the Slater determinant |®). If A and B matrices are real,
then §*'E can be rearranged in the form

8PE = J[(T+T) (A+B)T+T)
+(T-T)"(A=B)XT -T)], (AT)

and the nature of real instabilities can be explored by ana-
lyzing eigenvalues of the A + B matrix, whereas the purely
complex (imaginary) instabilities are associated with the
eigenvalues of the A — B matrix.

The Thouless theorem gives a good insight into the mecha-
nism of the instability generation. Let us assume that the exact
wave function (|W)) expansion in intermediate normalization
((W|®) = 1) is dominated by the HF Slater determinant and
Slater determinant |<I>f;‘_‘) obtained by promoting two « and
B electrons from the same orbital (the corresponding spin
orbitals are denoted as i and i) to some virtual orbital (the
corresponding spin orbitals are denoted as a and a),

W) = @)+ ...+ cF|OF) + ..., (A8)

where coefficient c%f‘ is negative (a typical situation encoun-
tered in a single bond breaking process). To recover this
correlation effect by Thouless expansion (A1) one has

ad ~_ 0.0
cF . (A9)

If additionally the 7} operator is not breaking a spin symmetry,
ie., f =t then from (A8) #{ and ¢ are purely imaginary.

TABLE III. Number of unique Pauli terms and their ratios after
grouping among all iterations.

No. of unique terms Total no. of terms Ratio (%)

H4 « = 0.005

S 1444 38904 3.71%

H 3423 118426 2.89%

All 4180 157330 2.66%
H4 o = 0.500

S 1766 38 888 4.54%

H 3454 118621 2.91%

All 4370 157509 2.77%

The Thouless theorem also provides the understanding of
mechanisms behind other types of instabilities.

APPENDIX B: DUPLICATED PAULI STRINGS AND
SELECTION OF PARAMETERS

For each of H4 models, while M = 15, the symmetries
of H and S allow us to compute only 120 iterations instead
of 225 iterations. Among those 120 iterations, as shown in
Table III, we only need to measure around 4000 Pauli strings
because more than 97% of them are duplicated. This brings
the two orders of magnitude reduction on the total number of
measurements in practice.

Meanwhile, we conducted the following experiments for
a = 0.005 and @ = 0.500 H4 models to demonstrate the influ-
ence of the random choices of #; parameters on the estimations
of the ground-state FCI energies. For each molecular model,
we generated 50 sets of {f; Z:, for #; in [0,1), [0,100), and
[100,100), respectively. Each of 300 sets of {#;}_, produced
an estimation of the ground-state FCI energy from Algorithm
1 (assume an infinite number of shots). The distributions of
differences between the estimations from PGCM® and FCI
formalism under various settings are illustrated in Fig. 5 using
box plots. It worth noting that when we produce ¢#; from [0, 1),
about 25% random generations can provide an estimation of
ground-state energy within the range of chemical accuracy.

APPENDIX C: LINEAR-SYSTEM-INSPIRED
ALGORITHMS FOR GCM

Perhaps the most direct way to use quantum computing
to solve the electronic structure problem using Generator
Coordinate Methods is by simply solving the nonorthogonal
eigenvalue problem by dilating it to a square matrix in a
higher dimensional space. In this case, it is most convenient
to express our eigenvalue problem as

S~'Hf = Ef, (C1)

where we have assumed here that S is an invertible matrix.
Now let us define an isometric extension of our original space.
We do this to exploit a block encoding for the operation S~1,
which allows us to express it as a unitary operation in a higher
dimensional space. Specifically, let

_[s7tasth O
U_[ - D} (C2)
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T 332
L3
3 18.2
L 13.2
w g2
3.2
1.8
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Ranges of the generations of {t;}/_;

FIG. 5. Differences between the ground-state energy estimations
from PGCM® in various random {t;}’s and FCI formalism in mil-
lihartrees for a = 0.005 (up) and « = 0.500 (down) H4 models,
respectively. The horizontal red-shaded region shows the range of
chemical accuracy +1.5936 mHa. That minimum value and the 25th
percentile are in the shaded region when #; € [0, 1) in both H4 models
indicates that random generations of ¢#; in that range are relatively
likely to provide a good approximation in our algorithm.

U~") for arbitrary matrices [J.

1
g = [g] zZ- [(I) _OI], P = S(+2).

(C3)

be a unitary matrix (i.e., U =
Also let

_|H/a 0
=% 0]

Inside this enlarged space, the eigenvalue equation reads for
eigenvalue E

Eg
IS~ flee”
Now let H/a = Zj hjUE.H) for a set of unitary U;H). We
then have that our Hamiltonian in the enlarged space can be
expressed as a similar linear combination of unitaries.

J= mlopoi@ U ="

PUJPg = (C4)

h; (H) (H)
E(I@Uj +ZeU").

J J
(C5)
Thus the entire product can be expressed as
h; #H) #H)
PUJP = > FPUIeU) +U(Z o U")[P.  (Co)

J
Thus the enlarged Hamiltonian J can be expressed as a linear
combination of unitary matrices that further has the exact
same value of o = Zj |hjl.

For us to use phase estimation to compute these eigenval-
ues, we also need a further modification. Note that e~V is not
necessarily unitary because UJ is not necessarily Hermitian.
We address this issue by considering a further embedding:

0  PUJP
KZ[PJUTP 0}

= |0)(1| ® PUJP + [1)(0| ® PJU'P

1
= E(X ® PUJP + (iY) ® PUJP + X ® PJU'P

+(—iY) ® PJU'P). (C7)

This expression also takes the form of a linear combination
of unitary matrices; however, the coefficient sum now obeys
» ; |l = 2a, which does not change the overall complexity.
Finally note that K is antidiagonal block matrix. We can
therefore search for an eigenvector of the form h = [0 g]T
as the eigenvectors of K can be taken to have support only on
one of the two blocks. The eigenvalues of K corresponding the
the eigenvector g of PUJP must be ==F from this construction.
To see this note that

Tr(K’hh") = Tr(h'K?h) = (Kh)"(Kh) = E2.  (C8)

Thus h is an eigenvector of K and the eigenvalues of K in the
support of h must be +E. Thus, we can estimate the absolute
value of E by using phase estimation on K.

To perform this simulation using qubitization ideas, we
will need to propose prepare-and-select circuits for the co-
efficients. Specifically,

Uprep 0) =D > Y Z Y ’/ Q) ) o) (C9)

j n=0,1v=0,1 ®=0,1

and further

Uset 17) 1) V) lo) 1Y) = [7) ) [v) |w)
® (—1**XHGY) * @ ZY

UUMIU ™ y).  (Cl0)

This then forms a block encoding of our operator for the
generalized eigenvalue problem:

(0@ DU, prep selUprep(|0) ®D= K/(ZO{)

Using qubitization, we can convert this into a unitary with
result [66], and we can perform phase estimation to learn £
with a variance of at most €2 using a number of queries to U
and Upep that is in O(t||S™"||/€). However, each application
of U requires O(1) queries to U, which is a block encoding
of the inverse of S. A deeper analysis of the cost is possible;
however, to do this, we first need to have consensus on the
input model used for the simulation.

The easiest way to compute a matrix element for the over-
lap matrix is through the use of a controlled unitary. The
overlap of the estimate takes the form

(@ V)V, |®) =S,,. (C12)

(C11)

where V), is the basis transform operation such that for the
reference state |®), V, |®) = |®(Z,)). To use the Hadamard
test to reconstruct this circuit we require a single application
of VpT and a single application of V,. The probability that the
control qubit that governs this circuit is O is

1 + Re({D(Z,)|D(Z,)))
> )

If needed, the imaginary part can be similarly found by
applying an S' gate to the control. If we apply amplitude
amplification to the result, then we can construct a matrix

POlp,q) = (C13)
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AA(P) with eigenvalues inside the sector:

:l:icos’l< 1+Re(<<l>(zp>m><z,,>>))

AMAA(P)) = ¢ (C14)

and is equivalent to the following matrix in the two-
dimensional space spanned by the initial state and the marked
state:

\/ LHRe((PZ)IP(Z)) \/ 1-Re((®(Z)|®(Z,))
2

2 . (C15)
\/lfRe(<d><Z,,>\<I>(Z(,)>) \/1+Re(<d><2,,)|d>(zq>>)
2 2

Applying quantum signal processing we can apply a trans-
formation u > 2u? — 1. Note that this is (1) an even degree
polynomial and (2) it is between [—1, 1] for u in a similar
range. This means that quantum signal processing can be used
to apply this transformation on the top block of the matrix to
prepare a block encoding of the form [66]

Us = [Re(<<1><zp)|d>(zq>>) D},

2 . (C16)

where specifically we have that the initial state used in the
amplitude amplification routine block-encodes the overlap
matrix S. In all, this process costs O(polylog(1/€)) queries
to the state preparation oracle to produce this block encoding.

Next we need to prepare a block encoding of S~!. Using
the results of Ref. [102] we can prepare such a block encoding
using O(||S||||S~"||polylog(1/€)) queries where € is our target
accuracy. Thus, the overall query complexity is the number of
queries made to K multiplied by the number of queries per
U or U;H). The former result then shows that the final cost
of the simulation using this approach (in terms of queries to
the prepare-and-select oracles of H and the queries to Z,, Z,)

scales as
~ SIS~
0( (ISIIS™"] )
€

This shows that the query complexity of the simulation using
this approach does not necessarily scale with the dimension of
the space. It does, however, depend strongly on the one-norm
of the coefficients of the Hamiltonian and the norm of the
inverse of the overlap matrix. Thus, the worse conditioned
the matrix is, the worse we expect the performance of the
algorithm to be. In contrast, learning the matrix S in high-
dimensional spaces to perform the inverse can be expensive
as noted in the main text. This approach gives a theoretical
alternative in such cases that has favorable scaling asymptoti-
cally at the price of the algorithm requiring a large number of
qubits.

(C17)

APPENDIX D: TROTTERIZATION OF A MATRIX
EXPONENTIAL

This section aims to transform a matrix exponential into
a linear combination of Pauli group matrices. Because the
standard form of a matrix exponential in Qiskit is e~ instead
of ¢4 as we have in the main body for some parameter ¢
and matrix A and we implemented the quantum part of our
algorithm in Qiskit, we keep i = 4/—1 in the power. Because
we will use a dot product between matrices, we do not omit
the operator ® when we do the Kronecker product between

Pauli matrices for clarity (e.g., XY means the dot product of X
and Y instead of X ® Y). Let n be the number of qubits, I, the
identity matrix in space C ' xC¥,and P e {X,Y,Z 1}®*" an
n-qubit Pauli group matrix. Then, for any n-qubit Pauli group
matrix, we have

(@) (@) o

given of =1, for all 0; € {X,Y,Z, 1} and the property of
Kronecker product

(A® B)(C®D)=(AC) ® (BD) D2)

for some matrices A, B, C, D in the appropriate dimensions.
Now, by doing Taylor expansion of ¢f at ¢ = 0, we obtain
the following exact conversion:

wp _ (itP)*>  (itP)>  (itP)*  (itPy
T 3! 41 T
l2 3 t4 t5
=l +itP =l —iP + L +iPo

2t B
=I(1-=+—+... iPlr— — 4+ — +...
( STt )+z< TR )

= cos(t)I, + i sin(t)P, (D3)

where ¢ is a scalar parameter. If we deal with more than
a single Pauli group matrix, then we need to use Suzuki
trotterization. For P, € {X, Y, Z, I}*®", the first-order Suzuki
trotterization is

m
e iXimsP — 1_[ e P 0(m232)’
=1

(D4)

where s := max; ;. So for large #, to control error, we need to
separate the evolution into multiple steps:

k=1

where r is the number of evolution steps. There is also a
second-order formula for smaller error:

m 1 r
i ISP (1—[ o i%P 1‘[ eii’ﬁ) + 0@m’s*/r?). (D6)

=1 I=m

So, if we set the trotterization error level at ¢, then we

need to split the evolution into r € 0(’"355/2) steps with the
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second-order formula. By choosing t = — -, Eq. (D3) gives

_isip s .. N
e 'v" = cos (—)In —isin (—)P
2r 2r

As aresult, Eq. (D6) becomes

550 ([ s (30— s () 1 s (3 - s ()1

=1

In this case, we approximate the exponential of the linear
combination of the Pauli group matrices by another linear
combination of Pauli group matrices, where the expectation
of the latter one can be evaluated in a gate-based quantum

(D7)

1
(D8)

I=m

(

computer easily. Note that in the r = 1 case, if we have m
terms in the power, we end up with at most O(m?) terms after
the transformation, which is exactly the scenario we had in H4
examples in the main text.
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