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Abstract

Complex-balanced mass-action systems are some of the most important types of math-
ematical models of reaction networks, due to their widespread use in applications, as
well as their remarkable stability properties. We study the set of positive parameter
values (i.e., reaction rate constants) of a reaction network G that, according to mass-
action kinetics, generate dynamical systems that can be realized as complex-balanced
systems, possibly by using a different graph G’. This set of parameter values is called
the disguised toric locus of G. The R-disguised toric locus of G is defined analogously,
except that the parameter values are allowed to take on any real values. We prove that
the disguised toric locus of G is path-connected, and the R-disguised toric locus of G
is also path-connected. We also show that the closure of the disguised toric locus of a
reaction network contains the union of the disguised toric loci of all its subnetworks.

Keywords Disguised toric locus - Dynamical equivalance - Complex balance -
Mass-action kinetics - Path-connected
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1 Introduction

Dynamical systems generated by reaction networks can exhibit a very wide range of
complex dynamic behaviors, such as multistability, limit cycles, chaotic dynamics, but
also persistence and global stability [1]. A particular class of reaction systems called
complex-balanced systems are known to display very stable behavior. In particular,
complex-balanced systems admit strictly convex Lyapunov functions that guarantee
local asymptotic stability of their positive steady states. Further, these dynamical sys-
tems are conjectured to be globally stable; this property has been proved under some
additional assumptions [1-5].

An object of particular interest is the set in the space of network parameters that
generates complex-balanced dynamical systems. This set is called the foric locus
and has been studied in depth using linear algebra and algebraic geometry, see for
example [6]. There exists a larger set in the space of network parameters that generates
dynamical systems that can be realized by complex-balanced systems. This set is
called the disguised toric locus. In this paper, we focus on the disguised toric locus.
In particular, we show that the disguised toric locus is path-connected. Note that other
important subsets of the parameter space of a network have also been studied; in
particular, the connectivity of the multistationarity locus was investigated recently in
[7].

Our paper is structured as follows: In Sect. 2.1 we introduce reaction networks and
some basic terminology associated with them. In Sect.2.2 we introduce the notions
of toric dynamical systems and flux systems. In Sect. 3, we introduce the toric locus
and analyze its properties. In particular, we establish some homeomorphisms in the
context of the toric locus which imply that the toric locus and its subsets have a product
structure. In addition, we show that given a reaction network, the union of the disguised
toric loci of all its subnetworks is contained in the closure of the disguised toric locus
of the original network. In Sect. 4, we introduce the disguised toric locus of a reaction
network and prove that it is path-connected. In Sect. 5, we recapitulate our main results
and chalk out directions for future research.

Notation. We will use the following notation throughout the paper:

e R, and R” ;: the set of vectors in R"” with non-negative (resp. positive) entries.

e Given two vectors x = (x,...,x,)T € Rl jand y = (y1,...,y.)7 € R", we
define:
xV =x" g

2 Background

The goal of this section is to recall some terminology related to reaction networks.
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Fig.1 a This reaction network consists of a single connected component. b This reaction network consists
of two connected components. ¢ This reaction network is weakly reversible and contains one connected
component. The stoichiometric subspace corresponding to all three networks is R2

2.1 Reaction networks

Definition 2.1 [4, 8, 9]

(a) A reaction network G = (V, E), also called a Euclidean embedded graph (or
an E-graph), is a directed graph in R”, where V C R” represents a finite set of
vertices and E C V x V represents the set of edges, and such that there are no
isolated vertices and no self-loops.

(b) Given a reaction network G = (V, E), an edge (y,y’) € E, also denoted by
y — y/, is called a reaction in the network. For every reaction y — y’ € E, the
vertex y is called the source vertex, and the vertex y’ is called the rarget vertex.
Further, we refer to the vector ¥y’ — y as the reaction vector of this reaction.

(c) The stoichiometric subspace S of the reaction network G = (V, E) is the linear
subspace generated by its reaction vectors, i.e.,

Sg:=spn{y' —y:y—>y € E}. €]

Definition 2.2 Let G = (V, E) and G = (V, E) be two E-graphs.

(a) A connected component of G is said to be strongly connected if every edge in that
component is part of an oriented cycle. Further, G = (V, E) is weakly reversible
if all connected components of G are strongly connected.

(b) G = (V, E) is a complete graph if for every pair of distinct vertices y, y’ € V,
y—> Yy €E.

(c) G is a subgraph of G (denoted by G C G) if vV C V and E C E. Further, we let
GLC G denote that G is weakly reversible and G C G.

Given any E-graph G = (V, E), a complete graph (denoted by Gcomp) can be
obtained by connecting every pair of distinct vertices of G. By Definition, G € Gcomp.
Further, G T Gcomp if G is weakly reversible.

Example 2.3 Fig.1 shows a few examples of reaction networks represented as
E-graphs. O

We now turn our attention to the dynamics exhibited by a network.
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Definition 2.4 [1, 10-14] Let G = (V, E) be an E-graph. For each y — y’ € E, let
ky_y > 0be the associated reaction rate constant and let k = (ky_sy)ysyeE € REO
be the reaction rate vector. Under mass-action kinetics, the dynamical system generated
by (G, k) is

dx

o= 2 Ry -y )

y—>y €eE

n

Given a point xo € RZ ),

the stoichiometric compatibility class of x( is given by
Sxo = (x0 + Sg) NRL,. 3)

If the positive orthant is forward invariant, the stoichiometric compatibility class is an
invariant polyhedron [15].

Definition 2.5 Consider the following dynamical system

dx
T S (x). “4)

We say the dynamical system is R-realizable on an E-graph G = (V, E), if there
exists a rate vector k € RE, such that

f@= > kyyx?(y —y). )

y—>Yy'eE
Further, if k € Rfo, this dynamical system is said to be realizable on G.

Definition 2.6 [16—18] Two mass-action syster~ns~(G, k) and (G, I~c) are said to tle
dynamically equivalent (denoted by (G, k) ~ (G, k)), if for every vertex! yoe Vuv,

D kyey =y = > Kyy ' = ¥o). 6)

Yo—YEE y0—>y’el;"

Remark 2.7 Suppose (G, k) and (G, I~Q are two dynamically equivalent mass-action
systems. Then (G, k) is realizable on G and (G, k) is realizable on G.

2.2 Toric dynamical systems and the disguised toric locus

The goal of this section is to recall some properties of complex-balanced systems (also
known as toric dynamical systems), and then define the disguised toric locus, which
is the set of the reaction rate vectors that allow complex-balanced realizations under
dynamical equivalence.

' Note that when yo¢ Voryyé V, that side is considered as an empty sum, which is zero.

@ Springer



390 Journal of Mathematical Chemistry (2024) 62:386-405

Definition 2.8 Consider the mass-action system (G, k) as follows
dx
== 2 keyX 0 =y
y—>y'eE
A point x* € R, is called a positive steady state of (G, k) if it satisfies
D kyy Y —y) =0.

y—>y'€eE

A positive steady state x* € R , is called a complex-balanced steady state of (G, k),
if for every vertex y € V,

/
D kyey GO = 3 kyoy )
y—>y'€E Y'—>yekE

If the mass-action system (G, k) admits a complex-balanced steady state, then it is
called a complex-balanced system or a toric dynamical system.

Definition 2.9 Let G = (V, E) be an E-graph. The foric locus on G is given by

K(G):={k e Rfo | the mass-action system generated by (G, k) is complex-balanced}.
Further, for any E-graph G = (V, E), we define the set Kr(G, G) as
Kr(G, G) := {i( e K(G) \ the mass-action system (G, I~c) is R-realizable on G}.
We also define the set K(G, G) as
K(G, G) := {l~c e K(G) | the mass-action system (G, I~c) is realizable on G}.

From the definition, it is clear that K(G, G) C Kr(G, G).

Here we present a useful lemma that connects weakly reversible E-graphs with the
toric locus.

Lemma 2.10 [5] Let G = (V, E) be an E-graph. If G = (V, E) is weakly reversible,
then there exists a rate vector k € REO, such that (G, k) is complex-balanced, i.e.,
K(G) # 0. Otherwise, if G = (V, E) is not weakly reversible, then IC(G) = (0.

Definition 2.11 Let G = (V, E) be an E-graph.
(a) For any E-graph G = (V, E), define the set Kaisg (G, G) as

Kisg (G, G):={ke ]Rfo ‘ the mass-action system (G, k) is dynamically equivalent
to (G, I}) for some k € K(G)).
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(b) Define the disguised toric locus of G as

Kaisg(G) == ) Kuisg(G. G),

GC Gcomp

where the notation G C Gcomp Tepresents that G is a weakly reversible subgraph
of Geomp- 3 o )
(c) For any E-graph G = (V, E), define the set KRr.gisg (G, G) as

KR-disg (G, G):={ke RE | the dynamical system generated by (G, k) is dynamically
equivalent to (G, INc) for some k € IC(G)},

where the dynamical system generated by (G, k) is given by Eq. (2)2.~Note
that k here may have non-positive components, and we have Kgise (G, G) C
KRr-disg (G, G).

(d) Define the R-disguised toric locus of G as

Kraisg(G) = |J Kruaise(G, G).

GEGcomp

where G C G comp represents that Gisa weakly reversible subgraph of Geomp.

Remark 2.12 From the definition, it is clear that Kgisg(G) € KRr-gisg(G). In general,
we need both Kgisg (G) and Kr-gisg (G) to include Kgisg (G, G') or Kr.gisg (G, G') for
any weakly reversible E-graph G’ (i.e., not just for G’ & Gcomp). On the other hand,
due to results in [19], it turns out that, if a dynamical system generated by G can be
realized as toric by some G’, then there exists G” £ Geomp that also can give rise
to a toric realization of that dynamical system. Therefore, the above assumption that
G E Geomp still leads to the correct definition.

The following is a direct consequence of the Definition2.11.
Remark 2.13 Consider two E-graphs G = (V, E) and G = (V, E). Then

(@) K(G, G)is non-empty if and only if K5 (G, G)is non-empty.
(b) Kr(G, G) is non-empty if and only if Kg_gisg (G, G) is non-empty.

The sets IC(G, G) and ICR(G, G) are related [20]. In Sect.3, we describe some
properties of the toric locus. In Sect.4, we show that the disguised toric locus is
path-connected.

2 For simplicity, in the rest of this paper, we abuse the following notation: Given k € REO, we will refer to
the mass-action system generated by G and k as in Eq.(2) as “the mass-action system (G, k)”. Moreover,
we will still refer to this system as “the mass-action system (G, k)” even if we have k € RE instead of
keRE,.

>0
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3 Toriclocus

In this section, we first present some elementary properties of the toric locus. Then
we show some homeomorphisms on the toric locus and its subsets.

3.1 Some basic properties of the toric locus

Lemma3.1 Let G = (V, E) be a weakly reversible E-graph. Consider a reaction rate
vector k* € K(G) and a complex-balanced steady state x* € R , for the mass-action
system (G, k*). For any x € (xg +Sg) N R, we define

* * * yﬁy/(x*)y
S0 x) = (K, e, x ))y%yleE e NG
y—>y'€E

Then
Gx, x%) € K(G),

and x is a complex-balanced steady state for the mass-action system (G, k¢ (x, x*)).

Proof Since x* is a complex-balanced steady state for the mass-action system (G, k*),
then for every vertex y, € V,

Z Kyymsy )70 = Z Ky yy ) ®)
Yo— Y €E y—=>yocE
Thus, we derive
k* /( *)yo
D D D D D FHTEL L O
yo—Y'€E yo—Y'€E Yo— Y €E

On the other hand, we compute that

Sy ()Y
Z Ky yy (6, X5)x7 = Z % Z kyoy, 7. (10)
Y= YoEekE Y=>yo€E Y=>YockE
Together with (8), (9) and (10), for every vertex y, € V,
Yok Ly D@ = Y KL (X))

Yo— Y €E y—YyocE

Therefore, we conclude that x is a complex-balanced steady state for the mass-action
system (G, k{;(x, x*)) and k¢ (x, x*) € K(G). O

Here we show a relation between the toric locus of a Euclidean embedded graph
and the toric locus of its subgraphs.
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Proposition 3.2 Let G = (V, E) be a weakly reversible E-graph. For any subgraph
G; C G, we construct the corresponding set of vectors IC(G;) as

ky—>y’a ify_> y/ € Ei’

. (11)
0, ify—y ¢E.

K(Gy) := {k e RE) | k € K(G))} with ky_,y = !

Then we have A
U KGn < K@©G). 12)

GiCG

Proof Since the E-graph G = (V, E) is weakly reversible, Lemma2.10 shows
K(G) # ¥ and there exists a reaction rate vector k* € K(G). Further, we assume
the mass-action system (G, k*) has a complex-balanced steady state x*.

Suppose G1 = (Vi, E1) is a subgraph of G. If G is not weakly reversible, then
K(G1) = ¥ and (12) holds. Otherwise, if G| is weakly reversible, then IC(G) # @.
For any reaction vector k1 = (k,y_, y)y— yep; € K(G1), we assume the mass-action
system (G, k1) has a complex -balanced steady state x;. Following (11), we obtain
the reaction rate vector k] ek (Gy) C R>o as follows:

ki y—y, ify—y €Ej,

ki = (kl,y—>y’)y—>y’eE with kl,y—>y’ = {0’ ify N y/ ¢ E|. (13)
On the other hand, from Lemma3.1 we get
ky_ y(x™)?
ke, x) = (22— € K(G), (14)
(x1)Y ,
y—>y'eE

and x| is a complex-balanced steady state for the mass-action system (G, k§; (x 1, x*)).

Now we claim that for any & > 0, ek, (x1, x*) + lAq € K(G).From k| € K(G)),
we have for every vertex yo € V1 C V

Z kl,yo—>y’(xl)y0 = Z kl,y—)yo(xl)y~

Yo—>Y'€E1 Y—>yo€E:

Following (13), we derive for every vertex y, € V

Z lgl,yoﬁy/(xl)yo = Z lgl,y%yo(xl)y- (15)

Yo— Y €E y—yocE

Note that x; is a complex-balanced steady state for the mass-action system
(G, k§;(x1, x*)). Then for every vertex y, € V

Yook L@@ = Y kL, LX),

Yo—> Y €E y—>yo€E
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and thus for any ¢ > 0,

Z Sk;O_)y/(xl,x*)(xl)”: Z eky_,y (o1, x™)(x1)?. (16)
Yo—>y'eE y—yo€E

Together with (15) and (16), we prove the claim.
By passing ¢ — 0, we get k1 € K(G) and KC(G1) C K(G). It is clear that we can
apply this method to all other subgraphs of G. Therefore, we conclude

U K@ <K@,
GiCG

Finally, we show | J I@(G,') # K(G). For any vector k € K(G) and number
GiCG

¢ > 0, we can compute ¢k € C(G). By passing ¢ — 0, we get 0 € C(G). However,
consider any subgraph G; of G, K(G;) is either an empty set or only contains positive
vectors, that is, 0 ¢ IC(G;) or K(G;). O

3.2 Homeomorphisms on the toric locus

It is difficult to analyze the toric locus due to its nonlinearity. Here we introduce the
linear flux systems and then establish the product structure of the toric locus and its
subsets via homeomorphisms involving flux systems.

Definition 3.3 Let G = (V, E) be an E-graph.

(a) For each y — y’ € E, let Jy_y > 0 be the associated flux and let J =
(Jysy)ysyeE € Rfo be the flux vector. The pair (G, J) is said to be a flux
system.

(b) A flux vector J € Rfo is said to be a complex-balanced flux vector if for every

vertex yg € V,
Z Ty—yo = Z Tyo—y'
y—=>yocE Yo— Y €E

Then (G, J) is called a complex-balanced flux system. We denote the set of all
complex-balanced flux vectors on G by

JG) ={J € REO | J is a complex-balanced flux vector on G}.

Definition 3.4 Let (G, J) and (G, J) be two flux systems.

(@) (G, J) and (G, J) are said to be flux equivalent (denoted by (G, J) ~ (G, J)),
if for every vertex yo € VUV,

Z J.VO"J’(y_yO)= Z jy()*)y/(y/_yé))

Yo—>YEE y0—>y’EE
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() (G, J) is said to be R-realizable on G if there exists some J € RE, such that for
every vertex yo € VUV,

Z Jy—>y0(y/_y)= Z jy()*)y’(yl_yé))'

Yo—>YEE y0—>y/eE~

Further, if J € R>0, (G, ]) is said to be realizable on G.
(c) We denote the set Jz(G, G) as

TIr(G, G) :={] € T(G) | the flux system (G, J) isR-realizable on G}.
Further, we denote the set [/ (é, G) as
J(G, G) = {J € J(G) | the flux system (G, J) is realizable on G}.

Remark 3.5 Suppose two flux systems (G, J) and (G, J) are flux equivalent, then
(G, J) is realizable on G and (G, J) is realizable on G.

Here we list some of the most important results of flux systems.

Lemma 3.6 [20] Let G =~(‘7, E) be a weakly reversible E-graph and let G = (V, E)
be an E-graph. Then J (G, G) is a convex cone.

Proposition 3.7 [19] Consider two mass-action systems (G, k) and (G, l~c). Let x €
R, define the flux vector J(x) = (Jy_y)y—yec on G with Jy_>y =ky,yx’.

Similarly, define the flux vector J'(x) = (J)/Hy’)y—w’eG’ on G’ with J;%y =

k/y N y,xy . Then the following are equivalent:

(a) the mass-action systems (G, k) and (G k) are dynamically equivalent.
(b) the flux systems (G, J(x)) and (G, J(x)) are flux equivalent for all x € RZ .

(c) the flux systems (G, J(x)) and (G, J(x)) are flux equivalent for some x € R>
The following theorem shows the product structure of the toric locus.

Theorem 3.8 [21] Consider a weakly reversible E-graph G = (V,E) and its
stoichiometric subspace Sg. For any x( € R” ), there exists a homeomorphism

¢ : J(G) x [(xo +Sg) NRL )] > K(G), a7)

such that for x € (xo + Sg) N R” Toand J = (inﬂyj)yi%yjeE e J(G),

Jy. Sy,
(), x) = (y—yy> : (18)
X7 Yi—>Yyj€E

Then K(G) is homeomorphic to the product space J(G) x [(xo + Sg) NRZ 1.

Now we are ready to present the main result of this section.
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Theorem 3.9 Consider a weakly reversible E-graph G = (V, E) with its stoichiomet-
ric subspace Sg. For any E-graph G = (V, E) and xo € R, then

(a) Kr(G, G) is homeomorphic to the product space Tr(G, G) x [(xg +S8z) MR, 1.
(b) K(G,G) is homeomorphic to the product space J(G,G) x [(xo+ Sg) NRL L

Proof We only prove part (b) as part (a) can be verified similarly. From Theorem 3.8,
there exists the homeomorphism map ¢, such that

9 J(G) x [(x0+Sz) NRZ ] > K(G).

On the subdomain 7 (G, G) x [(xo + Sg) NRL ], the injectivity and continuity
of ¢ and its inverse are guaranteed from Theorem 3.8. Since IC(G, G) C IC(G) and
J (é, G)cJ ((~;), to prove the homeomorphism in part (b), it therefore suffices for
us to show that

o(J(G. G) x [(xo + Sz) NR2 1) = K(G, G). (19)

First, we show that ¢(J (G, G) x [(xo + Sg) NR%,]) < K(G, G). Assume
that the pair (J.%) € J(G,G) x [(xo + Sg) N RYL,], there exisEs a flux vector
J = y,—y;)y—yjeE € RE, such that for every vertex y, € VUV,

D Ty =3y = Y. Tyey Y = yo)- (20)

Yo—>yEE y0—>y’el;"
Using Theorem 3.8, we input (p(] , X) into (20). Then for every vertex y, € V U v,

D Tyey =)= D Py @700 = o).

Yo—>YEE yo—Y'€E
We construct the following reaction rate vector in G:

JJ’i—’yJ'
F*)yi

k= (kyiﬁyj')J’iHYjEE with k.Vi"yj =

and for every vertex y, € V UV

D kyey@® NG —y) = Y pymy @20 -y, @D

Yo—>YEE y0—>y’el;"
From Proposition 3.7, we derive
(G.¢(J. %)) ~ (G.k) and ¢(].%) € K(G, G).

Thus, we prove that ¢(7(G, G) x [(xo + Sg)NRY]) <€ K(G, G).
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Second, we show K(G, G) € go(J(G, G) x [(x0+Sz) N R';O]). Assume k €
K(G, G), there exists a reaction rate vector k = (kyiﬁyj)yiﬁyjeg € Rfo, such that
for every vertex yo € V U 1%

D7 kyoy =y = D kyysy (3 = yo) (22)

Yo—YEE y0—>y’el;"

Note that (G, l~c) has a unique complex-balanced steady state in (xo + SG) N R’;O,
denoted by #. Then we build two flux vectors in G and G as follows:

J = (jyi*)yj)yig)yjeé with ‘])’iﬁ,"j zkyiﬁyj'(i)yi’

J = Uy>y)yioyjeb With Jy oy, =ky, oy, (8)

Thus, we get

D Ty =)= Y. Tyey Y = yo)- (23)

Yo—>YEE y0—>y’el;"

This implies that Je J (G, G) and go(] ,X) = k. Therefore, together with two parts,
we conclude (19). O

From the homeomorphism in Theorem 3.9, we show the connectivity on IC(G, G).

Theorem 3.10 Consider a weakly reversible E-graph G = (V, E) and an E-graph
= (V, E).
(a) Both (G, G) and Kr(G, G) are path-connected. Moreover, Jr(G, G) is non-
empty if and only if Kr(G, G) is non-empty.
(b) Both j(é, G) andlC(é, G) are path-connected. Moreover, j(é, G) isnon-empty
if and only iflC(é, G) is non-empty.

Proof We only prove part (b) since part (a) follows analogously. First, suppose
J (G G) = . From Theorem 3.9, IC(G G) is homeomorphlc to the product space
TG, G) x [(xo + SG) NRZ,]. Thus we derive that K(G, G) = 0.
Next, suppose J (G, G) # (). From Definition and Lemma3.6, J (G, G) and (xo+
S¢g) NRZ, are both path-connected. Using Theorem 3.9, K(G, G) is homeomorphic
to the product space TG, G) x [(xo + Sg) NRZ ], we conclude K(G, G) #+ () and
K(G, G) is path-connected. O

The following is another consequence of Theorem 3.8 and Lemma3.1.

Lemma 3.11 Consider aweakly reversible E-graph G = (V, E) and its stoichiometric
subspace Sg. For any k* € K(G) and xo € R”, the mass-action system (G, k*) has
a unique steady state x* € (xo + Sg) NR” . Define

K k", x*) = {k(x, x¥) | x € (x0 +Sg) NRLy}, (24)
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Ys @

G=(V,E) G=(V,E)
Fig.2 Two E-graphs G = (V, E) and G = (V, E). Note that G € G

k* ,(x*)y
* kY y—)y
ki(x,x™) = (—xy .
y—>yeE

Then Kg(k*, x*) is homeomorphic to the stoichiometric compatibility class (xo +
Sg) N RZO'

where

Proof From Theorem 3.8, there exists the homeomorphism map ¢, such that
¢ J(G) x [(x0 + Sg) NRLj] = K(G).
Using Lemma 3.1, we have for any x € (xo + Sg) NRZ,
ki (x,x*) € K(G),
and x is the unique steady state for the mass-action system (G, kg (x, x*)) in (xo +

Sg) N RZO.

Nowlet J = (k*

Yoy (x*)?)y— yreE, we can check that forany x € (xo+Sg)NR”,

o(J,x) =k§(x,x"). (25)
Thus, it suffices for us to prove
o({J} x [(xo + Sc) NRZ 1) = Kg (k*, x*). (26)

The rest of the proof follows directly from the steps in the proof of Theorem3.9. 0O

Example 3.12 Consider two E-graphs in Fig. 2, we give an example of an application
of Theorem 3.10. The vertices shown in both E-graphs are given by

nQ) () Q) o)
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For the weakly reversible E-graph QN = (V, E), from Theorem 3.8 and Lemma 3.6
we get the path-connectedness on C(G). Now consider the E-graph G = (V, E).

(a) First, we claim that
Kr(G,G) = K(G).
For any k € K(G), we set k € RIE! as

k1o = kip + 2k13 + 3kia, ko3 = koz — koy + 2koa.
kys = k3g — k3o — 2ks1, kas = ka3 + 2kap + 3ka;. (28)

From Definition2.6, we can compute that (G, I~c) ~ (G, k) agd thus prove the
claim. Therefore, we conglude the path—gonnectgdness on IC]R(E}, G).

(b) Second, we consider K(G, G). For any k € K(G), to ensure (G, k) ~ (G, k) we
set

kio = kip + 2k13 + 3kia, koy = koz — koy + 2koa.
kyg = kag — k3o — 2k31, ka3 = ka3 + 2kyy + 3ky;. (29)

Moreover, in this case we need k € RLEO', that is,
ko3 + 2kos > ko1, ks > kay + 2k
Thus we obtain that
K(G,G) = {k e K(G) | ko3 + 2kay > kay and ksg > k3 + 2k31).

Applying Theorem 3.10, we conclude the path-connectedness on K(G, G). O

4 The disguised toric locus is path-connected

In this section, we show the main results of this paper: both the disguised toric locus
and the R-disguised toric locus are path-connected.

Theorem 4.1 Consider an E-graph G = (V, E). Then the R-disguised toric locus of
G is path-connected.?

Proof If the R-disguised toric locus of G is an empty set, it is path-connected. Else,
we proceed as follows:

Step 1: Recall that for any weakly reversible subgraph G; of G¢omp, the R-disguised
toric locus of G is given by

3 Some authors exclude the empty set from being path-connected, but we do not follow this convention
here.
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Kraise(G) = ) Kpuaisg(G. Go).

Gi EGcomp

If KRr.disg(G) = 9, then we prove the theorem. Otherwise, suppose a reaction
rate vector k € Kg.disg(G). Let k € KR.gisg(G, G1) with G is a weakly reversible
subgraph of Geomp, and there exists a reaction rate vector k; € X(G1), such that
(G, k) ~ (G, ky).

Consider a fixed state xo € R, the mass-action system (G, k1) has a unique
steady state x1 € (xg + Sg) N R” . Then we define the following set of reaction
vectors:

KG.a@x1) = {kg(x, x1) € R¥ | x € (xo + S) NRZ},

where

ky—y (x1)”
kG(x.x1) = (kyooy (62 X 1))y yrel = (wy— .
x¥ ,
y—y'€eE

Here we claim that g k) (x1) € KRgrdisg(G, G1). It suffices to show for any
x € (x0+Sg) NRL, kg(x,x1) € Krdisg(G, G1). Since (G, k) ~ (G, k1), for
every vertex yp € VU V]

Z kyo—>y(y - yO) = Z kl,y0—>y’(y/ - yO)-

Yo—>Y€E Yo—>Y'€E;
Since x € (xo + Sg) N R, for every vertex y, € V U V)
(x1)? (x1)?
Z ky0—>yx_y(y —Yo) = Z kl,yoﬁy/x_y(y = Yo)-
Yo—>YeE Yo—>Y'€E]
Thus, we derive that

kl,y%y/(xl)y

(G, kg(x,x1)) ~ (G, ki(x)) with ky y, y(x) = 27

(30)
Using Lemma3.1, we have

ki(x) € K(G1) and x is a complex-balanced steady state for (G, ki(x)) (31)

Therefore, kg (x, x1) € Kg-ise (G, G1) and we prove the claim.

Step 2: Suppose two reaction rate vectors k¢, k" € Kr-disg(G). Let k* €
KRr-disg(G, G1) and K e KRr-disg(G, G2), where G| and G, are weakly reversible
subgraphs of Gcomp. There exist two corresponding reaction rate vectors k| € K(G1)
and ky € K(G»), such that

(G, k") ~ (G1, k1) and (G, k") ~ (G2, ka). (32)

Further, we suppose (G1, k1) and (G2, k») share one complex-balanced steady state
xo € R” ;. Now we claim that
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Lk, k") = {ak + (1 —a)k” | 0 < & < 1} C Kruaisg (G)-
Note that when o = 0, 1, we have k%, k? € KR-disg(G).

From Definition2.8 and x( is a complex-balanced steady state for (G, k1) and
(G2, k2), we have for every vertex y, € Vi U V

Z ki, yo—y (X0)*0 = Z ki y—y, (x0)”,

Yo~y €E Y=ok
Z k2,y0—>y’(x0)y0 = Z k2,y—>y0(x0)y~ (33)
Yo— Y €E y—=>yo€E

Define an E-graph G2 = (Vi 2, E12) with Vi 2 := ViUV and E| » := EjUE,. Itis
clear G is a weakly reversible subgraph of G¢omp. Given a fixed number 0 < o < 1,
from (33) we derive that for every vertex y, € Vi 2,

Do (akiyysy + (1= akayy s y) (x0)7
Yo—>Y'€E2

= Z (lel,y—>y0 + - a)’Q,y—)yo) (xO)y-

y—=>yocEi2

This shows that ok + (1 — a)k2 € K(G12). On the other hand, from (32) we can
check
(G, ak® + (1 — )k”) ~ (G2, k1 + (1 — @)k),

and thus conclude ok + (1 — a)k” € KRr-disg (G).
Step 3: Now we show KRg_gisg(G) is path-connected. Consider any two reaction
rate vectors in Kr_gisg (G) such that

k* € Kpudgisg(G, G1) and k” € Kp.disg(G, G2),

where G| and G are weakly reversible subgraphs of Geomp. Let k1 € K(Gy) and
k> € K(G») such that (G, k%) ~ (G, k) and (G, k?) ~ (G2, k»). For a fixed state
X0 € R’;O, the mass-action systems (G, k1) and (G2, k) have steady states x| and
X2 in (xo + Sg) NRZ, respectively.

In step 1, we construct (g xe)(x1) and IC(G’kb)(xz). It is clear that both of them
are path-connected. From x( € R” , (30) and (31), we get

(G1, k1 (x0)) ~ (G, k& (x0, x1)) and (G2, ka(x0)) ~ (G, kg; (xo, x2)),
and x is a steady state for both (G, k1(x¢)) and (G, k2(xg)). Further, in step 2 we

prove
L(k%(x, x0), k2 (x, x0)) C KR-disg(G)-

Therefore, there exists a path connecting k“ and k. and we prove this theorem. O
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Using a similar argument as in Theorem4.1, we conclude the following remark:

Remark 4.2 Consider an E-graph G = (V, E) and any weakly reversible subgraph
G C Geomp- Then KR.gisg (G, G) is path-connected.

The proof of the connectivity of the disguised toric locus is similar to the case of
the R-disguised toric locus. We sketch the proof for completeness below.

Theorem 4.3 Consider an E-graph G = (V, E). Then the disguised toric locus of G
is path-connected.>

Proof If the disguised toric locus of G is an empty set, it is path-connected. Else, we
proceed in a way that is very similar to the proof of the previous theorem, as follows.
For any weakly reversible subgraph G; of Gcomp, the disguised toric locus of G is
defined as
Kase(G) = | Kaise(G, Gi).

G EGcomp

The Theorem immediately follows if Kgiss(G) = @. Otherwise, suppose a reaction
rate vector k € Kgisg(G) C REO, and k € Kgis¢ (G, G1) with G is a weakly reversible
subgraph of Gcomp. Then there exists a reaction rate vector k1 € K(G1), such that
(G, k) ~ (G, ky).

Consider a fixed state xo € R, the mass-action system (G, k1) has a unique
steady state x1 € (xo + Sg) N R” . Then we define the following set of reaction
vectors:

KG.a@x1) = {kg(x, x1) € RE | x € (x0 4+ Sg) NRZ),

where

ky sy (x1)”
kg(x,x1) = (ky_y (X, X1)) y—sycE = <% )
X y—y'eE

Using a similar argument as in Theorem4.1, we conclude that K r(x1) <
’Cdisg(G, Gy).
Suppose two reaction rate vectors k¢, k€ Kdisg(G). Let G, G2 be two weakly

reversible subgraphs of Geomp and let k € Kgisg(G, G1) and Kk € Kdise (G, G2).
There exist two corresponding reaction rate vectors k| € KC(G1) and ky € K(G»),
such that

(G, k") ~ (G1, k1) and (G, k") ~ (G2, ka).

Further, we suppose (G1, k1) and (G2, k») share one complex-balanced steady state
xo € RY ;. Again using a similar argument as in Theorem 4.1, we get that

Lk kY) = {ak® + (1 —a)k? |0 < & < 1} C Kyisg(G).
Note that when o = 0, 1, we have k%, k” ¢ Kaisg (G).
Finally, we show Kgis¢ (G) is path-connected. Consider any two reaction rate vectors
in Kgisg(G) such that
k® € Kaisg(G, G1) and k” € Kise(G, Go),
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where G| and G; are weakly reversible subgraphs of Geomp. Let k1 € K(Gy) and
k> € K(G») such that (G, k%) ~ (G1, k1) and (G, kb) ~ (G», k»). For a fixed state
xo € R” ), the mass-action systems (G, k1) and (G2, k) have steady states x| and
x2in (xg + Sg) NRY,, respectively.

Then we construct K g gay(x1) and IC(Gﬁ kb)(xz). From the steps above, both of
them are path-connected and we have

(G1,k1(x0)) ~ (G, k% (x0, x1)) and (Ga, k2(x0)) ~ (G, k% (x0, x2)),
and x is a steady state for both (G, k1(xo)) and (G2, k2(x()). We also recall that
Lk (x, x0). kg (x, x0)) C Kaisg(G).

Therefore, there exists a path connecting k“ and k. and we prove this theorem. O
Example 4.4 Revisit two E-graphs G = (\7, E)~and G = (V,E) in Fig.2. Now
we consider the disguised toric locus Kgise (G, G) and the R-disguised toric locus
KRr-disg (G, G). Recall from Example3.12, suppose that k € K(G), for any k €

Kdisg (G, G) or KRr-disg (G, G), we first need to ensure (G, I~c) ~ (G, k). Under direct
computation, we have

kio = kip + 2k13 + 3kia, ko3 = koz — ko1 + 2koa.

kss = k3g — k3o — 2k31, kas = ka3 + 2kap + 3ka;. (34)
(a) From [22, Theorem 4.3], we get that Kg;ss (G, G) = Rfol. Thus for any k € Rfol,

we have
(G, k) ~ (G, k), forsome k € K(G).

It is clear that REOI is path-connected, and we conclude the path-connectedness on
Kdisg(Gs G). N
(b) From [22, Theorem 4.3], for any k € KR.4is¢(G, G), it needs to satisfy

k12 >0, kg3 > 0. (35)
Further, if k34 > 0 > k»3, then it also needs that
ki2kaz + k3skos > 0. (36)
It is clear that the region restricted by k12, k43 > 0 and
ky3, kg >0 or ko3, k3s <0 or ko3 >0 > kig,
is path-connected. On the other hand, for any k34 > 0 > k3, we set

k1o = —k3sky3/kaz > 0.
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This implies Kg_disg (G, G) is path-connected when k12, k43, k34 > 0 and ko3 <
0. Therefore, we conclude the path-connectedness on Kg_gisg (G, G). O

5 Discussion

The notions of toric locus and disguised toric locus of a reaction network A/ have
been studied in depth in recent work [6, 21, 22], due to the fact that they determine
sets in the parameter space of N where the dynamics is guaranteed to be remarkably
stable [1, 2, 5, 19, 23]. The toric locus is the set of parameter values of N that generate
complex-balanced dynamical systems; while the disguised toric locus is a larger set
in the parameter space of /', which generate dynamical systems that are realizable as
complex-balanced systems, possibly by using another network A/, In particular, it has
been shown that the toric locus is connected and that steady states of toric dynamical
systems depend continuously on the rate constants of the network [21]. Further, it is
also known that many reaction networks that possess toric locus of measure zero; but
a disguised toric locus having positive measure [22]. In particular, in previous work
[20], we have established a lower bound on the dimension of the disguised toric locus;
often, this lower bound is equal to the dimension of the parameter space of A, which
is one way to conclude that the disguised toric locus has positive measure.

In this paper, we study several topological properties of the toric locus and the
disguised toric locus. In particular, we establish the product structure of some relevant
subsets of the toric locus via certain homeomorphisms in Sect. 3.2. Our main result is
that the disguised toric locus is path connected (Theorem4.1). This is useful since it
can be exploited in numerical and homotopy methods for tracking the steady states of
a system [23-26].

This work opens up avenues for a more comprehensive analysis of special regions
of the parameter space of a reaction network; as a recent example of related work,
where the focus is on instability/multistability as opposed to stability, see [7].
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