FASTMINORS PACKAGE FOR MACAULAY?2

BOYANA MARTINOVA, MARCUS ROBINSON, KARL SCHWEDE, AND YUHUI YAO

ABSTRACT. In this article, we present FastMinors.m2, a package in Macaulay2 designed to intro-
duce new methods focused on computations in function field linear algebra. Some key functionality
that our package offers includes: finding a submatrix of a given rank in a provided matrix (when
present), verifying that a ring is regular in codimension n, recursively computing the ideals of minors
in a matrix, and finding an upper bound of the projective dimension of a module.

1. INTRODUCTION

We start with some motivation. Suppose that I = (f1,..., fm) C k[z1,...,zy,] is a prime ideal.
The corresponding variety X := V/(I) is nonsingular if and only if I plus the ideal generated by
the minors of size n — dim X of the Jacobian matrix

Te(X) = (35).

generates the unit ideal. Unfortunately, even for relatively small values of m and n, the number of
such submatrices is prohibitive. Suppose for instance that n = 10,m = 15 and dim X = 5. Then

there are
10 15
. = 756756
() (%)

such submatrices. We cannot reasonably compute all of their determinants. This package attempts
to fix this in several ways.

(a) We try to compute just a portion of the determinants, in a relatively smart way.
(b) We offer some tools for computing determinants that are sometimes faster.

Our techniques have also been applied to the related problem of showing that the singular locus
has a certain codimension (for example, checking that a variety is R1 in order to prove normality).
Of course, computing the singular locus is not the only potential application. We provide a function
for giving a better upper bound on the projective dimension of a non-homogeneous module. Finally,
this package has also been applied in the RationalMaps Macaulay2 package.

We provide the following functions:

o getSubmatrix0fRank, which tries to find a submatrix of a given rank, see Section 4.

o isRankAtLeast, which uses getSubmatrix0fRank to try to find lower bounds for the rank
of a matrix, see Section 5.

o regularInCodimension, which tries to verify if an integral domain is regular in codimension
n, see Section 6.

o projDim, which tries to find upper bounds for the projective dimension of a non-homogeneous
module, see Section 7.

Date: May 15, 2023.

Key words and phrases. FastMinors, Macaulay2.

Martinova was supported by a University of Utah Mathematics REU fellowship and by the University of Utah
ACCESS program. Robinson was supported by NSF RTG grant #1840190. Schwede was supported by NSF CAREER
grant #1501102, NSF grants #1801849 & 2101800, NSF FRG Grant #1952522 and a fellowship from the Simons
Foundation. Yao was supported by a University of Utah Mathematics REU fellowship.

1

o recursiveMinors, which computes the ideal of minors of a matrix via a recursive cofactor
algorithm, as opposed to the included non-recursive cofactor algorithm, see Section 8.

The latest version of this package is available at:
https://github.com/kschwede/M2/blob/master/M2/Macaulay2/packages/FastMinors.m2

This paper refers to FastMinors version 1.2.2, which we hope will appear in version 1.19 of
Macaulay2. Earlier versions are also available in the Macaulay2 build tree.

Acknowledgements: The authors thank David Eisenbud, Dan Grayson, Eloifsa Grifo and Zhuang
He for valuable conversations and feedback.

2. FINDING INTERESTING SUBMATRICES

A lot of the speedups available in the package come down to finding interesting square submatrices
of a given matrix. For example, it is often useful to compute a square submatrix whose determinant
has small degree. The idea is that the determinant of this submatrix will be less likely to vanish.

2.1. How are the submatrices chosen? Consider the following matrix defined over Q[z, y].

T Y 0
xy? b 0
0 x2y3 Q?y4

Suppose we want to choose a submatrix of size 2 x 2. Consider the monomial order Lex where
x < y. We find, in the matrix, the nonzero element of smallest order. In this case, that is z. We
choose this element to be a part of our submatrix. Hence our submatrix will include the first row
and column as well.

b'¢ Ty 0
zy? 25 0
0 22 xyt

To find the next element, we discard that row and column containing this term. Now, the next
smallest element with respect to our monomial order is zy*.

20 0 20 0
223yt 2293 [xyd

Since we are only looking for a 2 x 2 submatrix, we stop here. We have selected the submatrix with
rows 0 and 2 and columns 0 and 2.
z 0
[0 ay!]

The determinant of that submatrix is z?y*. This happens to be the smallest 2 x 2 minor with
respect to the given monomial order (which frequently happens, although it is certainly not always
the case).

If we chose a different monomial order, we get a different submatrix, with a different determinant.
For example,

o Lex, z > y. We obtain the submatrix with rows 0 and 1 and columns 0 and 1, whose
determinant is =7 — xy>

o GRevLex, ¢ < y. We obtain the submatrix with rows 0 and 2 and columns 0 and 1, whose
determinant is z37>

For any of these strategies, in this package, we randomize the order of the variables before choosing
a submatrix.
2

2.2. Ways of choosing submatrices. In the end we have the following methods to select sub-
matrices.

GRevLexLargest: Chose entries which are largest with respect to a random GRevLex order.

GRevLexSmallest: Chose nonzero entries which are smallest with respect to a random GRevLex
order.

GRevLexSmallestTerm: Chose nonzero entries which have the smallest terms with respect to
a random GRevLex order.

LexLargest: Chose entries which are largest with respect to a random Lex order.

LexSmallest: Chose nonzero entries which is smallest with respect to a random Lex order.

LexSmallestTerm: Chose nonzero entries which have the smallest terms with respect to a
random GRevLex order.

Points: Chose a submatrix whose determinant does not vanish at a random point found on
a given ideal.

Random: Chose a random entries.

RandomNonzero: Chose random nonzero entries.

However, from the end user’s perspective, normally we are finding several minors, and the strategy
will combine several of these methods (one typically does not know which method will work best
in a given situation). For instance, the first minor might be selected by GRevLexSmallest and the
second minor by Random. How to arrange what method is used (with what probability) is described
in Section 3.1 below.

We now describe each of these methods for selecting a submatrix in more detail. Note we have
already described Lex and given an initial description of GRevLex.

2.3. LexSmallestTerm and GRevLexSmallestTerm. If we have a matrix whose entries are not
monomial, then we could reasonably either pick the submatrix of smallest entries with respect to
our monomial order: LexSmallest or GRevLexSmallest.

Alternatively, we can pick the submatrix whose entries have the smallest terms via LexSmallestTerm
or GRevLexSmallestTerm.

For example, consider the matrix

22 4 o2 0 zy + 2z
yt— 0 RIS
3 ahy — P 0

In this case, if we are choosing the entries with smallest terms, we first replace each entry in the
matrix with the smallest term. For example, if we are using LexSmallestTerm with x < y we would
obtain:
z? 0 2z
—r 0 32°
2 ozt 0

Then we proceed as before. Notice that if there is a tie, it is broken randomly.

Remark 2.1. Different strategies work differently on different examples. When working with a non-
homogeneous matrix, with some entries that have constant terms, those entries will always be
chosen first in LexSmallestTerm or GRevLexSmallestTerm, regardless of the monomial order. On
the other hand, for homogeneous matrices, choosing the smallest term is frequently very effective.

2.4. GRevLexLargest and LexLargest. While we can imagine uses for these, in most cases these
strategies appear to be worse than random. Indeed, submatrices picked this way seem likely to
already vanish everywhere of interest.

3

2.5. Points. Instead of finding interesting submatrices by inspection, we can alternately find
submatrices by trying to find rational points. In that case, typically we are trying to find a
submatrix with full rank on a certain subvariety, defined by an ideal J. We use the package
RandomRationalPoints [BJM '] to find a (rational) point @ on V(J) (or a point over some fi-
nite extension of our base field). We then evaluate our entire matrix at that point. Because we now
have a matrix over a field, we use the very fast built-in commands to find pivot rows and columns,
and thus find a submatrix of the desired rank. To use this functionality, use the strategy Points

Currently, this functionality only works over a finite field. In characteristic zero, the Points
strategy returns random submatrices.

For example, if we are working over Fs[x,y, 2] with an ideal I = (2%y — z(z — 2)(x + 2)), with
the matrix

z? Ty 3y
M= | 23+y3 22 +22 2 +22

?xz 22xy yPxo

Suppose we found the point (2,0,2) on this elliptic curve. We then evaluate our matrix at that
point to obtain:

4 0
3 3
3 00

We would then identify a submatrix with nonzero determinant, for instance the top left 2 x 2

0
M = 4

submatrix [;1 g] and then return the top determinant of the top 2 x 2 submatrix of the original

matrix:
22 Ty

2P 2?4 22

det [=zt + 2222 — 2ty — ayt.

Typically, the Points strategy will find much better submatrices than the heuristic methods
LexSmallest, GRevLexSmallestTerm etc. Thus it will need to consider fewer submatrices and
compute fewer determinants. But to find each submatrix, the algorithm will do a substantial amount
of work. In our experience, using the heuristic methods above provides better performance than
Points in at least half of example applications. If the user is using a strategy based on points, we

make two recommendations.

(i) We recommend the user set the option MaxMinors (the maximum number of minors to be
computed) to a relatively low number.

(ii) We recommend setting the option CodimCheckFunction to a linear function (such as t ->
t). This will force the dimension of the ideal of minors computed so far to be checked more
frequently (in our example, after adding every new minor to the ideal of minors)

For more discussion of MaxMinors, CodimCheckFunction and other options, see the tutorial RegularInCodimensior
in the package documentation.

2.6. Random and RandomNonzero.

Random: With this strategy, a random submatrix is chosen.

RandomNonzero: With this strategy, a random nonzero element is chosen in each step following
the method used by the other strategies. This guarantees a submatrix where no row or
column is zero which can be very useful when dealing with relatively sparse matrices.

2.6.1. More on GRevLex: modifying the underlying matriz. Finally, when using GRevLexSmallest
and GRevLexSmallestTerm methods, we periodically change the underlying matrix by replacing
4

terms of small order with terms of larger order in order to avoid re-computing the same submatrix.
For example, in the following matrix, after several iterations, we might replace the 22 term with

z? - (a random degree 1 polynomial).

It might look something like the following.
2

x 0 xy 22 —Ty) 0 axy
yt 0 2| = yt 0
23 2%y® 0 3 P 0

This forces the algorithm to make different choices. After several minors are selected, the matrix is
reset again to its original form.

3. chooseGoodMinors AND CONTROLLING HOW SUBMATRICES ARE SELECTED

The function chooseGoodMinors tries to choose interesting submatrices of a given matrix. This
is done by running the command:

i1 : R = QQlx, y, zl;
chooseGoodMinors ()

3.1. The Strategy option. The core features included in the package allow the user to choose
which methods from Section 2.2 should be used when selecting submatrices. This is done most easily

by setting a Strategy option to one of the ways of choosing submatrices as above: GRevLexSmallest,
GRevLexSmallestTerm, GRevLexLargest, LexSmallest, LexSmallestTerm, LexLargest, Points,
Random, RandomNonzero. However, most of the time it is best to choose several strategies simul-
taneously, as one doesn’t know which strategy will perform the best (in some cases, a combination
works best). Hence instead of choosing a strategy which uses only one method, by default we use
several. Thus you can set the Strategy option to one of the following.

o StrategyDefault: This strategy uses LexSmallest, LexSmallestTerm, GRevLexSmallest,
GRevLexSmallestTerm, Random, and RandomNonzero with equal probability.

o StrategyDefaultNonRandom: This uses LexSmallest, LexSmallestTerm, GRevLexSmallest,
and GRevLexSmallestTerm with equal probability.

o StrategyDefaultWithPoints: This strategy uses Points one third of the time and then
LexSmallest, LexSmallestTerm, GRevLexSmallest, GRevLexSmallestTerm with equal
probability the rest of the time.

o StrategyLexSmallest: chooses 50% of the submatrices using LexSmallest and 50% using
LexSmallestTerm.

o StrategyGRevLexSmallest: chooses 50% of the submatrices using GRevLexSmallest and
50% using GRevLexLargest.

o StrategyPoints: choose submatrices by finding rational points, evaluating the submatrix
at that point, and then doing a computation.

o StrategyRandom: chooses submatrices by using 50% Random and 50% RandonNonzero.

The user can also create their own custom strategy. One creates a HashTable which has the follow-

ing keys LexLargest, LexSmallestTerm, LexSmallest, GRevLexSmallestTerm, GrevLexSmallest,
GRevLexLargest, Random, RandomNonzero each with value an integer (the values need not sum
to 100). If one value is twice the size of another, that strategy will be employed twice as often. For
example, StrategyDefaultNonRandom was created by the command:
StrategyDefaultNonRandom = new HashTable from {

LexLargest => 0,

LexSmallestTerm => 25,

LexSmallest => 25,

GRevLexSmallestTerm => 25,
GRevLexSmallest => 25,
GRevLexLargest => 0,
Random => O,
RandomNonzero => 0,
Points => 0
};
For a tutorial on choosing strategies, see the package documentation, particularly the item:

FastMinorsStrategyTutorial

4. FIND A SUBMATRIX OF A GIVEN RANK: getSubmatrixO0fRank

This method examines the submatrices of an input matrix and attempts to find one of a given
rank. If a submatrix with the specified rank is found, a list of two lists is returned. The first is the
list of row indices, the second is the list of column indices, which describe the desired submatrix of
the desired rank. If no such submatrix is found, the function will return null.

The option MaxMinors allows the user to control how many minors to consider before giving up.
If left null, the number considered is based on the size of the matrix. This method will choose the
indicated amount of minors using one of the strategy options described above. If one of the chosen
submatrices has the desired rank, the function will terminate and return its rows and columns. This
process continues until a submatrix is found or MaxMinors submatrices have been unsuccessfully
checked. The strategy can be controlled using the Strategy option as described above, the default
value is StrategyDefaultNonRandom.

4.1. Examples of getSubmatrix0fRank. In the following example, we first create a 3 x 4 matrix
over Q[x, y, z], M. We execute two calls to getSubmatrix0fRank, the first has no Strategy parameter
and the second utilizes StrategyGRevLexSmallest. Note that these calls return different indices,
but both find valid rank 3 submatrices.

il : loadPackage "FastMinors";

i2 : R

QQlx,yl;

i3 : M = random(R~{2,2,2},R"4)

03 = {-2} | x2+2/3xy+9/2y2 3/10x2+2/3xy+1/5y2 2x2+5/3xy+7/5y2 4/3x2+1/3xy+10/9y2 |

{-2} | 3/2x2+2/3xy+2y2 1/2x2+3/2xy+3/4y2 6x2+5xy+4y2 9/5x2+1/5xy+7/2y2 |
{-2} | 1/4x2+1/Txy+5/6y2 7/5x2+4xy+4/5y2 10/9x2+3/7xy+5/9y2 5/2x2+xy+7/6y2 |
3 4

o3 : Matrix R <-—— R

i4 : getSubmatrix0fRank(3,M)

o4 = {{2, 0, 1}, {0, 1, 3}}

o4 : List

i5 : getSubmatrix0fRank(3, M, Strategy=>StrategyGRevLexSmallest)
o5 = {{0, 2, 1}, {1, 2, 0}}

ob : List

In our next example, over a ring with 6 variables, we create a Jacobian matrix out of an ideal
generated by 8 random forms of various degrees. We display the time needed for the rank function
to return, followed by the time elapsed during a call to getSubmatrix0fRank when searching for a
rank 6 submatrix. We find that getSubmatrix0fRank significantly outperformed rank.

i6 : R = ZZ/103[x_1..x_6]

o6 = R

06 : PolynomialRing

i7 : J = jacobian ideal apply(8, i -> random(2+random(2), R));

6 8
o7 : Matrix R <-—- R

i8 : time rank J
—-- used 21.8251 seconds

o8 = 6

i9 : time getSubmatrix0fRank(6, J)
—-— used 0.00714912 seconds

o9 = {{5, 1, 3, 4, 2, 0}, {5, 2, 6, 0, 4, 7}}

In one of the core examples from the RationalMaps package, before using this package a function
would look at several thousands of submatrices (randomly) typically before finding a submatrix of
the desired rank whereas, this package finds one after looking at fewer than half a dozen (typically
only looking at 1 or 2 submatrices). Using this package sped up the computation of that example
by more than one order of magnitude, see [BHSS19, Page 7], the non-maximal linear rank example.

5. FINDING LOWER BOUNDS FOR MATRIX RANKS: isRankAtLeast

This method is a direct implementation of getSubmatrix0fRank. This function returns a boolean
value indicating whether the rank of an input matrix, M, is greater than or equal to an input integer,
n. In order to do so, the function first performs some basic checks to ensure a rank of n is possi-
ble given M’s dimensions, then executes a call to getSubmatrix0fRank. If getSubmatrix0fRank
returns a matrix, then this function will return true. However, if getSubmatrix0fRank does not
return a matrix, a conclusive answer can not be reached. As such, the method will then evaluate
the rank of M and return the appropriate boolean value.

The function isRankAtLeast, which is efficient when getSubmatrix0fRank returns quickly, how-
ever may be costly if the results are inconclusive and a rank evaluation is necessary. As such, the
described implementation is not optimized. In order to lead to time improvements, we developed
a multithreaded version of this function that simultaneously evaluates the rank of M and invokes
getSubmatrix0fRank. Once a thread has terminated with a usable answer, the other threads are
cancelled and the appropriate value is returned. During the implementation of this functionality,
we discovered that Macaulay2 becomes unstable when cancelling threads and thus currently do
not allow users to invoke the multithreaded version. However, this functionality is included in the
package and can be made easily accessible once the stability issue is resolved.

7

5.1. Example of isRankAtLeast. The following example first creates a 9 x 9 matrix, NV, and calls
isRankAtLeast to determine whether its rank is at least 7. Directly calling rank N on a matrix of
this size would take multiple seconds, whereas isRankAtLeast returns in a fraction of the time.

il : loadPackage "FastMinors";

i2 : N = random(R~{6,6,6,6,6,6,6,7,7},R"9);
9 9
02 : Matrix R <--- R

i3 : elapsedTime isRankAtLeast(7,N)
-- 0.0654172 seconds elapsed

03 = true

6. REGULAR IN CODIMENSION n: regularInCodimension

Using the getSubmatrix0fRank routines, we provide a function for checking whether a variety
is regular in codimension n, or R,. The default strategy is Strategy=>Default.

The function regularInCodimension(ZZ, Ring) returns true if it verifies that the ring is reg-
ular in codimension n. This only works if the ring is equidimensional, as it is using a Jacobian
criterion. If it cannot make a determination, it returns null. If it ended up computing all minors
of the matrix, and it still doesn’t have the desired codimension, it will return false (note this will
likely only occur for small matrices).

6.1. Example of regularInCodimension. We begin with an example of a 3-dimensional ring that
is regular in codimension 1, but not in codimension 2. It is generated by 12 equations in 7 variables.

i3 : T = ZZ/101([x1,x2,x3,x4,x5,x6,x7];

i4 . I ideal (x5*x6-x4*x7 ,x1*x6-x2%x7 ,x572-x1*x7 ,x4*x5-x2%x7 ,x4"2-x2*x6 , x 1 *x4-%2*%5,
x2*%x373kx5+3*x2*%x372*kXT+8*Xx2" 2% x5+3%xX3*x4*XT-8*x4*XT+x6*%X7 ,x1*x3" 3*xx5+3*x1*x372*%X7
+8*x1*x2*%x5+3*x3*X5*X7-8*Xx5*X7T+X7 "2 ,x2%x3" 3%x4+3*x2*xXx3 " 2*xx6+8*%x2 " 2*%x4+3*x3*x4*X6
—8*xx4*x6+x672,x272*%x373+3%x2*x 37 2*%x4+8%x273+3*xxXx2*x3*%x6-8*x2*x6+x4*x6 ,x1*x2*x3"3
+3%x2*%x372*xx5+8*x1 kX2 2+3* X2k X3k X7 -8*X2*¥XT+xX4*X7 ,x172%x373+3%x1*x372*xx5+8%x1 " 2*x2
+3%x1kx3*xX7-8*x1*xX7+x5%x7) ;

o4 : Ideal of T
i5 : S = T/I; dim S
o6 = 3

i7 : time regularInCodimension(1, S)
-- used 0.150734 seconds

o7 = true

i8 : time regularInCodimension(2, S)
-- used 2.12777 seconds

i9 : time singularLocus S;
—-- used 8.29746 seconds

i10 : time dim 09
-- used 23.2483 seconds

010 =1

As seen above, the function regularInCodimension verified that S was regular in codimension
1 in a fraction of a second. When regularInCodimension(2, S) was called, nothing was returned,
indicating that nothing was found (our function could not make a determination). Computing the
Jacobian ideal however took more than 8 seconds and verifying that it had dimension 1 took more
than 23 seconds.

6.2. Options and strategies for regularInCodimension. We consider the same example us-
ing some different strategies. For another look at options in this function, see the tutorial in the
document under the key:

RegularInCodimensionTutorial

One might think that it might be just as effective to choose random matrices as to use our
strategies, and sometimes it is, but this is not the typical behavior we have observed.

i11 : time regularInCodimension(1, S, Strategy=>StrategyRandom, Verbose=>true)
regularInCodimension: ring dimension =3, there are 17325 possible minors, we will compute up to 317.599 of them.
regularInCodimension: About to enter loop

internalChooseMinor: Choosing Random

regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 7, and computed = 7
regularInCodimension: isCodimAtLeast failed, computing codim.

regularInCodimension: partial singular locus dimension computed, = 2

regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 9, and computed

]
©

regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 11, and computed = 11
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 14, and computed = 14
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 18, and computed = 18
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 24, and computed = 24
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 31, and computed = 31
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 40, and computed = 40
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 52, and computed = 52
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 67, and computed = 67
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 2
regularInCodimension: Loop step, about to compute dimension. Submatrices considered: 87, and computed = 87
regularInCodimension: isCodimAtLeast failed, computing codim.
regularInCodimension: partial singular locus dimension computed, = 1
regularInCodimension: Loop completed, submatrices considered = 87, and computed = 87.
singular locus dimension appears to be = 1
-- used 1.04945 seconds

oll = true

Above, we have deleted 86 of the 87 times the verbose output displays internalChooseMinor:
Choosing Random.

In this particular example, the StrategyRandom option looked at 87 submatrices of the Jacobian
matrix. Note it does not check to see whether we have obtained the desired codimension after
considering each new random submatrix. Instead, it only computes the codimension periodically,
with the space between checks increasing. The considered values on each line tells how many
submatrices have been considered. The computed tells how many were not repeats (computed will
be nearly the same as considered with a random strategy).

Running Rn(1, S, Strategy=>StrategyRandom, Verbose=>true) 50 times yielded:

(a) 61.3 average number of submatrices of the Jacobian matrix considered.

(b) a median value of 40 or 52 submatrices of the Jacobian matrix considered.

(c¢) a minimum value of 7 submatrices of the Jacobian matrix considered (one time).
(d) a maximum value of 248 submatrices of the Jacobian matrix considered (one time).

Because of certain settings, we will not check the codimension of the singular locus until 7 sub-
matrices have been considered. Users can control this behavior via the MinMinorsFunction and
CodimCheckFunction options, see the tutorial in the documentation.

On the other hand, the default strategy Rn(1, S, Strategy=>StrategyDefaultNonRandom,
Verbose=>true) run 50 times yields

(a) 12.1 average number of submatrices of the Jacobian matrix considered.

(b) a median value of 7 or 9 submatrices of the Jacobian matrix considered.

(c) a minimum value of 7 submatrices of the Jacobian matrix considered (25 times).
(d) a maximum value of 40 submatrices of the Jacobian matrix considered (one time).

In the above example, Strategy=>StrategylLexSmallest yields even better performance.

Finally, using Strategy=>StrategyPoints (combined with the options MinMinorsFunction=>(t->t)
and CodimCheckFunction=>(t->t)) to check codimension after computing every submatrix, pro-
duces:

(a) 4.96 average number of submatrices of the Jacobian matrix considered.

(b) a median value of 5 submatrices of the Jacobian matrix considered.

(c¢) a minimum value of 4 submatrices of the Jacobian matrix considered (3 times).
(d) a maximum value of 6 submatrices of the Jacobian matrix considered (one time).

In this case, StrategyPoints considers very few submatrices, but it actually does the computa-
tion substantially slower than StrategyDefaultNonRandom since finding each submatrix can be
a lot of work as rational points must be found. However, StrategyPoints is still faster than
StrategyRandom.

Note that larger matrices tend to exhibit even larger disparities between the strategies.

6.3. Notes on implementation. As mentioned above, this function computes minors (based on
the passed Strategy) option until either it finds that the singular locus has the desired dimension,
or until it has considered too many minors. By default, it considers up to:

10 - (Minimum number of minors needed) + 8 - log; 3(possible minors).

This was simply chosen by experimentation. If the user is trying to show a singular locus has a
certain codimension, they will need a minimum number of minors. The multiplication by 10 is due to
our default strategy using multiple strategies, but only considering one might work well on a given
matrix. The user can set the option MaxMinors to a function F’ with two inputs, z = (minors needed)
and y = (possible minors), where F' outputs the maximum number of matrices to compute. More
simply, one may simply set MaxMinors a number.
These matrices are considered in a loop. We begin with computing a constant number of minors,
by default 2- (Minimum number of minors needed) + 3, and check whether the output has the right
10

dimension. The user can also set the option MinMinorsFunction to a function G with one input,
x = (minors needed), which will output how many minors to compute before first checking the
codimension. After those initial minors are found, we compute additional minors, checking period-
ically (based on an exponential function, 1.3* minors considered before the next reset) whether our
minors define a subset of the desired codimension. New functions can be provided via the option
CodimCheckFunction, see the tutorial for more details. If in this loop, a submatrix is considered
again, it is not recomputed, but the counter is still increased.

6.4. Other options. This function also includes other options including the option Modulus which
handles switching the coefficient field for a field of characteristic p > 0 (which is specified with
Modulus => p.)

One can also control how determinants are computed with the DetStrategy option, valid values
are Bareiss, Cofactor and Recursive.

7. PROJECTIVE DIMENSION: projDim

In April of 2019, it was pointed out in a thread on github
https://github.com/Macaulay2/M2 /issues /936

that the command pdim sometimes provides an incorrect value (an overestimate) for projective di-
mension for non-homogeneous modules over polynomial rings. There it was also suggested that this
could be addressed by looking at appropriate minors of the matrices in a possibly non-minimal reso-
lution, but that in practice these matrices have too many minors to compute. We have implemented
a function projDim that tries to address this by looking at only some minors. Our function does
not solve the problem as it also gives only an upper bound on the projective dimension. However,
this upper bound is more frequently correct.
The idea is as follows. Take a free resolution of a module M over a polynomial ring R

dn_ -
0 M <R Sy R 0.

Each d; is given by a matrix. The term F), is unnecessary (i.e., d,, splits) happens exactly when the
rank F,, minors of d,, generate the unit ideal. In that case, we know or projective dimension is at
most n— 1. However, we can continue in this way, we can compute the (rank F,,_; —rank F},)-minors
of d,—1, and see whether they generate the unit ideal. Our algorithm of course only computes a
subset of those minors.

7.1. Example of projDim. In the below example, we take a monomial ideal of projective dimension
2, compute a non-homogeneous change of coordinates, and observe that pdim returns an incorrect
answer that projDim corrects.

il : R

QQlx,y,z,wl;

i2 @ I ideal (x"4,x*xy,w"3, y~4);
i3 : pdim module I

03

2
i4 : f = map(R, R, {x+x"2+1, x+y+1, z+z"4+x-2, w+w b+y+11});
i5 : pdim module f I

ob

3

11

i6 : time projDim module f I
-- used 3.43851 seconds

06 2

i7 : time projDim(module f I, MinDimension=>2)
-- used 0.0503165 seconds

o7 2

7.2. Options. As seen in the previous example, setting MinDimension will can substantially speed
up the computation as otherwise, the function will try to determine whether the projective dimen-
sion is actually 1.

The option MaxMinors can either be set to the number of a minors computed at each step.
Alternatively, it can be set to be a list of numbers, one for each step in the above algorithm.
Finally, it can be set to be a function of the dimension d of the polynomial ring R and the number
t of possible minors. This is the default option, and the function is: 5 * d + 2 % log; 3(¢). The option
Strategy is also available and it works as in the above functions with the default value being
StrategyDefault.

8. COMPUTING IDEALS OF MINORS: recursiveMinors

Macaulay2 contains a minors method that returns the ideal of minors of a certain size, n, in
a given matrix, a necessary step in locating singularities. However, the current implementation’s
default is to evaluate determinants using the Bareiss algorithm, which is efficient when the entries
in the matrix have a low degree and few variables, but very slow otherwise. The current minors
method also allows users to compute determinants using cofactor expansion, but this strategy
performs some unnecessary calculations, causing it to be quite costly as well. We improved the
current cofactor expansion method to find the determinants of minors by adding recursion and
multithreading throughout. We also eliminated said unnecessary calculations by ensuring that only
the required determinants are being computed at each step of the recursion, rather than all possible
determinants of the given size.

In order to do so, we programmed a method in Macaulay2’s software that recursively finds all
n x n minors by first computing the 2 x 2 minors and storing them in a hash table. Then we use the
2 x 2 minors to compute the necessary 3 x 3 minors, and so forth. This process is repeated recursively
until the minors of size n x n are evaluated. At each step, we only compute the determinants that
will be needed when performing a cofactor expansion on the following size minor.

To allow for further time improvements, we also utilized Macaulay2’s existing parallel program-
ming methods to multithread our code so different computations at each step of the recursion can
occur simultaneously in separate threads. We divide the list of all determinants to be evaluated into
different available threads and wait for them to finish before consolidating the results in a hash table
and proceeding with the recursion. In order to more effectively utilize Macaulay2’s multithreading
methods, we also created a nanosleep method that waits a given number of nanoseconds, rather
than full seconds. This function has already been incorporated into the software.

8.1. Example of recursiveMinors. Below, we first create a simple matrix, M, of polynomials

in a single variable with rational coefficients and execute the recursiveMinors method to find

the ideal of all 3 x 3 minors. As can be seen, the result is equivalent to the output of the minors

method when called with the same parameters. We then create a new, larger matrix, N, with

two dimensional rational coefficients and return the computation time for recursiveMinors and

minors utilizing both the Bareiss and Cofactor strategies. The recursiveMinors method finished
12

executing approximately six times faster than the Bareiss algorithm and almost seven times faster
than the Cofactor expansion, while yielding the same results.

il : loadPackage "FastMinors";
i2 : allowableThreads => 8;

i3 : R

QQlx1;

i4 : M

random(R~{2,2,2}, R"4)
o4 = {-2} | x2 3x2 5/8x2 7/10x2 |
{-2} | 3/4x2 2x2 7/4x2 9x2 |
{-2} | %2 2/9x2 1/2x2 4/3x2 |
3 4
o4 : Matrix R <-—- R
i5 : recursiveMinors(3,M)
1403 6 449 6 292 6 517 6
05 = ideal (----x , —==X , - ——=X , —=-X)
60 240 45 144
o5 : Ideal of R
i6 : recursiveMinors(3,M) == minors(3,M)

06 = true

i7

o
]

QQlx,yl;

i8 : N = random(Q~{5,5,5,5,5,5}, Q°7);

6 7
08 : Matrix Q@ <-——-Q

i9 : elapsedTime minors(5,N, Strategy => Bareiss);
-- 1.42867 seconds elapsed

09 : Ideal of Q

i10 : elapsedTime minors(5,N, Strategy => Cofactor);
-- 1.82251 seconds elapsed

010 : Ideal of Q

i1l : elapsedTime recursiveMinors(5,N) ;
-- 0.273007 seconds elapsed;

oll : Ideal of Q
i12 : recursiveMinors(5,N) == minors(5,N)
012 = true

13

Degree H Bareiss \ Cofactor \RecursiveMinors RecursiveMinors, Threads=>4

8 3.46466 sec | 4.44334 sec 0.631749 sec 0.407553 sec
10 5.77108 sec | 6.79853 sec 0.971093 sec 0.55966 sec
12 7.40464 sec | 8.93534 sec 1.21964 sec 0.699108 sec
15 12.1871 sec | 12.0075 sec 1.68724 sec 1.00743 sec
20 21.0065 sec | 22.6152 sec 2.81906 sec 1.85354 sec
25 31.915 sec | 34.8651 sec 4.23277 sec 2.63514 sec
40 83.5833 sec | 77.1983 sec 10.5852 sec 6.29589 sec
60 181.179 sec | 192.911 sec 23.875 sec 13.0619 sec

FIGURE 1. Time to compute the 5 x 5 minors of a 6 x 7 random matrix over Q[z, y]
where the entries have degree Degree.

We briefly give a table showing the limits of this package. We consider a random 6 X 7 ma-
trix over Q[z,y| as above, and then also for Q[z,y, z]. We compare the single-threaded and 4-
threaded version of recursiveMinors in this package with the Bareiss and Cofactor strategies
with recursiveMinors for different degrees of the terms.

Generally speaking, reursiveMinors performs best when the matrix one is looking at has very
expensive-to-compute minors (such as with the random matrices we consider above). In sparse ex-
amples, and examples with easy-to-compute determinants, other strategies tend to perform better.

Degree H Bareiss \ Cofactor \ RecursiveMinors \ RecursiveMinors, Threads=>4
2 5.99812 sec | 3.78488 sec 0.588191 sec 0.51851 sec
3 17.3966 sec | 8.78131 sec 1.73022 sec 1.53543 sec
4 49.6152 sec | 22.5747 sec 4.58156 sec 3.83319 sec
5 115.412 sec | 45.0877 sec 8.36395 sec 6.39432 sec

FIGURE 2. Time to compute the 5x5 minors of a 6 x 7 random matrix over Q[z, y, 2]
where the entries have degree Degree.

9. PERFORMANCE AND LIMITS OF THE PACKAGE

We conclude by providing some figures showing how long various computations take in several
different strategies. We limit ourselves to the function regularInCodimension as other functions
such as projDim have roughly similar performance. Note some discussion of the performance be-
havior of taking determinants (including via a recursive algorithm) was already discussed above.
Again, we recommend the interested user also see the tutorial

FastMinorsStrategyTutorial

in the package documentation.

The column Attempts indicates how many time we ran this computation. The column Success-
ful shows what percentage of the time the function verified that the given equation was regular in a
certain codimension (depending on the strategy, it doesn’t always succeed). All computations were
run in Macaulay2 version 1.18 on a machine running Ubuntu 20.04 with 64 gigabytes of memory.

In Figure 3, we verify that the cone over a product of elliptic curves (an Abelian surface) em-
bedded in P® is regular in codimension 1. Note that StrategyRandom does not tend to work well
on this or other examples, and so we generally do not consider it further. In Figure 4 we verify the
same example is regular in codimension 2. When we make the elliptic curves defined by less sparse

equations, Points tends to perform much better, as can be seen in in Figure 5.
14

We next consider a relatively sparse higher dimension example in Figure 6. Here we are taking
a cone over a product of an elliptic curve with a diagonal equation, an elliptic curve in Weierstrass
form and a copy of P!. This is a cone over a 3-dimensional smooth projective variety embedded in
P17

Strategy H Attempts ‘ Average time ‘ Successful
StrategyDefault 100 1.7 sec 100%
StrategyDefaultNonRandom 100 0.9 sec 100%
Points 100 4.0 sec 100%
StrategyDefaultWithPoints 100 2.2 sec 100%
StrategyRandom 100 6.1 sec 4%
StrategyRandom, MaxMinors=>2000 20 49.0 sec 15%
StrategyRandom, MaxMinors=>5000 10 238.1 sec 50%

Regular in codimension 1, 9 variables, 28 equations, 31,646,160 possible 6 by 6 minors

FiGUuRE 3. We check R is regular in codimension 1 where R is the cone over a
product of two elliptic curves in positive characteristic given with a Segre embedding.
One of the curves is diagonal, the other is in Weierstrass form. This has a relatively
sparse Jacobian matrix.

Strategy H Attempts \ Average time \ Successful
StrategyDefault 10 10.9 sec 0%
StrategyDefault, MaxMinors=>5000 10 30.1 sec 100%
StrategyDefaultNonRandom 10 7.7 sec 0%
StrategyDefaultNonRandom, MaxMinors=>5000 10 13.7 sec 100%
Points 10 4.6 sec 100%
StrategyDefaultWithPoints 10 5.8 sec 100%

Regular in codimension 2, 9 variables, 28 equations, 31,646,160 possible 6 x 6 minors

FiGURE 4. We check R is regular in codimension 2 where R is the cone over a
product of two elliptic curves in positive characteristic given with a Segre embedding.
One of the curves is diagonal, the other is in Weierstrass form. This has a relatively
sparse Jacobian matrix. Using StrategyDefault and StrategyDefaultNonRandom
did not work with the default number of minors, but increasing MaxMinors led to
successful verification that the ring was regular in codimension 2.

We now move on to computing dimensions of singular loci of varieties that are not cones. We
constructed several non-normal (non-S2) varieties using the Pullback package [ES]. First, in Fig-
ure 7 we took 3 coordinate axes through the origin in A% and randomly glued them to a single
line. In Figure 8 we did the same with three random lines through the origin (creating a less sparse
Jacobian matrix). Finally, in Figure 9, we consider a similar example in A* (except now it is regular
in codimension 2), first verifying it is regular in codimension 1. Finally, we verify it is regular in
codimension 2 in Figure 10 .

15

Strategy H Attempts \ Average time \ Successful
StrategyDefault 10 00? sec 0%
StrategyDefaultNonRandom 10 007 sec <10%
Points, CodimCheckFunction => t->t+1 10 7.7 sec 100%
StrategyDefaultWithPoints 10 ? sec about 50%

Regular in codimension 1, 9 variables, 28 equations, 31,646,160 possible 6 x 6 minors

F1GURE 5. We check R is regular in codimension 1 where R is the cone over a prod-
uct of two elliptic curves in positive characteristic given with a Segre embedding.
One of the curves is in Weierstrass form, the other is given by a random degree 3
equation. This has a relatively complicated (non-sparse) Jacobian matrix. The other
strategies generally do not work. The one exception is StrategyDefaultWithPoints
which sometimes is very fast (faster than Points), and other times gets stuck trying
to compute a point. Setting CodimCheckFunction => t->t+1 forces the codimen-
sion to be checked at every step, which provides better and more consistant per-
formance. Without that, sometimes this function will hang trying to find a point
after on a 1-dimensional scheme where it has already verified that R is regular in
codimension 1, but has not computed that codimension yet.

Strategy H Attempts \ Average time \ Successful
StrategyDefaultNonRandom 10 oo? sec 0%
Points 10 58.5 sec 100%
StrategyDefaultWithPoints 10 27.13 sec 100%

Regular in codimension 1, 18 variables, 139 equations,17,927,476,818,965,522,386,560 possible
14 x 14 minors

FiGURE 6. We check R is regular in codimension 1 where R is the cone over a
product of two elliptic curves plus a P! in positive characteristic given with a Segre
embedding. One of the curves is in Weierstrass form, the other is given by a random
degree 3 equation. This has a relatively sparse Jacobian matrix. The other strategies
(not involving points) generally do not work. Using StrategyDefaultNonRandom
took more than 30 minutes and computed more than 5000 minors, but still did not

finish.
Strategy H Attempts \ Average time \ Successful
StrategyDefault 100 0.8 sec 100%
StrategyDefaultNonRandom 100 0.5 sec 100%
Points 100 3.0 sec 100%
StrategyDefaultWithPoints 100 2.4 sec 100%

Regular in codimension 1, 8 variables, 26 equations, 3,683,680 possible 5 x 5 minors

FiGURE 7. We check R is regular in codimension 1 where R is obtained by gluing
three coordinate axis lines through the origin in A3 together to a single line. This is
a 3-dimensional ring that is regular in codimension 1, but not codimension 2. The
Jacobian matrix is fairly sparse, but has some quite complicated sections.

16

Strategy H Attempts \ Average time \ Successful
StrategyDefault 20 2.0 sec 100%
StrategyDefaultNonRandom 20 0.5 sec 100%
Points 10 11.6 sec 100%
StrategyDefaultWithPoints 10 6.9 sec 100%

Regular in codimension 1, 8 variables, 34 equations, 15,582,336 possible 5 x 5 minors

FIGURE 8. We check R is regular in codimension 1 where R is obtained by glu-
ing random lines through the origin in A3 together to a single line. This is a 3-
dimensional ring that is regular in codimension 1, but not codimension 2. The Ja-
cobian matrix is substantially less sparse than when we glued the three coordinate

azes.

Strategy H Attempts \ Average time \ Successful
StrategyDefault 100 5.2 sec 100%
StrategyDefaultNonRandom 100 1.3 sec 100%
Points 20 7.3 sec 100%
StrategyDefaultWithPoints 20 4.0 sec 100%

Regular in codimension 1, 11 variables, 52 equations, 44,148,904,800 possible 7 x 7 minors

FiGURrE 9. We check R is regular in codimension 1 where R is obtained by gluing
three coordinate axis lines through the origin in A* together to a single line. This is
a 4-dimensional ring that is regular in codimension 2, but not codimension 3. The
Jacobian matrix is fairly sparse, but has some quite complicated sections.

Strategy H Attempts \ Average time \ Successful
StrategyDefault 20 14.9 sec 100%
StrategyDefaultNonRandom 20 5.5 sec 100%
Points 10 00? sec 0%
StrategyDefaultWithPoints 10 007 sec 0%

Regular in codimension 2, 11 variables, 52 equations, 44,148,904,800 possible 7 x 7 minors

Ficure 10. We check R is regular in codimension 2 where R is obtained by gluing
three coordinate axis lines through the origin in A* together to a single line. This is
a 4-dimensional ring that is regular in codimension 2, but not codimension 3. The
Jacobian matrix is fairly sparse, but has some quite complicated sections. Strategies
involving Points fail quickly as they use more than 64 gigabytes of ram.

17

REFERENCES

[BIM*] S. Bisul, Z. JIANG, S. MAITRA, T. NGUYEN, F.-O. SCHREYER, AND K. SCHWEDE: RandomPoints: A
Macaulay2 package. Version 1.5.

[BHSS19] C.J. BotT, S. H. HASSANZADEH, K. SCHWEDE, AND D. SMOLKIN: Rationalmaps, a package for macaulay2,
arXiv:1908.04337V1.

[ES] D. ELLINGSON AND K. SCHWEDE: Pullback: pullback of rings. Version 1.03.

Email address: martinova@wisc.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, 480 LINCOLN DRIVE, 213 VAN VLECK HALL,
MabisoN, WI, 53706

Email address: mrobinso@reed.edu

DEPARTMENT OF MATHEMATICS, REED COLLEGE, 3203 SOUTHEAST WOODSTOCK BOULEVARD PORTLAND, ORE-
GON 97202-8199

Email address: schwede@math.utah.edu
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, 155 S 1400 E Roowm 233, SALT LAKE City, UT, 84112
Email address: weiy@math.uchicago.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, ECKHART HALL, 5734 S UNIVERSITY AVE, CHICAGO
IL, 60637, 773 702 7100

18

	1. Introduction
	Acknowledgements:

	2. Finding interesting submatrices
	2.1. How are the submatrices chosen?
	2.2. Ways of choosing submatrices
	2.3. LexSmallestTerm and GRevLexSmallestTerm
	2.4. GRevLexLargest and LexLargest
	2.5. Points
	2.6. Random and RandomNonzero
	2.6.1. More on GRevLex: modifying the underlying matrix

	3. chooseGoodMinors and controlling how submatrices are selected
	3.1. The Strategy option

	4. Find a submatrix of a given rank: getSubmatrixOfRank
	4.1. Examples of getSubmatrixOfRank

	5. Finding lower bounds for matrix ranks: isRankAtLeast
	5.1. Example of isRankAtLeast

	6. Regular in codimension n: regularInCodimension
	6.1. Example of regularInCodimension
	6.2. Options and strategies for regularInCodimension
	6.3. Notes on implementation
	6.4. Other options

	7. Projective dimension: projDim
	7.1. Example of projDim
	7.2. Options

	8. Computing ideals of minors: recursiveMinors
	8.1. Example of recursiveMinors

	9. Performance and limits of the package
	References

