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Abstract
Systems of differential equations with polynomial right-hand sides are very common
in applications. In particular, when restricted to the positive orthant, they appear natu-
rally (according to the law of mass-action kinetics) in ecology, population dynamics,
as models of biochemical interaction networks, and models of the spread of infectious
diseases. Their mathematical analysis is very challenging in general; in particular, it
is very difficult to answer questions about the long-term dynamics of the variables
(species) in the model, such as questions about persistence and extinction. Even if we
restrict our attention to mass-action systems, these questions still remain challenging.
On the other hand, if a polynomial dynamical system has a weakly reversible single
linkage class (WR1) realization, then its long-term dynamics is known to be remark-
ably robust: all the variables are persistent (i.e., no species goes extinct), irrespective
of the values of the parameters in the model. Here we describe an algorithm for finding
WR1 realizations of polynomial dynamical systems, whenever such realizations exist.
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1 Introduction

By a system of differential equations with polynomial right-hand sides (or simply a
polynomial dynamical system), we mean a dynamical system of the form

dx1
dt

= p1(x1, . . . , xn),

dx2
dt

= p2(x1, . . . , xn),

...

dxn
dt

= pn(x1, . . . , xn),

(1)

where each pi (x1, . . . , xn) is a polynomial in the variables x1, . . . , xn . In general,
such systems are very difficult to analyze due to nonlinearities and feedbacks that may
give rise to bifurcations, multiple basins of attraction, oscillations, and even chaotic
dynamics. The second part of Hilbert’s 16th problem (about the number of limit cycles
of polynomial dynamical systems in the plane) is still essentially unsolved, even for
quadratic polynomials [1]. Even the simplest object associated to (1), its steady state
set, can give rise to highly nontrivial questions in real algebraic geometry.

Polynomial dynamical systems show up very often as standard models (based on
mass-action kinetics) in biology, chemistry, population dynamics, infectious disease
models, andmany other areas of applications. In suchmodels the variables xi represent
populations, concentrations, or other quantities that cannot become negative, and the
domain of (1) is restricted to the positive orthant. For example, in a biochemical
network we may have the reaction X1 + X2 → X3, which consumes X1 and X2 and
produces X3; according to mass-action kinetics, this reaction contributes a negative
monomial term of the form “−kx1x2" on the right-hand side of dx1

dt and dx2
dt , and

a positive monomial term “kx1x2" on the right-hand side of dx3
dt , where x1, x2, x3

denote the concentrations of the chemical species X1, X2, X3. The parameter k is
called reaction rate constant. A reaction network consists of a set of such reactions,
and if we add all these terms for all the reactions in the network (each one with its own
reaction rate constant) we obtain standard dynamical system models for the network.
In general, one cannot just rely on numerical simulations to deduce the dynamical
properties of these models, because the values of the reaction rate constants cannot
usually be estimated accurately. Therefore, it becomes very important to relate the
structural properties of the reaction network with dynamical properties that can be
generated by it [2–9].

Alternatively, onemay start with a system of the form (1) obtained fromfitting some
experimental data, with little or no information on the generating reaction network.
In general, if a polynomial dynamical system is generated by some reaction network,
then there are actually infinitely many other networks that also generate it [4]. This
lack of unique identifiability of an underlying network can actually be leveraged to
analyze the dynamics of a system of the form (1): if a network with certain properties
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can be found to generate it, then we may be able to immediately infer information
about its dynamic behavior [2, 7].

Some of the most important questions for polynomial systems (1) are related to
the long-term dynamics of its solutions, which is usually analyzed in terms of the
mathematical properties of persistence and permanence. The property of persistence
means that no species can “go extinct", i.e., for any solution x(t) of the system, we
have lim inf t→∞xi (t) > 0 for all species i . The (stronger) property of permanence
means that the system has a globally attracting compact set.

A class of networks whose long-term dynamics is best understood is the family of
weakly reversible single linkage class networks [2]; here we call them simply “WR1

networks", and we will refer to polynomial systems (1) that have WR1 realizations
as “ WR1 systems". Specifically, WR1 systems have been shown to be persistent and
permanent in a very robust way, which even allows for the explicit construction of
globally attracting invariant sets [6, 10]. Moreover, complex-balanced WR1 systems
have been shown to be globally stable, i.e., they have a globally attracting pointwithin
each linear invariant subspace [11].

The notion of deficiency also plays an important role in the analysis of reaction
networks. In particular, weakly reversible networks having low deficiency (0 or 1)
have many robust dynamical properties like the existence of a globally attracting
steady state or the existence of a Lyapunov function and are related to the Deficiency
One Theorem [9]. We will expand upon this in the later sections of our paper.

Not only are the long-term dynamical properties ofWR1 systems well understood,
but also their persistence and permanence properties hold for any choices of param-
eter values, in a sense that will be made clear below. This fact is very important in
applications because the exact values of the coefficients in the polynomial right-hand
sides of these dynamical systems are often very difficult to estimate accurately.

In this paper, we describe an efficient algorithm for determining whether a given
polynomial dynamical system1 (1) admits a WR1 realization, and for finding such a
realization whenever it exists.

A motivation for finding such an algorithm comes from biological models, such
as repressilator networks [12, 13]. One example of dynamics corresponding to such
networks is given by

dx
dt

= 7 − 3x + 5z − 2xz,

dy
dt

= 6+ 3x − 4y − 3xy,

dz
dt

= 7+ 4y − 3z − 3yz.

(2)

Here x denotes the concentration of mRNA, y denotes the concentration of a repressor
protein and z denotes the concentration of the product. A question we answer here is:
do there exist any WR1 realizations that generate these differential equations? Our

1 All the results in this paper apply without change to the case where the functions on the right-hand side
of (1) are “generalized polynomials”, where the exponents of the monomials are allowed to take on any
real values, i.e., they are not restricted to nonnegative integers.
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Algorithm 1 asserts that such realizations do exist; in particular, our algorithm finds
the maximal WR1 realization (see Definitions 2.15 and 2.16), which is given by the
following reaction network:

∅ 3−⇀↽−
2

X

∅ 3−⇀↽−
1
Y

∅ 2−⇀↽−
1

Z

∅ 1−→ X + Y

∅ 2−→ Y + Z

∅ 3−→ X + Z

X
2−⇀↽−
3

X + Y

Y
1−⇀↽−
3
Y + Z

Z
3−⇀↽−
2

X + Z

X
1−→ Y

Y
3−→ Z

Z
2−→ X

(3)

The dynamical system (2) is a relatively simple example, for which maybe a WR1

realization could be found “by hand”, by relying on geometric considerations in R3.
In higher dimensions, it is much more difficult to find such realizations by hand, due
to a lack of geometric intuition. As a consequence, there is a need for an algorithm
that finds WR1 realizations whenever they exist.

Structure of the paper. In Sect. 2, we introduce some basic terminology of reaction
networks. Primarily, we present the notion of net reaction vectors, which play a key
role in the main algorithm. In Sect. 3, we propose Algorithm 1 to find if there exists a
weakly reversible reaction network consisting of a single connected component that
generates a given dynamical system. In Sect. 4, we discuss some special cases of
weakly reversible realizations with a single linkage class and go through the steps in
Algorithm 1 using several examples. Moreover, we illustrate how to implement this
algorithm in practice. In Sect. 5, we summarize our findings in this paper and outline
directions for future work.

Notation. We denote by Rn
≥0 and Rn

>0 the set of vectors in Rn with non-negative
and positive entries respectively. Given two vectors x ∈ Rn

>0 and y ∈ Rn , we use the
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following notation for a monomial with exponents given by y:

x y = x y11 . . . x ynn ,

where x = (x1, . . . , xn)ᵀ and y = (y1, . . . , yn)ᵀ.

2 Reaction networks

Definition 2.1 A reaction network, also called a Euclidean embedded graph (or
simply E-graph), is a directed graph G = (V , E) in Rn , where V ⊂ Rn is a finite set
of vertices, E ⊆ V × V represents the set of edges, and such that there are neither
self-loops nor isolated vertices in G. We denote the number of vertices by m, and
let V = { y1, . . . , ym}. A directed edge ( yi , y j ) ∈ E represents a reaction in the
network, and is also denoted by yi → y j . Moreover, we define the reaction vector
of the edge yi → y j as y j − yi ∈ Rn . Here yi and y j denote the source vertex and
target vertex, respectively.

Definition 2.2 Let G = (V , E) be a Euclidean embedded graph. The stoichiometric
subspace of G is the vector space spanned by the reaction vectors as follows:

S = span{ y′ − y | y → y′ ∈ E}.

Moreover, for any positive vector x0 ∈ Rn
>0, the affine polyhedron (x0 + S)∩Rn

>0 is
called the stoichiometric compatibility class of x0.

Definition 2.3 Let G = (V , E) be a Euclidean embedded graph.

(a) The set of vertices V is partitioned by its connected components (also called
linkage classes), which correspond to the subset of vertices belonging to that
connected component.

(b) A connected component L ⊆ V is strongly connected, if every edge is part of
an oriented cycle. Further, a strongly connected component L ⊆ V is called a
terminal strongly connected component if for every vertex y ∈ L and y →
y′ ∈ E , we have y′ ∈ L .

(c) G = (V , E) is said to be weakly reversible, if every connected component is
strongly connected, i.e., every edge is part of an oriented cycle.

Remark 2.4 For aweakly reversible reaction networkG = (V , E), every vertex y ∈ V
is a source and a target vertex. Furthermore, every linkage class is a strong linkage
class, as well as a terminal strong linkage class.

Definition 2.5 Let G = (V , E) be a Euclidean embedded graph, with m vertices and
ℓ connected components. Suppose the dimension of the stoichiometric subspace S is
s = dim(S), then the deficiency of the network G is the non-negative integer defined
as follows:

δ = m − ℓ − s.
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Fig. 1 a This reaction network has two linkage classes, and two terminal strongly connected components
(shown in the green shaded region). It has a stoichiometric subspace of dimension 2 and the deficiency
δ = m− ℓ− s = 6−2−2 = 2. b This reaction network is weakly reversible and has one terminal strongly
connected component. It has a stoichiometric subspace of dimension 2 and the deficiency δ = m − ℓ− s =
3 − 1 − 2 = 0 (color figure online)

Remark 2.6 Note that weakly reversible networks with low deficiencies have many
robust dynamical properties like the existence of a globally attracting steady state or
the existence of a Lyapunov function or the Deficiency One Theorem [9]. More details
will be discussed in Sect. 4.

Figure 1 shows two examples of reaction networks. A reaction network can generate
a wide range of dynamical systems. We are interested in mass-action kinetics, which
has been extensively studied in [2, 8, 14–17].

Definition 2.7 LetG = (V , E) be a Euclidean embedded graph, we denote the vector
of reaction rate constants by k = (k yi→ y j ) yi→ y j∈E ∈ RE

>0, and k yi→ y j or ki j is
called the reaction rate constant on the edge yi → y j . The mass-action system
generated by (G, k) is a dynamical system on Rn

>0 given by:

dx
dt

=
∑

yi→ y j∈E
k yi→ y j x

yi ( y j − yi ). (4)

Remark 2.8 As we pointed out in the introduction, in this paper we do not restrict the
monomial exponents y1, y2, . . . , ym to be either nonnegative or integer (i.e., they are
allowed to be arbitrary vectors y j ∈ Rn). Therefore, the notion of “mass-action sys-
tem" defined above is more general than the classical notion of mass-action systems,
where y j ∈ Zn

≥0 for all j (see for example [9]).
In particular, note that all polynomial (or generalized polynomial) systems of the

form (1) can bewritten in the form of (4), while not all dynamical systemswith polyno-
mial right-hand side can be realized using classicalmass-action kinetics. Specifically,
a polynomial dynamical system (1) can be generated by classicalmass-action kinetics
if and only if every monomial with negative coefficient in pi (x) is divisible by xi for
all i ∈ {1, 2, . . . , n} [9, 18].
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Remark 2.9 Recall that for classical mass-action systems the positive orthantRn
>0 is a

forward invariant set [9]. This is of course not true for general polynomial dynamical
systems. But, if a polynomial dynamical system (or a generalized polynomial dynam-
ical system) has a WR1 realization, then this system is also guaranteed to have the
positive orthant as a forward invariant set, because it is permanent [6, 10].

Definition 2.10 Consider the mass-action system generated by (G, k) in (4). A point
x∗ ∈ Rn

>0 is called a positive steady state if

dx
dt

∣∣∣
x=x∗ =

∑

yi→ y j∈E
k yi→ y j (x

∗) yi ( y j − yi ) = 0. (5)

Definition 2.11 Consider the mass-action system generated by (G, k) in (4). Then
(G, k) is said to be complex-balanced, if there exists a positive steady state x0 such
that the following holds for every vertex y0 ∈ V ,

∑

y0→ y∈E
k y0→ yx

y0
0 =

∑

y′→ y0∈E
k y′→ y0x

y′
0 . (6)

It is well known that every mass-action system admits a matrix decomposition
[19]. Hence, we can illustrate the mass-action system (4) in the following vectorial
representation:

dx
dt

= Y AkxY , (7)

where Y is a matrix whose columns are the vertices, defined as

Y = ( y1, y2, . . . , ym),

and Ak is the negative transpose of the graph Laplacian of (G, k), defined as

[Ak] j i =

⎧
⎪⎪⎨

⎪⎪⎩

k yi→ y j , if yi → y j ∈ E,

− ∑
yi→ y j∈E

k yi→ y j , if i = j,

0, otherwise,

and xY is the vector of monomials given by

xY = (x y1 , x y2 , . . . , x ym )ᵀ.

In general, Y is called the matrix of vertices, and Ak is called the Kirchoff matrix.
Here, we list one of the most important properties of the Kirchoff matrix Ak.

Theorem 2.12 [20] Let (G, k) be a mass-action system, and T1, T2, . . . , Tt be the
terminal strongly connected components of G. Then there exists a basis {e1, e2, . . . , et }
for ker(Ak), such that for 1 ≤ p ≤ t ,
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ep =
{
[ep]i > 0, if yi ∈ Tp,

[ep]i = 0, otherwise.

Example 2.13 We will revisit the network shown in Fig. 1a to verify Theorem 2.12.
First, we set all vertices in the network as follows:

X ≡ y1 = (1, 0)ᵀ, 2X ≡ y2 = (2, 0)ᵀ, 3X ≡ y3 = (3, 0)ᵀ,
4X + Y ≡ y4 = (4, 1)ᵀ, 5X + Y ≡ y5 = (5, 1)ᵀ, 5X + 2Y ≡ y6 = (5, 2)ᵀ.

The Kirchoff matrix of the network is given by:

Ak =

⎡

⎢⎢⎢⎢⎢⎢⎣

−k12 k21 0 0 0 0
k12 −k21 0 0 0 0
0 0 −k34 k43 0 0
0 0 k34 −k43 − k45 0 0
0 0 0 k45 −k56 k65
0 0 0 0 k56 −k65

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Using a direct computation, the following vectors form a basis for ker(Ak):

e1 = (k21, k12, 0, 0, 0, 0)ᵀ, e2 = (0, 0, 0, 0, k65, k56)ᵀ.

Thus, the supports of these vectors are

supp(e1) = {1, 2}, and supp(e2) = {5, 6}.

The supports of twobasis vectors relate to two terminal strongly connected components
{X , 2X} and {5X + Y , 5X + 2Y }.

Motivated by the matrix decomposition in (7), we introduce a crucial concept: net
reaction vector, and another matrix decomposition in terms of net reaction vectors,
which play an important role in finding a realization.

Definition 2.14 Consider amass-action system (G, k), and letVS = { y1, y2, . . . , yms
}

⊆ V be the set of source vertices ofG. For each source vertex yi ∈ VS , thenet reaction
vector wi corresponding to yi is given by:

wi =
∑

yi→ y j∈E
k yi→ y j ( y j − yi ), (8)

Moreover, we denote the matrix of net reaction vectors as follows:

W =
(
w1, w2, . . . , wms

)
. (9)

Following Definition 2.14, for each source vertex yi ∈ VS , we can rewrite the
corresponding net reaction vector wi as
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wi =
∑

yi→ y j∈E
k yi→ y j y j −

⎛

⎝
∑

yi→ y j∈E
k yi→ y j

⎞

⎠ yi . (10)

Using a direct computation, we can rewrite the matrix decomposition in (7) as
dx
dt

= WxY s , (11)

where xY s is the vector of monomials given by
xY s = (x y1 , x y2 , . . . , x yms )ᵀ.

Further, we let Y s = ( y1, y2, . . . , yms
) denote thematrix of source vertices, whose

columns are the source vertices.

Definition 2.15 Consider a dynamical system given by Eq. (1). If there exists an E-
graphG and a vector of rate constants k, such that themass-action system generated by
(G, k) is exactly given by Eq. (1), then (G, k) is said to be a mass-action realization
(or simply a realization) of Eq. (1).

Definition 2.16 Consider a fixed set of vertices V and all possible E-graphs of the
form G = (V , E). A realization (G, k) of the dynamical system given by Eq. (1) is
said to be a maximal realization with the set of vertices V (or simply a maximal
realization) if it contains a maximal set of reactions among all realizations with the
set of vertices V of that dynamical system.

Remark 2.17 Note that for a system given by Eq. (1), any positive convex combination
of different realizations (Gi , ki ) for some E-graphs Gi = (V , Ei ) is also a realization
with the set of vertices V , and its set of reactions is the union of Ei . Therefore, if a
system given by Eq. (1) admits some realizations with the set of vertices V , then a
maximal realization with the set of vertices V must exist, and its corresponding set of
edges E is unique.

The following Lemma concerns the matrix of net reaction vectors when the mass-
action system is weakly reversible.

Lemma 2.18 Consider a weakly reversible mass-action system generated by (G, k)
with vertices { yi }mi=1 and stoichiometric subspace S. Let {wi }mi=1 be the net reaction
vectors of G, and W = (w1,w2, . . . ,wm) be the matrix of net reaction vectors. Then
we have

Im(W) = S. (12)

Proof It is clear that Im(W) ⊆ S from Definition 2.14. Suppose that Im(W) ⊂ S,
then there exists a non-zero vector v, such that

v ∈ S, and v ⊥ W .

Since 0 ̸= v ∈ S, there exists a reaction yi → y j ∈ E such that v · ( y j − yi ) ̸= 0.
This implies that the set {v · yi }mi=1 has at least two different numbers. Now let Vmax
be the subset of vertices which maximizes the dot product as follows.
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Vmax = { yi ∈ V : v · yi = max
j
(v · y j )}.

Since G is weakly reversible, there exists an edge from a vertex in Vmax to a vertex not
belonging to it. Without loss of generality, let y1 ∈ Vmax, y2 /∈ Vmax and y1 → y2
be this edge. Note that for all i = 1, 2, . . . ,m, we have v · ( yi − y1) ≤ 0. Thus, we
obtain

v · w1 =
∑

y j∈V
k y1→ y j v · ( y j − y1) ≤ k y1→ y2v · ( y2 − y1) < 0.

This contradicts with v ⊥ W , and the result follows. ⊓⊔

At the end of this section, we introduce some important dynamical properties.

Definition 2.19 Consider a mass-action system generated by (G, k). This system is
said to be persistent, if every solution x(t)with initial condition x(0) ∈ Rn

>0 satisfies

lim inf
t→∞ xi (t) > 0, for i = 1, 2, . . . , n.

Definition 2.20 Consider a mass-action system generated by (G, k). This system is
said to be permanent, if given any stoichiometric compatibility class A there exists a
compact subset D ⊂ A, such that for any solution x(t)with initial condition x(0) ∈ A,
there exists a time T such that

x(t) ∈ D, for all t > T .

Definition 2.21 Consider a mass-action system generated by (G, k). A point x̃ ∈ Rn
>0

is said to be a global attractor within its stoichiometric compatibility class A, if for
any solution x(t) with initial condition x(0) ∈ A we have

lim
t→∞ x(t) = x̃.

It is known that weakly reversible dynamical systems consisting of a single linkage
class are permanent; moreover, complex-balanced systems consisting of a single link-
age class have a globally attracting point within every stoichiometric compatibility
class [6, 10].

3 Main result

The goal of this section is to present the main algorithm of this paper, Algorithm 1,
which searches for the existence of aweakly reversible realization consisting of a single
linkage class. In particular, this algorithm outputs a maximal realization, whenever it
exists.
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3.1 Algorithm for a weakly reversible realization with a single linkage class

Here, we sketch the key idea behind Algorithm 1: if for a dynamical system of the
form (1) there exists some weakly reversible realization with a single linkage class,
denoted G = (V , E), then its maximal realization with vertex set V is guaranteed to
be weakly reversible and has a single linkage class. Therefore, an algorithm that relies
on maximal realizations can be used when looking for WR1 realizations. We present
such an algorithm below and then give proof of its correctness (Fig. 2).

Algorithm 1 (Check the existence of a weakly reversible realization with a single
linkage class)

Input: A dynamical system of the form dx
dt =

m∑

i=1
x yiwi , which is specified by two matrices: Y s =

( y1, . . . , ym ), and W = (w1, . . . ,wm ).

Output: Either return a weakly reversible realization consisting of a single linkage class, or print that such
a realization does not exist.

1: for i = 1, 2, . . . ,m do
2: Define the matrix Bi ∈ Rn×m , with kth column Bi,k := ( yk − yi ) for 1 ≤ k ≤ m.
3: if there exists a vector v∗ = (v∗

1, . . . , v
∗
m ) ∈ Rm

≥0, such that Biv
∗ = wi then

4: Set v∗
i = 1.

5: else
6: Print: There is no WR1 realization. Exit.
7: end if
8: Set Si = supp(v∗).
9: for j = 1, 2, . . . ,m do
10: if j ∈ Si then
11: Continue
12: else
13: if there exists a vector v ∈ Rm

≥0, such that Biv = wi and v j > 0 then
14: Si = Si ∪ supp(v).
15: end if
16: end if
17: end for
18: end for
19: Define vector ri := (ri,1, ri,1, · · · , ri,m )ᵀ, with

ri, j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, for j ∈ Si , j ̸= i,

0, for j /∈ Si ,

− ∑

l ̸=i
ri,l , for j = i .

(13)

20: Collect the vectors {ri }mi=1 and construct the Kirchoff matrix Q = (r1, r2, . . . , rm ) ∈ Rm×m .
21: if dim(ker(Q)) = 1 and supp(ker(Q)) = {1, . . . ,m} then
22: Print: There exists a weakly reversible realization with a single linkage class.
23: Print: The vertices of this realization are given by V = { y1, . . . , ym }.
24: Print: The edges of this realization are given by E = { yi → y j : ri, j > 0}.
25: else
26: Print: There is no WR1 realization.
27: end if

123



Journal of Mathematical Chemistry (2024) 62:476–501 487

Fig. 2 A flowchart diagram for Algorithm 1. Given a dynamical system of the form dx
dt = ∑m

i=1 x
yiwi ,

this algorithm either finds a WR1 realization for it, or reports that no such realization exists

We show the correctness of Algorithm 1 via the following two Lemmas.

Lemma 3.1 SupposeAlgorithm1 reaches line 21and satisfies the conditions on line 21.
Then there exists a weakly reversible realization consisting of a single linkage class

that generates the dynamical system dx
dt =

m∑
i=1

x yiwi .
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Proof If the algorithm passes the condition on line 3 for all i = 1, . . . ,m, then all
net reaction vectors {wi }mi=1 can be realized by conical combinations of the vectors
Bi,k = ( yk − yi ), with 1 ≤ k ≤ m.

For i = 1, . . . ,m, we denote Si by the union of supports on some vectors v ∈ Rm
≥0,

such that

Biv = wi . (14)

Suppose there exist ai distinct vectors v1, . . . , vai ∈ Rm
≥0, with Si =

ai⋃
q=1

supp(vq).

Then we consider the following vector:

ṽ = 1
ai

ai∑

q=1

vq , (15)

and it satisfies

Bi ṽ = wi , and ṽ ∈ Rm
≥0.

Recall that each vi represents one realization corresponding to the net reaction
vector wi . Here we choose the vector ṽ in (15), where we have weighted all vectors
{vq}aiq=1 equally in the graph. Hence, it is clear that the reaction yi → y j represented
by j ∈ Si is included in the realization. Further, we note that scaling the reaction
rates neither affects weak reversibility nor the number of linkage classes. Hence, the
Kirchoff matrix from line 20 of the algorithm can be constructed.

Using Theorem 2.12, we know that the kernel of the Kirchoff matrix has a basis
consisting of non-negative vectors whose supports are the terminal strongly connected
components. Recall that since the algorithm satisfies the condition on line 21, we have

dim(ker(Q)) = 1, and supp(ker(Q)) = {1, . . . ,m}. (16)

This implies that all vertices corresponding to theKirchoffmatrix Q are in the same ter-
minal strongly connected component. Therefore, this realization is weakly reversible
and consists of a single linkage class. ⊓⊔

Lemma 3.2 Suppose there exists a weakly reversible realization consisting of a sin-

gle linkage class of dx
dt =

m∑
i=1

x yiwi . Then the conditions on line 3 and line 21 in

Algorithm 1 are satisfied.

Proof From the existence of a realization, all net reaction vectors {wi }mi=1 can be
realized by conical combinations of the vectors ( yk − yi )

m
k=1. Thus, the algorithm

must satisfy the condition on line 3, for i = 1, . . . ,m. Now it suffices for us to show

dim(ker(Q)) = 1, and supp(ker(Q)) = {1, . . . ,m}. (17)
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Here we claim that the realization produced by Algorithm 1 consists of the maxi-
mum number of reactions. To realize the system dx

dt = ∑m
i=1 x

yiwi , we need to find
a vector v for each vertex yi , such that

Biv = wi , and v ∈ Rm
≥0. (18)

First, for i = 1, . . . ,m, we get a vector v∗ ∈ Rm
≥0 from line 3, which solves Eq. (18).

After setting2 v∗
i = 1, we define the initial support set Si as follows:

Si = supp(v∗). (19)

Next, we build an inner loop on j = 1, . . . ,m. If j ∈ Si , this implies that we already
incorporated the reaction yi → y j in the realization. Otherwise, for each j /∈ Si , we
further check whether there exists a vector v ∈ Rm

≥0, such that

Biv = wi , and v j > 0. (20)

Once we find such vector v, we update the set Si as

Si := Si ∪ supp(v). (21)

This implies that whenever j ∈ supp(v), we have j ∈ Si .
After going through the whole inner loop, we obtain the complete version of set

Si . Then we follow the construction in (15), and it is clear that the reaction yi → y j
represented by j ∈ Si is included in the realization.

Now suppose there is a vector v̂, solving Eq. (18) and supp(v̂) ! Si . This implies
that there exists j ∈ supp(v̂) with j /∈ Si , which contradicts Eq. (21). Thus, the set Si
contains the maximal number of positive entries.

From the claim above and line 20, we deduce that for any realization of the system,
all reactions between { yi }mi=1 are included in the realization given by the Kirchoff
matrix Q. Note that adding more reactions among the current vertices of a weakly
reversible single linkage class network will preserve the properties of weak reversibil-
ity and the single linkage class condition. This implies that if there exists a weakly
reversible realization consisting of a single linkage class, then the realization gener-
ated by Q will also be weakly reversible and consist of a single linkage class. By
Theorem 2.12, we conclude (17). ⊓⊔

The following remark is a direct consequence of Lemma 3.2.

Remark 3.3 If Algorithm 1 fails at lines 3 or 21, then dx
dt =

m∑
i=1

x yiwi does not admit

a weakly reversible realization with a single linkage class.

2 Note that the i th column of the matrix Bi (denoted by Bi,i in Algorithm 1) is the zero column vector.
Therefore, if there exists a vector v∗ that satisfies Biv∗ = wi , then v∗

i can be set to any arbitrary real
number without influencing the solvability. In particular, we set v∗

i = 1 to ensure a unique solution.
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4 Special cases and the implementation of Algorithm 1

After showing Algorithm 1, we focus on some special cases and the implementation
of the algorithm. We will discuss various properties of weakly reversible realizations
consisting of a single linkage class but having different deficiencies, and the corre-
sponding implementation of the algorithm.

The following Lemma allows us to compute the deficiency of the realization
obtained from Algorithm 1.

Lemma 4.1 Suppose that the dynamical system dx
dt =

m∑
i=1

x yiwi with m vertices, and

the matrix of net reaction vectorsW = (w1, . . . ,wm) passes Algorithm 1 and outputs
a weakly reversible realization consisting of a single linkage class. Then the deficiency
of this realization is m − 1 − Im(W).

Proof From Lemma 2.18, we have Im(W ) = S. Therefore, the deficiency of realiza-
tion obtained from Algorithm 1 is

δ = m − ℓ − s = m − 1 − Im(W).

⊓⊔

4.1 Weakly reversible deficiency zero realizations consisting of a single linkage
class

We first consider the case when a dynamical system admits a weakly reversible defi-
ciency zero realization consisting of a single linkage class.

It is well known that weakly reversible deficiency zero networks are complex-
balanced for any choice of positive rate constants [19]. In addition, for complex-
balanced dynamical systems consisting of a single linkage class, there exists a globally
attracting positive steady statewithin each stoichiometric compatibility class [11]. This
leads to the following Lemma.

Lemma 4.2 For a weakly reversible deficiency zero reaction network consisting of a
single linkage class, every stoichiometric compatibility class admits a globally attract-
ing positive steady state.

This is our primary motivation for finding weakly reversible deficiency zero real-
izations consisting of a single linkage class. Now we state the upcoming Lemma that
relates these realizations to the existence of a vector in line 3 of Algorithm 1.

Lemma 4.3 Consider a weakly reversible deficiency zero reaction network G consist-
ing of a single linkage class L = { y1, . . . , ym}. Let {w1, . . . ,wm} denote the net
reaction vectors corresponding to these vertices. Define the matrix Bi ∈ Rn×m, with
kth column Bi,k := ( yk − yi ) for 1 ≤ k ≤ m. For each vertex yi ∈ L, there exists a
unique vector v ∈ Rm

≥0, such that

Biv = wi , and vi = 1. (22)
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Proof For each vertex yi ∈ L , we write the stoichiometric subspace as

S = span{ yk − yi }mk=1.

Since G has a single linkage class and deficiency zero, we obtain

0 = m − 1 − dim(S).

This shows that

dim(span{ yk − yi }mk=1) = dim(S) = m − 1.

From weak reversibility and Lemma 2.18, we deduce that

dim(ker(Bi )) = m − dim(Im(Bi )) = m − dim(S) = 1.

Since Bi,i = 0, it is easy to see that ei ∈ ker(Bi ) where ei represents the unit vector
in the i-th coordinate. Then, we have

ker(Bi ) ∩ {z ∈ Rm : zi = 0} = 0. (23)

Since the net reaction vectors {wi }mi=1 come from the dynamics generated by network
G, all of them can be realized. Applying (23), we conclude that Eq. (22) has a unique
solution for each vertex yi ∈ L . ⊓⊔

Remark 4.4 It is worth mentioning that if the dynamical system dx
dt = ∑m

i=1 x
yiwi

admits a weakly reversible realization consisting of a single linkage class L , such that
for each vertex yi ∈ L , the Eq. 3 in Algorithm 1 has a unique solution, such realization
still can have a positive deficiency. For example, the network in Example 4.9 has a
unique solution to Eq. 3 for each vertex yi ∈ L , but it has deficiency one.

Example 4.5 Consider the matrices corresponding to the source vertices and net reac-
tion vectors given by

Y s =
(
1 2 2
0 0 1

)
, and W =

(
1 0 −1
0 1 −1

)
. (24)

respectively, which are inputs to Algorithm 1. These inputs generate the following
system of differential equations

ẋ = x − x2y,

ẏ = x2 − x2y.
(25)

We have n = 2 for two state variables x, y, and m = 3 for two distinct monomials.
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Fig. 3 The deficiency zero
network from Example 4.5

Next, applying line 3 in algorithm on Y s = ( y1, y2, y3), we obtain

B1 =
(
0 1 1
0 0 1

)
, B2 =

(−1 0 0
0 0 1

)
, B3 =

(−1 0 0
−1 −1 0

)
,

and

v∗
1 = (1, 1, 0)T , v∗

2 = (0, 1, 1)T , v∗
3 = (1, 0, 1)T ,

where v∗
i ∈ R3

≥0 and Biv
∗
i = wi , for i = 1, 2, 3.

Then, we can compute that for i = 1, 2, 3,

ker(Bi ) ∩ {z ∈ Rm : zi = 0} = 0, (26)

and derive

S1 = {1, 2}, S2 = {2, 3}, S3 = {1, 3}.

Note that dim(ker(Bi)) = 1. Together with Eq. (26), we deduce that v∗
i is the unique

solution to the equations Biv = wi and vi = 1 for i = 1, 2, 3. Therefore, we do not
need to execute the inner loop given by lines 9-17 in Algorithm 1.

Following line 20, we construct the Kirchoff matrix:

Q =

⎛

⎝
−1 0 1
1 −1 0
0 1 −1

⎞

⎠ .

It is easy to check that ker(Q) = span{(1, 1, 1)ᵀ}, and we deduce that

dim(ker(Q)) = 1, and supp(ker(Q)) = {1, 2, 3}.

Therefore, we conclude that the system given by (25) admits a weakly reversible
realization with a single linkage class, whose E-graph is shown in Fig. 3.

Example 4.6 Consider the matrices of source vertices and net reaction vectors given
by

Y s =
(
1 2
0 0

)
, and W =

(−1 1
0 0

)
. (27)
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respectively, which are inputs to Algorithm 1. These inputs generate the following
system of differential equations

ẋ = −x + x2,

ẏ = 0.
(28)

We have n = 2 for two state variables x, y, and m = 2 for two distinct monomials.
Next, following line 3 in algorithm on Y s = ( y1, y2), we obtain

B1 =
(
0 1
0 0

)
, and B2 =

(−1 0
0 0

)
. (29)

However, there does not exist a positive vectorv∗,which solves B1v
∗ = w1. Therefore,

there exists no weakly reversible realization consisting of a single linkage class that
generates the dynamical system given by Eq. 28.

4.2 Weakly reversible deficiency one realizations consisting of a single linkage
class

In this section, we analyze the case when a dynamical system admits a weakly
reversible deficiency one realization consisting of a single linkage class.

If a reaction network satisfies the conditions of the Deficiency One Theorem, then
every stoichiometric compatibility class contains a unique positive steady state (if it
exists) [9, 21]. On the other hand, for any weakly reversible network, there always
exists a positive steady state within every stoichiometric compatibility class [22]. It
is easy to check that every weakly reversible deficiency one network with a single
linkage class must satisfy all conditions in the Deficiency One Theorem. Therefore,
we get the following Lemma.

Lemma 4.7 For a weakly reversible deficiency one network consisting of a single
linkage class, there exists a unique positive steady state within every stoichiometric
compatibility class.

This explains the importance of discovering weakly reversible deficiency one real-
izations with a single linkage class. Moreover, we introduce the next Lemma showing
the existence of a vector in line 3 of Algorithm 1.

Lemma 4.8 Consider a weakly reversible and deficiency one reaction network G con-
sisting of a single linkage class given by L = { y1, . . . , ym}. Let {w1, . . . ,wm} denote
the net reaction vectors corresponding to these vertices. Define thematrix Bi ∈ Rn×m,
with kth column Bi,k := ( yk− yi ) for 1 ≤ k ≤ m.For each vertex yi ∈ L, the following
system

Biv = wi ,

vi = 1, and v ∈ Rm
≥0.

(30)

has at most two linearly independent solutions.
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Proof For each vertex yi ∈ L , we denote the stoichiometric subspace by S, such that

S = span{ yk − yi }mk=1. (31)

Since G has a single linkage class and deficiency one, we obtain

δ = 1 = m − 1 − dim(S). (32)

This shows that

dim(span{ yk − yi }mk=1) = dim(S) = m − 2. (33)

From the Rank-Nullity Theorem, dim(ker(Bi )) + dim(Im(Bi )) = m. Since G is
weakly reversible, using Lemma 2.18, we get

dim(Im(Bi )) = dim(S), (34)

thus we obtain that dim(ker(Bi )) = m − dim(S) = 2.
Since Bi,i = 0, we deduce ker(Bi ) has one vector u ∈ Rm such that ui ̸= 0. Then,

we have

dim(ker(Bi ) ∩ {z ∈ Rm : zi = 0}) = 1. (35)

Since the net reaction vectors {wi }mi=1 come from the dynamics generated by the
network G, all of them can be realized. Together with (35), the conclusion follows. ⊓⊔

Example 4.9 Consider the matrices corresponding to the source vertices and net reac-
tion vectors given by

Y s =
(
1 2 2 1
0 0 1 1

)
, and W =

(
1 −1 0 0
0 0 1 −1

)
. (36)

respectively, which are inputs to Algorithm 1. These inputs generate the following
system of differential equations

ẋ = x − x2y,

ẏ = x2 − xy.
(37)

We have n = 2 for two state variables x, y, and m = 4 for four distinct monomials.
Next, applying line 3 in algorithm on Y s = ( y1, y2, y3, y4), we obtain

B1 =
(
0 1 1 0
0 0 1 1

)
, B2 =

(−1 0 0 −1
0 0 1 1

)
,

B3 =
(−1 0 0 −1

−1 −1 0 0

)
, B4 =

(
0 1 1 0

−1 −1 0 0

)
,
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Fig. 4 The deficiency one
network from Example 4.9

and

v∗
1 = (1, 1, 0, 0)T , v∗

2 = (0, 1, 1, 0)T , v∗
3 = (0, 0, 1, 1)T , v∗

4 = (1, 0, 0, 1)T ,

where v∗
i ∈ R4

≥0 with v∗
i,i = 1 and Biv

∗
i = wi , for 1 ≤ i ≤ 4. This implies that this

system has exactly one solution and hence illustrates Lemma 4.8.
Then, we get the initial Si for 1 ≤ i ≤ 4,

S1 = {1, 2}, S2 = {2, 3}, S3 = {3, 4}, S4 = {1, 4}.

After executing the inner loop in lines 9–17, we do not have any update on Si .
Now we follow line 20, and construct the Kirchoff matrix:

Q =

⎛

⎜⎜⎝

−1 0 0 1
1 −1 0 0
0 1 −1 0
0 0 1 −1

⎞

⎟⎟⎠ .

It is easy to check that ker(Q) = span{(1, 1, 1, 1)ᵀ}, which shows

dim(ker(Q)) = 1, and supp(ker(Q)) = {1, 2, 3, 4}.

Therefore, we conclude that (37) admits a weakly reversible realization with a single
linkage class, whose E-graph is shown in Fig. 4.

Example 4.10 Consider the matrices corresponding to the source vertices and net reac-
tion vectors given by

Y s =
(
1 2 3

)
, and W =

(
1 1 −1

)
. (38)

respectively, which are inputs to Algorithm 1. These inputs generate the following
differential equation

ẋ = x + x2 − x3. (39)

We have n = 1 for the state variables x , and m = 3 for three distinct monomials.
Next, applying line 3 in algorithm on Y s = ( y1, y2, y3), we obtain

B1 =
(
0 1 2

)
, B2 =

(−1 0 1
)
, B3 =

(−2 −1 0
)
,
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Fig. 5 The deficiency one
network from Example 4.10

and

v∗
1 = (1, 1, 0)T , v∗

2 = (0, 1, 1)T , v∗
3 = (0, 1, 1)T ,

where v∗
i ∈ R3

≥0 and Biv
∗
i = wi , for i = 1, 2, 3.

Then, we get the initial Si for i = 1, 2, 3,

S1 = {1, 2}, S2 = {2, 3}, S3 = {2, 3}.

Following the inner loop in lines 9-17, we can compute that

B1v
1 = w1, with v1 = (1, 0, 1/2)ᵀ,

B2v
2 = w2, with v2 = (1, 1, 2)ᵀ,

B3v
3 = w3, with v3 = (1/2, 0, 1)ᵀ.

This shows that this systemhas two linearly independent solutions and hence illustrates
Lemma 4.8.

After updating Si with vi for i = 1, 2, 3, we derive

S1 = S2 = S3 = {1, 2, 3}.

Now we follow line 20, and construct the Kirchoff matrix:

Q =

⎛

⎝
−2 1 1
1 −2 1
1 1 −2

⎞

⎠ .

It is easy to check that ker(Q) = span{(1, 1, 1)ᵀ}, and we deduce that

dim(ker(Q)) = 1, and supp(ker(Q)) = {1, 2, 3}.

Therefore, we conclude (39) admits a weakly reversible realization with a single
linkage class, and the E-graph of the maximal realization is shown in Fig. 5.

4.3 Weakly reversible realizations with a single linkage class and arbitrary
deficiency

Now we list some properties of weakly reversible realizations of arbitrary positive
deficiency consisting of a single linkage class.
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Table 1 .

Reactions in G Reactions in G̃

X1 + X2
k1−→ 2X1 + X2

X1 + 2X2
k1−→ 2X1 + X2

X1 + X2 + X3
k1−→ 2X1 + X2

X2 + X3
k2−→ 2X2 + X3

X2 + 2X3
k2−→ 2X2 + X3

X1 + X2 + X3
k2−→ 2X2 + X3

X3 + X1
k3−→ 2X3 + X1

2X1 + X3
k3−→ 2X3 + X1

X1 + X2 + X3
k3−→ 2X3 + X1

X1 + X2
k4−→ X1 + X2 + X3

X1 + 2X2
k4−→ X1 + X2 + X3

2X1 + X2
k4−→ X1 + X2 + X3

X2 + X3
k5−→ X1 + X2 + X3

X2 + 2X3
k5−→ X1 + X2 + X3

2X2 + X3
k5−→ X1 + X2 + X3

X1 + X3
k6−→ X1 + X2 + X3

X1 + 2X3
k6−→ X1 + X3 + X3

2X1 + X3
k6−→ X1 + X2 + X3

Ourmotivation comes from autocatalytic networks, which are often associated with
the context of the origin of life models [23–26]. Owing to their autocatalytic nature,
the concentrations of species in these networks can go unbounded. The crucial com-
ponent in their analysis is the dynamics corresponding to the relative concentration
of species. Given species X1, X2, . . . , Xn with concentrations x1, x2, . . . , xn , the rel-
ative concentration corresponding to species Xi is given by (

∑n
i=1 xi )

−1xi . It can
be shown that for certain autocatalytic networks, the dynamics corresponding to the
relative concentration of species can be generated by a reaction network [27].

In particular, we present an example of an autocatalytic network such that the
network corresponding to the relative concentration of species is weakly reversible
and consists of a single linkage class. Table 1 illustrates this fact. The left column of
the table describes the reactions in G, which is an autocatalytic network. The right
column of the table describes the reactions in G̃, which is the network corresponding
to the relative concentration of species in G. The reactions in G̃ are obtained in the
following way: for every reaction in G, there exists a corresponding pair of reactions
in G̃ that is generated using [27, Theorem 3.5]. In particular, the reactions in G̃ are
generated by adding all possible species to the reactants of the corresponding reaction
in G.

The network G̃ is depicted in Fig. 6a. Note that the deficiency of G̃ is given by
δ = 7 − 1 − 3 = 3. Using some modifications, we can construct a network shown
in Fig. 6b which generates the dynamics as Fig. 6a. Figure 6b is a weakly reversible
network consisting of a single linkage class. By [10], the dynamics generated by it is
permanent. This implies that the dynamics generated by G̃ is also permanent.
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Fig. 6 a The network G̃ corresponds to the relative concentrations of species in network G. b Splitting
certain reactions in (a) gives a weakly reversible network consisting of a single linkage class. The dynamics
generated by this network is known to be permanent [10]

4.4 Implementation of Algorithm 1

In this section, we discuss the implementation aspects of Algorithm 1. The algorithm
is designed to find a weakly reversible realization consisting of a single linkage class

for dx
dt =

m∑
i=1

x yiwi , and it has three key steps:

1. Check for the existence of a vector v∗ ∈ Rm
≥0, such that for i = 1, . . . ,m,

Biv
∗ = wi .

2. Check for the existence of a vector v ∈ Rm
≥0, such that for i, j = 1, . . . ,m,

Biv = wi , and v j > 0.

3. Check dim(ker(Q)) = 1, and supp(ker(Q)) = {1, . . . ,m}.
In step 1, we compute the positive vector solving Biv

∗ = wi and consider the
implementation as a sequence of linear programming problems. For i = 1, . . . ,m, set
the matrix Bi ∈ Rn×m as in line 2,

Find a vector x,
subject to Bi x = wi ,

x ≥ 0.
(40)

FromLemma 3.2, if there exists some number 1 ≤ i ≤ m, such that there is no solution
for (40), then the implementation fails. Therefore, noweakly reversible realizationwith
a single linkage class exists.

In step 2, we compute the positive vector solving Biv = wi and v j > 0. Recall
that Si = supp(v∗), where v∗ is the vector found in Step 1. For each j = 1, . . . ,m, if
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j /∈ Si , we do the following:

Find a vector x,
that maximizes x j ,

subjected to Bi x = 0,
x ≥ 0, and x j ≤ 1.

(41)

The solution to (41) is the desired vector if its j-th component is positive. Meanwhile,
if the j-th component of the solution is zero, then implementation fails. Furthermore,
we restrict x j ≤ 1 to avoid the risk that x j can be arbitrarily large.

Here we explain why adding the restriction on j-th component in (41) does not
change the solvability of the problem. From j /∈ Si , we have that j is the index such
that v∗

j = 0 where v∗ is the vector found in Step 1. Hence, there must exist a vector
x∗ ∈ Rm

≥0, such that

Bi x∗ = wi , and x∗
j = 0.

Suppose there is a vector x ∈ Rm
≥0, which solves

Bi x = wi , and x j > 0. (42)

Then we can always find a sufficient small constant ϵ with xϵ := (1 − ϵ)x∗ + ϵx,
such that

Bi xϵ = wi , and 0 < xϵ
j = ϵx j ≤ 1.

This implies that if (42) admits a solution, there must exist another solution for (41).
In step 3, the implementation needs a rank-revealing factorization; we need to find

a basis of ker(Q), and then we can check the number of vectors in this basis and their
support. This again can be done by solving a linear programming problem.

5 Discussion

Weakly reversible networks consisting of a single linkage class form an important class
of networks, owing to the robust properties of the dynamical systems they generate.
In particular, the dynamics produced by these networks (according to mass-action
kinetics) is known to be persistent and permanent for all choices of reaction rate
parameters [6, 10].

We describe an algorithm that determines if there exists a weakly reversible realiza-
tion consisting of a single linkage class that generates a given polynomial dynamical
system. Our input consists of twomatrices: a matrix of source monomials and a matrix
containing the corresponding net reaction vectors. The algorithm outputs a maximal
weakly reversible realization consisting of a single linkage class (if one exists), which
generates the dynamical system formed by the inputs. We also describe approaches
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for efficient implementations of this algorithm; in particular, we show that all the key
steps in our algorithm reduce to solving simple linear programming problems.

Other approaches for finding weakly reversible realizations of polynomial dynami-
cal systems are based primarily on mixed integer programming methods [28–31]. The
algorithm we describe here uses a simpler greedy approach, which works specifically
because we are looking for realizations consisting of a single linkage class.

At the same time, our algorithm lays down the foundation for some future work. In
particular, extending our algorithm to check the existence of more general realizations
(e.g., weakly reversible realizations with multiple linkage classes that satisfy other
desirable properties) is a potential avenue worthy of exploration. More specifically,
the problem of finding weakly reversible realizations that satisfy the conditions of the
Deficiency One Theorem [9] is a possibility that will be explored in a follow-up paper
[32].
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