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Abstract
Complex-balancedmass-action systems are some of themost important types ofmath-
ematical models of reaction networks, due to their widespread use in applications, as
well as their remarkable stability properties. We study the set of positive parameter
values (i.e., reaction rate constants) of a reaction network G that, according to mass-
action kinetics, generate dynamical systems that can be realized as complex-balanced
systems, possibly by using a different graph G ′. This set of parameter values is called
the disguised toric locus ofG. TheR-disguised toric locus ofG is defined analogously,
except that the parameter values are allowed to take on any real values. We prove that
the disguised toric locus of G is path-connected, and the R-disguised toric locus of G
is also path-connected. We also show that the closure of the disguised toric locus of a
reaction network contains the union of the disguised toric loci of all its subnetworks.

Keywords Disguised toric locus · Dynamical equivalance · Complex balance ·
Mass-action kinetics · Path-connected
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1 Introduction

Dynamical systems generated by reaction networks can exhibit a very wide range of
complex dynamic behaviors, such as multistability, limit cycles, chaotic dynamics, but
also persistence and global stability [1]. A particular class of reaction systems called
complex-balanced systems are known to display very stable behavior. In particular,
complex-balanced systems admit strictly convex Lyapunov functions that guarantee
local asymptotic stability of their positive steady states. Further, these dynamical sys-
tems are conjectured to be globally stable; this property has been proved under some
additional assumptions [1–5].

An object of particular interest is the set in the space of network parameters that
generates complex-balanced dynamical systems. This set is called the toric locus
and has been studied in depth using linear algebra and algebraic geometry, see for
example [6]. There exists a larger set in the space of network parameters that generates
dynamical systems that can be realized by complex-balanced systems. This set is
called the disguised toric locus. In this paper, we focus on the disguised toric locus.
In particular, we show that the disguised toric locus is path-connected. Note that other
important subsets of the parameter space of a network have also been studied; in
particular, the connectivity of the multistationarity locus was investigated recently in
[7].

Our paper is structured as follows: In Sect. 2.1 we introduce reaction networks and
some basic terminology associated with them. In Sect. 2.2 we introduce the notions
of toric dynamical systems and flux systems. In Sect. 3, we introduce the toric locus
and analyze its properties. In particular, we establish some homeomorphisms in the
context of the toric locus which imply that the toric locus and its subsets have a product
structure. In addition, we show that given a reaction network, the union of the disguised
toric loci of all its subnetworks is contained in the closure of the disguised toric locus
of the original network. In Sect. 4, we introduce the disguised toric locus of a reaction
network and prove that it is path-connected. In Sect. 5, we recapitulate our main results
and chalk out directions for future research.

Notation. We will use the following notation throughout the paper:

• Rn
≥0 and Rn

>0: the set of vectors in Rn with non-negative (resp. positive) entries.
• Given two vectors x = (x1, . . . , xn)ᵀ ∈ Rn

>0 and y = (y1, . . . , yn)ᵀ ∈ Rn , we
define:

x y = x y11 x y22 . . . x ynn .

2 Background

The goal of this section is to recall some terminology related to reaction networks.
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Fig. 1 a This reaction network consists of a single connected component. b This reaction network consists
of two connected components. c This reaction network is weakly reversible and contains one connected
component. The stoichiometric subspace corresponding to all three networks is R2

2.1 Reaction networks

Definition 2.1 [4, 8, 9]

(a) A reaction network G = (V , E), also called a Euclidean embedded graph (or
an E-graph), is a directed graph in Rn , where V ⊂ Rn represents a finite set of
vertices and E ⊆ V × V represents the set of edges, and such that there are no
isolated vertices and no self-loops.

(b) Given a reaction network G = (V , E), an edge ( y, y′) ∈ E , also denoted by
y → y′, is called a reaction in the network. For every reaction y → y′ ∈ E , the
vertex y is called the source vertex, and the vertex y′ is called the target vertex.
Further, we refer to the vector y′ − y as the reaction vector of this reaction.

(c) The stoichiometric subspace SG of the reaction network G = (V , E) is the linear
subspace generated by its reaction vectors, i.e.,

SG := spn{ y′ − y : y → y′ ∈ E}. (1)

Definition 2.2 Let G = (V , E) and G̃ = (Ṽ , Ẽ) be two E-graphs.

(a) A connected component of G is said to be strongly connected if every edge in that
component is part of an oriented cycle. Further, G = (V , E) is weakly reversible
if all connected components of G are strongly connected.

(b) G = (V , E) is a complete graph if for every pair of distinct vertices y, y′ ∈ V ,
y → y′ ∈ E .

(c) G is a subgraph of G̃ (denoted by G ⊆ G̃) if V ⊆ Ṽ and E ⊆ Ẽ . Further, we let
G ⊑ G̃ denote that G is weakly reversible and G ⊆ G̃.

Given any E-graph G = (V , E), a complete graph (denoted by Gcomp) can be
obtained by connecting every pair of distinct vertices ofG. ByDefinition,G ⊆ Gcomp.
Further, G ⊑ Gcomp if G is weakly reversible.

Example 2.3 Fig. 1 shows a few examples of reaction networks represented as
E-graphs. ⊓⊔

We now turn our attention to the dynamics exhibited by a network.
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Definition 2.4 [1, 10–14] Let G = (V , E) be an E-graph. For each y → y′ ∈ E , let
k y→ y′ > 0 be the associated reaction rate constant and let k = (k y→ y′) y→ y′∈E ∈ RE

>0
be the reaction rate vector.Undermass-action kinetics, the dynamical systemgenerated
by (G, k) is

dx
dt

=
∑

y→ y′∈E
k y→ y′x y( y′ − y). (2)

Given a point x0 ∈ Rn
>0, the stoichiometric compatibility class of x0 is given by

Sx0 := (x0 + SG) ∩ Rn
>0. (3)

If the positive orthant is forward invariant, the stoichiometric compatibility class is an
invariant polyhedron [15].

Definition 2.5 Consider the following dynamical system

dx
dt

= f (x). (4)

We say the dynamical system is R-realizable on an E-graph G = (V , E), if there
exists a rate vector k ∈ RE , such that

f (x) =
∑

y→ y′∈E
k y→ y′x y( y′ − y). (5)

Further, if k ∈ RE
>0, this dynamical system is said to be realizable on G.

Definition 2.6 [16–18] Two mass-action systems (G, k) and (G̃, k̃) are said to be
dynamically equivalent (denoted by (G, k) ∼ (G̃, k̃)), if for every vertex1 y0 ∈ V∪Ṽ ,

∑

y0→ y∈E
k y0→ y( y − y0) =

∑

y0→ y′∈Ẽ
k̃ y0→ y′( y′ − y0). (6)

Remark 2.7 Suppose (G, k) and (G̃, k̃) are two dynamically equivalent mass-action
systems. Then (G, k) is realizable on G̃ and (G̃, k̃) is realizable on G.

2.2 Toric dynamical systems and the disguised toric locus

The goal of this section is to recall some properties of complex-balanced systems (also
known as toric dynamical systems), and then define the disguised toric locus, which
is the set of the reaction rate vectors that allow complex-balanced realizations under
dynamical equivalence.

1 Note that when y0 /∈ V or y0 /∈ Ṽ , that side is considered as an empty sum, which is zero.

123



390 Journal of Mathematical Chemistry (2024) 62:386–405

Definition 2.8 Consider the mass-action system (G, k) as follows

dx
dt

=
∑

y→ y′∈E
k y→ y′x y( y′ − y).

A point x∗ ∈ Rn
>0 is called a positive steady state of (G, k) if it satisfies

∑

y→ y′∈E
k y→ y′(x∗) y( y′ − y) = 0.

A positive steady state x∗ ∈ Rn
>0 is called a complex-balanced steady state of (G, k),

if for every vertex y ∈ V ,

∑

y→ y′∈E
k y→ y′(x∗) y =

∑

y′→ y∈E
k y′→ y(x∗) y

′
.

If the mass-action system (G, k) admits a complex-balanced steady state, then it is
called a complex-balanced system or a toric dynamical system.

Definition 2.9 Let G = (V , E) be an E-graph. The toric locus on G is given by

K(G) := {k ∈ RE
>0

∣∣ the mass-action system generated by (G, k) is complex-balanced}.

Further, for any E-graph G̃ = (Ṽ , Ẽ), we define the set KR(G̃,G) as

KR(G̃,G) := {k̃ ∈ K(G̃)
∣∣ the mass-action system (G̃, k̃) is R-realizable on G}.

We also define the set K(G̃,G) as

K(G̃,G) := {k̃ ∈ K(G̃)
∣∣ the mass-action system (G̃, k̃) is realizable on G}.

From the definition, it is clear that K(G, G̃) ⊂ KR(G, G̃).

Here we present a useful lemma that connects weakly reversible E-graphs with the
toric locus.

Lemma 2.10 [5] Let G = (V , E) be an E-graph. If G = (V , E) is weakly reversible,
then there exists a rate vector k ∈ RE

>0, such that (G, k) is complex-balanced, i.e.,
K(G) ̸= ∅. Otherwise, if G = (V , E) is not weakly reversible, then K(G) = ∅.
Definition 2.11 Let G = (V , E) be an E-graph.

(a) For any E-graph G̃ = (Ṽ , Ẽ), define the set Kdisg(G, G̃) as

Kdisg(G, G̃) := {k ∈ RE
>0

∣∣ the mass-action system (G, k) is dynamically equivalent

to (G̃, k̃) for some k̃ ∈ K(G̃)}.
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(b) Define the disguised toric locus of G as

Kdisg(G) :=
⋃

G̃⊑Gcomp

Kdisg(G, G̃),

where the notation G̃ ⊑ Gcomp represents that G̃ is a weakly reversible subgraph
of Gcomp.

(c) For any E-graph G̃ = (Ṽ , Ẽ), define the set KR-disg(G, G̃) as

KR-disg(G, G̃) := {k ∈ RE ∣∣ the dynamical system generated by (G, k) is dynamically

equivalent to (G̃, k̃) for some k̃ ∈ K(G̃)},

where the dynamical system generated by (G, k) is given by Eq. (2)2. Note
that k here may have non-positive components, and we have Kdisg(G, G̃) ⊂
KR-disg(G, G̃).

(d) Define the R-disguised toric locus of G as

KR-disg(G) :=
⋃

G̃⊑Gcomp

KR-disg(G, G̃).

where G̃ ⊑ Gcomp represents that G̃ is a weakly reversible subgraph of Gcomp.

Remark 2.12 From the definition, it is clear that Kdisg(G) ⊆ KR-disg(G). In general,
we need both Kdisg(G) and KR-disg(G) to include Kdisg(G,G ′) or KR-disg(G,G ′) for
any weakly reversible E-graph G ′ (i.e., not just for G ′ ⊑ Gcomp). On the other hand,
due to results in [19], it turns out that, if a dynamical system generated by G can be
realized as toric by some G ′, then there exists G ′′ ⊑ Gcomp that also can give rise
to a toric realization of that dynamical system. Therefore, the above assumption that
G̃ ⊑ Gcomp still leads to the correct definition.

The following is a direct consequence of the Definition2.11.

Remark 2.13 Consider two E-graphs G = (V , E) and G̃ = (Ṽ , Ẽ). Then

(a) K(G̃,G) is non-empty if and only if Kdisg(G, G̃) is non-empty.
(b) KR(G̃,G) is non-empty if and only if KR-disg(G, G̃) is non-empty.

The sets K(G̃,G) and KR(G̃,G) are related [20]. In Sect. 3, we describe some
properties of the toric locus. In Sect. 4, we show that the disguised toric locus is
path-connected.

2 For simplicity, in the rest of this paper, we abuse the following notation: Given k ∈ RE
>0, we will refer to

the mass-action system generated by G and k as in Eq. (2) as “the mass-action system (G, k)”. Moreover,
we will still refer to this system as “the mass-action system (G, k)” even if we have k ∈ RE instead of
k ∈ RE

>0.
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3 Toric locus

In this section, we first present some elementary properties of the toric locus. Then
we show some homeomorphisms on the toric locus and its subsets.

3.1 Some basic properties of the toric locus

Lemma 3.1 Let G = (V , E) be a weakly reversible E-graph. Consider a reaction rate
vector k∗ ∈ K(G) and a complex-balanced steady state x∗ ∈ Rn

>0 for the mass-action
system (G, k∗). For any x ∈ (x0 + SG) ∩ Rn

>0, we define

k∗
G(x, x

∗) =
(
k∗
y→ y′(x, x∗)

)

y→ y′∈E
=

(
k∗
y→ y′(x∗) y

x y

)

y→ y′∈E
. (7)

Then
k∗
G(x, x

∗) ∈ K(G),

and x is a complex-balanced steady state for the mass-action system (G, k∗
G(x, x

∗)).

Proof Since x∗ is a complex-balanced steady state for themass-action system (G, k∗),
then for every vertex y0 ∈ V ,

∑

y0→ y′∈E
k∗
y0→ y′(x∗) y0 =

∑

y→ y0∈E
k∗
y→ y0(x

∗) y. (8)

Thus, we derive

∑

y0→ y′∈E
k∗
y0→ y′ (x, x∗)(x) y0 =

∑

y0→ y′∈E

k∗
y0→ y′ (x∗) y0

x y0
(x) y0 =

∑

y0→ y′∈E
k∗
y0→ y′ (x∗) y0 . (9)

On the other hand, we compute that

∑

y→ y0∈E
k∗
y→ y0 (x, x

∗)x y =
∑

y→ y0∈E

k∗
y→ y0 (x

∗) y

x y x y =
∑

y→ y0∈E
k∗
y→ y0 (x

∗) y. (10)

Together with (8), (9) and (10), for every vertex y0 ∈ V ,

∑

y0→ y′∈E
k∗
y0→ y′(x, x∗)(x) y0 =

∑

y→ y0∈E
k∗
y→ y0(x, x

∗)(x) y.

Therefore, we conclude that x is a complex-balanced steady state for the mass-action
system (G, k∗

G(x, x
∗)) and k∗

G(x, x
∗) ∈ K(G). ⊓⊔

Here we show a relation between the toric locus of a Euclidean embedded graph
and the toric locus of its subgraphs.
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Proposition 3.2 Let G = (V , E) be a weakly reversible E-graph. For any subgraph
Gi ⊆ G, we construct the corresponding set of vectors K̂(Gi ) as

K̂(Gi ) := {k̂ ∈ RE
≥0 | k ∈ K(Gi )} with k̂ y→ y′ :=

{
k y→ y′ , if y → y′ ∈ Ei ,

0, if y → y′ /∈ Ei .
(11)

Then we have ⋃

Gi⊆G

K̂(Gi ) ! K(G). (12)

Proof Since the E-graph G = (V , E) is weakly reversible, Lemma2.10 shows
K(G) ̸= ∅ and there exists a reaction rate vector k∗ ∈ K(G). Further, we assume
the mass-action system (G, k∗) has a complex-balanced steady state x∗.

Suppose G1 = (V1, E1) is a subgraph of G. If G1 is not weakly reversible, then
K(G1) = ∅ and (12) holds. Otherwise, if G1 is weakly reversible, then K(G1) ̸= ∅.
For any reaction vector k1 = (k1, y→ y′) y→ y′∈E1 ∈ K(G1), we assume the mass-action
system (G1, k1) has a complex-balanced steady state x1. Following (11), we obtain
the reaction rate vector k̂1 ∈ K̂(G1) ⊂ RE

≥0 as follows:

k̂1 = (k̂1, y→ y′) y→ y′∈E with k̂1, y→ y′ :=
{
k1, y→ y′ , if y → y′ ∈ E1,

0, if y → y′ /∈ E1.
(13)

On the other hand, from Lemma3.1 we get

k∗
G(x1, x

∗) =
(
k∗
y→ y′(x∗) y

(x1) y

)

y→ y′∈E
∈ K(G), (14)

and x1 is a complex-balanced steady state for themass-action system (G, k∗
G(x1, x

∗)).
Now we claim that for any ε > 0, εk∗

G(x1, x
∗)+ k̂1 ∈ K(G). From k1 ∈ K(G1),

we have for every vertex y0 ∈ V1 ⊂ V

∑

y0→ y′∈E1

k1, y0→ y′(x1) y0 =
∑

y→ y0∈E1

k1, y→ y0(x1)
y.

Following (13), we derive for every vertex y0 ∈ V

∑

y0→ y′∈E
k̂1, y0→ y′(x1) y0 =

∑

y→ y0∈E
k̂1, y→ y0(x1)

y. (15)

Note that x1 is a complex-balanced steady state for the mass-action system
(G, k∗

G(x1, x
∗)). Then for every vertex y0 ∈ V

∑

y0→ y′∈E
k∗
y0→ y′(x1, x∗)(x1) y0 =

∑

y→ y0∈E
k∗
y→ y0(x1, x

∗)(x1) y,
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and thus for any ε > 0,

∑

y0→ y′∈E
εk∗

y0→ y′(x1, x∗)(x1) y0 =
∑

y→ y0∈E
εk∗

y→ y0(x1, x
∗)(x1) y. (16)

Together with (15) and (16), we prove the claim.
By passing ε → 0, we get k̂1 ∈ K(G) and K̂(G1) ⊆ K(G). It is clear that we can

apply this method to all other subgraphs of G. Therefore, we conclude

⋃

Gi⊆G

K̂(Gi ) ⊆ K(G).

Finally, we show
⋃

Gi⊆G
K̂(Gi ) ̸= K(G). For any vector k ∈ K(G) and number

ε > 0, we can compute εk ∈ K(G). By passing ε → 0, we get 0 ∈ K(G). However,
consider any subgraph Gi of G,K(Gi ) is either an empty set or only contains positive
vectors, that is, 0 /∈ K(Gi ) or K̂(Gi ). ⊓⊔

3.2 Homeomorphisms on the toric locus

It is difficult to analyze the toric locus due to its nonlinearity. Here we introduce the
linear flux systems and then establish the product structure of the toric locus and its
subsets via homeomorphisms involving flux systems.

Definition 3.3 Let G = (V , E) be an E-graph.

(a) For each y → y′ ∈ E , let Jy→ y′ > 0 be the associated flux and let J =
(Jy→ y′) y→ y′∈E ∈ RE

>0 be the flux vector. The pair (G, J) is said to be a flux
system.

(b) A flux vector J ∈ RE
>0 is said to be a complex-balanced flux vector if for every

vertex y0 ∈ V , ∑

y→ y0∈E
Jy→ y0 =

∑

y0→ y′∈E
Jy0→ y′ .

Then (G, J) is called a complex-balanced flux system. We denote the set of all
complex-balanced flux vectors on G by

J (G) := {J ∈ RE
>0 | J is a complex-balanced flux vector on G}.

Definition 3.4 Let (G, J) and (G̃, J̃) be two flux systems.

(a) (G, J) and (G̃, J̃) are said to be flux equivalent (denoted by (G, J) ∼ (G̃, J̃)),
if for every vertex y0 ∈ V ∪ Ṽ ,

∑

y0→ y∈E
Jy0→ y( y − y0) =

∑

y0→ y′∈Ẽ
J̃y0→ y′( y′ − y′

0).
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(b) (G̃, J̃) is said to be R-realizable on G if there exists some J ∈ RE , such that for
every vertex y0 ∈ V ∪ Ṽ ,

∑

y0→ y∈E
Jy→ y0( y

′ − y) =
∑

y0→ y′∈Ẽ
J̃y0→ y′( y′ − y′

0).

Further, if J ∈ RE
>0, (G̃, J̃) is said to be realizable on G.

(c) We denote the set JR(G̃,G) as

JR(G̃,G) := { J̃ ∈ J (G̃)
∣∣ the flux system (G̃, J̃) isR-realizable on G}.

Further, we denote the set J (G̃,G) as

J (G̃,G) := { J̃ ∈ J (G̃)
∣∣ the flux system (G̃, J̃) is realizable on G}.

Remark 3.5 Suppose two flux systems (G, J) and (G̃, J̃) are flux equivalent, then
(G, J) is realizable on G̃ and (G̃, J̃) is realizable on G.

Here we list some of the most important results of flux systems.

Lemma 3.6 [20] Let G̃ = (Ṽ , Ẽ) be a weakly reversible E-graph and let G = (V , E)
be an E-graph. Then J (G̃,G) is a convex cone.

Proposition 3.7 [19] Consider two mass-action systems (G, k) and (G̃, k̃). Let x ∈
Rn
>0, define the flux vector J(x) = (Jy→ y′) y→ y′∈G on G with Jy→ y′ = k y→ y′x y.

Similarly, define the flux vector J ′(x) = (J ′
y→ y′) y→ y′∈G ′ on G ′ with J ′

y→ y′ =
k′
y→ y′x y. Then the following are equivalent:

(a) the mass-action systems (G, k) and (G̃, k̃) are dynamically equivalent.
(b) the flux systems (G, J(x)) and (G̃, J̃(x)) are flux equivalent for all x ∈ Rn

>0.
(c) the flux systems (G, J(x)) and (G̃, J̃(x)) are flux equivalent for some x ∈ Rn

>0

The following theorem shows the product structure of the toric locus.

Theorem 3.8 [21] Consider a weakly reversible E-graph G = (V , E) and its
stoichiometric subspace SG. For any x0 ∈ Rn

>0, there exists a homeomorphism

ϕ : J (G) × [(x0 + SG) ∩ Rn
>0] 2→ K(G), (17)

such that for x ∈ (x0 + SG) ∩ Rn
>0 and J = (Jyi→ y j ) yi→ y j∈E ∈ J (G),

ϕ(J, x) =
( Jyi→ y j

x yi

)

yi→ y j∈E
. (18)

Then K(G) is homeomorphic to the product space J (G) × [(x0 + SG) ∩ Rn
>0].

Now we are ready to present the main result of this section.
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Theorem 3.9 Consider a weakly reversible E-graph G̃ = (Ṽ , Ẽ)with its stoichiomet-
ric subspace SG̃ . For any E-graph G = (V , E) and x0 ∈ Rn

>0, then

(a) KR(G̃,G) is homeomorphic to the product spaceJR(G̃,G)× [(x0+SG̃)∩Rn
>0].

(b) K(G̃,G) is homeomorphic to the product space J (G̃,G) × [(x0 + SG̃) ∩ Rn
>0].

Proof We only prove part (b) as part (a) can be verified similarly. From Theorem3.8,
there exists the homeomorphism map ϕ, such that

ϕ : J (G̃) × [(x0 + SG̃) ∩ Rn
>0] 2→ K(G̃).

On the subdomain J (G̃,G) × [(x0 + SG̃) ∩ Rn
>0], the injectivity and continuity

of ϕ and its inverse are guaranteed from Theorem3.8. Since K(G̃,G) ⊂ K(G̃) and
J (G̃,G) ⊂ J (G̃), to prove the homeomorphism in part (b), it therefore suffices for
us to show that

ϕ
(
J (G̃,G) × [(x0 + SG̃) ∩ Rn

>0]
)
= K(G̃,G). (19)

First, we show that ϕ
(
J (G̃,G) × [(x0 + SG̃) ∩ Rn

>0]
)

⊆ K(G̃,G). Assume
that the pair ( J̃, x̃) ∈ J (G̃,G) × [(x0 + SG̃) ∩ Rn

>0], there exists a flux vector
J = (Jyi→ y j ) yi→ y j∈E ∈ RE

>0, such that for every vertex y0 ∈ V ∪ Ṽ ,

∑

y0→ y∈E
Jy0→ y( y − y0) =

∑

y0→ y′∈Ẽ
J̃y0→ y′( y′ − y0). (20)

Using Theorem3.8, we input ϕ( J̃, x̃) into (20). Then for every vertex y0 ∈ V ∪ Ṽ ,

∑

y0→ y∈E
Jy0→ y( y − y0) =

∑

y0→ y′∈Ẽ
ϕ y0→ y′(x̃) y0( y′ − y0).

We construct the following reaction rate vector in G:

k = (k yi→ y j ) yi→ y j∈E with k yi→ y j =
Jyi→ y j

(x̃) yi
,

and for every vertex y0 ∈ V ∪ Ṽ

∑

y0→ y∈E
k y0→ y(x̃) y0( y − y0) =

∑

y0→ y′∈Ẽ
ϕ y0→ y′(x̃) y0( y′ − y0). (21)

From Proposition3.7, we derive

(G̃,ϕ( J̃, x̃)) ∼ (G, k) and ϕ( J̃, x̃) ∈ K(G̃,G).

Thus, we prove that ϕ
(
J (G̃,G) × [(x0 + SG̃) ∩ Rn

>0]
)

⊆ K(G̃,G).
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Second, we show K(G̃,G) ⊆ ϕ
(
J (G̃,G) × [(x0 + SG̃) ∩ Rn

>0]
)
. Assume k̃ ∈

K(G̃,G), there exists a reaction rate vector k = (k yi→ y j ) yi→ y j∈E ∈ RE
>0, such that

for every vertex y0 ∈ V ∪ Ṽ

∑

y0→ y∈E
k y0→ y( y − y0) =

∑

y0→ y′∈Ẽ
k̃ y0→ y′( y′ − y0). (22)

Note that (G̃, k̃) has a unique complex-balanced steady state in (x0 + SG̃) ∩ Rn
>0,

denoted by x̃. Then we build two flux vectors in G̃ and G as follows:

J̃ = ( J̃yi→ y j ) yi→ y j∈Ẽ with J̃yi→ y j = k̃ yi→ y j (x̃)
yi ,

J = (Jyi→ y j ) yi→ y j∈E with Jyi→ y j = k yi→ y j (x̃)
yi .

Thus, we get

∑

y0→ y∈E
Jy0→ y( y − y0) =

∑

y0→ y′∈Ẽ
J̃y0→ y′( y′ − y0). (23)

This implies that J̃ ∈ J (G̃,G) and ϕ( J̃, x̃) = k̃. Therefore, together with two parts,
we conclude (19). ⊓⊔

From the homeomorphism in Theorem3.9, we show the connectivity onK(G̃,G).

Theorem 3.10 Consider a weakly reversible E-graph G̃ = (Ṽ , Ẽ) and an E-graph
G = (V , E).

(a) Both JR(G̃,G) and KR(G̃,G) are path-connected. Moreover, JR(G̃,G) is non-
empty if and only if KR(G̃,G) is non-empty.

(b) BothJ (G̃,G)andK(G̃,G)arepath-connected.Moreover,J (G̃,G) is non-empty
if and only if K(G̃,G) is non-empty.

Proof We only prove part (b) since part (a) follows analogously. First, suppose
J (G̃,G) = ∅. From Theorem3.9, K(G̃,G) is homeomorphic to the product space
J (G̃,G) × [(x0 + SG̃) ∩ Rn

>0]. Thus we derive that K(G̃,G) = ∅.
Next, supposeJ (G̃,G) ̸= ∅. FromDefinition and Lemma3.6,J (G̃,G) and (x0+

SG̃) ∩ Rn
>0 are both path-connected. Using Theorem3.9, K(G̃,G) is homeomorphic

to the product space J (G̃,G)× [(x0 + SG̃) ∩Rn
>0], we conclude K(G̃,G) ̸= ∅ and

K(G̃,G) is path-connected. ⊓⊔
The following is another consequence of Theorem3.8 and Lemma3.1.

Lemma 3.11 Consider aweakly reversibleE-graphG = (V , E)and its stoichiometric
subspace SG. For any k∗ ∈ K(G) and x0 ∈ Rn

>0, the mass-action system (G, k∗) has
a unique steady state x∗ ∈ (x0 + SG) ∩ Rn

>0. Define

KG(k∗, x∗) := {k∗
G(x, x

∗) | x ∈ (x0 + SG) ∩ Rn
>0}, (24)
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Fig. 2 Two E-graphs G̃ = (Ṽ , Ẽ) and G = (V , E). Note that G ⊆ G̃

where

k∗
G(x, x

∗) =
(
k∗
y→ y′(x∗) y

x y

)

y→ y′∈E
.

Then KG(k∗, x∗) is homeomorphic to the stoichiometric compatibility class (x0 +
SG) ∩ Rn

>0.

Proof From Theorem3.8, there exists the homeomorphism map ϕ, such that

ϕ : J (G) × [(x0 + SG) ∩ Rn
>0] 2→ K(G).

Using Lemma3.1, we have for any x ∈ (x0 + SG) ∩ Rn
>0

k∗
G(x, x

∗) ∈ K(G),

and x is the unique steady state for the mass-action system (G, k∗
G(x, x

∗)) in (x0 +
SG) ∩ Rn

>0.
Now let J = (k∗

y→ y′(x∗) y) y→ y′∈E , we can check that for any x ∈ (x0+SG)∩Rn
>0,

ϕ(J, x) = k∗
G(x, x

∗). (25)

Thus, it suffices for us to prove

ϕ
(
{J} × [(x0 + SG) ∩ Rn

>0]
)
= KG(k∗, x∗). (26)

The rest of the proof follows directly from the steps in the proof of Theorem3.9. ⊓⊔
Example 3.12 Consider two E-graphs in Fig. 2, we give an example of an application
of Theorem3.10. The vertices shown in both E-graphs are given by

y1 =
(
0
3

)
, y2 =

(
2
1

)
, y3 =

(
1
2

)
, y4 =

(
3
0

)
. (27)
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For the weakly reversible E-graph G̃ = (Ṽ , Ẽ), from Theorem3.8 and Lemma3.6
we get the path-connectedness on K(G̃). Now consider the E-graph G = (V , E).

(a) First, we claim that

KR(G̃,G) = K(G̃).

For any k̃ ∈ K(G̃), we set k ∈ R|E | as

k12 = k̃12 + 2k̃13 + 3k̃14, k23 = k̃23 − k̃21 + 2k̃24.

k34 = k̃34 − k̃32 − 2k̃31, k43 = k̃43 + 2k̃42 + 3k̃41. (28)

From Definition2.6, we can compute that (G̃, k̃) ∼ (G, k) and thus prove the
claim. Therefore, we conclude the path-connectedness on KR(G̃,G).

(b) Second, we consider K(G̃,G). For any k̃ ∈ K(G̃), to ensure (G̃, k̃) ∼ (G, k) we
set

k12 = k̃12 + 2k̃13 + 3k̃14, k23 = k̃23 − k̃21 + 2k̃24.

k34 = k̃34 − k̃32 − 2k̃31, k43 = k̃43 + 2k̃42 + 3k̃41. (29)

Moreover, in this case we need k ∈ R|E |
>0 , that is,

k̃23 + 2k̃24 ≥ k̃21, k̃34 ≥ k̃32 + 2k̃31.

Thus we obtain that

K(G̃,G) = {k̃ ∈ K(G̃)
∣∣ k̃23 + 2k̃24 ≥ k̃21 and k̃34 ≥ k̃32 + 2k̃31}.

Applying Theorem3.10, we conclude the path-connectedness on K(G̃,G). ⊓⊔

4 The disguised toric locus is path-connected

In this section, we show the main results of this paper: both the disguised toric locus
and the R-disguised toric locus are path-connected.

Theorem 4.1 Consider an E-graph G = (V , E). Then the R-disguised toric locus of
G is path-connected.3

Proof If the R-disguised toric locus of G is an empty set, it is path-connected. Else,
we proceed as follows:

Step 1:Recall that for anyweakly reversible subgraphGi ofGcomp, theR-disguised
toric locus of G is given by

3 Some authors exclude the empty set from being path-connected, but we do not follow this convention
here.
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KR-disg(G) =
⋃

Gi⊑Gcomp

KR-disg(G,Gi ).

If KR-disg(G) = ∅, then we prove the theorem. Otherwise, suppose a reaction
rate vector k ∈ KR-disg(G). Let k ∈ KR-disg(G,G1) with G1 is a weakly reversible
subgraph of Gcomp, and there exists a reaction rate vector k1 ∈ K(G1), such that
(G, k) ∼ (G1, k1).

Consider a fixed state x0 ∈ Rn
>0, the mass-action system (G1, k1) has a unique

steady state x1 ∈ (x0 + SG) ∩ Rn
>0. Then we define the following set of reaction

vectors:
K(G,k)(x1) := {kG(x, x1) ∈ RE | x ∈ (x0 + SG) ∩ Rn

>0},
where

kG(x, x1) = (k y→ y′(x, x1)) y→ y′∈E =
(
k y→ y′(x1) y

x y

)

y→ y′∈E
.

Here we claim that K(G,k)(x1) ⊆ KR-disg(G,G1). It suffices to show for any
x ∈ (x0 + SG) ∩ Rn

>0, kG(x, x1) ∈ KR-disg(G,G1). Since (G, k) ∼ (G1, k1), for
every vertex y0 ∈ V ∪ V1

∑

y0→ y∈E
k y0→ y( y − y0) =

∑

y0→ y′∈E1

k1, y0→ y′( y′ − y0).

Since x ∈ (x0 + SG) ∩ Rn
>0, for every vertex y0 ∈ V ∪ V1

∑

y0→ y∈E
k y0→ y

(x1) y

x y ( y − y0) =
∑

y0→ y′∈E1

k1, y0→ y′
(x1) y

x y ( y′ − y0).

Thus, we derive that

(G, kG(x, x1)) ∼ (G1, k1(x)) with k1, y→ y′(x) = k1, y→ y′(x1) y

x y . (30)

Using Lemma3.1, we have

k1(x) ∈ K(G1) and x is a complex-balanced steady state for (G1, k1(x)) (31)

Therefore, kG(x, x1) ∈ KR-disg(G,G1) and we prove the claim.
Step 2: Suppose two reaction rate vectors ka, kb ∈ KR-disg(G). Let ka ∈

KR-disg(G,G1) and kb ∈ KR-disg(G,G2), where G1 and G2 are weakly reversible
subgraphs of Gcomp. There exist two corresponding reaction rate vectors k1 ∈ K(G1)

and k2 ∈ K(G2), such that

(G, ka) ∼ (G1, k1) and (G, kb) ∼ (G2, k2). (32)

Further, we suppose (G1, k1) and (G2, k2) share one complex-balanced steady state
x0 ∈ Rn

>0. Now we claim that
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L(ka, kb) := {αka + (1 − α)kb | 0 ≤ α ≤ 1} ⊂ KR-disg(G).

Note that when α = 0, 1, we have ka, kb ∈ KR-disg(G).
From Definition2.8 and x0 is a complex-balanced steady state for (G1, k1) and

(G2, k2), we have for every vertex y0 ∈ V1 ∪ V2

∑

y0→ y′∈E
k1, y0→ y′(x0) y0 =

∑

y→ y0∈E
k1, y→ y0(x0)

y,

∑

y0→ y′∈E
k2, y0→ y′(x0) y0 =

∑

y→ y0∈E
k2, y→ y0(x0)

y. (33)

Define an E-graphG1,2 = (V1,2, E1,2)with V1,2 := V1∪V2 and E1,2 := E1∪E2. It is
clearG1,2 is a weakly reversible subgraph ofGcomp. Given a fixed number 0 < α < 1,
from (33) we derive that for every vertex y0 ∈ V1,2,

∑

y0→ y′∈E1,2

(
αk1, y0→ y′ + (1 − α)k2, y0→ y′

)
(x0) y0

=
∑

y→ y0∈E1,2

(
αk1, y→ y0 + (1 − α)k2, y→ y0

)
(x0) y.

This shows that αk1 + (1 − α)k2 ∈ K(G1,2). On the other hand, from (32) we can
check

(G,αka + (1 − α)kb) ∼ (G1,2,αk1 + (1 − α)k2),

and thus conclude αka + (1 − α)kb ∈ KR-disg(G).
Step 3: Now we show KR-disg(G) is path-connected. Consider any two reaction

rate vectors in KR-disg(G) such that

ka ∈ KR-disg(G,G1) and kb ∈ KR-disg(G,G2),

where G1 and G2 are weakly reversible subgraphs of Gcomp. Let k1 ∈ K(G1) and
k2 ∈ K(G2) such that (G, ka) ∼ (G1, k1) and (G, kb) ∼ (G2, k2). For a fixed state
x0 ∈ Rn

>0, the mass-action systems (G1, k1) and (G2, k2) have steady states x1 and
x2 in (x0 + SG) ∩ Rn

>0, respectively.
In step 1, we construct K(G,ka)(x1) and K(G,kb)(x2). It is clear that both of them

are path-connected. From x0 ∈ Rn
>0, (30) and (31), we get

(G1, k1(x0)) ∼ (G, kaG(x0, x1)) and (G2, k2(x0)) ∼ (G, kbG(x0, x2)),

and x0 is a steady state for both (G1, k1(x0)) and (G2, k2(x0)). Further, in step 2 we
prove

L(kaG(x, x0), k
b
G(x, x0)) ⊂ KR-disg(G).

Therefore, there exists a path connecting ka and kb, and we prove this theorem. ⊓⊔
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Using a similar argument as in Theorem4.1, we conclude the following remark:

Remark 4.2 Consider an E-graph G = (V , E) and any weakly reversible subgraph
G̃ ⊑ Gcomp. Then KR-disg(G, G̃) is path-connected.

The proof of the connectivity of the disguised toric locus is similar to the case of
the R-disguised toric locus. We sketch the proof for completeness below.

Theorem 4.3 Consider an E-graph G = (V , E). Then the disguised toric locus of G
is path-connected.3

Proof If the disguised toric locus of G is an empty set, it is path-connected. Else, we
proceed in a way that is very similar to the proof of the previous theorem, as follows.

For any weakly reversible subgraph Gi of Gcomp, the disguised toric locus of G is
defined as

Kdisg(G) =
⋃

Gi⊑Gcomp

Kdisg(G,Gi ).

The Theorem immediately follows if Kdisg(G) = ∅. Otherwise, suppose a reaction
rate vector k ∈ Kdisg(G) ⊂ RE

>0, and k ∈ Kdisg(G,G1)withG1 is a weakly reversible
subgraph of Gcomp. Then there exists a reaction rate vector k1 ∈ K(G1), such that
(G, k) ∼ (G1, k1).

Consider a fixed state x0 ∈ Rn
>0, the mass-action system (G1, k1) has a unique

steady state x1 ∈ (x0 + SG) ∩ Rn
>0. Then we define the following set of reaction

vectors:
K(G,k)(x1) := {kG(x, x1) ∈ RE

>0 | x ∈ (x0 + SG) ∩ Rn
>0},

where

kG(x, x1) = (k y→ y′(x, x1)) y→ y′∈E =
(
k y→ y′(x1) y

x y

)

y→ y′∈E
.

Using a similar argument as in Theorem4.1, we conclude that K(G,k)(x1) ⊆
Kdisg(G,G1).

Suppose two reaction rate vectors ka, kb ∈ Kdisg(G). Let G1,G2 be two weakly
reversible subgraphs of Gcomp and let ka ∈ Kdisg(G,G1) and kb ∈ Kdisg(G,G2).
There exist two corresponding reaction rate vectors k1 ∈ K(G1) and k2 ∈ K(G2),
such that

(G, ka) ∼ (G1, k1) and (G, kb) ∼ (G2, k2).

Further, we suppose (G1, k1) and (G2, k2) share one complex-balanced steady state
x0 ∈ Rn

>0. Again using a similar argument as in Theorem4.1, we get that

L(ka, kb) := {αka + (1 − α)kb | 0 ≤ α ≤ 1} ⊂ Kdisg(G).

Note that when α = 0, 1, we have ka, kb ∈ Kdisg(G).
Finally,we showKdisg(G) is path-connected.Consider any two reaction rate vectors

in Kdisg(G) such that

ka ∈ Kdisg(G,G1) and kb ∈ Kdisg(G,G2),
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where G1 and G2 are weakly reversible subgraphs of Gcomp. Let k1 ∈ K(G1) and
k2 ∈ K(G2) such that (G, ka) ∼ (G1, k1) and (G, kb) ∼ (G2, k2). For a fixed state
x0 ∈ Rn

>0, the mass-action systems (G1, k1) and (G2, k2) have steady states x1 and
x2 in (x0 + SG) ∩ Rn

>0, respectively.
Then we construct K(G,ka)(x1) and K(G,kb)(x2). From the steps above, both of

them are path-connected and we have

(G1, k1(x0)) ∼ (G, kaG(x0, x1)) and (G2, k2(x0)) ∼ (G, kbG(x0, x2)),

and x0 is a steady state for both (G1, k1(x0)) and (G2, k2(x0)). We also recall that

L(kaG(x, x0), k
b
G(x, x0)) ⊂ Kdisg(G).

Therefore, there exists a path connecting ka and kb, and we prove this theorem. ⊓⊔
Example 4.4 Revisit two E-graphs G̃ = (Ṽ , Ẽ) and G = (V , E) in Fig. 2. Now
we consider the disguised toric locus Kdisg(G, G̃) and the R-disguised toric locus
KR-disg(G, G̃). Recall from Example3.12, suppose that k̃ ∈ K(G̃), for any k ∈
Kdisg(G, G̃) or KR-disg(G, G̃), we first need to ensure (G̃, k̃) ∼ (G, k). Under direct
computation, we have

k12 = k̃12 + 2k̃13 + 3k̃14, k23 = k̃23 − k̃21 + 2k̃24.

k34 = k̃34 − k̃32 − 2k̃31, k43 = k̃43 + 2k̃42 + 3k̃41. (34)

(a) From [22, Theorem 4.3], we get that Kdisg(G, G̃) = R|E |
>0 . Thus for any k ∈ R|E |

>0 ,
we have

(G, k) ∼ (G̃, k̃), for some k̃ ∈ K(G̃).

It is clear thatR|E |
>0 is path-connected, and we conclude the path-connectedness on

Kdisg(G, G̃).
(b) From [22, Theorem 4.3], for any k ∈ KR-disg(G, G̃), it needs to satisfy

k12 > 0, k43 > 0. (35)

Further, if k34 > 0 > k23, then it also needs that

k12k43 + k34k23 ≥ 0. (36)

It is clear that the region restricted by k12, k43 > 0 and

k23, k34 > 0 or k23, k34 < 0 or k23 > 0 > k34,

is path-connected. On the other hand, for any k34 > 0 > k23, we set

k12 = −k34k23/k43 > 0.
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This implies KR-disg(G, G̃) is path-connected when k12, k43, k34 > 0 and k23 <

0. Therefore, we conclude the path-connectedness on KR-disg(G, G̃). ⊓⊔

5 Discussion

The notions of toric locus and disguised toric locus of a reaction network N have
been studied in depth in recent work [6, 21, 22], due to the fact that they determine
sets in the parameter space of N where the dynamics is guaranteed to be remarkably
stable [1, 2, 5, 19, 23]. The toric locus is the set of parameter values ofN that generate
complex-balanced dynamical systems; while the disguised toric locus is a larger set
in the parameter space ofN , which generate dynamical systems that are realizable as
complex-balanced systems, possibly by using another networkN ′. In particular, it has
been shown that the toric locus is connected and that steady states of toric dynamical
systems depend continuously on the rate constants of the network [21]. Further, it is
also known that many reaction networks that possess toric locus of measure zero; but
a disguised toric locus having positive measure [22]. In particular, in previous work
[20], we have established a lower bound on the dimension of the disguised toric locus;
often, this lower bound is equal to the dimension of the parameter space ofN , which
is one way to conclude that the disguised toric locus has positive measure.

In this paper, we study several topological properties of the toric locus and the
disguised toric locus. In particular, we establish the product structure of some relevant
subsets of the toric locus via certain homeomorphisms in Sect. 3.2. Our main result is
that the disguised toric locus is path connected (Theorem4.1). This is useful since it
can be exploited in numerical and homotopy methods for tracking the steady states of
a system [23–26].

This work opens up avenues for a more comprehensive analysis of special regions
of the parameter space of a reaction network; as a recent example of related work,
where the focus is on instability/multistability as opposed to stability, see [7].
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