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Abstract: Switchable radiative cooling based on the phase-
change material vanadium dioxide (VO,) automatically
modulates thermal emission in response to varying ambient
temperature. However, it is still challenging to achieve con-
stant indoor temperature control solely using a VO,-based
radiative cooling system, especially at low ambient tem-
peratures. Here, we propose a reverse-switching VO,-based
radiative cooling system, assisting indoor air conditioning to
obtain precise indoor temperature control. Unlike previous
VO,-based radiative cooling systems, the reverse VO,-based
radiative cooler turns on radiative cooling at low ambi-
ent temperatures and turns off radiative cooling at high
ambient temperatures, thereby synchronizing its cooling
modes with the heating and cooling cycles of the indoor air
conditioning during the actual process of precise temper-
ature control. Calculations demonstrate that our proposed
VO,-based radiative cooling system significantly reduces the
energy consumption by nearly 30 % for heating and cooling
by indoor air conditioning while maintaining a constant
indoor temperature, even surpassing the performance of
an ideal radiative cooler. This work advances the intelligent
thermal regulation of radiative cooling in conjunction with
the traditional air conditioning technology.

Keywords: reverse radiative cooling; phase-change mate-
rial; indoor air conditioning; synchronized heating and cool-
ing; precise temperature control

1 Introduction

In recent years, energy consumption has shown a steady
rise alongside rapid economic development [1]. Heating
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and cooling systems in buildings are pivotal in provid-
ing a comfortable indoor environment, contributing to
approximately 40 % of the total energy consumption in
these structures [2], [3]. Consequently, it is crucial to pri-
oritize the development of energy-efficient thermal tech-
nologies for energy conservation applications [4]. Take cool-
ing for example, passive radiative cooling without energy
consumption has emerged as an appealing approach for
improving building heat dissipation by radiating heat from
cooling materials installed on exterior walls into the ultra-
cold outer space through the atmospheric transparent win-
dow (8-13 pm) and reflecting sunlight (0.3-2.5 pm) at the
same time [5]-[15]. To obtain high-performance radiative
cooling, a variety of cooing materials and structures with
high solar reflectance (Ryg,;, 4 ~ 0.3-25pm) and high
infrared emissivity (g;,, 4 ~ 8-13 pm) within the atmo-
spheric transparent window have been proposed, including
bio-inspired structures [16]-[20], film-based structures [21],
[22], pigmented paint films [23]-[25], particle-based struc-
tures [24]-[28], as well as multilayer-film [5], [29]-[32] and
patterned-surface photonic structures [33]-[37].

Although these radiative cooling structures exhibit
highly efficient all-day cooling performance due to the static
spectral characteristics, their fixed radiative cooling can
cause overcooling effects on cold days, thereby resulting
in additional heating costs. In response to the changing
ambient temperature, some research has focused on switch-
able radiative cooling systems utilizing the phase change
material vanadium dioxide (VO,) to avoid the overcooling
consequences [38]-[42]. In these studies, VO,-based radia-
tive coolers can automatically modulate their infrared emis-
sivity based on the phase change of VO,, where the radia-
tive coolers enhance the infrared emissivity when their
temperature is higher than the critical temperature and
suppress the infrared emissivity when their temperature
is below the critical temperature. The critical temperature
depends on the phase-change temperature of VO,, which
can be adjusted by doping other elements into pure VO,
[43]. First, Ono et al. proposed a concept of self-adaptive
radiative cooling based on the combination of VO,-based
multilayer cooler and the top spectrally selective filter [38].
After that, Kim [39], Zhang [40], Kort-Kamp [41], and Liu
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[42] have successively proposed similar switchable radia-
tive cooling systems based on the VO, photonic structures,
all of which achieve radiative cooling at high ambient tem-
peratures and keep their temperature around the ambient
temperature at low temperatures. In addition, other types
of switching radiative cooling systems also rely on mechan-
ical switches [44]-[48], elastomeric modulators [49], [50],
and temperature-sensitive material switches [51]-[53]. In
fact, radiative cooling technology can only theoretically con-
trol the temperature of the cooling materials and cannot
directly affect the indoor temperature due to a range of
influencing factors, including wall thermal transfer, indoor
ventilation, indoor lighting, indoor air conditioning, etc. In
addition, achieving precise control of a constant indoor tem-
perature becomes more challenging when relying solely on
radiative cooling technology. Despite its potential to reduce
energy consumption of indoor temperature regulation, pas-
sive radiative cooling technology has not yet reached a point
where it can fully replace active air conditioning. Therefore,
it is crucial to investigate the auxiliary effects of passive
radiative cooling when combined with active indoor air con-
ditioner—based temperature regulation, especially in terms
of energy saving.

In this paper, we propose a VO,-based radiative cooling
system with the automatic reverse switching function that
works in conjunction with the heating and cooling modes
of indoor air conditioning to maintain a constant indoor
temperature. Compared to conventional VO,-based switch-
ing cooling structures, the reverse VO,-based thermal sys-
tem reduces its infrared emissivity (0.20) when its tempera-
ture exceeds the set temperature and increases the infrared

Solar reflection

\ 4
y Daytime / Hot climate
[ 1
1
T
1
i
- 1
Paf’mfe 1 Thermal radiation
radiative — :
cooling I
VO, film i Turn on cooling
|
| SiO, substrate |
Active 1 ' ' f
air
conditioning |

Mechanical cooling

DE GRUYTER

emissivity (0.80) when its temperature falls below the set
temperature, which is more suitable for use in conjunction
with machine-based indoor air conditioning. Our proposed
VO0,-based radiative cooling system synchronizes its cooling
modes with the heating and cooling cycles of the indoor air
conditioning during the actual process of precise temper-
ature control. Additionally, we quantify the energy-saving
potential of VO,-based radiative technology in the precise
control of indoor temperature. As a result, this work demon-
strates the combination of the passive VO,-based radiative
thermal technology and the active air conditioning technol-
ogy can pave the way for applications of precise indoor tem-
perature control with significant energy-saving advantages.

2 Theoretical model and methods

Here, we propose a temperature control system integrating
both active indoor air conditioning and passive radiative
cooling, as schematically depicted in Figure 1. The passive
radiative cooling component consists of the nanoporous
polyethylene (NPE) [54] working as the top solar filter and
the bottom VO,-based double-layer film radiator. The struc-
tural parameters (thickness hypy =12 pm and pore size R ;.
= 400 nm) and infrared and visible transmittances of NPE
can be found in the literature [54]. The bottom radiator
consists of a VO, thin film (h; =150 nm) deposed on a silicon
dioxide (Si0,) substrate with a thickness of 500 pm, tightly
attached to the wall. More significantly in this work, the
VO,-based radiative cooling component in the entire sys-
tem serves as an auxiliary element for precise temperature
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Figure 1: Design of the precise temperature control system that combines active indoor air conditioning and passive radiative cooling, where passive
radiative cooling component consists of the top NPE and the bottom VO,-based radiator.
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control, aiming at reducing the energy consumption of air
conditioning. The active indoor air conditioning component
in Figure 1 adjusts its cooling and heating power according
to the set of indoor temperature, playing a pivotal role in
achieving precise temperature control.

Pure VO,, a phase-change material, can achieve a
reversible insulator-to-metal transition around 68 °C [55].
When the temperature of VO, is above the critical tempera-
ture T, VO, exhibits metallic behavior and changes to insu-
lating state when its temperature falls below T,.. However,
to broaden the application of VO,’s phase-change property,
its T, has been adjusted by doping other elements, such
as molybdenum (Mo), tungsten (W), etc., into pure VO, to
approach to the room temperature [43]. In this study, the
permittivity of both metallic and insulating VO, during the
wavelength range of 0.3 pm—15 pm is presented in Figure 2
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Figure 2: Optical properties of VO, at metallic and insulating states.
(a) Real part and (b) imaginary part of VO, permittivity within the
wavelength range (0.3-15 pm).
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[38]. Meanwhile, the phase-change process of VO, with tem-
perature change is a gradual transition process in a narrow
transition range [T. — AT, T, + AT]. To ensure precise tem-
perature control in subsequent calculations, the dielectric
function of VO, is defined as follows [39]:

Emt+ &

€ ransition = + arctan( r Em — & ),

— TC
AT * 10) x (2 arctan 10
@

where g, and &; are denoted as metallic and insulating per-
mittivities, respectively. And the phase-change temperature
of VO, is adjusted to T, = 20 °Cand AT = 0.1 °C.

The thermal emissivity of the bottom VO,-based radia-
tive cooler in the spectral region (4 ~ 0.3—15 pm) is shown in
Figure 3(a), where the red curve corresponds to the spectral
emissivity of metallic-phase VO,, and the blue line repre-
sents the spectral emissivity of the insulating-phase VO,. It is
clearly seen that, near the atmospheric transparent window
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Figure 3: Emissivity of the VO,-based radiative cooling system when VO,
in metallic and insulating phases (a) without and (b) with the top NPE,
respectively, as well as (b) spectral transmissivity of NPE.
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(4 ~ 8-13 pm), the spectral emissivity of VO,-based radia-
tive cooler at different states changes significantly. When
the temperature of VO, is below T, (insulating-state VO,),
the infrared emissivity of radiative cooler during the atmo-
spheric window is 0.80. However, as the temperature of VO,
rises above T, (metallic-state VO,), the infrared emissivity
decreases substantially to 0.20. The increased temperature
of VO,-based radiative cooler can significantly suppress
infrared emissivity, mainly due to the transition of VO, from
insulator to metal around the critical temperature, aswell as
the associated infrared switching effect. Specifically, when
the temperature of VO, is below T, the insulating-state VO,
thin film exhibits high infrared transmittance. In this state,
the emissivity of the VO,-based radiative cooler is primar-
ily determined by the broadband-emissive SiO, layer for
radiative cooling. However, the VO,-based radiative cooler
demonstrates high solar absorptivity in both metallic and
insulating states, mainly due to the intrinsiclossy character-
istics of VO,, which is not conducive to achieving significant
switchable cooling regulation [38].

To eliminate this drawback, a layer of NPE with high
solar reflectance and selective infrared transmission is
placed atop the bottom VO, cooler with a certain distance,
thereby blocking most solar irradiation from reaching the
bottom structure while permitting the passage of most of the
infrared radiation from the bottom cooler. Here, we employ
incoherent calculations to determine the emissivity for the
bottom cooler as follows [38], [56]:

€A, Q) = A —re)(ty + tyrery + tyrery)?
+ IN(r‘Cr‘N)3 +-- ') = IN(l - rc)/(l - r‘cr‘N} (2)

where ty and ry are the transmissivity and reflectivity
of NPE, respectively. And r, is the reflectivity of the bot-
tom VO,-based radiative cooler [56]. After incorporating the
top NPE, the emissivity of the composite VO,-based cool-
ing system within the same spectral region is depicted in
Figure 3(b). Remarkably, the NPE effectively reduces solar
absorption when VO, is in both metallic and insulating
phases, while maintaining a significant difference in the
infrared emissivity between the two phases of VO,. This
property contributes to create an ideal VO,-based cooling
system for its auxiliary functions in precise temperature
control.

3 Results and discussion

When a radiative cooling system operates under a clear
sky, the net cooling power @, is determined by solving
the thermal balance equation, expressed as follows [6], [38],
[57]:
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where Q. i the radiative power emitted from the radia-
tive cooler, Q,, is the nonradiative power, including the
heat conduction and convection from the environment, and
Q.mp and Qg represent the atmospheric radiation and sun-
light absorbed by the cooler, respectively. Here, T, and
T cooler are the temperatures of ambient and radiative cooler,
respectively. Q . oters @nrs @amps and Qg can be described as
below:
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where A is the surface area of the radiative cooler,
Ipp(Topoters A) = 2hc®A~5 explhc/ Aky T — 1)1 is the spectral
blackbody radiance. In Eq. (7), I 55y 5(4) represents the spec-
tral irradiance intensity of solar irradiation at AM 1.5, and
E£atm(4,0) = 1— t(A)Y? is the atmospheric emissivity, in
which #(4) stands for the atmospheric transmission coef-
ficient in the zenith direction [6]. The nonradiative heat
transfer coefficient is donated as h,, (0—12 W/m?/K), as seen
in Eq. (5). Here, h,, = 8 W/m?/K is used throughout the cal-
culations. A detailed explanation of the formula above can
be referred to the literature [38], [58]. Finally, considering
the heat transfer from indoor air conditioner to the radia-
tive cooler, the time-dependent temperature of the radiative
cooler can be obtained as follows:

dTr
Ccoolera = Qnet(Tcoolers Tarnh) + QAC- (8)

where Q, represents the heat transfer from indoor air
conditioner to the radiative cooler through heat conduction,
and C,,, is the heat capacitance of the radiative cooler.
Before coupling indoor air conditioning technology, we
first analyze the dynamic cooling performance of the VO,-
based radiative cooling system by calculating its tempera-
ture under the typical 24-h outdoor weather condition with
large temperature difference between day and night (July
20, 2018, in Stanford, California) [38]. Figure 4(a) displays
the temperature variation of the VO,-based radiative cooler
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Figure 4: Thermal performance of the radiative cooling system and real-time heating and cooling power of the indoor air conditioner. (a) Temperature
response of the VO,-based radiative cooling system (red curve) over a 24-h cycle with varying ambient temperature (red curve). (b) Real-time heating
and cooling power of the indoor air conditioner required to maintain the wall temperature at a constant 20 °C over the same 24-h period.

throughout a 24-h period without using air conditioning.
Before 11:00 AM, the VO,-based radiative cooler tempera-
ture is below the critical temperature 20 °C (T < T), the
insulating-phase VO, enhances the infrared emissivity of
VO,-based radiative cooler, thereby turning on radiative
cooling and creating a large temperature difference below
the ambient temperature. Between 11:00 AM and 7:00 PM,
when the temperature of the radiative cooler exceeds 20 °C
(T > T¢), VO, turns to its metallic phase and then closes
radiative cooling, which keeps its temperature near the vari-
able ambient temperature. As a result, the single VO,-based

radiative cooler enhances radiative cooling under low ambi-
ent temperatures and suppresses cooling when the ambient
temperature is high, thereby functioning as a reverse radia-
tive “thermostat” [41]. This behavior can pose challenges in
maintaining stable temperature control for objects. With-
out accounting for changes in the radiative characteristics
of the outdoor VO,-based radiative cooler caused by the
heat transfer of the indoor air conditioner, Figure 4(b) illus-
trates the real-time heating and cooling power per area of
the air conditioner required to maintain the wall tempera-
ture constant at 20 °C over the same 24-h period. Here, for
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simplification in our calculations, we assume that the wall
material is made of high thermal conductivity materials,
with no heat loss, and the wall temperature equals the
temperature of the VO,-based radiative cooler. Figure 4(b)
clearly shows that, when the wall temperature falls below
the ambient temperature, the indoor air conditioner acti-
vates the heating mode, and when the wall temperature
rises above the ambient temperature, the indoor air con-
ditioner switches to cooling. After integrating over a 24-h
period, the heating and cooling power per unit area of the
wall to maintain a stable wall temperature at 20 °C, driven
by the indoor air conditioner, amounts to 7,713,629 J/m?.

In fact, different from the calculations mentioned
above, in the precise control of wall temperature, the key
factor affecting the spectral switching of the VO,-based
radiative cooler is the indoor air conditioner, rather than
the ambient temperature. This is because the atmospheric
radiation and the convective heat transfer from the ambient
environment are far less significant than the direct cooling
and heating provided by the indoor air conditioner. Under
these conditions, indoor air conditioner directly affects the
temperature of the VO,-based radiative cooler through its
heating and cooling actions, thereby regulating the infrared
emissivity radiative cooler. As a result, both the indoor
air conditioner and the outdoor VO,-based radiative cooler
operate in tandem to achieve temperature stabilization of
thewall. As an example in thiswork, the focusis on precisely
controlling the wall temperature around 20 °C. During the
process of precise temperature control, the indoor air con-
ditioner will first turn on the heating when the ambient
temperature is below 20 °C, then raising the temperature
of VO,-based radiative cooler to around 20 °C. Conversely,
the air conditioner turns on the cooling at high ambient
temperatures, thereby reducing the temperature of the VO,-
based radiative cooler to around 20 °C. In order to play
the role of a switchable VO,-based radiative cooler in pre-
cise temperature control, two different heating and cooling
cases for indoor air conditioning will be considered in the
following calculations, as shown in Figure 5. Case 1 is that
the air conditioner heats the temperature of the VO,-based
radiative cooler to 20.1 °C when the ambient temperature
is below 20 °C and then cools it to 19.9 °C when the ambient
temperature is above 20 °C. Case 2 is that the air conditioner
heats the radiative cooler temperature to 19.9 °C and cools
it to 20.1°C under the same ambient temperature condi-
tions, respectively. Based on the temperature distribution
of VO,-based radiative cooler assumed above, the real-time
heating and cooling power of the air conditioner over the
same 24-h period are calculated based on Egs. (3)-(8), as
seen in Figure 5. It is evident that, regardless of the heating
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Figure 5: Wall temperature distributions in Case 1 and Case 2, as well as
Case Baseline (without VO,-based radiative cooling system), along with
the corresponding real-time heating and cooling power of the indoor air
conditioner to maintain the wall temperature around 20 °C over

the same 24-h period.

or cooling stage for the indoor air conditioning, Case 2
consumes more energy than Case 1. In Case 1, the cooling
operation of the VO,-based radiative cooler is synchronized
with the switching between heating and cooling modes of
the air conditioner. When the air conditioner is in heating
mode, the VO,-based radiative cooler automatically turns
off radiative cooling and then turns on radiative cooling
when the air conditioner is in cooling mode. Conversely,
in Case 2, the VO,-based radiative cooler turns on radia-
tive cooling when the air conditioner is in heating mode
and turns off radiative cooling when the air conditioner
is in cooling mode, thereby resulting in increased energy
consumption by indoor air conditioners. Table 1 gives the
detailed parameters of Case 1 and Case 2. Meanwhile, we
also calculated the power consumption of the indoor air
conditioner without any VO,-based radiative cooling system
for temperature regulation at 20 °C, referred to as Case Base-
line, where the spectral emissivity of exterior wall is calcu-
lated by averaging the spectral emissivities of metallic VO,
and insulating VO,, as shown in Figure 1S. From Figure 5,
under the condition of maintaining the wall temperature at
20 °C, the heating and cooling power consumed by indoor
air conditioner within 24 h is 5,345,760 J/m? in Case Baseline
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Table 1: Wall temperature distributions in Case 1 and Case 2 and the corresponding radiative cooling states of the reverse VO,-based radiative cooler

over the same 24-h period.

Case T amb T cooler Air conditioner Radiative cooling
Case 1 Tomp <20°C T eooler = 20.1°C Heating Turn off

Tomp > 20°C T ooler = 19.9°C Cooling Turnon
Case 2 Tomp <20°C cooler = 19.9°C Heating Turn on

Tomp > 20°C T cooler = 20.1°C Cooling Turn off

and 7,335,583 J/m? in Case 2, which is nearly twice the value
of Case 1, at approximately 3,782,783 J/m?. Another outdoor
weather condition on October 3, 2023, in Boston, MA, was
also taken into consideration, as shown in Figure 2S. Com-
pared with Case Baseline without switchable radiative cool-
ing, the reverse VO,-based radiative cooling system in Case 1
can substantially reduce the energy consumption by nearly
30 % for heating and cooling of indoor air conditioning,
as calculated by (5,345,760-3,782,783)/5,345,760 = 30 %. In

addition, comparing Case 1 and Case 2, the combination of
passive switchable radiative cooling with active indoor air
conditioning, coordinating their heating and cooling modes
at the same frequency, results in significant energy savings
during precise temperature control.

To further illustrate the energy-saving advantages of
passive switchable radiative cooling technology during the
precise temperature control dominated by indoor air con-
ditioning, we compare the heating and cooling powers
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of the indoor air conditioner under three types of ideal
radiators installed outside. Three ideal radiators include
one-value infrared emissivity (ideal emitter), zero-value
infrared emissivity (zero emitter), and switchable one-zero-
value infrared emissivity (reverse thermostat). The spec-
tral emissivity distributions for these radiators are shown
in Figure 6(a). In this case, the ideal reverse thermostat
exhibits an infrared thermal emissivity of 0 within the atmo-
spheric transparent window (8—13 pm) at high tempera-
ture, while having an emissivity of 1at low temperature.
Similarly, the real-time heating and cooling powers of the
air conditioner, maintaining the wall temperature around
20 °C, over the same 24-h period are calculated based on
these three ideal radiators, as seen in Figures 6(b) and 3S.
The heating and cooling powers used by the indoor air
conditioner within 24 h are as follows: 7,705,658 J/m? (ideal
emitter), 3,863,389 J/m? (zero emitter), and 3,300,983 J/m?
(reverse thermostat), respectively. While the ideal emitter
can maximize the radiative cooling power at higher ambi-
ent temperatures and the zero emitter can minimize the
radiative cooling power at lower ambient temperatures,
the energy expended by the air conditioning system with
the ideal reverse thermostat remains the lowest among the
daily accumulated energy consumption. This is due to the
reverse thermostat synchronizes its cooling modes with the
heating and cooling cycles of the indoor air conditioning,
leading to minimal energy consumption by the indoor air
conditioning system. Therefore, the above comparison fur-
ther demonstrates that reverse radiative cooling system can
effectively assist indoor air conditioners in reducing energy
consumption during precise temperature control.

4 Conclusions

In conclusion, we propose and analyze a reverse-switching
VO,-based radiative cooling system, assisting indoor air con-
ditioning to achieve precise indoor temperature control.
Different from previous VO,-based radiative cooling sys-
tems, our proposed VO,-based radiative cooler automati-
cally turns on radiative cooling at low ambient tempera-
tures and turns off radiative cooling at high ambient tem-
peratures. Rather than independently adjusting its infrared
emissivity to stabilize indoor temperatures, the passive
VO,-based radiative cooling system synchronizes its cooling
modes with the heating and cooling cycles of the indoor air
conditioning during the real-life process of precise temper-
ature control. The calculation results demonstrate that com-
pared with the baseline system without switchable radiative
cooling, the reverse VO,-based radiative cooling system can
substantially reduce the energy consumption by nearly 30 %
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for heating and cooling of indoor air conditioning while
maintaining a constant indoor temperature, outperforming
even the ideal radiative cooler. The precise temperature
control is vital for achieving specific outcomes, maintaining
product quality, ensuring equipment safety, and enhancing
the human comfort. Therefore, this work will provide a
potential application approach for radiative cooling tech-
nology and advance its intelligent thermal regulation along-
side traditional air conditioning technology.
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