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SUMMARY
Somatic mutations have important biological ramifications while exerting substantial rate, type, and genomic
location heterogeneity. Yet, their sporadic occurrence makes them difficult to study at scale and across in-
dividuals. Lymphoblastoid cell lines (LCLs), a model system for human population and functional genomics,
harbor large numbers of somaticmutations and have been extensively genotyped. By comparing 1,662 LCLs,
we report that the mutational landscape of the genome varies across individuals in terms of the number of
mutations, their genomic locations, and their spectra; this variation may itself be modulated by somatic
trans-actingmutations. Mutations attributed to the translesion DNA polymeraseh follow two different modes
of formation, with one mode accounting for the hypermutability of the inactive X chromosome. Nonetheless,
the distribution of mutations along the inactive X chromosome appears to follow an epigenetic memory of the
active form.
INTRODUCTION

Lymphoblastoid cell lines (LCLs) are Epstein-Barr virus (EBV)-

transformed peripheral B cells1,2 that have served as a model

for studies in cell biology. Unlike immortalized cell lines derived

from tumors, LCLs are generated from untransformed somatic

tissue but maintain active proliferation in culture. Straightforward

to generate andmaintain, LCLs have beenmadewidely available

for thousands of individuals and used for major population ge-

netics projects like the HapMap3 and 1000 Genomes (1kGP)4

and for studying gene expression, chromatin structure, cytotox-

icity, and DNA replication and repair.2 More specifically, the pro-

liferative nature and karyotypic stability of LCLs make them ideal

for studying DNA replication timing—the spatiotemporal pattern

of genome replication along S phase.5–7 In turn, DNA replication

timing strongly and specifically correlates with the rates of

single-nucleotide mutations, which are more abundant in

late-replicating regions.6,8–12 This relationship is apparent for

mutations in LCLs,6,13 which are comprised of between 40 and

100 germline mutations derived from the donor’s parents14 and

a variable number of somatic mutations accumulated in the B

cell sample lineage in relation to donor age15,16 or acquired

in vitro after transformation in relation to cell line passage num-

ber.17–19 The availability of LCL lines from families provides

a particularly effective means of genotyping mutations by

comparing the genome sequences of parents and offspring.6,13

A mutational pathway active specifically in B cells is somatic

hypermutation (SHM), which targets the immunoglobulin (IG)

genes to increase antibody diversity.20,21 SHM initiates with

the deamination of cytosine to deoxyuracil via activation-

induced cytidine deaminase (AID) at sequence motifs such as
This is an open access article under the CC BY-N
WRC(Y)/(R)GYW.22,23 Repair of deoxyuracils then often involves

DNA synthesis by the low fidelity translesion DNA polymerase h,

leading to mutations.24 Polymerase h synthesis can extend to

nearby nucleotides to produce proximal A>G/C substitutions

with a context preference of 30 A/T.25,26 Importantly, SHM is

also associated with an elevated mutation rate outside of tar-

geted loci. Such off-target mutations can be initiated by AID it-

self, which has been shown to target up to 275 highly transcribed

hotspot genes.22,27 However, a recent study15 suggested that

replicative and/or oxidative stress in highly proliferating B cells,

together with high expression of polymerase h, leads to off-

target mutations in gene-poor, late-replicating genomic regions

independent of AID.

Here, we used LCLs to address several important aspects of

somatic mutations that have been difficult to address using

primary cells. Specifically, the large number of mutations per

sample and the availability of LCLs for many families allow a

detailed analysis of the somatic mutational landscape and

its variation among individuals. These, in turn, can be readily

compared with DNA replication timing profiles inferred at high

resolution from the very same samples. Last, the availability of

parental genome sequences enables phasing of mutations to

parental alleles; we previously used LCL family trios in this ca-

pacity to demonstrate that the inactive X chromosome replicates

its DNA very late and without any discernable spatial pattern.28

We thus generated a catalog of LCL mutations in 1,662 individ-

uals. Using these data, we identified variation in global mutation

load, mostly involving mutations attributed to polymerase h, as

an important factor associated with the extent of mutation

bias to late-replicating genomic regions; we map this variation

to several trans-acting genes, in particular BCL6, a lymphoid
Cell Genomics 3, 100305, June 14, 2023 ª 2023 The Author(s). 1
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Table 1. Mutation data sources

Mutation source

Number of offspring

or samples Platform

Approximate

coverage

Original genome

version

Mutation calling

method

LCL iHART; Ruzzo et al.32 1,028 HiSeq X (2 3 150) 353 hg19 parent-offspring

1kGP; Byrska-Bishop et al.33 602 NovaSeq 6000 (2 3 150) 303 hg38 parent-offspring

repeat expansion;

Dolzhenko et al.34
9 HiSeq X (2 3 150) 303 hg19 parent-offspring

Illumina Platinum;

Eberle et al.35
13 HiSeq 2000 (2 3 100) 503 hg19 parent-offspring

Caballero et al. 20227 12 HiSeq X (2 3 150) 153 hg38 parent-offspring

Polaris 1000 Genomes

Project Consortium et al.4
49 HiSeq X (2 3 150) 303 hg19 parent-offspring

CLL CLLE-ES, ICGC 151 HiSeqa N/A hg19 tumor-normal
aFurther sequencing platform details could not be ascertained.

Article
ll

OPEN ACCESS
cancer driver and previously suggested hotspot of AID off-target

mutagenesis.29 A subset of mutations occurred in clusters,

which had a different genomic distribution than non-clustered

mutations. The inactive X chromosome was subject to hypermu-

tation, likely attributed to polymerase h; unexpectedly, these

mutations did not conform to the expected pattern suggested

by the replication dynamics or chromatin structure of the inactive

X, suggesting the existence of epigenetic memory that influ-

ences the mutation landscape.

RESULTS

A catalog of somatic mutations in LCLs
We called LCL mutations by identifying Mendelian errors in

parent-offspring allelic inheritance in the genome sequences of

1,662 individuals and their parents using data from six

sequencing cohorts (Table 1; Table S1). While cytogenetically

normal, 846 samples were generated from donors with autism

spectrum disorder, six from unaffected carriers of fragile X syn-

drome, one from an affected fragile X syndrome patient, one

from an affected Friedreich ataxia patient, and two from affected

ataxia-telangiectasia patients. None of these samples had global

replication timing alterations compared with healthy individuals.7

We called 885,655 autosomal single-nucleotide variant (SNV)

mutations, ranging from 66–8,737 per offspring (median, 408;

0.169 mutations/Mb), consistent with other quantifications of

somatic mutations in B cells15,16 (Figure 1A; Figure S1A). We

observed two prominent modes and a long tail of mutation count

across offspring; this is consistent with previous LCL mutation

calling19 and likely reflects donor age at blood donation and

cell line passage number (neither of which are known for the ma-

jority of our samples). Only 0.73% of mutations were functional

as predicted by a SNPeff30 (4.3t) high ormoderate variant impact

score. Using monozygotic twins, we estimated the fraction of

misidentified parental variants as less than 9.66% (STAR

Methods; Figures S1B–S1E). Additionally, we used replicate

sequencing of 51 samples to estimate the rate of genotyping er-

rors. A median of 93.1% of mutation calls were reproduced in

samples resequenced once, while 99.8% of mutations were

repeated at least once in a sample resequenced five separate

times (Figure S1F; Table S1). To compare LCL mutations with
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DNA replication timing, we used the same whole-genome

sequencing of the 1,662 offspring to infer replication timing pro-

files from read depth fluctuations along chromosomes.5,31 In this

approach, replication timing is inferred from DNA copy number

because early-replicating regions have greater read depth in a

population of proliferating cells than late-replicating regions.

We merged the data for all cell lines to create a single median

‘‘consensus’’ LCL replication profile used for downstream ana-

lyses. This consensus was similar to individual LCL replication

timing profiles (Figure 1B; Figure S1H), was highly correlated

with LCL replication timing profiles generated by S/G1

sequencing6 (Pearson’s r = 0.94) and controls for differences be-

tween sequencing cohorts and the more subtle differences be-

tween individuals.5 Low variation among samples in raw DNA

copy number fluctuations (Figure S1I) suggested that different

samples had similar fractions of actively replicating cells (and dif-

ferences among samples did not correlate with individual muta-

tion load; p = 0.82).

To complement the analysis of LCLs, we incorporated muta-

tions derived from 151 chronic lymphocytic leukemia (CLL) pa-

tients. CLL is a malignancy of B cells, neutral to EBV infec-

tion,36,37 and has been studied in depth at the genomic level.38

CLL comprises two subtypes that differ by the mutational status

of the IG heavy chain (IGHV) gene; tumors with a mutated IGHV

(CLL-M) have undergone SHM, while others have an unmutated

IGHV (CLL-U).39 Its corollaries to LCL biology, high mutation

rate, and the availability of data from many individuals makes

CLL a useful comparator with mutations in LCL. Tumor-normal

mutation calling and filtering identified 377,605 autosomal

mutations with a median of 2,368 mutations per patient (0.98

mutations/Mb; range, 221–5,629; Figure 1A). Generating a CLL

replication timing profile either through S/G1 or whole-genome

sequencing methods was not feasible because circulating

malignant cells are not proliferative40 and contain many copy

number alterations41,42; instead, and because replication timing

is conserved between closely related cell types,43,44 we used

LCL replication timing to compare with CLL mutations. Indeed,

mutation rates in LCL and CLL were highly correlated with LCL

replication timing and strongly enriched in late-replicating

regions (Figure 1C). In LCL, we confirmed this relationship inde-

pendently in the two largest population cohorts (Figures S1J and



Figure 1. Mutations in LCL and CLL are biased to late replication
(A) The number of autosomal mutations in 1,662 LCLs and 151 CLL tumors.

(B) Left: consensus LCL replication timing profile and 100 individual profiles randomly sampled from 1kGP. Right: distribution of autosomal replication timing

values for the LCL consensus profile in 10 bins.

(C) Left: rates of LCL and CLL mutations in 1-Mb sliding windows with a 0.5-Mb step. Correlation values in all panels are Pearson’s correlation coefficients for

chromosome 13. Right: distribution of autosomal mutations in 10 replication timing bins.

(D and E) As in (C) for LCL and CLL mutations attributed to SBS9 (D) or the clock-like pathway (E). Bar plots: proportions of individual SBS signatures that explain

LCL and CLL mutations.
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S1K) and in individual samples (Figure S1L). Notably,

CLL demonstrated higher correlations with the LCL replication

timing profile and greater late replication bias (Figure 1C), sug-

gesting a different mutational landscape in CLL compared

with LCL.

To determine which mutational processes were active in

LCLs and CLL, we used trinucleotide mutational signature anal-

ysis,45 specifically COSMIC v.3.2 SBS (single base substitution)

signatures. To prevent overfitting, we selected a subset of sig-

natures based on biologically expected mutational pathways. In
CLL, SBS1, SBS5, SBS9, and SBS40 are established as the

predominant mutational signatures.16,45–47 SBS1, SBS5, and

SBS40, are clock-like signatures—highly ubiquitous signatures

of unknown etiology that increase in abundance with age.45,48

The proposed etiology of SBS9 is mutations induced by poly-

merase h as part of SHM in lymphoid cells.15,16,45,47 While, to

our knowledge, mutational signature analysis has not been per-

formed in LCLs before, we found that the same signatures

(SBS1, SBS5, SBS9, and SBS40) best explained LCL muta-

tions with a cosine similarity of 0.96 (compared with 0.97 for
Cell Genomics 3, 100305, June 14, 2023 3
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CLL). It is established that SHM is ongoing after EBV transfor-

mation in LCLs.36,49 We also tested for the involvement of

SBS8 and SBS1815 in LCL mutagenesis but only called 1.8%

of mutations attributed to SBS18 in CLL and none in LCL,

and 6% of mutations as SBS8 in both cell types. Principal

component analysis of substitution type frequencies showed

an association between mutation spectrum and mutation load

but not donor ethnicity (Figure S1M). Notably in this respect,

Ng et al.19 investigated the association between ethnicity and

mutation load but found cell culture age to confound the inter-

pretation of this association.

SBS9 was relatively more prevalent in LCL (30.0% ± 0.12% of

mutations) than in CLL (14.8% ± 0.15%) (Figure 1D). In both cell

types, SBS9 mutations were more abundant in late-replicating

regions and closely followed the replication timing profile (after

controlling for sequence composition in replication timing bins;

Figure 1D). CLL showed greater bias to late replication than

LCL despite SBS9 comprising a smaller proportion of mutations.

For clock-like mutations, late replication bias and correlation to

replication timing were only apparent in CLL (Figure 1E). LCL

clock-like mutations were more uniformly distributed and not

significantly correlated with replication timing (p = 0.20). Taken

together, LCLs and CLL share similar mutational pathways but

with apparently different proportions and distributions with

respect to replication timing.

The mutational landscape varies across individuals in
association with global mutation load and SBS9
abundance
Having demonstrated variability in mutation rates, types, and

relation to replication timing, we sought to identify additional

factors that differ between andwithin LCL andCLL that could ac-

count for such heterogeneity. A major difference between these

two cell types is the elevated mutation load (or mutation burden)

of CLL as defined by the total number of autosomalmutations per

sample.We thus askedwhethermutation load itself relates to the

replication timing distribution and the spectrum of mutations. To

test this, we began by dividing LCLs into three similarly sized

groups with �295,500 mutations each (Figure S2A). A ‘‘low-mu-

tation-load’’ group contained 489 mutations or less per offspring

(1,066 offspring); a ‘‘high-mutation-load’’ group had 1,104 or

more mutations per offspring (174 offspring); and an ‘‘intermedi-

ate-mutation-load’’ group contained the remaining 422offspring.

The relationship of mutation rate to replication timing was sub-

stantially more pronounced in the high-mutation-load group,

with 4.17-fold more mutations in the latest replicating fraction

than the earliest and a greater correlation with LCL replication

timing (Figure 2A). In comparison, the intermediate-mutation-

load group showed a weaker increase with 1.85-fold moremuta-

tions in the latest fraction, while the low-mutation-load group did

not show any enrichment formutations in late-replicating parts of

the genome (0.98-fold difference). This was not attributed to

statistical power because all groups had a similar number of mu-

tations analyzed. This pattern was also evident for individual

offspring,where agreatermutation load corresponded to consis-

tently later replication timing bias, including when offspring were

down-sampled to 80mutations to control for possible power dif-

ferences among samples (Figures 3A and 3B; Figure S2C).
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To test whether these differences between mutation load

groups were related to particular mutational signatures, we fit

SBS9 and clock-like mutational signatures to the stratified LCL

mutation load groups. The proportion of mutations attributed to

SBS9 decreased from 43.46% ± 0.22% of mutations in the high-

mutation-load group to 25.74% ± 0.19% and down to 21.01% ±

0.18%in the intermediate-and low-mutation-loadgroups, respec-

tively. This trend was also observable in individual samples as the

proportion of SBS9 correlated with mutation load (Pearson’s r =

0.34, p < 1 3 10�16). Therefore, a high global mutation count in

LCLs corresponded to increased SBS9 abundance. With respect

to replication timing, the high-mutation-load group showed the

greatest enrichment in late-replicating regions for SBS9 and the

clock-like category, with 15.1-fold and 1.57-fold more mutations

in the latest-replicating fraction compared with the earliest,

respectively (Figures 2B and 2C; Figure S2D). This relationship

was less pronounced in the intermediate-mutation-load group,

with a 4.69-fold increase in SBS9 abundance and a 1.22-fold in-

crease in clock-like abundance. The low-mutation-load group

showed enrichment for neither SBS9 nor clock-like mutations in

late-replicating regions (Figures 2B and 2C). Together, these find-

ings indicate that thedistributionofmutations,mostprominently of

SBS9 origin, varies in LCLs in accordance with mutation load.

CLL provided an opportunity to further investigate how muta-

tion load and signatures shape the mutational landscape.

Because the IGHVmutation status of individuals was unreported,

we devised a way to usemutational signature analysis as an alter-

native means of inferring SHM activity and, thus, CLL subtype.

Accordingly, we fit CLLmutational signatures to autosomal muta-

tions in individual samples. We assigned 80 samples with a

consistent greater than 2% SBS9 contribution (based on the

range of 1,000 bootstrap samples) asCLL-M and another 68 sam-

ples with 0% SBS9 contribution as CLL-U (Figure S2F). Three re-

maining samples were ambiguous and not analyzed further. The

CLL-M group contained a median of 2,620 mutations per sample

(216,451 totalmutations; Figure S2G), while theCLL-U group con-

tained a median of 1,986 mutations per sample (138,113 total).

This was a significant difference in mutation burden between the

two subtypes (two-tailed t test: p = 1.63 3 10�5). In CLL-M sam-

ples, a median of 25.4% ± 0.04% of all mutations (591 mutations

per sample) were contributed by SBS9, which can fully account

for their increased mutation count.

Mutations in CLL-M and CLL-U samples showed exponential-

like increases with replication timing (Figure 2D). This effect was

slightly stronger in CLL-M (5.54-fold more mutations in the latest

replicating fraction than the earliest) than in CLL-U (4.05-fold).

More specifically, in CLL-M, as in LCLs, SBS9 contribution

was greatly enriched in late-replicating regions, with 18.9-fold

more mutations in the latest replicating fraction than the earliest

(Figure 2B; Figure S2E). For clock-like mutations, CLL-M and

CLL-U showed similar replication timing relationships with

3.32- and 3.69-fold more mutations, respectively, in the latest-

replicating fraction than the earliest (Figure 2C).

Having CLL subdivided by IGHV mutation status, we then

compared high and low mutation load. We divided CLL-M and

CLL-U into two mutation load groups each. CLL-M samples

with higher mutation loads (28 samples with R3,011 mutations)

showed greater enrichment for all mutations in late-replicating



Figure 2. The association of mutation rates and signatures with DNA replication timing varies by mutation load

(A) Left: as in Figure1C; ratesofmutations in1-Mbslidingwindowswitha0.5-Mbstep.Correlationvalues inall panels arePearson’scorrelationcoefficients.Center:

as in Figure 1C; distribution of autosomal mutations compared with replication timing in the high, intermediate, and low LCL mutation load groups. Right: the

relationship of autosomal mutation counts to replication timing in the high, intermediate, and low LCLmutation load groups in 20 bins of uniform genome content.

(B and C) As in (A) for mutations attributed to SBS9 (B) or the clock-like pathway (C).

(D) The relationship of autosomal mutation count to replication timing in CLL samples stratified by IGHV mutation status.

(E) The distribution of total autosomal mutations in CLL-U samples in high- and low-mutation-load groups.

(F and G) The distribution of total autosomal mutations (F) and mutations attributed to SBS9 (G) as a function of replication timing in the CLL-M high- and low-

mutation-load groups.
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regions (Figure 2F). Among CLL-M samples, higher mutation

load corresponded to greater SBS9 contribution (20.6% ±

0.30% versus 25.24% ± 0.32%) and greater SBS9 enrichment

in later-replicating regions (Figure 2G). CLL-U did not show a

pronounced change in mutation enrichment in late-replicating

regions based on mutation load (Figure 2E), likely because of

the diminished mutation load variability. Thus, the distribution

of SBS9 again varies with mutation load.
Taken together, we identified global mutation load as a cell-

line-specific factor associated with the distribution and spec-

trum of mutations along the genome. In LCL and CLL-M,

elevated mutation load was the product of SBS9 and clock-

like mutations, although SBS9 was more prominent. Because

we are underpowered to call mutational signature composi-

tion in individual samples, we cannot resolve whether muta-

tion load is more directly linked to replication timing bias or
Cell Genomics 3, 100305, June 14, 2023 5



Figure 3. Genes associated with replication timing bias

(A) Left: replication timing bias in individual LCLs is calculated as the linear slope of mutation percentages in four replication timing bins. Right: relationship

between replication timing bias and mutation load in individual LCLs.

(B) Down-sampling of individual LCL samples to 80 genome-wide mutations. Red dots: mean slope of 1,000 iterations of sampling for each mutation load. Error

bars: standard deviation of sampling.

(C) Top: association of mutated gene frequency to late replication bias of individual samples corrected for mutation load. Black line: Bonferroni-corrected p < 0.05

divided by the number of tested genes. The 11 most significant genes are highlighted. Bottom: association of gene mutation frequency to mutation load (cor-

rected for the effect of mutation load on mutation probability). The seven significant genes and BCL6 are highlighted.

(D) Selected genes from (C), showing mutation status in individual LCLs.

(E) Location of CLL and LCL mutations in BCL6 (NCBI: NM_001706.5).
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to mutational spectra or how these two properties affect each

other.

Variation in the mutational landscape is associated with
trans-acting gene mutations
We next sought possible explanation for how the late replication

bias of mutations, particularly SBS9, increases alongside muta-
6 Cell Genomics 3, 100305, June 14, 2023
tion load. A previous study reported a weak correlation between

EBV copy number and mutation load in the 1kGP cohort19 (r =

0.17; p = 2.323 10�5); however, in our larger dataset, this corre-

lation seemed weaker and mostly dependent on outlier samples

(Figure S2B). Another hypothesis that can explain this associa-

tion is the presence of (a) trans-acting factor(s) that modulates

replication timing bias and is itself somatically mutated in some
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samples, permitting higher mutation load and SBS9 late replica-

tion bias. Mutations affecting DNA repair genes were reported in

the 1kGP cohort,19 andwe identified two additional samples with

coding mutations in MSH3. These samples, however, did not

appear to be outliers in mutation load nor replication timing

bias, with the possible exception of one sample (HG02683;

Figure 3A) with a mutation in RAD51 that may explain its high

mutation load (although this sample was not an outlier for late

replication bias).

To more systematically search for potential trans-acting effec-

tors of the mutational landscape, we associated LCL mutations

at the level of genes with individuals’ mutational late replication

bias, normalizing for mutation load (STAR Methods; Figure 3A).

We identified 97 candidates significantly associated with late

replication bias, including several cancer risk genes, such as

CSMD3 and CTNNA2 (Figures 3C and 3D; Table S1). Of partic-

ular interest wasBCL6 (B cell lymphoma 6), a transcription factor

that promotes proliferation of B cells after the onset of SHM by

repressing genes that would otherwise arrest the cell cycle as

a result of elevated DNA damage.50BCL6 is also the prototypical

off-target SHM hotspot29,51 (and the only hotspot gene among

the candidates we identified).

We further associated gene mutation frequency with mutation

load itself. Seven genes were significantly associated with

mutation load, the strongest of which was PTPRN2 (Figure 3C),

a protein-tyrosine phosphatase associated with proliferation

and cancer.52 PTPRN2 was also significantly associated with

late replication bias (Figure 3C) and was mutated in 906 LCLs

(Figure 3D), far more than its size or replication timing would

predict. BCL6 was also associated with mutation load (p =

8.93 10�6), but just below the corrected significance threshold.

Focusing on BCL6, we identified 345 mutations in the gene

sequence among 192 LCLs. In the high-mutation-load group,

BCL6 mutations were found in 52.3% of samples compared

with only 17.8% and 2.1% in the low- and intermediate-muta-

tion-load group, respectively. This could not be explained by

differences in sample mutation load per se because high-muta-

tion-load samples had, on average, 6.1-fold more mutations

than low-mutation-load samples, whereas BCL6 mutations

were 24.9-fold more common. BCL6 mutations were similarly

associated with replication timing bias in individual samples,

present in 20.7% of the 906 samples with a late replication

bias (score > 0 in Figure 3A) compared with only 5.7% among

samples with early or no replication bias. This again could not

be explained by the higher mutation numbers in samples with

a late replication bias because the latter had, on average, 1.58-

fold more mutations, whereas BCL6 mutations were 3.63-fold

more common. Mutations in BCL6, which is a driver of CLL,53

were also found in 26.5% of CLL samples and were far more

common in CLL-M (48.8% of samples) than in CLL-U (1.5%);

the latter is consistent with BCL6 mostly affecting SBS9

mutations.

Mutations that alter BCL6’s amino acid sequence were rare;

only two were discovered in LCL and one in CLL. However, in

LCL and CLL, BCL6 mutations were highly enriched in the first

exon, itself part of the gene’s 50 UTR (Figure 3E). This region of

BCL6 is the binding location for negative autoregulation,54

suggesting that mutations in this region can block the downregu-
lation of BCL6. An attractive possibility is that BCL6 mutations

arise in LCL culture and promote a higher mutation load as

well as an altered mutational landscape manifesting in late

replication bias and, in LCL and CLL-M, an enrichment of

SBS9 mutations. Moreover, such mutations may be selected

for during LCL culture, making BCL6 an equivalent to BCOR

(BCL6 corepressor) mutations that are selected for in iPS

(induced pluripotent stem) cell culture55; indeed, BCOR func-

tions together with BCL6 to repress cell-cycle arrest in cells

with active SHM.

Clustered SBS9 mutations are associated with AID
activity in early-replicating regions
Consistent with a recent report,15 themajority of SBS9mutations

in our datasets appeared to be unrelated to AID-induced C>N

mutations and showed a different genomic distribution (late

compared to early replication) than AID-dependent off-target

SHM. However, other studies have described clusters of muta-

tions in B lymphocyte cancers that are enriched in early-repli-

cating regions, near promoters and enhancers of actively

transcribed genes, and within 100 bp of C>N mutations.56,57

These clusters were proposed to result from polymerase h

activity near DNA lesions induced by AID or APOBEC

(apolipoprotein B mRNA-editing enzyme, catalytic polypeptide)

cytidine deaminases. Indeed, off-target AID-mediatedmutations

have been shown to localize preferentially to highly expressed

genes through a proposed interactionwith RNA polymerase.20,24

We thus asked whether SBS9 mutation clusters distribute differ-

ently than non-clustered mutations across chromosomes and

with regard to gene activity. We considered two or more

SBS9-context mutations (A>G/C substitutions with a context

preference of 30 A/T) within 500 bp of each other as a cluster.

We identified 26,759 such clusters in LCLs and 1,736 in

CLL-M, encompassing 37.01% and 7.13% of total SBS9-

context mutations, respectively. We simulated SBS9 mutation

clustering in different genomic regions by considering sequence

composition and the replication timing bias of SBS9 mutation

(STARMethods). Comparedwith the simulated expectation, mu-

tation clustering in LCL and CLL-M was significantly elevated

across all replication timing bins but, importantly, was relatively

more abundant in early-replicating regions (Figures 4A and 4B).

In contrast, non-clustered mutations were relatively more abun-

dant in late-replicating regions (Figure 4B). Furthermore, clus-

tered mutations in early-replicating regions were associated

more than expected with nearby C>N mutations in the AID motif

context (Figure 4C). In contrast, non-clustered mutations were

far less enriched near AID-context mutations. Similarly, a greater

proportion of clusteredmutations in CLL-Mwere relatively closer

to gene transcription start sites (TSSs) than non-clustered muta-

tions (Figure 4D). Clustered mutations were enriched down-

stream of the TSS of highly expressed genes in CLL-M, although

no such relationship was apparent in LCL nor for non-clustered

mutations (Figures 4D, 4E, and 4G). Of previously described

AID hotspot genes,58 TSS proximity was observed for a subset.

BCL6was the most mutated hotspot gene, comprising 15.4% of

the LCL and 46.2% of the CLL-M clustered mutations. TSS as-

sociation was, however, also observed independent of BCL6

(Figure 4F).
Cell Genomics 3, 100305, June 14, 2023 7



Figure 4. Two modes of SBS9-context mutations

(A) The number of clustered SBS9-context mutations in LCL and CLL-M compared with 1,000 iterations of sampled and clustered SBS9-context motifs in the

genome equal to the number of SBS9-context mutations in 20 (for LCL) or five (for CLL-M) replication timing bins.

(B) The number of LCL and CLL-M clustered/non-clustered SBS9-context mutations normalized by the simulated mean number of clustered/non-clustering

mutations within replication timing bins as calculated in (A).

(C) The percent of LCL and CLL-M SBS9-context mutations within 100 bp of an AID-context mutation in replication timing bins; values are normalized by a

simulated mean percentage based on SBS9 and AID-context mutations rate and motif availability in replication timing bins. p values represent clustered versus

non-clustered mutations from a Fisher’s exact test of normalized values and the number of clustered/non-clustered mutations per bin.

(D) The percent of clustered/non-clustered LCL and CLL-M SBS9-context mutations within 10 kb of a TSS. p values are calculated with Fisher’s exact test.

(E–G) Frequency of 1,044 LCL and 91CLL clustered (E and F) and non-clustered (G) SBS9-contextmutations around all protein-coding gene TSSs (E andG) or the

subset (91 genes in LCL and 18 in CLL) of 275 off-target SHM hotspots (F).
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Taken together, there appear to be two mutational modes

of SBS9: early-replicating clustered mutations that are associ-

ated with AID-context C>N mutations and, at least partially,

with active gene transcription; and late-replicating non-clus-

tered mutations that are likely AID independent, as previously
8 Cell Genomics 3, 100305, June 14, 2023
suggested.15 Of note, the majority of SBS9 mutations in LCL

and CLL-M conforming to the latter mode suggests that

AID-independent mutagenesis is more prevalent for off-target

mutations in B cells. Last, differing activities of these two

mutational modes in different cell types may explain why



Figure 5. Unique mutational processes on the Xi chromosome

(A) Identification of Xi parental identity and mutation phasing.

(B) The absolute parental read depth disparity in LCL female offspring on chromosome 14. Disparity was calculated as the absolute difference of paternal and

maternal median read depth of inherited phaseable variants divided by their combined median depth.

(C) The elevated absolute parental read depth disparity on the X chromosome in female LCL offspring. Xi was identified in females with a disparity greater than the

95th percentile value from chromosome 14.

(D) Xi parental identity classification among females with an identifiable Xi as described in (C). Xi is the parental homolog with the lower read depth.

(E) The number of phased X chromosome mutations in females with an identifiable Xi.

(legend continued on next page)
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SBS9 is more prevalent in late-replicating regions in CLL than

in LCL.

Hypermutation of the inactive X chromosome is the
result of SBS9
We described above multiple interacting factors that shape the

mutational landscape, including DNA replication timing, muta-

tional processes, mutation clustering, and cell line-specific muta-

tion load. As a case in point, we examined these factors from the

perspective of chromosome inactivation. The female inactive X

chromosome (Xi) replicates late in S phase with no discernable

replication timing pattern,28 which is distinct from the active X

chromosome (Xa), the male X chromosome, and autosomes.

This, and the tight link between replication dynamics and the

mutational landscape, led us to predict that Xi would also have un-

usual mutational properties. Consistently, Xi has been inferred to

be hyper-mutated in cancers.59,60 In our female LCL and CLL

samples, we also found that the X chromosome demonstrated

significantly higher mutation rate than autosomes (Figures S3A

and S3B). Interestingly, the female X chromosome also showed

a greater abundance of SBS9 compared with autosomes

(Figures S3C and S3D).

The family-based configuration of the LCLs enabled phasing

mutations and separate investigation of the mutational land-

scapes of Xa and Xi, in contrast to previous studies that investi-

gated Xi mutations by male-female comparisons or with limited

expression-phasedmutations.59,60 Xi has been shown to be clon-

ally propagated61–63 and, thus, expected to be detectable in at

least a subset of the 746 female LCL offspring. While phasing in-

herited variants enables discriminating parental chromosome

pairs, functional data are required to identify the Xi chromosome.

To this end, we devised an approach using the replication timing

data itself, as inferred from sequencing read depth; because of its

later replication, Xi is expected to demonstrate a lower median

copy number compared with Xa (Figure 5A). Indeed, female X

chromosomes showed greater parental copy number disparity

than autosomes, which we used as a benchmark for assigning

X chromosome identity (specifically, for samples with greater

than the 95th percentile disparity on chromosome 14, the auto-

some with the closest number of phaseable inherited variants to

the X chromosome; Figures 5B and 5C). This approach yielded

reproducible Xi assignments in all 17 replicate sequenced

offspring for which assignments could be made. In addition,

paternal Xi identity for NA12878 was consistent with RNA expres-

sion analyses64,65 and with our previous classification.28 Thus, the

Xi chromosome can be identified, andmutations it harbors can be
(F) Xa and Xi mutation rate compared with maternal and paternal homologous

chromosome X. Mutation rate was calculated as the number of phased mutatio

mosome homolog pair. p values were calculated from a two-tailed t test.

(G) Proportions of mutational pathways on maternal and paternal homologous a

(H) As in (F), the mutation rate of phased mutations in high and low autosomal m

(I) As in (G), the proportions of mutational pathways in high and low autosomal m

(J) Pearson correlations of Xa and Xi regional mutation rate (calculated as in Figur

window) to male X chromosome replication timing.

(K–O) Abundance of mutational pathways on the X chromosome in five replication

and low autosomal mutation load groups (L), CLL-M male and female patients (M

mutation load groups (N) and CLL-M male and female patients (O).

In all panels, error bars represent the standard error of signature fit.
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called, from the genome sequence data itself. Accordingly, we

identified the Xi in 542 of 746 female offspring (72.65%), of which

293werepaternally X inactivated, and 249werematernally X inac-

tivated (Figure 5D; Table S1).

Being able to phase the X chromosomes across cell lines, we

systematically quantified how mutation rate and processes

differed between Xa and Xi. We phased mutations by identifying

mutant alleles on the same sequencing read or mate pair as a

phaseable inherited variant (Figure 5A). Among 542 females

with an identifiable Xi, we phased 6,005 (19.75%) X chromosome

mutations, of which 3,844 (64.01%) were assigned to Xi

(Figure 5E). We confirmed that the mutation rate of Xi was

1.78-fold higher (p < 1 3 10�5) than that of Xa and significantly

higher than any autosome (p < 13 10�6) (Figure 5F; Figure S3E);

the mutation rate of Xa was not significantly different than auto-

somes (Figure 5F). With regard to mutational processes, the pro-

portions of mutations explained by SBS9 (34.36% ± 2.49%) and

the clock-like mutational category (65.64% ± 5.94%) were

similar between Xa and autosomes (Figure 5G; Figure S3F). On

Xi, however, only 27.16%± 2.38%ofmutationswere attributable

to the clock-like category, while 72.84% ± 2.27% were attribut-

able to SBS9 (Figure 5G). The elevated mutation rate on Xi can

thus be predominantly attributed to SBS9.

Given our observation that mutation load relates to SBS9

enrichment in late-replicating regions, we hypothesized that

increased mutation load in a cell line would correspond to a

disproportionately greater Xi mutation rate and SBS9 abun-

dance. We split the 542 LCL offspring with an identifiable Xi

into a low-mutation-load group with fewer than 832 autosomal

mutations (433 offspring) and a high-mutation-load group

(remaining 109 offspring). Each group contained�157,000 auto-

somal mutations. As predicted, X chromosome mutations were

proportionally more abundant in the high-mutation-load group,

comprising 11.10% of mutations compared with 8.25% in the

low-mutation-load group. Using phased mutations, we further

found that 67.33% of X chromosome mutations in the high-mu-

tation-load group were located on Xi compared with 58.14% in

the low group (Figure 5H). As a control, Xa showed the same

mutation rate as autosomes in both groups (Figure 5H). This con-

firms that Xi has an elevated mutation load. As further hypothe-

sized, we found that SBS9 on Xi was strongly elevated in the

high-mutation-load group, at 81.72% ± 2.71% of Xi mutations

compared with 53.37% ± 3.44% in the low-mutation-rate group

(Figure 5I). In addition, SBS9 on Xi was higher than on Xa,

comprising 38.92% more mutations in the high load group

compared with 30.33% in the low group. Taken together, X
autosomes with the most similar number of inherited phaseable variants to

ns normalized by the number of inherited phaseable variants on each chro-

utosomes and Xa/Xi.

utation load groups.

utation load groups.

e 1K and further normalized by the number of inherited phaseable sites in each

timing bins: SBS9 abundance for Xa/Xi mutations (K), Xi mutations in the high

) and clock-like mutation abundance for Xa/Xi mutations in the high autosomal
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chromosome inactivation is associated with an elevated muta-

tion load driven by SBS9, creating a distinct mutational land-

scape on Xi. This disparity of mutation load and SBS9 composi-

tion relative to Xa is particularly pronounced in cell lines with a

greater global mutational load.

Association of mutational pathways with X
chromosome-specific replication programs
We showed above that the elevated mutation load and SBS9

abundance on Xi were consistent with its late replication. We

next investigated howmutations relate to the random replication

pattern of Xi. If replication timing modulates mutation rate, the

random replication of Xi would predict a random, uniform

distribution of mutations. Using the 542 LCL offspring with an

identifiable Xi, we assessed regional mutation rates of phased

mutations in 1-Mb sliding windows with a 0.5-Mb step. As ex-

pected, for Xa, regional mutation rate correlated with male X

chromosome replication timing (r = 0.61) at similar levels as

phased autosomal mutations to autosomal replication timing

(Figure S3G). Unexpectedly, regional Xi mutation rate demon-

strated an equally high correlation to male X chromosome repli-

cation timing (r = 0.61; Figure 5J; Figure S3G). This suggests that

Xi mutation distribution follows the ordered replication timing

pattern of Xa rather than the random pattern of Xi.

Given the unanticipated result of ordered Xi mutations in LCL,

we sought to validate these findings in CLL. Although we were

unable to phase CLL mutations, we compared X chromosome

mutations acrossmale and female patients to estimate themuta-

tional landscape of Xi. For autosomes, regional mutation rates in

males and females near-equally correlated with replication

timing (Figure S3H). However, in contrast to LCLs, this correla-

tionwas reduced for X chromosomemutations in female CLL pa-

tients (r = 0.67 among females, 0.76 among males; Figure S3H).

By analyzing CLL-M and CLL-U separately, we found that the

correlation for X chromosome regional mutation rate in CLL-U fe-

male patients (r = 0.46) was diminished compared with males (r =

0.70) and autosomes (Figure S3I). Such reduced correlation was

not observed in CLL-M females (Figure S3J). Because CLL-U

samples lack SHM and SBS9 mutations, we infer that clock-

like mutations are randomly distributed on Xi, while SBS9

mutations more closely follow the Xa replication pattern.

To study the distribution of SBS9 mutations on Xi, we split

phased mutations into five bins based on the male X chromo-

some replication timing. In LCLs, Xa and Xi mutations showed

similarly high enrichment for SBS9 in late-replicating regions of

themale X chromosome (Figure 5K). Late-replicating enrichment

was stronger for Xi mutations in the high (6.21-fold more) versus

low (4.28-fold) autosomal mutation load groups (Figure 5L).

Thus, the disordered replication timing of Xi does not directly

relate to SBS9 mutation rate in LCLs. To validate this in

CLL-M, we expected equal enrichment for SBS9 in late-repli-

cating regions in males and females. Indeed, female CLL-M X

chromosome mutations were similarly enriched in late-repli-

cating regions (10.41-fold) as males (12.29-fold; Figure 5M).

Thus, in LCL and CLL, Xi SBS9 mutation distribution follows

the ordered pattern of Xa replication timing.

Last, we examined clock-like mutations on Xi, focusing specif-

ically on the LCL offspring with high autosomal mutation loads
(because we only observed late-replication enrichment of

clock-likemutations in those; Figure 2C). Xa clock-like mutations

in the high-load group were enriched in late-replicating regions

of the male X chromosome (2.11-fold; Figure 5N). However, in

contrast to SBS9, Xi clock-like mutations were more uniformly

distributed with respect to male X chromosome replication

timing (0.99-fold; Figure 5N). This supported the hypothesis

that clock-like mutations are randomly distributed on Xi. We

again validated these results in CLL-M; CLL-M females demon-

strated a striking reduction of clock-like mutations in late-repli-

cating regions of the male X chromosome (1.57-fold) compared

with CLL-M males (2.63-fold; Figure 4O). Taken together, LCL

and CLL suggest that the replication pattern of Xi may directly

relate to clock-like, but not necessarily polymerase h, mutations.

DISCUSSION

Taking advantage of the extensive genotyping of LCLs from

families in several population-scale cohorts, together with the

relatively large number of mutations in LCLs and the availability

of matched replication timing profiles, we reveal several novel

patterns related to the locations, types, and contexts of somatic

mutations. We find that B cell mutation load and mutation clus-

tering, particularly driven by DNA polymerase h, each associate

with the replication timing biases of mutation locations. Greater

mutation load corresponded to greater late replication bias,

whereas clustered mutations were relatively enriched in early-

replicating regions. The hypermutability of the Xi chromosome

is predominantly attributed to SBS9, but the distribution of muta-

tions on Xi was unexpectedly divorced from its DNA replication

dynamics. These results, together with the description of multi-

level mutational heterogeneity between LCL, CLL, and other

cell types,66 reveals that mutational processes are highly com-

plex in terms of their interactions with genomic and epigenomic

properties, in particular DNA replication dynamics.

Our study design enabled analyzing inter-individual variation

and performinggenetic association studies of themutational land-

scape. We found that the wide variation in mutational load among

samples does not merely represent different timescales of activity

of mutational processes; instead, mutational load correlated with

the extent of mutational late replication bias as well as with the

proportion of mutation belonging to the SBS9 signature. We

confirmed this observation among individual LCLs and in CLL,

where mutations were identified using a different methodology.

The similar mutation numbers analyzed across mutation load

groups and the down-sampling of mutations in individual LCLs

indicate that the association between mutation load and the mu-

tation landscape is not the result of low statistical power. Instead,

mutation load and the mutational landscape appear to be corre-

lated attributes that are inherent to individual samples. We

consider several possible mechanisms to explain this variability.

First, past mutations may inherently increase the probability and

skew the distribution of future mutations in a type of mutational

feedback loop; for instance, because of local recruitment ofmuta-

genic DNA repair pathways. However, the observation that SBS9

mutational clustering decreases with higher mutation load implies

that mutation rate increases in late-replicating regions are not

driven by proximal changes, arguing against this mechanism.
Cell Genomics 3, 100305, June 14, 2023 11
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Instead,we favor amodel bywhich themutation of (a) trans-acting

factor(s) increases the global mutation rate and also underlies the

shift of mutations toward later-replicating genomic regions and/or

particular mutational signatures. As this mutation increases in

clonal frequency, possibly because of compounding effects of

the mutated gene(s) on cell proliferation, we would observe

greater late replication bias for newly acquired somaticmutations.

We were able to test this directly by performing a genome-wide

association study formutation load and formutational late replica-

tion bias, identifying BCL6, a transcription factor that prevents

cell-cycle arrest under the tremendous DNA damage of SHM.50

Further investigation of BCL6 will clarify its role in mutagenesis,

while studies in other cell types could testwhether comparable ef-

fects take place, potentially mediated by other genes. It is impor-

tant to note that we are unable to determine whether mutation

load, replication timing bias, and mutational signatures are caus-

ally related to each other or, rather, all independently stem from

the same underlying genetic perturbation. Because we were un-

derpowered to call mutational signatures in individual samples,

we could not perform an independent association analysis for

signature composition.

Previous studies have reported BCL6 mutations in up to

�30% of human B cells because of off-target SHM.50 This is

consistent with our observation of high BCL6 mutation rate in

LCLs as well as with most (or all) of these mutations occurring

in clusters linked to AID motifs. Thus, off-target SHMmay cause

the initial mutations in BCL6, which then proceed to facilitate

non-clustered SBS9 mutations during subsequent cell divisions.

While previous studies have interpreted hotspot gene mutations

and preference for expressed genes as suggestive of off-target

biases, an alternative possibility is that mutations in certain

genes drive B cell proliferation and are therefore observed

more often. Last, the co-variation of mutation load and the muta-

tional landscape has an important methodological implication

because it may confound the interpretation of the genomic dis-

tributions of mutational signatures. For example, a collection of

high-mutation-load LCLs would produce different conclusions

about SBS9 or clock-like mutation abundance than a collection

of low-mutation-load LCLs. It is therefore vital to control for mu-

tation load when evaluating genomic properties of mutations.

While most SBS9 mutations occurred sporadically in late-

replicating regions, a secondmode of SBS9mutations was clus-

tered in early-replicating genomic regions and at least partially

associated with gene activity. These findings are consistent

with previous reports15,56,57 and with DNA polymerase h being

recruited to DNA either through AID-mediated lesions or to sites

impacted by replication stress or other forms of genotoxic

stress. Our results extend these findings and show that both

modes can co-occur. SBS9 may therefore be regarded as being

due to a specific mutational mechanism; however, this mecha-

nism may be derived from more than one etiology, necessitating

its more specifically stratified analysis in future studies.

SBS9 also accounted for the elevated mutation rate on the Xi

chromosome. Unexpectedly, SBS9mutations on Xi followed the

early/late replication pattern of the Xa chromosome rather than

the random Xi replication pattern. This suggests that replication

timing may not directly modulate where SBS9 mutations occur.

Instead, some yet unidentified correlated factor that is otherwise
12 Cell Genomics 3, 100305, June 14, 2023
unaltered on Xi and serves as an epigenetic ‘‘memory’’ of its pre-

inactivation state may explain the landscape of SBS9. Because

gene expression, chromatin structure, and chromosome confor-

mation are all effectively lost on Xi alongside replication timing

programming,67,68 it is difficult for us to speculate on the nature

of such a factor.

A major and still not fully answered question in the mutagen-

esis field pertains to the mechanism(s) that lead(s) to preferential

mutation accumulation in late-replicating regions. From a

biochemical point of view, this could be related to the activity

of DNA repair pathways,11 trans-lesion DNA polymerases,

dNTP levels,69 or other factors. Our results support the idea

that there is no singular mechanism that can explain this associ-

ation. Rather, mutational landscapes are shaped by composites

of pathways with varied associations to the replication program.

Overall, the combination of DNA replication timing, mutational

pathways, mutational load, rate of clustering, and other factors

shape the complex landscape of genomic mutations. Given

that replication timing itself is a polymorphic trait in humans,5,70

we would further predict that different people would have

different mutational patterns in different genomic regions.

Limitations of the study
While much can be gleaned from associating various genetic and

epigenetic properties across many individuals, our study had

limited power for analyzing certain individual properties, such as

mutational signatures (especially in samples with low mutation

load). We also lack information for gene expression (in particular,

of genes such as BCL6 or of EBV) and for donor age and cell cul-

ture history and passage for most of the samples we analyzed.

Generating and incorporating this information in future cohorts

or analyses will shed further light on the contributions of such fac-

tors (and potentially others) to the mutational associations we

report. This study also focused on single-nucleotide mutations,

while other mutation types, such as insertions or deletions (indels)

or copy number alterations, would also be of interest for future

studies. Last, we focused here on two B cell systems (and in an

accompanying paper,66 colon cancer cell lines), but a more

comprehensive analysis of additional B cell and non-B cell cancer

types (EBV positive and EBV negative) and of non-cancerous so-

matic tissue or cell lines promises to draw a more complete pic-

ture of mutational patterns and their molecular causes.
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Mutational signature distribution varies with DNA replication timing and

strand asymmetry. Genome Biol. 19, 129. https://doi.org/10.1186/

s13059-018-1509-y.

11. Supek, F., and Lehner, B. (2015). Differential DNA mismatch repair under-

lies mutation rate variation across the human genome. Nature 521, 81–84.

https://doi.org/10.1038/nature14173.

12. Woo, Y.H., and Li, W.-H. (2012). DNA replication timing and selection

shape the landscape of nucleotide variation in cancer genomes. Nat.

Commun. 3, 1004–1008. https://doi.org/10.1038/ncomms1982.

13. Michaelson, J.J., Shi, Y., Gujral, M., Zheng, H., Malhotra, D., Jin, X., Jian,

M., Liu, G., Greer, D., Bhandari, A., et al. (2012). Whole-genome

sequencing in autism identifies hot spots for de novo germline mutation.

Cell 151, 1431–1442. https://doi.org/10.1016/j.cell.2012.11.019.

14. Sasani, T.A., Pedersen, B.S., Gao, Z., Baird, L., Przeworski, M., Jorde,

L.B., and Quinlan, A.R. (2019). Large, three-generation human families

reveal post-zygotic mosaicism and variability in germline mutation accu-

mulation. Elife 8, e46922. https://doi.org/10.7554/eLife.46922.

15. Machado, H.E., Mitchell, E., Øbro, N.F., K€ubler, K., Davies, M., Leonga-

mornlert, D., Cull, A., Maura, F., Sanders, M.A., Cagan, A.T.J., et al.

(2022). Diverse mutational landscapes in human lymphocytes. Nature,

1–9. https://doi.org/10.1038/s41586-022-05072-7.

16. Zhang, L., Dong, X., Lee, M., Maslov, A.Y., Wang, T., and Vijg, J. (2019).

Single-cell whole-genome sequencing reveals the functional landscape

of somatic mutations in B lymphocytes across the human lifespan. Proc.

Natl. Acad. Sci. USA 116, 9014–9019. https://doi.org/10.1073/pnas.

1902510116.

17. Tan, Q., Ku, W., Zhang, C., Heyilimu, P., Tian, Y., Ke, Y., and Lu, Z. (2018).

Mutation analysis of the EBV-lymphoblastoid cell line cautions their use as

antigen-presenting cells. Immunol. Cell Biol. 96, 204–211. https://doi.org/

10.1111/imcb.1030.

18. Conrad, D.F., Keebler, J.E.M., DePristo, M.A., Lindsay, S.J., Zhang, Y.,

Casals, F., Idaghdour, Y., Hartl, C.L., Torroja, C., Garimella, K.V., et al.

(2011). Variation in genome-wide mutation rates within and between hu-

man families. Nat. Genet. 43, 712–714. https://doi.org/10.1038/ng.862.

19. Ng, J., Vats, P., Fritz-Waters, E., Padhi, E.M., Payne, Z.L., Leonard, S.,

Sarkar, S., West, M., Prince, C., Trani, L., et al. (2021). De novo variant call-

ing identifies cancer mutation profiles in the 1000 Genomes Project. Hum.

Mutat. 43, 1979–1993. https://doi.org/10.1002/humu.24455.

20. Kenter, A.L., Kumar, S., Wuerffel, R., and Grigera, F. (2016). AID hits the

jackpot when missing the target. Curr. Opin. Immunol. 39, 96–102.

https://doi.org/10.1016/j.coi.2016.01.008.

21. Papavasiliou, F.N., and Schatz, D.G. (2002). Somatic hypermutation of

immunoglobulin genes: merging mechanisms for genetic diversity. Cell

109, S35. https://doi.org/10.1016/S0092-8674(02)00706-7.
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roja, C., de Yébenes, V.G., and Ramiro, A.R. (2018). A broad atlas of somatic

hypermutation allows prediction of activation-induced deaminase targets.

J. Exp. Med. 215, 761–771. https://doi.org/10.1084/jem.20171738.

23. Tang, C., Krantsevich, A., and MacCarthy, T. (2022). Deep learning model

of somatic hypermutation reveals importance of sequence context

beyond hotspot targeting. iScience 25, 103668. https://doi.org/10.1016/

j.isci.2021.103668.

24. Maul, R.W., and Gearhart, P.J. (2010). Aid and somatic hypermutation. Adv.

Immunol. 105, 159–191. https://doi.org/10.1016/S0065-2776(10)05006-6.

25. Matsuda, T., Bebenek, K., Masutani, C., Hanaoka, F., and Kunkel, T.A.

(2000). Low fidelity DNA synthesis by human DNA polymerase-eta. Nature

404, 1011–1013. https://doi.org/10.1038/35010014.

26. Mayorov, V.I., Rogozin, I.B., Adkison, L.R., and Gearhart, P.J. (2005). DNA

polymerase h contributes to strand bias of mutations of A versus T in
Cell Genomics 3, 100305, June 14, 2023 13

https://doi.org/10.1016/j.xgen.2023.100305
https://doi.org/10.1016/j.xgen.2023.100305
https://doi.org/10.1007/BF00279094
https://doi.org/10.1007/BF00279094
http://refhub.elsevier.com/S2666-979X(23)00071-X/sref2
http://refhub.elsevier.com/S2666-979X(23)00071-X/sref2
http://refhub.elsevier.com/S2666-979X(23)00071-X/sref2
https://doi.org/10.1038/nature02168
https://doi.org/10.1038/nature02168
https://doi.org/10.1038/nature15393
https://doi.org/10.1016/j.cell.2014.10.025
https://doi.org/10.1016/j.cell.2014.10.025
https://doi.org/10.1016/j.ajhg.2012.10.018
https://doi.org/10.1093/hmg/ddac082
https://doi.org/10.1073/pnas.1900714116
https://doi.org/10.1534/genetics.117.1114
https://doi.org/10.1186/s13059-018-1509-y
https://doi.org/10.1186/s13059-018-1509-y
https://doi.org/10.1038/nature14173
https://doi.org/10.1038/ncomms1982
https://doi.org/10.1016/j.cell.2012.11.019
https://doi.org/10.7554/eLife.46922
https://doi.org/10.1038/s41586-022-05072-7
https://doi.org/10.1073/pnas.1902510116
https://doi.org/10.1073/pnas.1902510116
https://doi.org/10.1111/imcb.1030
https://doi.org/10.1111/imcb.1030
https://doi.org/10.1038/ng.862
https://doi.org/10.1002/humu.24455
https://doi.org/10.1016/j.coi.2016.01.008
https://doi.org/10.1016/S0092-8674(02)00706-7
https://doi.org/10.1084/jem.20171738
https://doi.org/10.1016/j.isci.2021.103668
https://doi.org/10.1016/j.isci.2021.103668
https://doi.org/10.1016/S0065-2776(10)05006-6
https://doi.org/10.1038/35010014


Article
ll

OPEN ACCESS
immunoglobulin Genes1. J. Immunol. 174, 7781–7786. https://doi.org/10.

4049/jimmunol.174.12.7781.

27. Wang, Q., Oliveira, T., Jankovic, M., Silva, I.T., Hakim, O., Yao, K., Gaz-

umyan, A., Mayer, C.T., Pavri, R., Casellas, R., et al. (2014). Epigenetic tar-

geting of activation-induced cytidine deaminase. Proc. Natl. Acad. Sci.

USA 111, 18667–18672. https://doi.org/10.1073/pnas.1420575111.

28. Koren, A., and McCarroll, S.A. (2014). Random replication of the inactive X

chromosome. Genome Res. 24, 64–69. https://doi.org/10.1101/gr.

161828.113.

29. Shen, H.M., Peters, A., Baron, B., Zhu, X., and Storb, U. (1998). Mutation of

BCL-6 gene in normal B cells by the process of somatic hypermutation of

ig genes. Science 280, 1750–1752. https://doi.org/10.1126/science.280.

5370.1750.
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METHOD DETAILS

Genomic data sources and mutation calling
LCL genomic data sources

Mutations in the 1662 LCL offspring were sourced from six cohorts (Table 1). These offspring were matched to 989 pairs of fully gen-

otyped parents, as 377 families contained two or more offspring. Eight families covered three generations. The largest cohort was

iHART32 and included 1028 offspring with or without a diagnosis of autism.While iHART samples included both LCL and whole blood

samples, only LCL offspring were included in this study, although for parental data we also considered whole blood samples (1.2%of

parents). The second-largest LCL mutation cohort was sourced from the 1000 Genomes Project (1kGP) and contained 602 trios.33

We used 49 offspring from the Polaris project Kids cohort4 as replicate samples as all overlapped the 1kGP cohort. An additional nine

offspring were sourced from the Repeat Expansion (RE) cohort34 and 13 offspring from the Illumina Platinum35 family; of those, two

(NA12878 and NA12877) overlapped with 1kGP samples and were used for primary analyses instead of the latter due to their higher

read depth (�50x compared to �30x). Finally, we used 12 LCL that we previously described.7 Briefly, these samples were obtained

from the Coriell Institute, sequenced on an Illumina HiSeq X (2 3 150bp) to a depth of approximately 15X, and aligned to hg38 with

BWA-mem73 (v0.7.17) similar to the other LCL cohorts.

LCL genotyping

In order to ultimately identify mutations, we first genotyped LCL offspring and parents. Genotypes for iHART samples were obtained

from Ruzzo et al. 2019.32 All other LCL cohorts were genotyped by us using the GATK (v4.1.4.0) best practices for germline short

variant discovery.74,78 Briefly, BAM files were recalibrated and aligned around common insertions and deletions with ‘BaseRecali-

brator’ and ‘IndelRealigner’. Next, gVCF files were generated from all recalibrated BAM files using ‘HaplotypeCaller’. gVCFs were

then merged into families with ‘CombineGVCFs’ and joint genotyped with ‘GenotypeGVCFs’. Finally, SNVs were recalibrated with

‘VariantRecalibrator’. We note that genotype calling for the iHART cohort differed from the above in that all samples were jointly gen-

otyped, and variants were removed if they had a depth of <10X, a genotype quality of <25, or an alternative allele frequency of <0.2;

we subsequently applied equal or stricter filtering metrics to all samples when identifying mutations, hence ruling out an effect of

these differences in iHART genotyping on our analyses.

For samples originally aligned and genotyped in hg19 (approximately half of all samples), genotypes were lifted-over to hg38 co-

ordinates using vcf-liftover (https://github.com/hmgu-itg/VCF-liftover, only liftover within the same chromosome were allowed). We

removed genotypes in samples originally aligned to hg38 at coordinates without an hg19 equiv to compensate for the reduction of

genotypes following liftover. This eliminated approximately 1.9% of all sites.

LCL mutation calling

Candidate mutations were identified as single nucleotide Mendelian errors between parent and offspring alleles. The following

steps were based on previously established family-based mutation calling methods from Yuen et al. 2016.79 Mutations on the au-

tosomes and X chromosome in female offspring were identified as heterozygous genotypes (for the reference allele and an alter-

nate allele) in offspring where parents were homozygous for the reference allele. For the X chromosome in male offspring, muta-

tions were identified as sites with only an alternate allele where the mother is homozygous for the reference allele. Next, we filtered

mutations with a Fisher’s exact test Phred-scaled p value (FS) < 60.0, RMS mapping quality (MQ) < 40.0, Wilcoxon rank-sum test

Z score of mapping qualities (MQRankSum)<-12.5 or read position (RPRS)<-8.0, symmetric odds ratio (SOR) > 3, and a Phred-

scaled quality score (QUAL) < 30. We excluded sites that did not pass variant quality score recalibration. To remove sub-clonal

mutations and potential technical errors, we eliminated candidate mutations for which the mutant (alternate) allele frequency

was <0.2.We removed likely inherited variants where either parent contained readsmatching themutant allele. Finally, to eliminate

possible false-positive mutation calls caused by somatic deletions in the offspring (and hence reduced genotyping accuracy), we

eliminated candidate mutations in cases where the offspring read depth was <10% of the combined parental read depth (again,

adjusted for the X chromosome in male offspring) at the mutation site. After this initial hard filtering, 4.4 million candidate mutations

were called across all 1662 offspring.

Next, we removed candidate mutations based on genomic location. We first removed 61,479 candidate mutations around the HLA

locus (chr6:28477797–33548354 in hg38) due to the high propensity for genotyping errors stemming from high local polymorphism

density.80 Similarly, we removed 63,547 mutations around the immunoglobulin heavy locus (IGHV, chr14:105580000-106880000 in

hg38), which is hyper-mutated in LCLs. Next, we removed 587,511 mutations within gaps >25Kb in the LCL replication timing profile

(see section LCL replication timing profiles). Regions of the genome removed for HLA and IGHV were also removed from the LCL

reference RT profile.

To further eliminate inherited variants, we implemented a last filtering step to remove mutations based on population allele fre-

quency. Specifically, we removed mutations with a gnomAD71 V3 frequency of >0.001. We did not use a frequency of zero as

many of our samples (including all 1kGP individuals), and their somatic mutations, are represented in gnomAD. We also filtered

mutations occurring in more than 30 of the 1662 offspring. In total, 2,826,985 candidate mutations were eliminated through this allele

frequency filtering. After all filtering steps, 885,655 autosomal and 42,061 X chromosome mutations remained in the 1662 non-repli-

cate LCL offspring. The mean variant allele frequency of autosomal mutations was 0.40.

For each mutation, trinucleotide context was generated with SigProfilerMatrixGenerator,75 and replication timing values at muta-

tions sites were calculated with the R function ‘approx’ using the linear method. Mutation allele frequency did not vary by substitution
Cell Genomics 3, 100305, June 14, 2023 e2
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type nor by trinucleotide context. The mean variant allele frequency among mutation in trinucleotide contexts ranged from 0.40

to 0.46.

LCL mutation validation

Parent-offspring mutation calling carries a risk of falsely identifying an inherited variant as a de novo mutation. This could stem, for

instance, from failing to identify the inherited alleles in a parent due to a somatic deletion or false-negative genotyping. To quantify the

proportion of falsemutations that are inherited variants, we analyzedmutation calls in 73monozygotic (MZ) twin pairs. MZ twins share

all inherited alleles and germline mutations but have unique somatic mutations (Figure S1B). Although parent-offspring mutation

calling cannot distinguish somatic from germline mutations, having an estimate for one of those enables to estimate the other.

Specifically, based on all samples from denovo-db,81 the average human contains 65.5 autosomal germline mutations, is similar

to other estimations of approximately 70 autosomal mutations per generation.14 In contrast, in this study, MZ pairs shared between

81 and 245 autosomal mutations (median:113; Figure S1C, D). Thus, the excess number (above 65.5) of MZ twin shared mutations

provides a rough estimate of the number of falsely called mutations that are likely inherited variants (Figure S1E). We thus predicted

that between 1.85% and 27.2% of autosomal mutations in MZ twins are inherited variants (median: 9.66%; Figure S1E). This is likely

an overestimate, as the paternal age among MZ twins was relatively high (median: 32.26 years, range: 20.43–78.51), thus increasing

the expected number of germline mutations.

We also estimated false mutation calls derived from technical errors by analyzing genotype calls in 51 offspring that were rese-

quenced by different groups on different platforms (Table S1). We compared mutant alleles of samples in the main dataset to the

GVCF of the replicate. A mutation was considered validated if the mutant allele was found in the replicate sample at any frequency.

Amedian of 93.1%of autosomalmutations were supported by their replicate sample (range: 65.1–98.7%; Figure S1F). Themutations

that could not be validated did not show a strong enrichment toward late replication timing and, therefore, should not have influenced

our results (Figure S1G). We further validatedmutation calls in the offspring sample NA12878. The Illumina Platinum cohort sample of

NA12878 was used as part of the main dataset (of 1662 offspring), and the 1kGP NA12878 sample was used for validation (and

counted as part of the 51 replicate sample analysis mentioned above). We sourced four other replicate sequencings of NA12878

(Table S1) and found that 98.8% of mutations were supported by at least one alternate source.

CLL mutation data

Mutations in CLL patients were obtained from the ICGC/PCAWG cohorts CLLE-ES. Alignment and mutation calling for tumor

samples (peripheral blood-derived) and normal samples was performed by PCAWG using their pipeline82 in hg19. We only included

mutations called from 151 patients with whole genome sequencing. This provided 371,252 autosomal mutations and 23,130 X chro-

mosome mutations.

Before filtering, all mutations were lifted-over to hg38 coordinates using vcf-liftover (https://github.com/hmgu-itg/VCF-liftover,

only liftover within the same chromosome were allowed). We then removed mutations around the HLA and IGHV loci and in gaps

of the LCL replication timing profile. Hence, we used two LCL replication timing profiles in our analyses: one in which regions filtered

from the LCL offspring dataset were removed, and another in which regions filtered from the CLL dataset were removed. We inter-

polated replication timing values for the final 355,474 autosomal and 22,131 X chromosome mutations with the CLL-filtered LCL

reference replication timing profile and determined trinucleotide contexts in an identical manner to LCLs.

LCL replication timing profiles
The LCL consensus replication profile was generated using TIGER31 from median read count data from all 1662 offspring. First,

uniquely mapping reads were extracted from aligned BAM files of each sample. For samples aligned to hg19, BAM coordinates

were lifted to hg38 in an identical manner to mutations. We compensated for lift-over by modifying TIGER to exclude hg38 coordi-

nates with no hg19 equiv when creating 2.5Kb windows of uniquely alignable sequence. We tested the effect of this method by

comparing the replication timing profiles of 22 samples originally aligned to hg38 with those aligned to hg19 and lifted-over to

hg38. The lifted replication timing profile in all samples on all autosomes was nearly identical (Pearson’s r > 0.99) to the one aligned

to hg38.

Using default TIGER parameters, the liftover-corrected 2.5Kb windows were GC-corrected and normalized to an autosomal

genome copy number of two. We eliminated sub-clonal aneuploidies in individual offspring by filtering out whole chromosomes

with an average autosomal copy number of >2.2 or <1.8, an X chromosome copy number of >2 or <1.6 for female offspring, and

an X chromosome copy number of >1.2 or <0.8 for male offspring. This removed 34 chromosomes from 23 samples. We removed

suspected small copy number alterations by filtering out 2.5Kb windows with an exceptionally high or low median copy number

across all offspring and within individual offspring. We first removed autosomal and female X chromosome windows across all

offspring with amedian copy number ±0.6 than that chromosome’s median copy number (as calculated from all offspring). The cutoff

was ±0.4 for the X chromosome in male offspring. We then filtered out windows in individual offspring with a copy number ±0.6 than

that chromosome’smedian copy number (as calculated in the individual offspring). The cutoff was ±0.3 for the X chromosome inmale

offspring. We next calculated autocorrelation for all offspring using the MATLAB command ‘‘autocorr’’ and removed whole chromo-

somes for samples with abnormally high autocorrelation. This removed 51 chromosomes in 26 samples. Finally, we discarded the

two offspring, HG02523 and NA12344, as they had more than six individual chromosomes removed.

After filtering, we took the median GC-corrected data in 2.5Kb each window across all offspring. For the X chromosome, we

calculated separatemedians using onlymale or female offspring. Replication timing values were generated by smoothing themedian
e3 Cell Genomics 3, 100305, June 14, 2023
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GC-corrected data with a cubic smoothing spline (MATLAB command ‘csaps’, smoothing parameter: 13 10�17). Only regions of >20

continuous 2500bp windows were included. Smoothing was not performed over data gaps >100Kb or reference genome gaps

>50Kb. The smoothed profiles were then normalized to an autosomal mean of zero and a standard deviation of one. For analyses

on the X chromosome, we generated an X chromosome replication timing profile considering only male LCL offspring.

We compared our median LCL replication timing profile to a replication profile of NA12878 generated by sequencing S and G1

phase DNA.83 The S/G1 coordinates were interpolated to TIGER window coordinates with the MATLAB function ‘interp1’.

Mutation signatures
We fit COSMIC v3.2 SBSsignatures45 1, 5, 9, and 40 (and SBS8 and 18 in a separate analysis) to all autosomal mutations using the

MutationalPatterns84 command ‘fit_to_signatures‘. Following best-practices,47 we corrected COSMIC SBSsignatures by adjusting

the 96 trinucleotide frequencies by the relative abundance of trinucleotide frequencies between the filtered and unfiltered genome.

We used cosine similarity (MutationalPatterns command ‘cos_sim’) to assess the confidence of signature fit which compares the

original trinucleotide frequencies of mutations to reconstructed frequencies based on predicted signature contributions. A value

of one indicates an identical reconstruction. We additionally performed 1000 bootstrap sampling when fitting signatures using the

MutationalPatterns command ‘fit_to_signatures_bootstrapped’. We used the standard deviation of 1000 bootstrap samples as

the standard error for signature contribution. Standard errors for clock-like mutations (SBS1, 5, and 40) were calculated using stan-

dard error in the difference of the means (the square-root of the sum of variances).

EBV copy number
We assessed if mutation load andmutation landscape were associated with EBV copy number using established methods.85 For the

602 LCL offspring of the 1kGP cohort, we calculated the mean depth of uniquely mapping reads to the decoy hg38 EBV genome and

normalized by the mean copy number of autosomes as calculated for replication timing analyses. Normalized EBV copy numbers

ranged from 3.88 to 448.92 with a mean of 33.12.

Identifying genes associated with late replication timing bias and mutation load
We identified individual LCL mutational replication timing bias by calculating the proportion of mutations in four replication timing

bins. We used the linear slope of proportions as a representation for replication timing bias and calculated PCs using the R command

‘prcomp.’ Gene associations were calculated using the binary state of whether at least one mutation in a sample fell within the range

of a protein coding gene (https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/405/GCF_000001405.39_GRCh38.p13/) against

individual replication timing biases. Mutation functionality was not considered. p-value of association was calculated with the R com-

mand ‘lm’ and individual autosomal mutation load was input as a covariate. 97 genes showed significant association with late repli-

cation biases andweremutated in at least 50 samples (list available in Table S1).We also performed association analysis for mutation

load versus the binary state of whether at least one mutation in a sample fell within the range of a protein coding gene. To control for

the effect of mutation load on gene mutations status, we normalized the mutated/unmutated binary state by the mutation loads of

individual samples. Seven genes showed significant association with mutation load and were mutated in at least 50 samples (list

available in Table S1).

Clustering mutations
We clustered SBS9-context mutations using the ‘ClusteredMutations’ (https://cran.r-project.org/web/packages/Clustered

Mutations/) command ‘showers.’ The minimum cluster size was two mutations, and the maximum distance between SBS9-context

mutations was 500bp.We simulated autosomal SBS9-context mutations of matchedmutation rates in 20 (for LCL) or 5 (for CLL-M, to

account for fewer mutations) replication timing bins. Within the replication timing range of each bin, we performed 1000 random sam-

ples of SBS9-context motifs from the genome without replacement, matching the number of SBS9-context mutations in the bin. The

sampled mutations were then clustered identically as described above for real mutations. Similar simulations were performed incor-

porating distance to AID-context mutations. In addition to sampling and clustering SBS9-context motifs, we sampled AID-context

motifs in replication timing bins equal to the number of AID-context mutations in the bin. In each simulation, we calculated the

proportion of clustered/non-clustered SBS9-context motifs within 100bp of an AID-context motif.

We evaluated the distance of SBS9-context mutations to the TSS of 22,337 protein-coding genes adjusted for gene directionality.

We interpolated LCL replication timing values at the TSS. Analyseswere repeated for the TSS of 275 off-target SHMhotspots.22 Gene

expression of LCLs (median expression across 144 LCLs) and whole-blood for CLL (median expression across 338 samples) were

sourced from GTEx.72

Determining Xi parental identity and phasing mutations
We phased Mendelian inherited single nucleotide variants in female LCL offspring. For each variant, we required the offspring and

parents to have a read depthR5, MQ > 30, FS < 60.0, MQRankSum>�12.5, RPRS>�8.0, and SOR<3. In the heterozygous offspring

genotype, we required the alternate allele frequency to be greater than 0.3. We calculated parental copy number disparity as the ab-

solute difference of mean sequencing read depth for paternal and maternal alleles divided by their combined read depth. To

determine a threshold for identifying X-inactivation, we used the 95th percentile of parental copy number disparity on chromosome
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14. This chromosome was chosen as it contained the most comparable number of phaseable variants as chromosome X. The

parental identity of Xi was assigned to the parental homolog with the lower mean sequencing read depth.

We phased mutations occurring on the same read or mate-pair as a phaseable inherited variant. We first determined the read

names containing the maternal and paternal alleles using the Samtools76 (v1.6) command ‘mpileup.’ We repeated this process to

identify read names containing the mutation alleles. We phased mutations where read names containing mutation alleles exclusively

matched those phased to one parent. If mutation alleles matched read names phased to both parents, the mutation was considered

ambiguous. We calculated mutational signature contributions on phased chromosomes as described above using the biologically

relevant LCL signatures corrected for individual chromosome trinucleotide content.
e5 Cell Genomics 3, 100305, June 14, 2023
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