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Abstract

Within-species trait variation may be the result of genetic variation, environmental
variation, or measurement error, for example. In phylogenetic comparative studies, failing
to account for within-species variation has many adverse effects, such as increased error
in testing hypotheses about evolutionary correlations, biased estimates of evolutionary
rates, and inaccurate inference of the mode of evolution. These adverse effects were
demonstrated in studies that considered a tree-like underlying phylogeny. Comparative
methods on phylogenetic networks are still in their infancy. The impact of within-species
variation on network-based methods has not been studied. Here, we introduce a
phylogenetic linear model in which the phylogeny can be a network to account for
within-species variation in the continuous response trait assuming equal within-species
variances across species. We show how inference based on the individual values can
be reduced to a problem using species-level summaries, even when the within-species
variance is estimated. Our method performs well under various simulation settings and
is robust when within-species variances are unequal across species. When phenotypic
(within-species) correlations differ from evolutionary (between-species) correlations,
estimates of evolutionary coefficients are pulled towards the phenotypic coefficients for all
methods we tested. Also, evolutionary rates are either underestimated or overestimated,
depending on the mismatch between phenotypic and evolutionary relationships. We
applied our method to morphological and geographical data from Polemonium. We find
a strong negative correlation of leaflet size with elevation, despite a positive correlation
within species. Our method can explore the role of gene flow in trait evolution by
comparing the fit of a network to that of a tree. We find marginal evidence for leaflet
size being affected by gene flow and support for previous observations on the challenges
of using individual continuous traits to infer inheritance weights at reticulations. Our
method is freely available in the Julia package PhyloNetworks.

1. Introduction

Phylogenetic Comparative Methods (PCM) are used to test
hypotheses about the evolution of traits, using a time-
scaled phylogeny to account for shared ancestry among
species. For example, we consider here whether the evolu-
tion of leaflet size was correlated with biogeography, no-
tably elevation and latitude, in the plant genus Polemonium.
To address this question, we need to account for the cor-
relation between species using their phylogenetic relation-
ships. In this work, we deal with two complications: gene
flow occurred in Polemonium (Rose et al., 2021), and leaflet

size, elevation, and latitude vary greatly among individual
plants within a species.

Within-species trait variation is conventionally referred
to as “measurement error” (e.g., Ives et al., 2007; Silvestro
et al., 2015), which is a misleading term because it is too
narrow. Models for trait evolution consider the mean value
of a trait across a species, but this mean is usually calcu-
lated from a sample of individuals, not from the whole pop-
ulation. For most traits, individuals vary within a species,
so the sample mean inevitably differs from the true species
mean. Within-species trait variation can be due to many
factors such as genetic differences, plasticity, and envi-
ronmental variation within a species, variation within the
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lifespan of an individual, or error in the act of measure-
ment.

When the phylogeny is a tree, failure to account for
within-species trait variation can lead to increased type-1
error (Harmon & Losos, 2005), biased and imprecise para-
meter estimates (Ives et al., 2007), and model selection bi-
ased towards more parameter-rich models (Cooper et al.,
2016; Silvestro et al., 2015).

The impact of ignoring within-species trait variation has
not been documented when the phylogeny is a network,
with reticulations that can represent events such as gene
flow or hybrid speciation. This is understandable since both
theory and implementation of PCMs for networks are still
in their infancy (Bastide et al., 2018; Solis-Lemus et al.,
2017). However, as patterns of reticulate evolution are in-
creasingly being tested to explain phylogenetic discor-
dance, it is crucial that the current suite of network-PCMs
be expanded to account for within-species trait variation
and that the impact of this variation on inference be quan-
tified in the context of reticulate evolution. In addition to
better accounting for phylogenetic relatedness than tree-
based PCMs, PCMs on networks can address new questions.
For example, we quantify here the evidence that leaflet
length was influenced by gene flow.

1.1. Existing approaches

We restrict our attention to regression PCMs, in which a re-
sponse trait y (such as leaflet size) is modeled as a linear
function of one or more predictor traits (such as elevation
and latitude):
y=zB+e 1)

In this traditional model (Martins & Hansen, 1997), y and
z contain the species means of the response and predictor
traits. The residual terms in € capture the phylogenetic cor-
relation between species, based on a given phylogeny and
an evolutionary model. Under the Brownian motion (BM)
model on a tree, e ~ N (0,02V) where V contains the times
of shared ancestry as determined from the phylogeny, and
o? is a rate of variance accumulation (Harmon, 2019). On a
network, a hybrid’s traits are taken to be a weighted aver-
age of its parents’ traits (see Discussion), and this may de-
fine multiple paths from the root to a given species. In this
case, V contains the expected length of the shared paths,
which can be computed efficiently without having to enu-
merate all the paths (Bastide et al., 2018). Beyond the BM,
more flexible models can provide a continuum between low
and high phylogenetic correlation like the Ornstein-Uhlen-
beck model (Hansen & Martins, 1996) or Pagel’s A (Pagel,
1999). For these models, the phylogenetic covariance be-
tween species Vp is parametrized by model parameters 6.

In (1), each species contributes a single value for each
trait. Typically, a species’ trait value is taken to be the value
from one individual, or the mean over a sample of individ-
uals, and this sample mean is effectively treated as the true
species mean. To model within-species variation, we can
expand (1) to model individual values rather than species
means:

Yij = TP+ e+ 0y (2)

where y;; is the response of individual j in species 4, z; con-
tains the predictors for species ¢, and §;; is the difference
between y;; and the mean in species i. These §;; values cap-
ture within-species variation in the response trait and are
typically assumed to be independent and normally distrib-
uted. As in (1), the ¢; values capture between-species corre-
lation due to shared ancestry. This model was used by Ives
et al. (2007), whose approach is now implemented in the R
package phytools, for instance (Revell, 2011). In their ap-
proach, the within-species error variance is estimated sep-
arately for each species and supplied by the user (as-is or
via a sample from each species). These estimated variances
are then “plugged-in” as true population variances, ignor-
ing their estimation error.

As an alternative to this “plug-in” approach, a joint es-
timation is used by several methods when a single obser-
vation per species is available (j = 1 only in (2)), such as
the phylogenetic mixed model (PMM) (Housworth et al.,
2004; Lynch, 1991) or phylolm (Ho & Ané, 2014). With a
single value per species, the covariance of the total error
term ¢; + §;; includes between-species correlations (for ¢)
plus an independent error variance (for §) assumed equal
across all species. All variance components are then esti-
mated jointly, most often by maximum likelihood. With a
single observation per species, there is no direct informa-
tion about the variability within a species. Consequently,
the “within-species variation” captured by this approach
includes, in fact, any other variation that is independent
across species not already accounted for by the between-
species model. On an ultrametric tree, this approach is
equivalent to Pagel’s A model (Housworth et al., 2004; Lev-
enthal & Bonhoeffer, 2016). With more than one observa-
tion per species and the same individuals observed across
all variables (response and predictors), an alternative to re-
gression (2) is a correlation framework to model within-
species variation in all variables (Felsenstein, 2008; Ives et
al., 2007). In that approach, a model is assumed for the
evolution of all variables (rather than for residuals only),
and between-species relationships are represented by phy-
logenetic covariances between traits instead of the B coef-
ficients. In addition, within-species relationships are rep-
resented by a multivariate phenotypic covariance matrix,
whereas (2) has univariate within-species variation in the
response only.

For a list of implementations that account for within-
species variation, see Table 7.1 of Garamszegi (2014). All of
them assume the phylogeny to be a tree. The Julia pack-
age PhyloNetworks (Solis-Lemus et al., 2017) is currently
the only available implementation for PCMs on a network.
Prior to this work, PhyloNetworks could not account for
within-species variation in the response trait other than in-
directly via Pagel’s A model.

1.2. Our contributions

We derived and implemented methods for model (2) along
a phylogenetic network to estimate between-species and
within-species variation in the response trait, linear regres-
sion parameters, and allow for possible reticulations in the
phylogeny. Our method requires that at least one species
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has multiple individual observations. As other regression
methods based on (2), we focus on estimating the evolu-
tionary (between-species) relationships expressed by the g
coefficients. Phenotypic (within-species) relationships be-
tween traits are not modeled as (2) uses the predictors via
their species means only.

Our method differs in three main aspects from the most
widely used implementations for trees. First, our method
allows for one or more species to have a single observation,
as is frequent in empirical data sets. This flexibility is linked
to our assumption that all species share the same within-
species variance of the response trait. We find that our
method is robust to a violation of this assumption. Second,
we do not assume that the error in sample means is per-
fectly known. Instead, the true within-species variance is
estimated jointly with all other parameters. Finally, our im-
plementation uses restricted maximum likelihood (REML)
by default as an alternative to maximum likelihood (ML)
(Harville, 1974; LaMotte, 2007; Patterson & Thompson,
1971). REML is known to help correct the underestimation
of variance components typical of ML. For instance, Hous-
worth et al. (2004) and Ives et al. (2007) showed that REML
provides a less biased estimate of the total phenotypic vari-
ance and phylogenetic signal. Our implementation takes in
individual-level data. This suggests a high computational
cost. For example, with 30 species and 10 individuals per
species, the input has 300 rows instead of 30 if the data
were summarized by species means. As covariance matrices
scale with the square of the number of rows, the cost of
dealing with a much larger covariance matrix may be prob-
lematic. In this work, we show that the calculations for
jointly estimating all parameters can be reduced to a com-
putational complexity that scales with the number of
species only. In fact, we show that the likelihood and re-
stricted likelihood can be computed directly from the sam-
ple means, sample sizes, and sample standard deviations of
each species. Hence, our implementation also admits this
set of species-level information as input.

In the rest of the paper, we first explain the model, its
assumptions, our derivations to lower the computational
complexity of the (restricted) likelihood, and derivations for
the reconstruction of species means. We present a thorough
simulation study to assess the method’s accuracy and ro-
bustness to assumption violations and then illustrate the
method to study leaflet size evolution in Polemonium,
whose history was shown to involve reticulation (Rose et
al., 2021).

2. Methods
2.1. Model

Model (2) models within-species variation in the response
variable via the §;; term specific to individual j in species
i. Let n be the number of species. We assume that we have
data on m; individuals from species 7, and that m; > 2 for
at least one species. We focus on the evolutionary corre-
lation between the response and predictor(s), that is, the
correlation over evolutionary time between the response
and predictor species means. However, phenotypic (within-

species) correlation can differ considerably from evolution-
ary correlation (Felsenstein, 1988; Goolsby et al., 2016).
For example, longevity tends to increase with body mass
across species but decrease with body mass within a species
(Garamszegi, 2014). To capture evolutionary correlations
specifically, (2) uses the predictors’ species means, ignoring
within-species variation for predictors.

We assume a time-scaled phylogeny including the n
species of interest. If the phylogeny is a network (also
called admixture graph), each reticulation appears as a
node with multiple parent edges, to represent an admixed
population with genetic material from multiple parental
lineages. The population inherits from each parent a pro-
portion of genes, and inheritance proportions are assumed
to be known. This event at a fixed time point is a simplified
model for processes such as hybridization, horizontal gene
transfer, or gene flow that can happen over a period of time
(Huang et al., 2022).

For trait evolution, we assume a Gaussian model for
the species-level residuals, such as Brownian motion (BM),
Ornstein-Uhlenbeck (OU), or Pagel’s A (P)A). For now the
OU model is not implemented in PhyloNetworks, though
the subsequent derivations would equally apply. From this
model and the phylogeny, we get the n-by-n unscaled co-
variance matrix V, which may depend on some parameters,
like the selection strength « (or phylogenetic half-life) for
the OU process. For the BM on a tree, the unscaled covari-
ance V;; between species i and & is the length of the shared
path from the root to the most recent common ancestor of
7 and k. To extend the BM to networks, we follow Bastide et
al. (2018). At a reticulation, the mean of the admixed pop-
ulation is taken to be the weighted average of the parental
populations’ means. The inheritance proportions are used
as weights, as is reasonable for polygenic traits controlled
by many additive genes. Under this model, V' can be calcu-
lated in linear-time with a single traversal of the network
(Bastide et al., 2018).

The evolutionary relationships are captured by a model
on the true species means:

y=zf+e€

where y is the vector of the n true but unobserved species
means for the response trait,  is an n x p matrix of predic-
tors (including a column of ones for the intercept), B is the
vector of the p regression coefficients, and e are species-
level residuals, assumed to be phylogenetically correlated:
€ ~ N(0,02V). Under a BM, o? is the variance rate for the
between-species residuals.

But y is unobserved. Instead, we observe a larger vector
Y containing the response trait of sampled individuals.
With N = m + - - - + m, individuals total, Y is a vector of
length N, built by stacking the values from each species
above one another. We can similarly stack the ¢;; values
from (2) into a vector A of length N, starting with the m;
values from species i = 1 followed by the m, values from
species ¢ = 2 and so on. We can then write (2) in matrix
form as follows:

Y=Z(zf+¢€)+A (3)
where Z is the N x n model matrix that lifts a vector of
species values into a vector of individual values by repeat-
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ing the species 7 value m; times. Namely, Z is made of
n blocks stacked above one another, with block i of size
m; X n, filled with zeros except for column : filled with
ones. More specifically, Zri=1 if
mi+---+m;_ 1 <k<m;+---+m; and Z]m‘ = 0 other-
wise.

Like earlier, we assume that the deviations from the
linear relationship are phylogenetically correlated at the
species-level: € ~ N(0,07V). We further assume that the
added within-species variation is independent with a com-
mon within-species variance o2: A ~ N (0,0%Iy) where
Iy isthe N x N identity matrix. We can then write the full
N x N covariance matrix of the total residual Ze + A as

oiW, withW, =2ZVZ +nly

where n = 02, /o?.
2.2. Parameter estimation

If we knew 7 and any evolutionary parameters for V, then
(3) would be a standard linear model with known covariance
and the following generalized least squares estimator for 8:

Bn) = (X'W,'X) " X'W,'Y (4)
where X = Zz. The above expression is rather unwieldy
since it involves inverting and multiplying the large N x N
matrix W,. Fortunately, we show in appendix A that this
expression can be simplified to:

Bn) = (z'V,'z) =V, 'y (5)
where y are the observed species means of the response
trait and V;, is n x n (much smaller than W) given by

V,=V+nD! (6)
where D is the n x n diagonal matrix with the sample sizes
on its diagonal: D;; = m;. Note that V; = V corresponds to
no within-species variation.

The estimation of the variance components o, o2
(hence their ratio ) and any parameters in ¥V can be done
via ML or REML. This is done by optimizing the correspond-
ing likelihood criterion (twice the negative log likelihood)
as a two-step approach. First, we fix  (and any parameters
for V) and optimize the other parameters to obtain the pro-
file criterion. In appendix A, we show that this profile crite-
rion can be expressed using the smaller matrix V,, instead
of the larger matrix W, to lower the computational task:

£n1(n) = du log 27 + dugy log 62 (1) + dim

< 7
+(an)logn+210gmi+log|Vn\ (7)
i—1
Zreml (T)) = dreml IOg 2m + dreml IOg 6-% (T’) + dreml
+ (N —n)logn+ Zlogmi +log|Vy| (8)
i=1
—log|2'V, 'z|
where &7 (n), defined in (9) below, depends on the criterion
via the corresponding degree of freedom: d,, =N or
dreml =N- D.
We first estimate 7 (and other parameters for V') as the
value that minimizes ¢ above. Then, we plug 7 in the esti-
mate of o? given n:

52n) = (7 1SSW + [g— sBn)y)/d  (9)

where SSW = Y7 | >, (yi; — ¥;)* is the sum of squared
residuals within species, d is dm oOr diem, and
[ul3s = w'M 'u. Finally, we use 67 = 6%() to estimate
the within-species variance 62, = 762, and plug 7 in (5) to
estimate the regression coefficients.

For inference about phylogenetic coefficients 8, we im-
plemented confidence intervals and hypothesis tests based
on n — p degrees of freedom for o2. These are approximate
because 7 needs to be estimated (see appendix B). For more
general model comparisons, we also implemented likeli-
hood ratio tests.

2.3. Species means reconstruction

Conditional on our estimate of n (and of other parameters
for V), we can use our model to estimate the true species
mean for any species in the phylogeny. For ancestral
species, this task is traditionally called “ancestral state re-
construction”. This task also applies to extant species, to
predict their mean based on their predictor values and data
from closely related species.

Recall that y and y denote the true (unobserved) and the
observed means for the species with data. We further con-
sider the true means g, of a set of species for which a pre-
diction is desired. This set may include ancestral species,
extant species with missing response data, or species with
observed data. We assume that we know their predictor val-
ues, which we call z,. For ancestral species, this is a very
strong assumption, although it is reasonable if the predic-
tor set is limited to the intercept column of ones or to dis-
crete predictors that evolve sufficiently slowly for a reliable
prediction in clades without variation. Another caveat, if
using more than an intercept, is that the evolutionary re-
gression (3) fitted to present-day species may not apply to
past species. For example, consider a predictor X evolving
according to a BM and a response Y adapting to it via an OU
process with optimum by + b; X that varies over time as X
evolves. Due to the lag time for adaptation, the “evolution-
ary slope” for X in B is attenuated from the “optimal slope”
b1 by a factor that depends on the strength of adaptation
and the height of the phylogeny (Hansen et al., 2008). As
this attenuation depends on the time from the root, iner-
tia affects ancestral species more than present-day species
under this BM-OU model, and extrapolating our regression
model to ancestral states should be taken with caution. We
recommend using an intercept only for predicting ancestral
states. Using other predictors should be limited to predict
the mean of present-day species or when there is evidence
of fast adaptation and reliable knowledge of the predictors’
ancestral states.

Based on our model (3) we have that:

51 (el v))

where V,, is given in (6), V} is the phylogenetic covariance
among species for which prediction is sought, and V. is
the cross-covariance of the true means between the set of
species to predict and the set of species with data. Given
knowledge of y, the conditional distribution of g, is also
Gaussian with mean
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no(B) = zoB + VoV, '(y — zB)

and (co)variance, or prediction error variance:
2 =op(Vo - V.V, 'V)).

Conditional on n and parameters for V, po(B) is the best
linear unbiased predictor for yo. The prediction error
Yo — ;;,0([9) has variance equal to X plus an extra term due
to estimating B (Christensen, 2001) given in appendix C.1.
If this prediction variance is ; for species ¢ (which may
be an ancestral or extant), then an approximate prediction
interval for the true mean of that species is u;(8) + ¢ Vb,
where t is the quantile corresponding to the desired confi-
dence level from the T-distribution with degree of freedom
associated with 67 (see appendix C.2).

We note that if we have data for species 4, then u;(8)
is not necessarily equal to the sample mean y,;. This is
because the prediction is influenced by data from closely
related species. Appendix C.3 illustrates this on a simple
3-species example. If many individuals are observed for a
given species, then the prediction of the true mean for that
species is very close to its sample mean. If few individu-
als are observed instead, the predicted mean is also influ-
enced by the linear relationship with the predictors for that
species and by observations from closely related species.

2.4. Within-species variation in predictors

The model described above ignores within-species varia-
tion for predictors to focus on their evolutionary relation-
ship with the response trait. Indeed, the evolutionary (be-
tween-species) and phenotypic (within-species)
relationships can be different. At the extreme, two traits
can be negatively correlated within each individuals
species, yet positively correlated evolutionarily (Garam-
szegi, 2014, Fig. 7.2). However, if the phenotypic and evo-
lutionary relationships are similar, then some information
about this common relationship is lost when ignoring
within-species (phenotypic) variation in predictors.

If one is willing to assume that the regression coeffi-
cients B are shared within and between species and if there
is within-species variation in one or more predictors, then
it is appropriate to consider the individual values for each
predictor without summarizing the predictor data to a sin-
gle average value per species. Accordingly, we consider the
following model:

Y=XB8+Ze+ A (10)
where Z, €, and A are as before. Here, the matrix of pre-
dictors X contains values at the individual level, where
different individuals from the same species may have dif-
ferent values. In contrast, (3) imposes the constraint that
X = Zz. Note that (10) has the same parameters as (3)
and the same variance oW, for the total residual Ze + A,
where W,y = ZVZ' 4+ nly.

If we assume that V is from a BM and has no extra pa-
rameter, then this model is equivalent to Pagel’s A model
(Pagel, 1999) on an expanded network that has one leaf
per individual, if the network is ultrametric (all leaves are
equidistant from the root). Indeed, consider the expanded
network constructed from the species network as follows:
for each ¢, change the tip for species ¢ in the original net-

work into an internal node, then graft on this node m; ex-
ternal edges of length 0 (creating a polytomy of m; > 3 or a
degree-2 node if m; = 1) and label each new tip with an in-
dividual sampled from species i. This zero-length extension
is similar in spirit to the approach by Felsenstein (2008).
Then, the BM covariance under this expanded network is
exactly ZV Z' = W,. Bastide et al. (2018) described Pagel’s
A model on a network, which requires that the network be
time-consistent (any two paths from the root to the same
end node have the same length). If the distance from the
root to every leaf is h (for height), then Pagel’s A covariance
is

a3 AWy + (1 — MhIy) (11)
where o3 controls the total variance from the root to the
tips, and ) is the proportion explained by the phylogeny. No
phylogenetic signal corresponds to A = 0 with independent
observations, while A = 1 corresponds to the BM. The vari-
ance from (10) equals that from Pagel’s A in (11) if we repa-
rametrize the variance components as follows: of = Ao?
and 02, = (1 — A)ho3, hence n = k(1 — X)/A.

In practice, we can fit (10) by expanding the network and
using the routine developed by Bastide et al. (2018) under
Pagel’s A (which we expanded to allow for the REML crite-
rion) then re-expressing the variance parameters in terms
of between and within-species variances.

Since (10) is used with a BM model, and the coefficients
B are assumed to apply both between species and within
species, this model corresponds to a BM with a phenotypic
relationship constrained to match the evolutionary rela-
tionship. Therefore, we abbreviate this model as BM;heno
later.

It is worth noting that the degrees of freedom for testing
hypotheses about g is larger in model (10) than (3) because
B is an individual-level parameter in (10) as opposed to
a species-level parameter in (3). Intuitively, (10) makes a
stronger assumption with respect to 8, and, accordingly,
it allows for a more powerful statistical test. Note that, in
both models, these tests are only approximate because the
variance ratio 7 is estimated. Tools for mixed linear mod-
els, such as Satterthwaite’s or Kenward-Roger’s approxima-
tion (see e.g., R package 1merTest, Kuznetsova et al., 2017),
or bootstrap approaches could provide more accurate con-
fidence intervals for fixed effects and variance parameters.

2.5. Simulations

To quantify the performance of our method and its robust-
ness to assumptions, we used PhyloNetworks to simulate
trait data on a network with 3 reticulations. We used the
17-taxon network on the flowering plant genus Polemonium
estimated by Rose et al. (2021). We calibrated it following
the approach described in Bastide et al. (2018) to obtain
branch lengths proportional to time instead of branch
lengths in coalescent units. The resultant network is shown
in Figure 1.

We describe here the most general form of our simula-
tion model, which allows for model violation via within-
species variation in the predictor and possible phenotypic
correlation. Since the simulated phenotypic and evolution-
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ary correlations may differ, our simulation model is similar
to the PMM (Lynch, 1991), which has separate trait covari-
ances for the heritable and non-heritable components (but
uses a single value per species).

We simulated one predictor X with a BM with variance
rate o; , and within-species variance o7, :

X=2Zz+A, withz~N(0,07,V) (12)
and with A, ~ N (0,02, ,Iy). We then simulated the re-
sponse Y as a linear function of the true species mean of
X, an additional phylogenetic component between species,
and within-species variation possibly correlated with the
within-species variation in X:

Y= Z(ﬁlz + 63}) + IBZA:L‘ + Ay

with €, ~ N(0,03 V) from a BM with rate o},
A, ~ N(0,R) is within-species variation independent of
the predictor, using R = aﬁwI w as in our estimation model,
unless otherwise noted. In some simulations, we set R to
be diagonal with different entries for different species, that
is, unequal within-species variances. With these notations,
the true species means for the response are y = 51z + €.

Our model (3) allows for an intercept, which we fixed to
Bo = 0in our simulations. Our model does not make any as-
sumption on X but assumes that the species means z are
observed. This is the case if o2, , = 0, which implies that
A, =0 and B, becomes irrelevant. If afm > 0, then z is
unobserved, and the sample species means for X need to
be used for estimation instead. In that case, our simula-
tions violate the assumptions of our model. The phyloge-
netic and phenotypic relationships are equal if 5; = (5, as
assumed in (10) by our A-model on the expanded network.

In all of our simulations, we set aiz =2, Ug,y =1, and

(13)
and

B1 = 1. We set the sample sizes m; and other parameters

according to various settings, as described below, and sim-
ulated 500 data sets for each combination of parameters.

We then estimated the model parameters using various
methods and ML or REML. Namely, we used the BM or
Pagel’s A model that use species means, which we abbre-
viate as BM, and P\, (where “n” stands for “no” within-
species variation). We also used model (3) under a BM,
which we abbreviate as BM, as it accounts for within-
species variation in Y but not in predictors. Finally, we used
the BMppeno model (10), which accounts for within-species
variation in both the response and predictors but constrains
the phenotypic relationship.

2.5.1. Impact of ignoring within-species
variation

To assess the impact of accounting for within-species vari-
ation, we used equal sample sizes m; = m with m = 3 or
8, o2, in {0.4,0.6,0.8} and no model violation: o2, , = 0.
We then compared the estimates obtained with ML versus
REML and the methods that ignore or account for within-
species variation.

2.5.2. Impact of unequal within-species
variances

Our model (3) assumes equal variances within species. To
assess the robustness of our method, we used R diagonal
with entry o2 . for species i. For each simulated data set,
o2, Was set to a “low” value o}, for 9 species and to a
“high” value o7, for 8 species. Species were randomly re-
assigned to a low or high variance for each simulated data

set. Variances (o2, %) were set to (0.2, 0.2), (0.2,0.4), or to
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(0.2,0.8). We then compared the BM methods that account
for within-species variation, with either ML or REML.

We again used equal sample sizes m; = m with m = 3 or
8and o2, , = 0.

2.5.3. Impact of unequal sample sizes

In most empirical data sets, sample size variation can be
substantial, with one or a few individuals from rare species
to hundreds of individuals from abundant species. To assess
the impact of sample size variation, we simulated data un-
der the same settings as in 2.5.1 except for the sample sizes
m;. Like in 2.5.1, the average sample size m was set to ei-
ther 3 or 8. For m ~ 3, species were randomly assigned a
sample size such that 5 species had m; = 1, 6 species had
m; = 3, and 6 species had m; = 5, leading to a total of 53
individuals and m = 3.12. Species were re-assigned to sam-
ple sizes for each simulated data set. For m ~ 8, species
were similarly randomly assigned such that 6 species had
m; = 2, 6 species had m; = 8, and 5 species had m; = 15,
for a total of 135 individuals and m = 7.94.

We compared the ML and REML methods that account
for within-species variation in this setting to the setting
when all m; = 3 or all m; = 8 from earlier.

2.5.4. Within-species variation in the predictor

Our method assumes no within-species variation in X. If
present, this variation is ignored in practice, and, the sam-
ple species means are used for X. To assess robustness to a
violation of this assumption, we simulated data as in 2.5.1
except that we set o2, , to be non-zero. Specifically, we set
o2, . = 05, Within-species variation in X was uncorrelated
with Y, that is, we set 85 = 0 to simulate the absence of
phenotypic correlation. We then used the methods that ig-
nore or account for within-species variation in the response

Y, with ML or REML.

2.5.5. Impact of phenotypic correlation

We ran the same basic settings as in 2.5.1, except that
we simulated within-species variation in X and phenotypic
correlation by setting 85 to be in {—1,1, 2}, so that within
each species Y is correlated with X with regression coef-
ficient 3. When 3, is set to 1, the phenotypic and evolu-
tionary coefficients are equal, as assumed by the A\-model
on the expanded network. When S, is set to —1, the pheno-
typic and evolutionary relationships are opposite. Also, we
set m = 8 and o7, , = 407, with o2, set in {0.1,0.15,0.2}.
We used smaller values for o2, here than in 2.5.1 because
the total within-species variance in Y is 8307, , + o7, ,, with
values comparable to that in previous settings.

We then compared the estimates obtained with REML for
methods ignoring within-species variation (BM,, and P\,)
and accounting for within-species variation in Y (BMy) or
in both Y and X (BMpheno)-

2.6. Polemonium leaflet size evolution
2.6.1. Objectives

We applied our method on morphological and geographical
data from the flowering plant genus Polemonium (Polemo-
niaceae). Polemonium is widespread in North America and
northern Eurasia, occurring across a broad latitudinal range
from central Mexico to northern Alaska. Within its range,
species of Polemonium can be found from sea level to the
alpine zone of mountains. Vegetatively, leaves are deeply
dissected (compound) into multiple leaflets. Attendant with
the broad ecological amplitude of the genus is extreme
variation in leaflet size across species, giving an opportu-
nity to explore the relationship between leaflet traits and
ecological predictors while accounting for phylogenetic
correlation among species and trait variation within and
among species.

An overall trend well-demonstrated in the ecological lit-
erature is a decreased size of vegetative structures within
and across species at increasing elevations. It is thought
that the wider boundary layer of large leaves (or their func-
tional analogues) makes heat exchange more difficult, and,
therefore, large leaves are more susceptible to frost damage
than small leaves (Korner et al., 1989; Wright et al., 2017).
Any relationship between morphological traits and eleva-
tion may be confounded by latitude as high latitude com-
munities are expected to be more ecologically similar to
high elevation communities at low latitudes. Specifically,
we hypothesized that leaflet size would tend to be larger
in species found in low elevation, low latitude communities
and smaller in species from high elevation or high latitude
communities.

Because Rose et al. (2021) found evidence for reticulate
evolution in Polemonium, we additionally investigated
whether leaflet size is a trait that could have been carried
along with any gene flow events. Specifically, we can test if
hybridization is useful to explain residual variation beyond
the variation explained by geographical predictors.

Finally, we sought to quantify how modeling choices
may impact conclusions for this dataset. As described be-
low, choices included (1) using ML versus REML, (2) using a
tree that ignores reticulation but has more taxa (therefore
more data) versus using a network that better represents
the phylogenetic signal but has fewer taxa, and (3) account-
ing for or ignoring within-taxon variation.

2.6.2. Polemonium phylogeny

We conducted two sets of analyses, each using one of two
phylogenies from Rose et al. (2021): a 17-taxon species net-
work inferred with SNaQ from 325 nuclear genes (Fig. 1)
and a 48-taxon species tree inferred with ASTRAL from 316
genes (Fig. 2). The taxa in the network are a subset of the
taxa in the tree (tips in blue in Fig. 2) because network in-
ference methods are limited in the number of taxa they can
handle. We pruned all outgroups from the ASTRAL tree. We
then calibrated each phylogeny following the approach de-
scribed by Bastide et al. (2018) to obtain branch lengths
proportional to time. This approach uses the branch
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lengths in substitutions per site in the gene trees while
accounting for gene tree discordance. In total, these two
trees contained up to 30 ingroup accessions that represent
unique taxa (a named species or infraspecific taxon defined
by morphological traits), which we will hereafter refer to as
“morphs”. These morphs may or may not be monophyletic
based on molecular data.

All 17 taxa in the network corresponded to a unique
morph. The tree contained 18 morphs represented by a sin-
gle tip while 12 morphs were represented by two or more
tips, yielding 27 tips that could not be uniquely mapped to
a morph. Because our morphological data is at the species
and not population level (see next), we could not assign
trait values to individual tips of morphs containing multi-
ple samples, and we selected a single tip per morph in all
possible ways. For 8 duplicated morphs, all tips formed a
monophyletic group in the tree. Since the tree is ultramet-
ric, the choice of the representative tip did not affect the
resulting pruned tree, so we chose one tip and deleted the
others. For the 4 non-monophyletic morphs (eximium, pul-
cherrimum p., chartaceum, californicum), each one was rep-
resented by 2 tips. Because the choice of tip affects the co-
variance matrix, we therefore considered the 2% = 16 trees
obtained by choosing one of the 2 tips to represent each
morph, pruning the other one from the tree. Each analy-
sis was repeated on the 16 trees, each with a single tip per
morph. One of these trees is shown in Figure 2.

To assess the signature of reticulation on leaflet evo-
lution, we further considered two trees displayed in the
17-taxon network. First, we considered the major tree ob-
tained by keeping all 3 major hybrid edges (which con-
tributed a proportion of genes v > 0.5 to their child hybrid
node) and deleted the 3 minor hybrid edges (with v < 0.5)
from the network. Second, we considered the “minor” tree
obtained by keeping the minor edges and deleting the ma-
jor hybrid edges from the network (Fig. 1). The SNaQ net-
work and the ASTRAL tree are mostly in agreement. The
major tree differs from the ASTRAL tree in the placement
of P. pectinatum and P. pauciflorum (Fig. 2).

2.6.3. Morphology and geography data

We obtained leaflet length and width, latitude, and ele-
vation data for all 30 Polemonium morphs with molecular
data. Data previously published for a subset of morphs
(Rose, 2021) were combined with newly generated data ob-
tained from imaged specimens from the Consortium of In-
termountain Herbarial, Consortium of Pacific Northwest
Herbariaz, Consortium of California Herbarias, or loans
from other herbarium collections made to JPR. Images were
measured using Fiji (Schindelin et al., 2012), measuring
multiple leaflets per specimen when feasible, and then av-

eraging to obtain a specimen mean. For imaged specimens,
if coordinates were present but elevation was missing, el-
evation was extracted from the WorldClim 2 elevation
shapefile at 30-arc-second resolution (Fick & Hijmans,
2017) using the R package raster (Hijmans, 2020). Leaflet
data was obtained for between 3 to 275 specimens per
morph (Fig. 2, 1757 specimens total). For the BMy model,
we used leaflet size from all 1757 imaged specimens, and
we used the median latitude and elevation for each morph,
calculated using all specimens, imaged or not (> 11000
specimens total, from 3 (latitude) and 5 (elevation) to
> 1300 per morph). For the BMypen, model, we only used
imaged specimens for which latitude and elevation data
could be extracted (997 specimens total, 2-218 per morph).

2.6.4. Comparative analyses

For phylogenetic regression, we considered the following
response variables: log leaflet width, log leaflet length, or
log leaflet area, where the area a was estimated from the
length ¢ and width w assuming an ellipsoid shape:
a = mlw/4. We used the natural log, a choice that impacts
the interpretation of regression coefficients. We log-trans-
formed these variables because their within-morph vari-
ance was strongly positively correlated with the mean, vi-
olating the equal-variance assumptions of our regression
model. After the log transformation, the within-morph
variance was stable across morphs and uncorrelated with
the mean response (Fig. S1).

Using both elevation and latitude as predictors, we ana-
lyzed each measure of leaflet size using BM, with REML on
all phylogenies to investigate leaflet size evolution and the
signature of gene flow.

To assess the impact of model choice, we ran more ex-
tensive analyses on leaflet length since all 3 measures
showed strong positive correlation among themselves (Fig.
S2). For leaflet length we used 6 methods on the full data
set: ignoring (BM,, PA,) or accounting for (BMy) within-
morph variation in leaflet size, using either ML or REML.
We then restricted the data to specimens that had both
morphological and geographical data (997 specimens), so
as to use BM;peno. We also used BMy on this data subset to
see if differences between analyses were driven by model
choice or data reduction.

For each model, we recorded the coefficient estimates
and their p-values, the estimated variance-component(s),
and the Akaike information criterion (AIC) (Akaike, 1974).
For P),, we conducted a likelihood ratio test of A =1 by
comparing P, to the simpler BM,, model.

To study the impact of within-morph variation, we re-
peated the above analyses 100 times, each time using only

1 https://intermountainbiota.org/portal/

2 https://www.pnwherbaria.org/

3 https://ucjeps.berkeley.edu/consortium/
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Figure 2. Calibrated 45-taxon Polemonium tree after removing outgroups from the ASTRAL tree from Rose et al. (2021).

Edge lengths are proportional to time and normalized to a tree height of 1. The tips are labelled with their morph name, possibly with an extra index when multiple tips are from the
same morph (e.g., 4 tips are from vanbruntiae). Morphs sampled in the network (Fig. 1) are in blue. Specimen counts for each morph are shown in parentheses and indicate the tips

retained to prune the tree to one tip per morph in Tables 1, 3, and 4.

a subset of 3 specimens per morph randomly sampled with-
out replacement from each morph.

2.6.5. Leaflet size reconstruction

We demonstrate reconstruction of species means using the
17-taxon Polemonium network and under the BM, model
with REML. To assess the effects of sample size and of
model predictors on the prediction of the true mean for
morphs with observed data, we predicted log leaflet length
for the two morphs with the smallest and the greatest num-
ber of specimens, using or ignoring elevation and latitude
as predictors. To assess the impact of node age on the un-
certainty of the predicted log leaflet length, we measured
the length of the prediction interval at nodes of various
ages: the hybrid node ancestor to elusum, its minor parent,
and the root (Fig. 1). For predicting ancestral states, we
used a model restricted to an intercept only, as recom-
mended above.

3. Results
3.1. Simulations

3.1.1. No within-species variation in the
predictor

Under settings without within-species variation in X (sec-
tions 2.5.1 to 2.5.3), 4; was unbiased (based on testing
IEB; =0 from 500 observed replicates using a t-test:
p > 0.01 in all settings). The accuracy of 31 was comparable
across different models, even with unequal within-species
variances or varying sample sizes (Figs. 3 to 5, top).

Bias in &g’y showed more sensitivity across different set-
tings (Figs. 3 to 5, bottom). Namely, BM,'s estimate of &f’y
with REML was unbiased, even when sample sizes were
variable or when the within-species variance varied across
species. Ignoring within-species variation resulted in over-
estimating &iy, more so at smaller sample sizes. Using ML
instead of REML resulted in lower estimates of &} , espe-
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Figure 3. Simulations with within-species variation in Y, from section 2.5.1.

Top: Estimated slope 3. The true slope 8; = 1 is indicated by a horizontal line. Bottom: Estimated between-species variance rate on a logarithmic scale. The true value ”f,y =1lisin-

dicated by a horizontal line. For each within-species variance o2, and sample size m; per species, the dots and vertical bars respectively indicate the mean and 25th — 75th percentile

wy

of estimates.

cially at smaller sample sizes. This underestimation was
slightly exacerbated when sample sizes were variable.

3.1.2. Within-species variation in the predictor

When within-species variation was simulated for X (sec-
tions 2.5.4 and 2.5.5), 3; was pulled towards the true value
of B,. With no phenotypic correlation, 8y = 0, so Bl was
attenuated towards 0. Since ; = 1, all methods underes-
timated i, especially so with a smaller sample size (Fig.
6, top). In general, the pull towards 3, was similar across
methods that ignore within-species variation in X (BM,
PA,, and BMy, see Figs. 6 to 7, top) and extremely high un-
der BMpheno (M, top).

Like before, using ML instead of REML leads to a smaller
estimate of the evolutionary variance rate ¢; , and ignoring
within-species variation leads to a larger estimate (Figs. 6
to 7, bottom). However, our method BMy gave a biased es-
timate of &3 in the presence of within-species variation
in X, with an upward bias when B = —1, little bias when
Bs = B1 = 1, and downward bias when 85 = 2. This bias was
exacerbated as o2 , increased.
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3.1.3. Impact of within-species variation in X

To theoretically explain the bias in 3; and &iy when within-
species variation in X or phenotypic correlation is mis-
specified by the model, we derived the true distribution of
Y conditional on the observed species means = under our
simulation settings. In appendix D, we show exact expres-
sions that simplify, when m is large or o2, , is low, to:

E(Y | z) = ZE(y | =) with

E(y|Z) =~ iz + (B2 — P1)uV 'z
where u = o7, . /(o7 ;m). This relationship explains why our
assumed evolutionary slope (3; is correctly specified if
m — oo or o2, , = 0 or B, = f1. It also shows that the bias
in Bl is expected to be in the direction of 82 — 31, hence the
pull towards Ss.

For the residual variance, appendix D shows that
var(Y | @) = ZBZ' + (B30, , + 00y In

var(y | ) = = + (B307,, + 0%,) /mIy
2
where X ~ 0} V + B1 (81 — 282) ——I,.
? m

In comparison, our model BM, assumes ¥ = o7 , V. There-
fore, if we focus on the diagonal terms in V' (which are
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Figure 4. Simulations with unequal within-species variances for Y, from section 2.5.2.

About half of species had a “low” variance, and the other half had a “high” variance. Estimation used models accounting for within-species variation but assuming equal variances.

the largest) and their average v, then our model expects
these terms to be around o7 v, while the data will provide

0'2 .
values around aiyi + B1(B1 — 262) —==. Based on these di-

2
by

which explains a positive or nega-

agonal terms only, we can expect 6; to be around

2
Jw z

a3, 1+ B1(B1 — 262) 2=,
tive bias depending on how 3; compares to 23,. If 8, =0,
for example, then we expect a positive bias (overestimation)
as observed in 2.5.4 (Fig. 6, bottom). If 85 = —f1, then we
also expect a positive bias. But if 85 = 28, then we expect
a negative bias (underestimation). This is indeed what we

observed in 2.5.5 (Fig. 7, bottom).
3.2. Polemonium leaflet size

3.2.1. Small leaflets correlate with high
elevation

The 16 ASTRAL subtrees provide extremely similar results,
with parameter estimates that do not exceed 1% difference
among one another (Table S1). Table 1 shows the results
from one of these subtrees, selected because it gave the
lowest AIC for all of the leaflet size variables.

Elevation and latitude correlate negatively with leaflet
size regardless of the measure used for leaflet size (length,
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width, or area) or of the phylogeny (Table 1). Using the net-
work and its 17 taxa, the elevation coefficient is negative
with strong evidence for area and length and moderate ev-
idence only for width. The latitude coefficient is negative
with moderate evidence for all 3 measures of leaflet size.
Using the tree and its larger set of taxa, both elevation
and latitude are negative with very strong evidence for area
and length and strong evidence for width. The p-values are
smaller on the tree than on the network. This is unsur-
prising since the tree has almost twice the number of taxa
(from 17 to 30) and specimens (from 954 to 1757). There-
fore, if a true relationship exists, then the tree is expected
to have more power to detect it unless model misspecifi-
cation due to using a tree causes a decrease in power (if a
true relationship exists) or an increase in type-1 error (if no
relationship exists). Here, the effect of phylogenetic place-
ment is expected to be minor because the network and tree
are in good agreement—the tree pruned to 17 taxa is dis-
played in the network, except for a small change in the po-
sition of pectinatum.

The coefficients are very stable across the two phyloge-
nies. They remain negative across all three responses. The
results for area are consistent with the results for length
and width. On the network, for instance, the elevation coef-
ficients for log(area), log(length), and log(width) in Table 1
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Figure 5. Simulations with unequal numbers of individuals per species, with average m; across species, from section

2.5.3.

Filled dots: all species had equal sample sizes. Empty dots: species had a sample size of 1,3,

translate to an expected decrease in area, length, and width
by approximately 40%, 55%, and 73% for a 1000-meter in-
crease in elevation.” These changes are consistent with one
another since 0.40 ~ 0.55 - 0.73.

The estimated variance components (o7 and ¢2) are also
very stable across the two phylogenies (within 10% of each
other). The ratio of within-to-between species variances,
62 /6%, is relatively stable across measures of leaflet size
(ranging from 0.18 to 0.26).

3.2.2. Gene flow may explain residual variation

To test the importance of gene flow in leaflet size evolution,
we compared the fit of the network to the fit of trees on the
same 17-taxon data. We considered two tree models, us-
ing the “major” and the “minor” trees displayed in the net-
work, representing the largest and the smallest proportions
of the genome respectively, based on inheritance along hy-
brid edges in the network.

or 5when m; = 3 and of 2, 8, or 15 when m; = 8.

Regression coefficients estimated from these trees are
fairly similar to those from the network, and the qualitative
conclusions about evolutionary correlations with elevation
and latitude are mostly unchanged (Table 2 and upper rows
of Table 1 highlighted in cyan). The percent change in
the trees’ estimates compared to the network’s estimates
ranges from 0.09-13% for elevation, 0.93-11% for latitude,
and 0.88-2.0% for o2.

The change in AIC from the network to a tree
A = AIC(tree) — AIC(network) is positive regardless of
which tree or response variable is used, supporting our hy-
pothesis that gene flow explains residual variation—a retic-
ulate network is a better representation of leaflet size evo-
lution than a tree. However, A < 1 in all cases, meaning
that the network is not especially helpful for explaining
residual variation in the model beyond what can already be
explained using either tree. Similarly, the minor tree’s AIC
is better than but close to the major tree’s AIC, suggesting
that the leaflet data is only marginally better explained by
the minor tree than by the major tree.

4 ¢0-908531 0.40, 0589785 0.55, 0319361 ~ (). 73.
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Figure 6. Simulations with variation within species in both Y and X but no phenotypic correlation, from section 2.5.4.

Table 1. Results from fitting our model BMy with REML on Polemonium data to explain variation in leaflet area, length,
and width (each log-transformed) using elevation and latitude as predictors simultaneously. In the elevation and latitude
columns, the first value is the estimated regression coefficient followed by the p-value to test that the coefficient is 0, in

bold when < 0.05.

elevation latitude (6%, 62%)
17-taxon network
area -0.91,0.0051 -0.16,0.030 (1.6,0.40)
length -0.59,0.0026 -0.078,0.069 (0.54,0.11)
width -0.32,0.060 -0.085,0.04 (0.51,0.12)
30-taxon subtree
area -1.0,9.2x 107> -0.11,5.3x 104 (1.6,0.36)
length -0.65,2.1% 10> -0.069,2.1x 104 (0.53,0.099)
width -0.36,0.0052 -0.042,0.011 (0.48,0.11)

3.2.3. Impact of modeling choices

For log leaflet length, we explored the impact of three mod-
eling choices: using ML instead of REML, ignoring within-
species variation, and fitting BMpyeno. We begin by address-
ing the first two, which involve comparing BMy, BM,,, and
P\, fitted with ML and REML. The estimated coefficients
for elevation and latitude were very stable across these

Bulletin of the Society of Systematic Biologists

methods, as were the magnitude of their associated p-val-
ues (Table 3). The estimated within-species variance 62
was also fairly stable across methods that estimated it. This
may be due to around a third of the morphs having large
sample sizes (>50 specimens). The method choice had most
impact on the estimated evolutionary variance rate, o?.
Using ML instead of REML caused a large decrease in
&2 under BM,: by 18% on the network and 10% on the
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Figure 7. Simulations with phenotypic correlation (slope 82 within species), from section 2.5.5.

Top: opposite phenotypic and evolutionary relationships (82 = —81). Middle: identical phenotypic and evolutionary relationships. Bottom: stronger phenotypic relationship (8, = 251).
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Figure 8. Simulations with phenotypic correlation as in Figure 7 and its impact on BMheno, , Which assumes identical phenotypic and evolutionary relationships.

The REML criterion was used for all methods: BM,,, P,,, BMy and BM ypeno-
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Table 2. Same as Table 1 but without reticulation: using either the major or minor tree displayed in the 17-taxon
network. The elevation and latitude columns contain the estimated regression coefficient, with a star (*) to indicate an
associated p-value < 0.05. The last column contains the change in AIC resulting from removing reticulations:

A p1ic = AIC(tree) — AIC(network). The positive values indicate that the network provides a better fit than the tree in all

cases.
tree | elevation latitude (0%, 02) Aarc
area

major -0.91* -0.16* (1.6,0.40) 0.56

minor -0.93* -0.18* (1.6,0.40) 0.28
length

major -0.60* -0.078 (0.53,0.11) 0.40

minor -0.56* -0.087 (0.54,0.11) 0.18
width

major -0.31 -0.082 (0.51,0.12) 0.87

minor -0.36* -0.089* (0.50,0.12) 0.13

tree (Table 3). The smaller 6;s resulted in smaller standard
errors for the coefficients under BM, and, hence, smaller
p-values. In our study, this moderate decrease (<0.03) in
p-values changed the qualitative conclusions for latitude
only. But, in other studies, a decrease in p-values may re-
sult in more (or more drastic) qualitative changes in con-
clusions and possibly inflated type-1 error rates from using
ML compared to REML.

Using PJ,, the choice of ML versus REML can lead to
an extreme difference in the estimated A\ and apparently
contradictory conclusions: from no phylogenetic correla-
tion when \ = 0 under ML, to almost full phylogenetic cor-
relation as expected from the BM when \ = 0.95 ~ 1 un-
der REML. This large change occurs on the network only
(Table 3), which has only about half of the tree’s taxa and is
therefore less informative about phylogenetic correlation.
The contradiction disappears when we use a likelihood ra-
tio test. Using the network and either ML or REML, the like-
lihood is rather flat, such that there was no evidence to re-
ject the hypothesis of a BM (A = 1) and also no evidence
to reject the lack of phylogenetic signal (A = 0). From the
larger taxon set, using either ML or REML, there was no ev-
idence to reject A = 1 but strong evidence to reject A = 0.
This finding supports our use of the BM model when ac-
counting for within-species variation (BMy).

That A > 1 on the tree is surprising because it means
that within-species variation in leaflet length is estimated
at 0. This may reflect error in the estimated tree topology or
branch lengths. This may also be due to large sample sizes,
leading to small standard errors in the estimated species
means: 13 of the 30 morphs in the tree have over 50 spec-
imens. On the network, fewer morphs (5 out of 17) have
> 50 specimens, and ) is smaller. In data sets with small
sample sizes, within-species variation causes greater er-
ror in species means, and we expect Pagel’s \ to capture
within-species variation as part of the non-phylogenetic
signal. Indeed, \ was smaller when subsetting our data with
only 3 specimens per morph. For instance, using REML, the

mean \ across 100 subsets was 0.85 (vs 0.95) under the net-
work.

In simulations, 67 tended to be substantially larger when
within-species variation was ignored, in which case &7
needs to compound between- and within-species variation.
For leaflet length however, modeling versus ignoring
within-species variation had little impact on &7. This again
may be due to the large number of specimens. Using REML,
when only 3 specimens were subsampled per morph, the
&2s for 100 such subsets were on average about 9% larger
(9.48% for the tree, 8.54% for the network) when within-
species variation was ignored.

To fit BM;heno and assess the impact of assuming equal
phenotypic and phylogenetic relationships, we needed to
reduce the data to specimens with both leaflet size and geo-
graphic data (997 out of 1757). Reducing the data had little
effect on estimates and conclusions using BM, (Table 3 for
the full data, Table 4 for the reduced data). Using BMpheno,
however, had a quite drastic effect compared to using BM,.
The coefficient for elevation estimated using BMppeno, Was
still significantly negative but much smaller in magnitude
(Table 4). More importantly, BMppen, estimates latitude to
correlate positively with leaflet length, with strong evi-
dence on the network and weak evidence on the tree. This
is in contradiction with the negative correlation found us-
ing BM,.

This discordance suggests conflicting phenotypic and
phylogenetic relationships. To estimate the phenotypic re-
lationships alone, we fit a linear regression with morph
means modeled as fixed effects (i.e., separate intercepts for
each morph) and estimated as parameters, instead of esti-
mating an evolutionary variance rate. We found a positive
phenotypic coefficient for latitude, of magnitude greater
than that estimated by BMppeno, On the network and on the
tree (Table 4). This behavior matches our simulations under
a phenotypic coefficient opposite to the evolutionary coef-
ficient in which the BMpen, €stimate was heavily biased to-
wards the phenotypic coefficient, increasingly so with more
specimens. The BM, estimate was only slightly biased and
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Table 3. Analysis of leaflet length (log-transformed) on the full data set. BM,, and P}, ignore within-species variation. In
the elevation and latitude columns, the first value is the estimated coefficient. The second italicized value is the
associated p-value, in bold when < 0.05. The maximal possible A (1.08 for the network and 1.14 for the subtree) may
exceed 1 depending on the terminal branch lengths in the phylogeny. A > 1 means greater phylogenetic correlation than
under a BM. In the X column, the first value is the estimate and the second italicized value is the p-value from the
likelihood ratio test of A = 1, which corresponds to the BM model.

method elevation latitude o2 &2 A
17-taxon network
BM,, REML -0.59 -0.078 0.54 0.11
0.0026 0.069
BM,, ML -0.59 -0.078 0.45 0.11
0.0012 0.047
BM,, REML -0.59 -0.078 0.55
0.0025 0.069
BM,, ML -0.59 -0.078 0.45
0.0025 0.069
PAn, REML -0.59 -0.079 0.53 0.95
0.0024 0.066 0.94
Py, ML -0.61 -0.088 0.32 0.0
0.0016 0.047 0.30
30-taxon subtree
BM,, REML -0.65 -0.069 0.53 0.099
2.1x105 2.1x10%4
BM,, ML -0.65 -0.069 0.48 0.099
9.8x 106 1.1x 10
BM,, REML -0.65 -0.069 0.54
2.0x105 2.1x104
BM,, ML -0.65 -0.069 0.49
2.0x 105 2.1x104
PAn, REML -0.64 -0.070 0.64 111
1.9x 107 1.9x 104 0.19
PAa, ML -0.64 -0.070 0.57 1.11
1.9x10° 1.9x104 021

less so with more specimens. Therefore, we consider the
BMpheno €stimates to be misleading for studying the evolu-
tion of leaflet size in Polemonium because the phenotypic
and evolutionary coefficients for latitude appear to be op-
posite, strongly violating the BMpheno assumption.

3.2.4. Leaflet size reconstruction

The predicted true mean of log leaflet length was obtained
for eddyense (3 specimens) and foliosissimum (274 speci-
mens). For eddyense, the observed mean log leaflet length
was —1.22. The true morph mean was predicted at —1.16
and —1.18 with and without elevation and latitude as pre-
dictors, representing 5.9% and 4.3% increases from the ob-
served mean on the original scale. The prediction intervals
(both of width 0.78) encompassed the observed mean. For
foliosissimum, the observed mean was 0.622. The predicted
means were both very close (0.621, a 0.1% decrease on the
original scale), and the prediction intervals were narrow

(width < 0.085). This illustrates that predictions for species
with smaller sample sizes are more influenced by other
species’ data and less certain. Regardless of sample size,
model predictors had little influence on the predictions.

At internal nodes, the width of prediction intervals in-
creased with age: from 1.07 for the hybrid node directly an-
cestral to elusum, 1.72 for its minor parent, to 2.05 for the
root. This pattern of ancestral state uncertainty increas-
ing with distance from the tips was already known on trees
(Ané, 2008).

4. Discussion

We presented a method to account for within-species trait
variation on phylogenetic networks, a task with a long his-
tory on trees, and whose importance has been stressed
by many authors. We reiterate the importance of this for
avoiding overestimating the evolutionary variance. Intu-
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Table 4. Analysis of leaflet length (log-transformed) with REML on the subset of specimens with both morphological and
geographical data. BMphen, assumes equal phenotypic and phylogenetic relationships. BM, accounts for phenotypic
variation in the response but not in the predictors. The model with fixed effects uses a standard linear regression on the
individual-level data, with morph means (or intercept) estimated as fixed-effect parameters, and does not estimate o2. In
the elevation and latitude columns, the first value is the estimated coefficient. The second italicized value is the

associated p-value, in bold when < 0.05.

method elevation latitude &2 &2
17-taxon network
BM pheno -0.089 0.023 0.89 0.091
0.0039 5.0x104
BM, -0.59 -0.062 0.57 0.096
0.0035 0.13
fixed -0.078 0.025 0.091
effects 0.013 2.0x104
30-taxon subtree
BM pheno -0.12 0.0083 0.95 0.087
<106 0.082
BM, -0.61 -0.051 0.60 0.090
<104 0.0039
fixed -0.11 0.011 0.087
effects <10 0.025

itively, ignoring within-species variation is compensated
for by an inflated evolutionary variance rate.

4.1. Methodology

Our approach is the first to allow for both within-species
trait variation and reticulation and to estimate within-
species variance simultaneously with other model para-
meters instead of considering within-species variances as
known without error. Our method assumes equal variances
within species and is robust to a violation of this assump-
tion based on simulations. This assumption is also made
by the PMM when used to account for within-species vari-
ation. It is suggested by Ives et al. (2007) as an option
when the sample size per species is small, via the estima-
tion of a pooled variance. When traits are hard to measure
experimentally, typical sample sizes per species are very
low. Moen et al. (2022) highlight this challenge for stud-
ies of adaptation and the advantage of assuming equal vari-
ances in this context. Future method development could
consider relaxing the assumption of homogeneous within-
species variance for species with many sampled individuals.

Our implementation currently assumes that each hybrid
node has exactly two parent lineages in the network, but
the method allows for polytomies where a node has three or
more children. Our implementation is currently limited to
the BM, although our theory applies to more complex evo-
lutionary models for the evolutionary covariance V at the
cost of optimizing extra parameters. For example, Pagel’s
A model would include an independent component at the
species level beyond the variation between individuals or
measurement error. It would also be interesting to allow for
separate evolutionary rates along different parts of the phy-

logeny. In this case, V depends on the different rates and
their mapping along the phylogeny (O’Meara et al., 2006).
As more complex models are developed, conclusions about
evolutionary rates and phylogenetic signal could rely on
likelihood ratio tests, although these tests are approximate.
Tests based on bootstrapping procedures could be a pos-
sible future development to perform more accurate model
comparisons.

Our simulations highlight the advantages of using REML
instead of ML, especially with models that have multiple
variance parameters or to answer questions about character
rate evolution. For Polemonium leaflet length, for example,
switching from ML to REML can sway the estimate of phy-
logenetic signal from 0 to 1. The advantages of REML are
well known (Ives et al., 2007), yet many software tools use
ML only (e.g., geiger, Pennell et al. (2014) or phylolm, Ho
& Ané (2014)). Unfortunately, REML is typically not an op-
tion for non-Gaussian generalized linear models, such as
for phylogenetic logistic regression.

4.2. Importance of gene flow for traits

As of now, methods to estimate species networks scale
poorly with the number of taxa. To detect gene flow and
represent reticulations in a network, most studies focus
their questions on a subsample of 20 taxa or so, a scale
that methods such as SNaQ and Phylonet-MPL can handle
(Hejase & Liu, 2016). Downstream comparative analyses
then face a dilemma: should they use more taxa on an ap-
proximate phylogeny without reticulation or fewer taxa on
a more accurate representation of the group’s phylogeny?
Our case study on Polemonium suggests that using more
taxa is advantageous and more powerful as the increase
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in data quantity (and signal) can be substantial, outweigh-
ing the approximation to the phylogenetic covariance using
a tree phylogeny. A caveat is that model mis-specification
caused by ignoring reticulation on a tree may decrease
power or increase type-1 error. We hope that this dilemma
will disappear as network inference methods improve.

At each reticulation, one may ask which parent con-
tributed to a given trait. Was the trait value inherited solely
from one of the parents? Our BM model assumes that both
parents contributed, such that the trait value at the reticu-
late node is a weighted average from the two parent values.
The weights are the inheritance proportions (y): the pro-
portion of genes inherited from each parent. This is a le-
gitimate prior for quantitative traits that are controlled by
many genes of small and additive effects. But, at each retic-
ulation, one may ask if this null model is adequate for the
trait under study.

To this end, Bastide et al. (2018) proposed a test for
transgressive evolution after reticulation. This test can
readily be used with our method to account for within-
species trait variation.

Another approach is to compare the network model with
a tree model, in which we assume that a trait is inherited
from a single parent only, although model choice would
need to account for the large number of options (up to 2%)
with an increasing number h of reticulations. More gener-
ally, one may seek to optimize the weights (y) of the two
parents at each reticulation to best match evidence from
the trait data. Bastide (2017) took this approach. Optimiz-
ing all h inheritance parameters could be too many, so he
used a single parameter to scale the weights of all major
hybrid edges simultaneously. Even with this amortized in-
ference strategy, simulations showed that a single contin-
uous trait variable had low information about the inheri-
tance weights at reticulations.

Our findings in Polemonium are consistent. For all mea-
sures of leaflet size, the network model with inheritance
values from genetic data was preferred over a tree model,
in which the trait was forced to be inherited from a single
parent (corresponding to inheritance values set to 0 or 1).
However, the preference for the network was only very
slight: the morphological signal is consistent with the ge-
netic signal, but tenuous.

Multiple continuous traits would need to be combined
to estimate the morphological signal for gene flow. As for
trees, combining morphological traits is complicated by
trait correlations. This caveat is especially important if we
want to assume that traits share a common signal of gene
flow. The traits more likely to have been inherited together
through gene flow are the traits that share a genetic basis
or form an integrated morphological component and can be
highly correlated with each other.

The inheritance signal may be stronger from discrete
traits than from continuous traits if the discrete trait is
evolving slowly enough for accurate ancestral reconstruc-
tion. For example, Karimi et al. (2019) found support that
flower color was introgressed during the evolution of baob-
abs in Madagascar. It would be interesting to extend our

method for within-species variation to the study of discrete
characters.

4.3. Phenotypic correlation

Our simulations highlight an important bias affecting many
widely-used methods when there is within-species varia-
tion in the predictors. The regression coefficient describ-
ing the historical evolutionary relationships are pulled to-
wards the phenotypic coefficients. This bias is traditionally
named “attenuation” when variation in the predictor is
solely due to measurement error, uncorrelated with the
other sources of variation (Fuller, 1987). This pull decreases
as the within-species sampling effort increases for methods
ignoring within-species variation in predictors.

For these methods, within-species variation in predic-
tors causes a complex bias in estimating evolutionary vari-
ance rates. If a phenotypic relationship is absent or op-
posite to the evolutionary relationship, then a% is
overestimated. If the phenotypic relationship is equal or
stronger than the evolutionary relationship, then o? is un-
derestimated. This interplay between phenotypic relation-
ships (most often ignored for the study of long-term evo-
lutionary patterns) and inference of evolutionary rates has
not been identified before to the best of our knowledge.

When predictors are available for the same set of indi-
viduals as the response trait, the BMppeno model can be ap-
plied to account for within-species variation in predictors.
However, BM;heno assumes shared evolutionary and phe-
notypic relationships such that the pull towards the phe-
notypic coefficients strengthens with more sampling ef-
fort, and the bias becomes extreme. We observed this for
Polemonium leaflet size, where discordant evolutionary and
phenotypic relationships led to opposite conclusions about
the direction of correlation between leaflet length and lat-
itude. For this reason, we recommend using this method
with caution and in combination with an assessment of the
method’s assumption regarding phenotypic relationships.
To estimate phenotypic correlations, standard linear mod-
els can be used with species as a fixed factor. Future work
could tackle the question of rigorously testing whether
phenotypic and evolutionary relationships are equal, ex-
tending the methods by Revell and Harmon (2008) and
Goolsby et al. (2016) to reticulate phylogenetic networks
and to a linear regression context (rather than correlation).

New methods are needed to handle the case when pre-
dictors are available on a different set of individuals than
the response trait, if one wishes to use all individual values
to best account for within-species trait variation, and to
eliminate the pull of evolutionary coefficients towards phe-
notypic coefficients.

Funding

This work was supported in part by the National Science
Foundation (DMS-1902892 and DMS-2023239) and by an
NSF doctoral dissertation improvement grant (DEB
1501867) to JPR.

Bulletin of the Society of Systematic Biologists 19



Accounting for Within-Species Variation in Continuous Trait Evolution on a Phylogenetic Network

Acknowledgements

We thank Cathy Cao for technical help setting up simula-
tions. We also thank Joe Felsenstein and two anonymous
reviewers for their thorough feedback, which helped im-
prove the structure and clarity.

Software and Data Availability

Our method is implemented in the Julia package PhyloNet-
available at https://github.com/crsl4/PhyloNet-
works.jl starting with v0.14.0. Data and code for all simu-
lations and analyses are available from the Dryad Digital
Repository: https://doi.org/10.5061/dryad.9ghx3ffkc.

works

Submitted: April 26, 2022 EDT, Accepted: February 14, 2023
EDT

Bulletin of the Society of Systematic Biologists 20


https://github.com/crsl4/PhyloNetworks.jl
https://github.com/crsl4/PhyloNetworks.jl
https://doi.org/10.5061/dryad.9ghx3ffkc

Accounting for Within-Species Variation in Continuous Trait Evolution on a Phylogenetic Network

References

Akaike, H. (1974). A new look at the statistical model
identification. IEEE Transactions on Automatic
Control, 19(6), 716—723. https://doi.org/10.1109/tac.1
974.1100705

Ané, C. (2008). Analysis of comparative data with
hierarchical autocorrelation. The Annals of Applied
Statistics, 2(3), 1078-1102. https://doi.org/10.1214/0
8-a0asl73

Bastide, P. (2017). Shifted stochastic processes evolving
on trees: Application to models of adaptive evolution on
phylogenies [Theses, Université Paris Saclay
(COMUE)]. https://tel.archives-ouvertes.fr/tel-016296
48

Bastide, P., Solis-Lemus, C., Kriebel, R., Sparks, K. W.,
& Ané, C. (2018). Phylogenetic comparative methods
on phylogenetic networks with reticulations.
Systematic Biology, 67(5), 800-820. https://doi.org/1
0.1093/sysbio/syy033

Christensen, R. (2001). Linear models for spatial
data: kriging. Springer Texts in Statistics, 269-311. htt
ps://doi.org/10.1007/978-1-4757-3847-6_6

Cooper, N., Thomas, G. H., Venditti, C., Meade, A., &
Freckleton, R. P. (2016). A cautionary note on the use
of Ornstein Uhlenbeck models in macroevolutionary
studies. Biological Journal of the Linnean Society,
118(1), 64-77. https://doi.org/10.1111/bij.12701

Demidenko, E. (2004). Mixed models: Theory and
applications. John Wiley & Sons, Inc. https://doi.org/1
0.1002/0471728438

Felsenstein, J. (1988). Phylogenies and quantitative
characters. Annual Review of Ecology and Systematics,
19(1), 445-471. https://doi.org/10.1146/annurev.es. 1
9.110188.002305

Felsenstein, J. (2008). Comparative methods with
sampling error and within-species variation:
Contrasts revisited and revised. The American
Naturalist, 171(6), 713-725. https://doi.org/10.1086/5
87525

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New
1-km spatial resolution climate surfaces for global
land areas. International Journal of Climatology,
37(12), 4302-4315. https://doi.org/10.1002/joc.5086

Fuller, W. A. (1987). Measurement Error Models. In
Wiley Series in Probability and Statistics (pp. 1-99).
Wiley. https://doi.org/10.1002/9780470316665

Bulletin of the Society of Systematic Biologists

Garamszegi, L. Z. (2014). Uncertainties due to within-
species variation in comparative studies:
Measurement errors and statistical weights. Modern
Phylogenetic Comparative Methods and Their
Application in Evolutionary Biology, 157-199. https://d
0i.0rg/10.1007/978-3-662-43550-2_7

Goolsby, E. W., Bruggeman, J., & Ané, C. (2016).
Rphylopars: Fast multivariate phylogenetic
comparative methods for missing data and within-
species variation. Methods in Ecology and Evolution,
8(1), 22-27. https://doi.org/10.1111/2041-210x.12612

Hansen, T. F., & Martins, E. P. (1996). Translating
between microevolutionary process and
macroevolutionary patterns: The correlation
structure of interspecific data. Evolution, 50(4),
1404-1417. https://doi.org/10.1111/j.1558-5646.199
6.tb03914.x

Hansen, T. F., Pienaar, J., & Orzack, S. H. (2008). A
comparative method for studying adaptation to a
randomly evolving environment. Evolution, 62(8),
1965-1977. https://doi.org/10.1111/j.1558-5646.200
8.00412.x

Harmon, L. J. (2019). Phylogenetic Comparative
Methods: Learning From Trees. https://doi.org/10.3294
2/osf.io/e3xnr

Harmon, L. J., & Losos, J. B. (2005). The effect of
intraspecific sample size on type I and type II error
rates in comparative studies. Evolution, 59(12),
2705-2710. https://doi.org/10.1111/j.0014-3820.200
5.tb00981.x

Harville, D. A. (1974). Bayesian inference for variance
components using only error contrasts. Biometrika,
61(2), 383-385. https://doi.org/10.1093/biomet/61.2.3
83

Hejase, H. A., & Liu, K. J. (2016). A scalability study
of phylogenetic network inference methods using
empirical datasets and simulations involving a single
reticulation. BMC Bioinformatics, 17(1), 422. https://d
0i.0rg/10.1186/512859-016-1277-1

Hijmans, R. J. (2020). Raster: Geographic data analysis
and modeling. https://cran.r-project.org/package=rast
er

Ho, L. S. T., & Ané, C. (2014). A linear-time algorithm
for gaussian and non-gaussian trait evolution
models. Systematic Biology, 63(3), 397-408. https://do
i.org/10.1093/sysbio/syu005

21


https://doi.org/10.1109/tac.1974.1100705
https://doi.org/10.1109/tac.1974.1100705
https://doi.org/10.1214/08-aoas173
https://doi.org/10.1214/08-aoas173
https://tel.archives-ouvertes.fr/tel-01629648
https://tel.archives-ouvertes.fr/tel-01629648
https://doi.org/10.1093/sysbio/syy033
https://doi.org/10.1093/sysbio/syy033
https://doi.org/10.1007/978-1-4757-3847-6_6
https://doi.org/10.1007/978-1-4757-3847-6_6
https://doi.org/10.1111/bij.12701
https://doi.org/10.1002/0471728438
https://doi.org/10.1002/0471728438
https://doi.org/10.1146/annurev.es.19.110188.002305
https://doi.org/10.1146/annurev.es.19.110188.002305
https://doi.org/10.1086/587525
https://doi.org/10.1086/587525
https://doi.org/10.1002/joc.5086
https://doi.org/10.1002/9780470316665
https://doi.org/10.1007/978-3-662-43550-2_7
https://doi.org/10.1007/978-3-662-43550-2_7
https://doi.org/10.1111/2041-210x.12612
https://doi.org/10.1111/j.1558-5646.1996.tb03914.x
https://doi.org/10.1111/j.1558-5646.1996.tb03914.x
https://doi.org/10.1111/j.1558-5646.2008.00412.x
https://doi.org/10.1111/j.1558-5646.2008.00412.x
https://doi.org/10.32942/osf.io/e3xnr
https://doi.org/10.32942/osf.io/e3xnr
https://doi.org/10.1111/j.0014-3820.2005.tb00981.x
https://doi.org/10.1111/j.0014-3820.2005.tb00981.x
https://doi.org/10.1093/biomet/61.2.383
https://doi.org/10.1093/biomet/61.2.383
https://doi.org/10.1186/s12859-016-1277-1
https://doi.org/10.1186/s12859-016-1277-1
https://cran.r-project.org/package=raster
https://cran.r-project.org/package=raster
https://doi.org/10.1093/sysbio/syu005
https://doi.org/10.1093/sysbio/syu005

Accounting for Within-Species Variation in Continuous Trait Evolution on a Phylogenetic Network

Housworth, E. A., Martins, E. P., & Lynch, M. (2004).
The Phylogenetic Mixed Model. The American
Naturalist, 163(1), 84-96. https://doi.org/10.1086/380
570

Huang, J., Thawornwattana, Y., Flouri, T., Mallet, J.,
& Yang, Z. (2022). Inference of gene flow between
species under misspecified models. Molecular Biology
and Evolution, 39(12). https://doi.org/10.1093/molbe
v/msac237

Ives, A. R., Midford, P. E., & Garland, T. Jr. (2007).
Within-species variation and measurement error in
phylogenetic comparative methods. Systematic
Biology, 56(2), 252—-270. https://doi.org/10.1080/1063
5150701313830

Karimi, N., Grover, C. E., Gallagher, ]. P., Wendel, J.
F., Ané, C., & Baum, D. A. (2019). Reticulate
evolution helps explain apparent homoplasy in floral
biology and pollination in baobabs (adansonia;
bombacoideae; malvaceae). Systematic Biology, 69(3),
462-478. https://doi.org/10.1093/sysbio/syz073

Korner, C., Neumayer, M., Menendez-Riedl, S. P., &
Smeets-Scheel, A. (1989). Functional morphology of
mountain plants. Flora, 182(5-6), 353-383. https://d
0i.0rg/10.1016/50367-2530(17)30426-7

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H.
B. (2017). ImerTest Package: Tests in Linear Mixed
Effects Models. Journal of Statistical Software, 82(13),
1-26. https://doi.org/10.18637/jss.v082.i13

LaMotte, L. R. (2007). A direct derivation of the REML
likelihood function. Statistical Papers, 48(2), 321-327.
https://doi.org/10.1007/s00362-006-0335-6

Leventhal, G. E., & Bonhoeffer, S. (2016). Potential
Pitfalls in Estimating Viral Load Heritability. Trends
in Microbiology, 24(9), 687-698. https://doi.org/10.10
16/j.tim.2016.04.008

Lynch, M. (1991). Methods for the Analysis of
Comparative Data in Evolutionary Biology. Evolution,
45(5), 1065-1080. https://doi.org/10.1111/j.1558-564
6.1991.tb04375.x

Martins, E. P.,, & Hansen, T. F. (1997). Phylogenies
and the comparative method: A general approach to
incorporating phylogenetic information into the
analysis of interspecific data. The American
Naturalist, 149(4), 646-667. https://doi.org/10.1086/2
86013

Moen, D. S., Cabrera-Guzman, E., Caviedes-Solis, I.
W., Gonzdalez-Bernal, E., & Hanna, A. R. (2022).

Phylogenetic analysis of adaptation in comparative
physiology and biomechanics: Overview and a case
study of thermal physiology in treefrogs. Journal of

Experimental Biology, 225(Suppl_1). https://doi.org/1
0.1242/jeb.243292

O’Meara, B. C., Ané, C., Sanderson, M. J., &
Wainwright, P. C. (2006). Testing for different rates of
continuous trait evolution using likelihood. Evolution,
60(5), 922. https://doi.org/10.1554/05-130.1

Pagel, M. (1999). Inferring the historical patterns of
biological evolution. Nature, 401(6756), 877-884. htt
ps://doi.org/10.1038/44766

Patterson, H. D., & Thompson, R. (1971). Recovery of
inter-block information when block sizes are
unequal. Biometrika, 58(3), 545-554. https://doi.org/1
0.1093/biomet/58.3.545

Pennell, M. W., Eastman, J. M., Slater, G. J., Brown, ]J.
W., Uyeda, J. C., Fitzjohn, R. G., Alfaro, M. E., &
Harmon, L. J. (2014). Geiger v2.0: An expanded suite
of methods for fitting macroevolutionary models to
phylogenetic trees. Bioinformatics, 30(15),
2216-2218. https://doi.org/10.1093/bioinformatics/bt
ul8i

Pinheiro, J., & Bates, D. (2000). Mixed-Effects Models
in S and S-PLUS. Springer-Verlag. https://doi.org/10.1
007/b98882

Revell, L. J. (2011). Phytools: An R package for
phylogenetic comparative biology (and other things).
Methods in Ecology and Evolution, 3(2), 217-223. http
s://doi.org/10.1111/j.2041-210x.2011.00169.x

Revell, L. J., & Harmon, L. J. (2008). Testing
quantitative genetic hypotheses about the
evolutionary rate matrix for continuous characters.
Evolutionary Ecology Research, 10, 311-331. http://ww
w.evolutionary-ecology.com/abstracts/v10/2235.html

Rose, J. P. (2021). Taxonomy and relationships within
polemonium foliosissimum (Polemoniaceae):
Untangling a clade of colorful and gynodioecious
herbs. Systematic Botany, 46(3), 519-537. https://do
i.0rg/10.1600/036364421x16312067913372

Rose, J. P., Toledo, C. A. P., Lemmon, E. M., Lemmon,
A.R., & Sytsma, K. J. (2021). Out of Sight, Out of
Mind: Widespread Nuclear and Plastid-Nuclear
Discordance in the Flowering Plant Genus
Polemonium (Polemoniaceae) Suggests Widespread
Historical Gene Flow Despite Limited Nuclear Signal.
Systematic Biology, 70(1), 162—180. https://doi.org/1
0.1093/sysbio/syaa049

Bulletin of the Society of Systematic Biologists

22


https://doi.org/10.1086/380570
https://doi.org/10.1086/380570
https://doi.org/10.1093/molbev/msac237
https://doi.org/10.1093/molbev/msac237
https://doi.org/10.1080/10635150701313830
https://doi.org/10.1080/10635150701313830
https://doi.org/10.1093/sysbio/syz073
https://doi.org/10.1016/s0367-2530(17)30426-7
https://doi.org/10.1016/s0367-2530(17)30426-7
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.1007/s00362-006-0335-6
https://doi.org/10.1016/j.tim.2016.04.008
https://doi.org/10.1016/j.tim.2016.04.008
https://doi.org/10.1111/j.1558-5646.1991.tb04375.x
https://doi.org/10.1111/j.1558-5646.1991.tb04375.x
https://doi.org/10.1086/286013
https://doi.org/10.1086/286013
https://doi.org/10.1242/jeb.243292
https://doi.org/10.1242/jeb.243292
https://doi.org/10.1554/05-130.1
https://doi.org/10.1038/44766
https://doi.org/10.1038/44766
https://doi.org/10.1093/biomet/58.3.545
https://doi.org/10.1093/biomet/58.3.545
https://doi.org/10.1093/bioinformatics/btu181
https://doi.org/10.1093/bioinformatics/btu181
https://doi.org/10.1007/b98882
https://doi.org/10.1007/b98882
https://doi.org/10.1111/j.2041-210x.2011.00169.x
https://doi.org/10.1111/j.2041-210x.2011.00169.x
http://www.evolutionary-ecology.com/abstracts/v10/2235.html
http://www.evolutionary-ecology.com/abstracts/v10/2235.html
https://doi.org/10.1600/036364421x16312067913372
https://doi.org/10.1600/036364421x16312067913372
https://doi.org/10.1093/sysbio/syaa049
https://doi.org/10.1093/sysbio/syaa049

Accounting for Within-Species Variation in Continuous Trait Evolution on a Phylogenetic Network

Schindelin, J., Arganda-Carreras, 1., Frise, E., Kaynig,
V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C.,
Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J.,
Hartenstein, V., Eliceiri, K., Tomancak, P., &
Cardona, A. (2012). Fiji: An open-source platform for
biological-image analysis. Nature Methods, 9(7),
676—682. https://doi.org/10.1038/nmeth.2019

Silvestro, D., Kostikova, A., Litsios, G., Pearman, P.
B., & Salamin, N. (2015). Measurement errors should
always be incorporated in phylogenetic comparative
analysis. Methods in Ecology and Evolution, 6(3),
340-346. https://doi.org/10.1111/2041-210x.12337

Solis-Lemus, C., Bastide, P., & Ané, C. (2017).
PhyloNetworks: A package for phylogenetic
networks. Molecular Biology and Evolution, 34(12),
3292-3298. https://doi.org/10.1093/molbev/msx235

Wright, L. ]., Dong, N., Maire, V., Prentice, I. C.,
Westoby, M., Diaz, S., Gallagher, R. V., Jacobs, B. F.,
Kooyman, R., Law, E. A., Leishman, M. R., Niinemets,
U., Reich, P. B., Sack, L., Villar, R., Wang, H., & Wilf,
P. (2017). Global climatic drivers of leaf size. Science,
357(6354), 917-921. https://doi.org/10.1126/science.a

al4760

Bulletin of the Society of Systematic Biologists

23


https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1111/2041-210x.12337
https://doi.org/10.1093/molbev/msx235
https://doi.org/10.1126/science.aal4760
https://doi.org/10.1126/science.aal4760

Accounting for Within-Species Variation in Continuous Trait Evolution on a Phylogenetic Network

Appendix

A. Parameter estimation

We prove here that (4) can be simplified to (5). Intuitively,
(5) comes from reducing the model to species averages.
The formula for B in (4) involves the inverse of W,, so we
first show that this large N x N matrix can in fact be in-
verted using smaller n x n matrices. Similar developments
have reduced the computation complexity of some classes
of mixed models (Demidenko, 2004, sec. 2.2.3), sometimes
referred to as Henderson’s formula (1959). Our framework
differs due to the phylogenetic correlation between species
(“clusters” in the classical context). To express w, 1 we ap-
ply the Woodbury matrix identitysz
W, '=(nIy+2VZ')"!
=nIy—-n2Z(V '+ 2Z'(nIy) '2)'Z
=n Iy -n2ZV 149 D)7,
To invert V ~! + n~1 D, we apply the Woodbury matrix iden-
tity to nI,, + VD:
(nI,+VD) ' = 'L, —n (V' +7'D)"'D.
Using V,, from (6), V,,D = nI,, + VD, and we get:
(V—l + n’lD)A _ 77D71 - n2D71Vn71D71 )
Combining the above equations, we get
W, = %(IN —-ZD7'Z') + ZD7'V,'D7'Z’. (S1)
We are now ready to simplify (4), recalled here:
Bn) = (X'W,'X) ' X'W,'Y
where X = Zz andy = D 'Z'Y. Using (S1)and Z'Z = D,
we have:
X'W,'X=2'V, 'z
X'W, 'Y =2V, 'D'Z'Y =2'V'y.
Combining the above equations gives (5).

We now turn to simplifying the profile likelihood crite-
rion to be maximized for the estimation of variance para-
meters (62, /) and any parameters for V) to prove (7), (8),
and (9). As usual, we instead write and seek to minimize
twice the negative log (restricted) likelihood, denoted as
Lii(0?,n) for ML and £yemi (0, ) for REML:

£ = Nlog2m + log |0'12)Wn| + Y - X,é(n)”%ivn/"%
Ereml = zml - PlOg 27+ IOg ‘XI (UIZ)WW) 71X‘

where we recall that |u||%, = u'M ~lu. We now show how
each term involving W, can be simplified using smaller ma-
trices.

First, we use Sylvester’s determinant identity6 to express
|W,| in terms |V;|.

(W =n"Ix+7'2Z2VZ'|
=L, +n1'Z'ZV|
=n"""|nI, + DV|
= 77N7n|DVn‘

n
= 77N_n|Vn| Hmi .
=1

a 2
Next we use (S1) and (5) to simplify ||Y — Xﬂ”wn-
1Y - XB()llw, = Y'W, 'Y — 28 X'W,'Y
+AXW, I XB
=n 'Y (In-2ZD'Z'\Y +y'V, 'y
_ 2,[:),11!,‘[7771g+ Ié/wlvq—lmﬂ“
! (Y’Y - (Z’Y)'D’IZ’Y) + [y — =B

(S2)

2
v,

Recalling that SSW = 377" | > (y;; — y;)® captures the
sum of squared residuals within species, we get:

1Y — XB(n) sy, = m'SSW + g — 2By, - (S3)
Next, we optimize o7 analytically as a function of 7 to pro-
file £,y and £, as functions of 7 only. If we fix 5 (and any
other potential parameters for V) and substitute (S2) and
(S3) into £y and Ziem, then we obtain the optimal value
for o given in (9), which depends on the criterion via the
degree of freedom d = N for ML and d = N — p for REML.
Plugging &12) from (9) into £, and £, above, we obtain the
profiled ML and REML criteria given in (7) and (8).

B. Parameter inference

To test hypotheses about a coefficient S, we use its esti-
mated standard error SE; with
SE? = 62(#) [(z'vﬁflz) 1} "

If the true n were known and used in the definition of
SEy, then (Bk — Br)/SE, would follow a T-distribution with
N — p degrees of freedom. But 7 is unknown. We approxi-
mate the distribution of (8), — 8;)/SEx by a T-distribution
with n — p degrees of freedom, being conservative by taking
into account the number of species instead of the total
number of observations. This approximation is exact in
some classical contexts with balanced experiments, such as
for the estimation of a population mean from n samples,
each with m subsamples. More generally, a similar approx-
imation is used for mixed models and has been shown to be
superior to likelihood ratio tests for fixed effects (see e.g.,
Section 2.2.4 in Pinheiro & Bates, 2000). Confidence inter-
vals for regression coefficients also use this approximation,
assuming n — p degrees of freedom associated with 62.

5 (A+UCV) 1=AYI-UC1+VAIU)'VA).
6 If Aism x nand Bisn x m, then |I,, + AB| = |I,, + BA|.
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C. Predicting species means

This task is traditionally called “ancestral state reconstruc-
tion”, but we favor the term “prediction” as this task can be
applied to present-day species. We use here the notations
from section 2.3. In particular, y, denotes the true mean of
species for which prediction is sought.

C.1. Prediction variance

Section 2.3 gives the conditional mean po(8) and variance
3 of yo given y, in the case when B is known. When g
is estimated from y, then the best prediction is po([?) but
has variance larger than X. Namely, the prediction variance
var(yo — po(B)) is then given by:
T =%+ o M(z'V, 'z) ' M’

where M = z, — V.V, 'z (Christensen, 2001).

One might ask if conditioning on the individual-level
data Y provides more information about y, than can be
gained from the taxon-level means y. We show that both
reduce to the same estimator so that y is sufficient for pre-

dictive purposes:
Yo T o, [ Vo V.Z'
|:Y:| N <|:Z$:|ﬁao'b |:Z‘/c/ Wn .
By applying (S1) and Z'Z = D we have:
E(y | Y) =z + (V.Z' )W, (Y — ZzB)
=zB+ V.V, 'D'Z'(y— Zzp)

=E(yo | y) = mo(B) -

(S4)

C.2. Prediction interval

The prediction error e* =y, — po(B) has distribution
N(0,%*) with B* given in (S4), so the error e} for the ith
species to be predicted satisfies

*

e

———— ~ N(0,1).
Tby/ ¥y /0}

Note that the formula for £* /o2 involves n but not o2. If n is
known, then B(n) and &(n) are independent by Cochran’s
theorem. However, e} is not guaranteed to be independent
of 61,. Nevertheless, we may use v; = X5(7, 61,(7)) to esti-
mate the variance of e} We then approximate the distrib-
ution of e}//4; by a T-distribution with n — p degrees of
freedom as done above for testing fixed coefficients about
between-species relationships.

Consequently, to build a 100(1 — «)% prediction interval
for the ith species mean, we first find the (1 — a/2) quantile
q of the T-distribution with n — p degrees of freedom and
then use

U; =

Bo(B)i £av .

Recall here that formula (S4) for £* (hence \/E) was ob-
tained assuming that we know 7 and any other parameters
for V, and then simply plugging in their estimates in (S4).
Doing so does not account for the extra uncertainty due to
estimating n, which is hard to quantify (Christensen, 2001).
Hence, the prediction interval above should be considered
as liberal.

C.3. Example: Influence of other species
information on reconstructed mean

We consider here the task of predicting the true mean for a
species for which we do have data. In a simple example, we
show that the prediction §, = po(B) can be different from
the observed species mean y, especially if a species has few
sampled individuals. This example provides an intuition for
what affects the prediction.

Suppose we have three taxa with sample sizes m1, ma,
and ms and that the unscaled covariance matrix con-
structed from their phylogeny is:

vy vz 0
V= V21 U2 0
0 0 V33
with taxon 1 and 2 sister to each other. Applying equations
from section 2.3 and focusing on predicting the means for
species 1 and 3, we get that

R 1 - _ V12" [, -
=—(k k -

i = 77 (k1 (2zB)1 + ko)) + Ty (y—zB)>

G5 = n zA) U3zmsg  _
1+ vszmg N+ vazmg °
v 2 v

where k; = Y22 + n—, ko = 17 + v11v22 — V12021,

mi mimso

and K = k; + k. Therefore, ¢; does not necessarily equal
the sample mean y,. Instead, g; is pulled towards (:1:,3)1-,
which depends on data across all species and represents the
ancestral state at the root if z is reduced to the intercept
only. The pull is strong if m; is small or if within-species
variation (n) is large. If m; is large, then the pull disappears
and §; ~ y;.

Beyond the weighted average of (1:,3)1 and y,, 91 has
an additional term proportional to the residual of its sister
species 2. This term shows how information from closely
related species is borrowed to influence prediction in this
simple example. As expected, this term vanishes when m;
increases.

D. Phenotypic correlation model

We study here the simulation model described in section
2.5, in which the within-species (or phenotypic) relation-
ship between the response and the predictor traits differs
from the between-species (or phylogenetic) relationship.
We derive the distribution of the full response data Y and
of the species means y conditional on the observed predic-
tor’s species means z. Since all variables are Gaussian, we
simply need to derive the conditional means and variances.
To do so, we repeatedly use the standard conditional distri-
bution formulae for Gaussian processes.

Using (12) to simulate the predictor, (13) to simulate
the response, the expression z = %Z ' X for species means,
and the fact that Z'Z = mlI,,, we get

z) = 2 Nz 1
var(z) = 0.V (In + - )

) = 2 B2 Ma
cov(Y,z) =  p10,,ZV <In + 5 m |4 )

where 7, = o7, , /o . Therefore
E(Y | z) = pZ&
where we further define v = 7,,/m and
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£ = (In + %uV’1> (L+uw ™)'z
1

- <In + %u(v+ uIn)‘1>E

(S5)

~ <In+ —'32 7'BluV’1>5 ifu="12 0.
B1 m
If 81 =35 or aﬁj,z =0 or m — oo, then this simplifies to
Z =z, sothat IE(Y | ) = §;: Zz as assumed by our estima-
tion model.
Next, var(Y) — cov(Y, Z)var(z) ' cov(z,Y) gives us
var(Y | ) = ZXZ' + (By0s,, + 00, ) In

where

S =0}, V+Bo}, V(L — (I.+ Fuv)
(I +uV ) (L + Zuv )
=03,V — 03, (81(262 — Br)ul,

+(B2 — 51)2u2 (V +ul,) 71)
~0p, V+ Bi(Br — 282) Teo [ ifu = 2 5 0.

If o7,, = 0 or m — oo, then ¥ simplifies to o}V, and the

(S6)

residual variance var(Y | ) is as assumed in our estimation
model.

For methods that ignore within-species variation, the
conditional distribution of y is relevant. From y = %Z 'Y
and our results above, we get

E(y | z) =/
var(y | 2) = B + (B30}, +ou,)/m I
where % is as in (S5) and X is as in (S6).
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E. Polemonium leaflet analyses
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Figure S1. Log-transforming the response stabilizes within-morph variation and decorrelates it from mean response.

The sample standard deviation (SD) in leaflet size is positively correlated with mean leaflet size across morphs (left) but not after transformation with the natural log (right). The
spread of sample SDs also becomes more compact, reflecting a decrease in the relative variation of sample SDs across morphs.
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Figure S2. Leaflet size (log-transformed) versus elevation (left) and latitude (right).
Each point represents a different morph. Colors indicate sampling across phylogenies: morphs in orange are in both the network and the tree. Morphs in blue are only in the tree.

Vertical lines show * 1 standard error. The lines are based on ordinary (non-phylogenetic) simple linear regression using a single predictor and either the orange or blue points only
(orange and blue lines) or all points (black line).

Bulletin of the Society of Systematic Biologists 28


https://ssbbulletin.scholasticahq.com/article/87810-accounting-for-within-species-variation-in-continuous-trait-evolution-on-a-phylogenetic-network/attachment/181442.jpg?auth_token=-advTui-KOSVf7-TDIZT

Accounting for Within-Species Variation in Continuous Trait Evolution on a Phylogenetic Network

Table S1. Results from fitting BM; with REML on the 16 subtrees for log leaflet length. The subtrees are partitioned into
6 groups. Results are identical for all subtrees within the same group. Each group is represented by a 4-tuple, in which
the first element is 1 (resp. 2) if eximium (resp. eximium 2) is selected; the second element is 1 (resp. 2) if pulcherrimum p.
(resp. pulcherrimum p. 2) is selected; and the third element is 1 (resp. 2) if chartaceum (resp. chartaceum 2) is selected.
The last element corresponds to the choice of the californicum accession. As it did not affect the results, both choices 1
and 2 are grouped and are represented by a dot. The last group (2, 2, 2, -) was used in Tables 1, 3, and 4.

elevation latitude (62, 62) AlC
(1,1,--)
-0.651 -0.0694 (0.536,0.0986) 1072.74
1.98x107° 2.15x10~4
(1,2,-,)
-0.649 -0.0695 (0.535,0.0986) 1072.39
1.98x107° 2.08x1074
(2,1,1,-)
-0.649 -0.0693 (0.536,0.0986) 1072.62
2.06x107° 2.18x10~4
(2,1,2,-)
-0.649 -0.0693 (0.535,0.0986) 1072.6
2.07x107°% 2.18x1074
(2,2,1,-)
-0.647 -0.0694 (0.534,0.0986) 1072.27
2.06x107° 2.10x 1074
(2,2,2,-)
-0.647 -0.0694 (0.534,0.0986) 1072.25
2.07x107° 2.11x1074
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