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Abstract. Given a dynamical system with a polynomial right-hand side, can
it be generated by a reaction network that possesses certain properties? This
question is important because some network properties may guarantee specific
dynamical properties, such as existence or uniqueness of equilibria, persistence,
permanence, or global stability. Here we focus on this problem in the context of
weakly reversible deficiency one networks. In particular, we describe an algo-
rithm for deciding if a polynomial dynamical system admits a weakly reversible
deficiency one realization, and identifying one if it does exist. In addition, we
show that weakly reversible deficiency one realizations can be partitioned into
mutually exclusive Type I and Type II realizations, where Type I realizations
guarantee existence and uniqueness of positive steady states, while Type II
realizations are related to stoichiometric generators, and therefore to multista-
bility.

1. Introduction. By a polynomial dynamical system we mean a dynamical system
of the form

dx1

dt
= p1(x1, . . . , xn),

dx2

dt
= p2(x1, . . . , xn),

...

dxn

dt
= pn(x1, . . . , xn),

(1)

where each pi(x1, . . . , xn) is a polynomial in the variables x1, . . . , xn. Such systems
can exhibit exotic behaviors like multistability, presence of oscillations, and chaos
due to the underlying nonlinearities. We are especially interested in the dynamics of
these systems when restricted to the positive orthant, because such systems are very
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common models of biological interaction networks, population dynamics models, or
models for the transmission of infectious diseases [37, 20, 25, 38].

Very often, polynomial dynamical systems are generated by reaction networks.
It is often convenient to study the graphical structure of these networks to make
inferences about their dynamics. It is also possible to study the inverse problem,
i.e., for some given polynomial dynamical systems, ask what reaction networks can
generate them. Due to the phenomenon of dynamical equivalence [13, 27], such a
network may not be unique, i.e., there exist multiple reaction networks that generate
the same dynamics.

A key quantity in the study of these networks is its deficiency. In particular,
networks possessing low deficiency have been studied in reaction network theory
using the Deficiency Zero and Deficiency One theorems [20, 27, 26, 16, 17, 18]. In
particular, the Deficiency One Theorem [20, 18] guarantees uniqueness of the steady
state within each linear invariant subspace; this, together with the existence result
in [5, 4] completely characterizes the steady states of weakly reversible networks
that satisfy the hypotheses of the Deficiency One Theorem. Further, weakly re-
versible networks (i.e., networks where each reaction is part of a cycle) are related
to dynamical properties like persistence, permanence, and the existence of a globally
attracting steady state [23, 2, 12, 6].

The problem of identifying weakly reversible deficiency zero realizations has been
addressed in [10]. Here we analyze the realizability problem for weakly reversible
reaction networks with deficiency one. In particular, given a polynomial dynamical
system, we describe an algorithm to identify if there exists a weakly reversible
deficiency one reaction network that generates this dynamical system.

Moreover, if weakly reversible deficiency one realizations do exist, our algorithm
uses the geometry of some convex cones generated using the net reaction vectors to
construct one such realization explicitly.

Structure of this paper. In Section 2, we recall some basic notions from reac-
tion network theory. Primarily, we introduce dynamical equivalence and the matrix
of net reaction vectors. In Section 3, we give a short primer on weakly reversible
deficiency one reaction networks, and define Type I and Type II weakly reversible
deficiency one realizations. In Section 4, we analyze the pointed cone ker(W )\Rm

�0
and its minimal set of generators in the context of weakly reversible deficiency one
networks. Moreover, we prove there cannot exist a dynamical equivalence between
such networks of two types in Theorem 4.11. In Section 5, we state the main algo-
rithm of our paper: Algorithm 1, which checks the existence of a weakly reversible
deficiency one realization and returns a realization if it exists. In Section 6, we
summarize our findings in this paper and flesh out directions for future work.

Notation. We let Rn
�0 and Rn

>0 denote the set of vectors in Rn with non-negative
and positive entries respectively. Given two vectors x = (x1, . . . ,xn)| 2 Rn

>0 and
y = (y1, . . . ,yn)

| 2 Rn, we use the vector operation as follows:

xy := xy1
1 . . .xyn

n .

Given a positive integer m, we denote [m] := {1, . . . ,m}.
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2. Reaction networks.

2.1. Terminology.

Definition 2.1. A reaction network G = (V,E), also called the Euclidean em-
bedded graph (E-graph), is a directed graph in Rn, where V ⇢ Rn

�0 represents
a finite set of vertices, and E ✓ V ⇥ V represents a finite set of edges. In this
paper, there are neither self-loops nor isolated vertices in G.

(a) Let V = {y1, . . . ,ym}, and denote the number of vertices in G by m.
(b) We denote a directed edge by (yi,yj) 2 E, which represents a reaction in the

network. Here yi and yj are called the source vertex and target vertex
respectively. Moreover, we denote the reaction vector associated with the
edge yi ! yj by yj � yi 2 Rn.

Definition 2.2. Let G = (V,E) be a Euclidean embedded graph. The stoichio-
metric subspace of G is the vector space spanned by the reaction vectors as
follows:

S = span{y0 � y |y ! y0 2 E}.
Given a subset of vertices V0 ✓ V , the stoichiometric subspace defined by V0

is
S(V0) = span{y0 � y |y ! y0 2 E and y0,y 2 V0}.

Furthermore, given a positive vector x0 2 Rn
>0, the polyhedron (x0 + S) \ Rn

>0 is
called the stoichiometric compatibility class of x0.

Definition 2.3. Let G = (V,E) be a Euclidean embedded graph.

(a) The set of vertices V is partitioned by its connected components, also called
linkage classes. Every connected component is denoted by the set of vertices
belonging to it.

(b) A connected component L ✓ V is strongly connected, if every edge is part
of an oriented cycle. Moreover, a strongly connected component L ✓ V is
terminal strongly connected, if for every vertex y 2 L and y ! y0 2 E,
we have y0 2 L.

(c) G = (V,E) is weakly reversible, if all connected components are strongly
connected.

Remark 2.4. For any weakly reversible reaction network G = (V,E), every vertex
y 2 V is a source and a target vertex. Moreover, every connected component of G
is strongly connected, and terminal strongly connected.

Definition 2.5. Let G = (V,E) be a Euclidean embedded graph, which contains m
vertices and ` connected components. Denote the dimension of the stoichiometric
subspace of G by s = dim(S), the deficiency of G is a non-negative integer as
follows:

� = m� `� s.

When considering a linkage class with Vi ✓ V , we define the deficiency of a
linkage class as

�i = |Vi|� 1� dimS(Vi).

One can check that

� �
X̀

i=1

�i, (2)
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where the equality holds when the stoichiometric subspaces of all linkage classes are
linearly independent.

Figure 1 shows two reaction networks represented as Euclidean embedded graphs.
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Figure 1. (a) This reaction network consists of two linkage classes
and contains two terminal strongly connected components (shown in
circles). It has a stoichiometric subspace of dimension 2 and a deficiency
� = m � ` � s = 7 � 2 � 2 = 3. (b) This reaction network is weakly
reversible and contains one terminal strongly connected component. It
has a stoichiometric subspace of dimension 2 and a deficiency � = m �
`� s = 3� 1� 2 = 0.

Given a reaction network, it can generate an extensive variety of dynamical
systems. Here, we focus on mass-action kinetics, which has been studied in [37, 25,
38, 24, 15, 1].

Definition 2.6. Let G = (V,E) be a Euclidean embedded graph, we let k =
(kyi!yj

)yi!yj2E 2 RE
>0 denote the vector of reaction rate constants, where

kyi!yj
or kij is called the reaction rate constant of the edge yi ! yj 2 E.

Furthermore, the associated mass-action system generated by (G,k) on Rn
>0 is

dx

dt
=

X

yi!yj2E

kyi!yj
xyi(yj � yi). (3)

A point x⇤ 2 Rn
>0 is called a positive steady state, if

X

yi!yj2E

kyi!yj
(x⇤)yi(yj � yi) = 0. (4)

From [27], it is known that every mass-action system admits the following matrix
decomposition:

dx

dt
= Y Akx

Y , (5)

where Y is called the matrix of vertices, whose columns are the vertices, defined
as

Y = (y1, y2, . . . , ym),

xY is the vector of monomials given by

xY = (xy1 ,xy2 , . . . ,xym)|,
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and Ak is the negative transpose of the Laplacian of (G,k), defined as

Ak :=

8
>><

>>:

[Ak]ji = kyi!yj
, if i 6= j and yi ! yj 2 E,

[Ak]ii = �
P

yi!yj2E
kyi!yj

,

[Ak]ji = 0, otherwise.

Here, Ak is called the Kircho↵ matrix, whose column sums are zero from the
definition.

The properties of the kernel of Ak are well known in reaction network theory [20,
25, 21]. Below we collect some of the most important properties.

Theorem 2.7 ([21]). Let (G,k) be a mass-action system, and T1, T2, . . . , Tt be the
terminal strongly connected components of G. Then there exists a basis {c1, c2, . . . , ct}
for ker(Ak), such that

cq =

8
<

:
[cq]i > 0, if yi 2 Tq,

[cq]i = 0, otherwise.

Proposition 2.8 ([15, Corollary 4.2]). Consider a mass-action system (G,k), then
G is weakly reversible if and only if the kernel of the Kircho↵ matrix Ak contains
a positive vector.

2.2. Net reaction vectors and dynamical equivalence. Inspired by the ma-
trix decomposition in (5), we introduce the key concept: net reaction vector, and
illustrate a new matrix decomposition in terms of net reaction vectors.

Definition 2.9. Let (G,k) be a mass-action system, and Vs = {y1,y2, . . . ,yms
} ✓

V be the set of source vertices of G. For each source vertex yi 2 Vs, we denote
the net reaction vector wi corresponding to yi by

wi =
X

yi!yj2E

kyi!yj
(yj � yi). (6)

Further, we denote the matrix of net reaction vectors of G as follows:

W = (w1,w2, . . . ,wms) . (7)

It is convenient to refer to wj even when yj 62 Vs, in which case we consider wj

represents an empty sum, i.e., wj = 0.

From Definition 2.9, every net reaction vector wi corresponding to yi can be
expressed as

wi =
X

yi!yj2E

kyi!yj
yj �

✓ X

yi!yj2E

kyi!yj

◆
yi. (8)

Using a direct computation, we rewrite the mass-action system in (3) as

dx

dt
= WxY s , (9)

where Y s is called the matrix of source vertices, whose columns are source
vertices, defined as

Y s = (y1,y2, . . . ,yms
),

and xY s is the vector of monomials given by

xY s = (xy1 ,xy2 , . . . ,xyms )|.
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Note that for any weakly reversible mass-action system (G,k), we have Vs = V
and Y s = Y . Moreover, we derive that W = Y Ak, which follows from matrix
decomposition in (5).

Definition 2.10. Let (G,k) and (Ḡ, k̄) be two mass-action systems. Then (G,k)
and (Ḡ, k̄) are called dynamically equivalent, if for any x 2 Rn

>0,

X

y!y02E

ky!y0xy(y0 � y) =
X

ȳ!ȳ02Ē

k̄ȳ!ȳ0xȳ(ȳ0 � ȳ). (10)

Remark 2.11. From Equation (10), we achieve a necessary and su�cient condition
for dynamical equivalence between (G,k) and (Ḡ, k̄): for every vertex y0 2 Vs[ V̄s,

X

y0!y2E

ky0!y(y � y0) =
X

y0!y02Ē

k̄y0!y0(y0 � y0), (11)

From Definition 2.9, this is equivalent to

w0 = w̄0. (12)

Note that if either y0 62 Vs or y0 62 V̄s, then one side of Equation (11) gives an
empty sum, i.e., w0 = 0 or w̄0 = 0.

Example 2.12. Two dynamically equivalent mass-action systems are presented in
Figure 2. The mass-action systems (a) (G,k) and (b) (G0,k0) share the vertices

y1 =

✓
0
0

◆
, y2 =

✓
0
2

◆
, y3 =

✓
2
0

◆
.

The reaction network G0 has an additional vertex

y4 =

✓
1
1

◆
.

Given the rate constants in Figure 2, we note that y1 is the only source vertex in
both G and G0. Thus, it su�ces to check whether two systems satisfy Equation (11)
on the vertex y1.

For the system (G,k), we have

X

y1!y2E

ky1!y(y � y1) = k12

✓
0
2

◆
+ k13

✓
2
0

◆
=

✓
4
4

◆
. (13)

For the system (G0,k0), we have

X

y1!y02E0

ky1!y0(y0 � y1) = k012

✓
0
2

◆
+ k013

✓
2
0

◆
+ k014

✓
1
1

◆
=

✓
4
4

◆
. (14)

This shows two systems have the same net reaction vector corresponding to the
source vertex y1, and are hence dynamically equivalent.
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Figure 2. Examples of dynamically equivalent systems (a) and (b).

3. Weakly reversible deficiency one networks. Deficiency analysis [26, 17,
18, 19] forms an integral component of reaction network theory. The dynamics
generated by reaction networks with low deficiency has been studied extensively
using the Deficiency zero and Deficiency one theorems [20, 16, 17, 18]. In particu-
lar, properties like the existence of a unique equilibrium within each stoichiometric
compatibility class, local asymptotic stability of the equilibrium owing to the ex-
istence of a Lyapunov function have been established. In this paper, we focus on
weakly reversible deficiency one reaction networks. Such networks are ubiquitous
in applications, and some noteworthy examples are listed below.

Example 3.1 (Edelstein network, [22]).

X1 ⌦ 2X1, X1 +X2 ⌦ X3 ⌦ X2

This is a weakly reversible reaction network with deficiency � = 5� 2� 2 = 1.

Example 3.2 (Symmetry breaking network, [20]).

L+ 2R+ P ⌦ 3R+Q, R+ 2L+ P ⌦ 3L+Q, P ⌦ 0 ⌦ Q

This is a weakly reversible reaction network with the stoichiometric subspace
given by (vectors are arranged by the species order L,P,Q,R)

S = span{(�1,�1, 1, 1)|, (1,�1, 1,�1)|, (0,�1, 0, 0)|, (0, 0,�1, 0)|},
It is a three-dimensional stoichiometric subspace. The network has deficiency � =
7� 3� 3 = 1.

From inequality (2), deficiency one networks can be classified into the following
types1:

• � = 1 = �1 + �2 + · · ·+ �`. We call this a Type I network.
• � = 1 > �1 + �2 + · · ·+ �`. We call this a Type II network.

Weakly reversible deficiency one networks for which � = 1 = �1 + �2 + · · · + �`
(Type I) fall into the regime of the Deficiency one Theorem, which we state below.

Theorem 3.3 (Deficiency One Theorem, [17, 18]). Consider a reaction network
G consisting of ` linkage classes L1, L2, · · · , L`. Let us assume that G satisfies the
following conditions:

1Without loss of generality, we always assume �1 = . . . = �`�1 = 0, �` = 1 in Type I networks,
and �1 = . . . = �` = 0 in Type II networks in the rest of this paper.
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1. �i  1.

2.
P̀
i=1

�i = �.

3. Each linkage class Li contains exactly one terminal strongly connected com-
ponent.

If there exists a k for which the mass-action system (G,k) possesses a positive
equilibrium, then every stoichiometric compatibility class has exactly one positive
equilibrium. If G is weakly reversible, then for all values of k the mass-action
system (G,k) possesses a positive equilibrium.

We also state a theorem [5] that guarantees the existence of positive steady states
for weakly reversible systems.

Theorem 3.4 ([5]). For weakly reversible mass-action systems, there exists a pos-
itive steady state within each stoichiometric compatibility class.

Using Theorem 3.4 in conjunction with the Deficiency one Theorem, we conclude
that for any weakly reversible deficiency one network of Type I, there exists a unique
equilibrium within each stoichiometric compatibility class for all values of the rate
constants k.

Now we define a geometric property called a�ne independence.

Definition 3.5. A set of vectors {y0,y1, . . . ,yr}, where yi 2 Rn is said to be
a�nely independent if the set of vectors {yj � y0 | j = 1, 2, . . . , r} are linearly
independent.

For weakly reversible deficiency one networks of Type II, all linkage classes have
deficiency zero and they possess the following geometric property:

Proposition 3.6 ([11, Theorem 9]). Consider a reaction network G. Let L1 be a
linkage class of G. Then L1 has deficiency zero if and only if its vertices are a�nely
independent.

Recall that a set X is a polyhedral cone ifX = {x : Mx  0 for some matrix M}.
Such a cone is convex. It is pointed, or strongly convex if it does not contain a
positive dimensional linear subspace. A pointed polyhedral cone admits a unique
(up to scalar multiple) minimal set of generators where these generating vectors are
called extreme vectors [8].

Lemma 3.7. Consider a mass-action system (G,k) with vertices {yi}mi=1. Let W
be the matrix of net reaction vectors of G, then we have:

(a) ker(W ) \ Rm
�0 is a pointed polyhedral cone.

(b) There exists the minimal set of generators for ker(W ) \ Rm
�0.

Proof. (a) It is clear that the set ker(W )\Rm
�0 is the solution toW ⌫ � 0,�W ⌫ �

0, and Im⌫ � 0, and the set is a polyhedral cone. From the definition, a cone
contained in the positive orthant Rm

�0 is always pointed. Therefore, we deduce
that ker(W ) \ Rm

�0 is a pointed polyhedral cone.
(b) Since ker(W )\Rm

�0 is a pointed cone, by the Minkowski-Weyl theorem [8, 32],
we have

ker(W ) \ Rm
�0 =

rX

j=1

⇣idi, (15)
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where {dj}rj=1 is the unique (up to scalar multiple) minimal set of generators
of the cone ker(W ) \ Rm

�0.

Furthermore, using the rank-nullity theorem, we have

dim(ker(W )) = dim(ker(Ak)) + dim(ker(Y ) \ Im(Ak)).

Thus the minimal set of generators can be divided into two groups. The next
definition illustrates this point.

Definition 3.8 ([7]). Consider a mass-action system (G,k) and letW be the matrix
of net reaction vectors of G. An extreme vector di of the cone ker(W ) \ Rm

�0 is
called

1. a cyclic generator, if di 2 ker(Ak).
2. a stoichiometric generator, if Akdi 2 ker(Y )\{0}.

Here we give an example where a reaction network possesses both cyclic and
stoichiometric generators.

Example 3.9. Consider the network shown in Figure 3. This weakly reversible
reaction network has two linkage classes, and the deficiency of the entire network is
one (i.e. � = 1). Moreover, the net reaction vector matrix follows:

Y s =

✓
1 2 3 4 5
0 1 0 0 0

◆
, and W =

✓
1 1 �2 1 �1
1 �1 0 0 0

◆
, (16)

and

ker(W ) = span
�
(1, 1, 1, 0, 0)|, (1, 1, 0,�2, 0)|, (1, 1, 0, 0, 2)|

 
. (17)

Therefore, we can compute the minimal set of generators of ker(W ) \ R5
�0:

(i) Cyclic generators:

d1 = (1, 1, 1, 0, 0)|, d2 = (0, 0, 0, 1, 1)|. (18)

(ii) Stoichiometric generators:

d3 = (1, 1, 0, 0, 2)|, d4 = (0, 0, 1, 2, 0)|. (19)

!"#"" $"

%"&'

( (

(

(

(

Figure 3. The mass-action system corresponds to Example 3.9,
which has both cyclic and stoichiometric generators.

In general, both cyclic and stoichiometric generators can be studied by flux mode
analysis. Further, Conradi et al. [7] defined subnetworks generated by stoichiometric
generators, and showed that under some conditions if these subnetworks exhibit
multistationarity, then so does the original network.

As remarked before, weakly reversible deficiency one realizations of Type I sat-
isfy the conditions of the Deficiency One Theorem. This implies that there exists a
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unique equilibrium within each stoichiometric compatibility class for all values of the
rate constants k of these realizations. Weakly reversible deficiency one realizations
of Type II are also important since the subnetworks generated by the stoichiomet-
ric generators can help answer questions about multistationarity. It is therefore
important to identify and analyze weakly reversible deficiency one realizations.

4. The pointed cone ker(W ) \ Rm
�0. The goal of this section is to analyze the

pointed cone ker(W ) \Rm
�0 for weakly reversible deficiency one reaction networks.

Specifically, we focus on the extreme vectors of ker(W ) \ Rm
�0.

Lemma 4.1. Consider a weakly reversible mass-action system (G,k) with vertices
{yi}mi=1. Let W be the matrix of net reaction vectors of (G,k), and {d1, . . . ,dr} be
the minimal set of generators of ker(W ) \ Rm

�0, then

r[

i=1

supp(di) = [m]. (20)

Proof. For contradiction, assume there exists j 2 [m], such that j /2
rS

i=1
supp(di).

Then for any v = (v1, . . . , vm)| 2 ker(W ) \ Rm
�0, we obtain that

vj = 0. (21)

Since (G,k) is a weakly reversible mass-action system, by Proposition 2.8 there
exists a positive vector in the kernel of the Kircho↵ matrix Ak. Note that weakly
reversibility indicates W = Y Ak. Thus we have

ker(Ak) ✓ ker(Y Ak) = ker(W ).

This implies the existence of a positive vector in ker(W )\Rm
�0, contradicting Equa-

tion (21).

Lemma 4.2 ([9]). Consider a weakly reversible mass-action system (G,k) with
vertices {yi}mi=1 and stoichiometric subspace S. Let W be the matrix of net reaction
vectors of G, then

Im(W ) = S. (22)

The following lemma concerns the dimension of ker(W ) in various cases.

Lemma 4.3. Consider a weakly reversible mass-action system (G,k) with vertices
{yi}mi=1 and stoichiometric subspace S. Let W be the matrix of net reaction vectors
of G.

(a) If G has deficiency � and a single linkage class (i.e. ` = 1), we have

dim(ker(W )) = � + 1. (23)

Moreover, if � = 0, then for any z 2 ker(W )\{0}, supp(z) = [m].
(b) If G has deficiency one and ` � 1 linkage classes, we have

dim(ker(W )) = `+ 1. (24)

Proof. (a) Since G has deficiency � and one linkage class, we have

dim(S) = s = m� (� + 1).

By Lemma 4.2, rank(W ) = dim(Im(W )) = s. Using the rank-nullity theorem, we
obtain

dim(ker(W )) = � + 1.
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Furthermore, if � = 0, we deduce that

dim(ker(W )) = 1. (25)

As a weakly reversible mass-action system, (G,k) possesses a strictly positive steady
state x̂ 2 Rn

>0 by Theorem 3.4. Using Equation (3), we get
X

j2[m]

x̂yj

X

yj!y0
j2R

kyj!y0
j
(y0

j � yj) =
X

j2[m]

x̂yjwj = 0. (26)

Note that (x̂y1 , x̂y2 , . . . , x̂ym) 2 Rm
>0, and it spans ker(W ) due to Equation (25).

(b) Since the deficiency of G is one, we get

dim(S) = s = m� `� � = m� (`+ 1).

From Lemma 4.2, we conclude that

dim(ker(W )) = m� dim(Im(W )) = m� dim(S) = `+ 1.

Here we start with the minimal set of generators of ker(W ) \Rm
�0 when weakly

reversible mass-action systems contain a single linkage class.

Lemma 4.4. Consider a weakly reversible mass-action system (G,k) that has de-
ficiency � and a single linkage class L = {y1, . . . ,ym}. Let W be the matrix of
net reaction vectors of G, and {d1, . . . ,dr} be the minimal set of generators of
ker(W ) \ Rm

�0, then
r � � + 1. (27)

Moreover, if � = 1, then r = 2. Assume {d1,d2} is the minimal set of generators,
then

supp(d1) ( [m], supp(d2) ( [m], supp(d1) [ supp(d2) = [m]. (28)

Proof. Since G has deficiency � and one linkage class, from Lemma 4.3.(a) we obtain

dim(ker(W )) = � + 1.

Using Equation (26) in Lemma 4.3, we set d = (xy1 ,xy2 , . . . ,xym) where x 2 Rn
>0

is a steady state for the system, and obtain d 2 ker(W ) \ Rm
�0. Then there exists

a basis of ker(W ) that contains d as follows.

B = {d, e1, . . . , e�}.
Since d 2 Rm

>0, for any weights �1, . . . ,��, we can always find a su�ciently large
� > 0, such that

�X

i=1

�iei + �d 2 Rm
>0.

Thus, we conclude
r � dim(ker(W )) = � + 1.

Furthermore, if the system has deficiency one (i.e. � = 1), we derive that

dim(ker(W )) = � + 1 = 2,

and thus ker(W ) \ Rm
�0 is a two-dimensional pointed cone. Therefore, the cone

ker(W ) \ Rm
�0 must have two generators, i.e., r = 2.

Now assume {d1,d2} is the minimal set of generators of ker(W )\Rm
�0 when the

system has deficiency one. Using d = (xy1 ,xy2 , . . . ,xym) 2 Rm
>0, we derive that

supp(d1) [ supp(d2) = [m].
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Suppose supp(d1) = [m], thus d1 2 Rm
>0. Then we can find a su�ciently large

� > 0, such that
v = �d1 � d2 2 ker(W ) \ Rm

>0.

Note that d1 and d2 are linearly independent, this contradicts with {d1,d2} being
the generating set of ker(W )\Rm

�0. Thus, we derive that supp(d1) ( [m]. Similarly,
we can show supp(d2) ( [m], and conclude (28).

Lemma 4.5. Consider a weakly reversible mass-action system (G,k) with a single
linkage class L = {y1, . . . ,ym}, and let W be the matrix of net reaction vectors of
G. Then there exists a vector d 2 Rm

�0 generating the cone ker(W ) \ Rm
�0 if and

only if the system has deficiency zero.

Proof. First, suppose the system has deficiency zero. From Equation (26) in Lemma
4.3, we set d = (xy1 ,xy2 , . . . ,xym) where x 2 Rn

>0 is a steady state for the system
(G,k), and obtain

ker(W ) = span{d}.
One can check d 2 Rm

>0, and hence d generates ker(W ) \ Rm
�0.

On the other hand, consider a vector d that generates ker(W )\Rm
�0. Using (27)

and deficiency is non-negative, we get that

0  �  1� 1 = 0. (29)

Thus, we conclude the deficiency of the system is zero.

The remark below follows from Lemmas 4.4 and 4.5.

Remark 4.6. Consider a weakly reversible mass-action system (G,k) with a single
linkage class L = {yi}mi=1. Let W be the matrix of net reaction vectors of G.
Suppose two vectors d1,d2 form the minimal set of generators of ker(W ) \ Rm

�0,
then (G,k) has deficiency one.

Next, we work on the minimal set of generators of ker(W )\Rm
�0 when the weakly

reversible deficiency one networks have multiple linkage classes.

Lemma 4.7. Consider a weakly reversible deficiency one mass-action system (G,k)
of Type I that has ` > 1 linkage classes, denoted by L1, . . . , L`. Let W be the matrix
of net reaction vectors of G, and {W p}`p=1 be the matrix of net vectors corresponding

to linkage classes {Lp}`p=1, then

(a)
dim(ker(W 1)) + · · ·+ dim(ker(W `)) = dim(ker(W )) = `+ 1, (30)

where

dim(ker(W i)) =

8
<

:
1, for 1  i  `� 1,

2, for i = `.

Moreover, for any 1  i  `� 1 and z 2 ker(W i)\{0}, supp(z) = Li.
(b) There exist `+1 vectors d1, . . . ,d`+1, which form the minimal set of generators

of the cone ker(W ) \ Rm
�0, such that

supp(di) = Li, for 1  i  `� 1, (31)

and

supp(d`) ( L`, supp(d`+1) ( L`, supp(d`) [ supp(d`+1) = L`. (32)
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Proof. (a) From the assumption, the network G is of Type I with �1 = · · · = �`�1 =
0 and �` = 1. Using Lemma 4.3, we get

dim(ker(W `)) = �` + 1 = 2, dim(ker(W i)) = �i + 1 = 1, for 1  i  `� 1.

Further, for any 1  i  `� 1 and z 2 ker(W i)\{0},
supp(z) = Li.

Note that G has deficiency one, thus dim(ker(W )) = `+ 1, and we derive (30).

(b) Now we construct the minimal set of generators of ker(W )\Rm
�0, denoted by

{d1, . . . ,dr}. It will follow from the construction that r = `+ 1 = dim(ker(W )).
Since (G,k) is a weakly reversible mass-action system, it possesses a strictly pos-

itive steady state x̂ 2 Rn
>0 by Theorem 3.4. Following Equation (26) in Lemma 4.3,

we can build `�1 vectors d1, . . . ,d`�1. We define d1 = (d1,1, . . . ,d1,m) 2 ker(W )\
Rm

�0, such that

d1,i =

(
x̂yi , for i 2 L1,

0, for i /2 L1.
(33)

It is clear that supp(d1) = L1. Analogously, for i = 1, . . . , ` � 1, we can define di

corresponding to the linkage classes Li with supp(di) = Li.
Note that G is of Type I and the linkage class L` has deficiency one. Let L` =�

y`i

 m`

i=1
with m` = |L`|. From Lemma 4.4, the cone dim(ker(W `)) \Rm`

�0 has two

generators, denoted by {g1, g2}. Suppose g1 =
�
g1,i

�
i2L`

and g2 =
�
g2,i

�
i2L`

, then

we define d` = (d`,1, . . . ,d`,m), d`+1 = (d`+1,1, . . . ,d`+1,m) as

d`,i =

(
g1,i, for i 2 L`,

0, for i /2 L`.
and d`+1,i =

(
g2,i, for i 2 L`,

0, for i /2 L`.
(34)

Note that both d`,d`+1 2 ker(W ) \ Rm
�0, and satisfy Equation (32).

We claim that the vectors d1, . . . ,d` form a set of generators for ker(W ) \Rm
�0.

From Equations (33) and (34), we deduce that the vectors {di}`+1
i=1 are linearly inde-

pendent. Together with dim(ker(W )) = `+1, we derive that the set {d1, . . . ,d`+1}
is a basis for ker(W ). Thus, any vector v 2 ker(W ) \ Rm

�0 can be expressed as

v = a1d1 + a2d2 + · · ·+ a`+1d`+1 2 Rm
�0, (35)

where a1, . . . , a`+1 2 R. So it su�ces to prove all {ai}`+1
i=1 are non-negative. Recall

{Li}`i=1 are linkage classes with supp(di) = Li, and supp(d`), supp(d`+1) ✓ L`,
then we obtain

ai � 0, for i = 1, . . . , `� 1.

Moreover, we set v̂ = a`g1 + a`+1g2. From
P̀
i=1

dim(ker(W i)) = dim(ker(W )), we

derive
v̂ 2 ker(W `) \ Rm`

�0 .

Since g1, g2 form the generators of the cone dim(ker(W `)) \ Rm`
�0 , we have

a` � 0, a`+1 � 0.

Therefore, we prove the claim.
Finally, we show {d1,d2, . . . ,d`+1} is the minimal set of generators for ker(W )\

Rm
�0. Note from Equations (33) and (34), d`+1 cannot be generated by {di}`i=1,

thus it su�ces to show {d1,d2, . . . ,d`} are all extreme vectors.
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Suppose not, there exists 1  j  `, such that dj is not an extreme vector. Then
we can find two vectors �, ✓ 2 ker(W ) \ Rm

�0 and 0 < � < 1, such that

�� + (1� �)✓ = dj , (36)

where � 6= ⌫✓ for any constant ⌫. From Equation (35), we can express � and ✓ as
the conical combination of {d1,d2, . . . ,d`+1} as

� =
`+1X

i=1

�idi and ✓ =
`+1X

i=1

✓idi,

where �i, ✓i � 0, for i = 1, . . . , `+ 1.
If j 6= `, from supp(dj) = Lj and Equation (36), we derive that �i = ✓i = 0 for

1  i  ` + 1, i 6= j. This implies � = �jdj and ✓ = ✓jdj , which contradicts with
� 6= ⌫✓.

If j = `, we deduce that �i = ✓i = 0 for 1  i  `+1 such that i 6= j in a similar
way. This implies � = �`d` and ✓ = ✓`d`, which also contradicts with � 6= ⌫✓.
Therefore we conclude that {d1, . . . ,d`+1} is the minimal set of generators of the
cone ker(W ) \ Rm

�0.

Here, we provide an example to which is consistent with the statement of Lemma
4.7.

Example 4.8. Consider a weakly reversible deficiency one mass-action system
shown in Figure 4. This reaction network has two linkage classes. One linkage
class has deficiency zero, and the other has deficiency one (i.e. �1 = 0, �2 = 1), and
the deficiency of the entire network is one (i.e. � = 1). Therefore, we have

1 = � = �1 + �2. (37)

For all reactions y ! y0 2 E, we assume ky!y0 = 1, and get

W 1 =

✓
1 �1
0 0

◆
, W 2 =

✓
0 0 0
1 0 �1

◆
, W =

✓
1 �1 0 0 0
0 0 1 0 �1

◆
. (38)

So we can derive that

ker(W 1)) = span

⇢✓
1
1

◆�
, ker(W 2)) = span

8
<

:

0

@
0
1
0

1

A ,

0

@
1
0
1

1

A

9
=

; , (39)

and

ker(W ) = span

8
>>>><

>>>>:

0

BBBB@

1
1
0
0
0

1

CCCCA
,

0

BBBB@

0
0
0
1
0

1

CCCCA
,

0

BBBB@

0
0
1
0
1

1

CCCCA

9
>>>>=

>>>>;

. (40)

For any vector z1 2 ker(W 1)\{0}, we have

supp(z1) = L1. (41)

Then, we compute the minimal set of generators of ker(W ) \ R5
�0:

d2 =

0

BBBB@

1
1
0
0
0

1

CCCCA
, d2 =

0

BBBB@

0
0
0
1
0

1

CCCCA
, d3 =

0

BBBB@

0
0
1
0
1

1

CCCCA
(42)
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This shows that the number of extreme vectors: r = 3, and

r = dim(ker(W )) = `+ 1, (43)

where ` = 2. Moreover, for q = 2, 3,

supp(d1) = L1, supp(dq) \ L2 ( L2, supp(d2) [ supp(d3) = L2, (44)

which is consistent with the statement of Lemma 4.7.

!"" #"

#"$%

#"$!%

Figure 4. A weakly reversible deficiency one mass-action system
of Type I from Example 4.8

Lemma 4.9. Consider a weakly reversible deficiency one mass-action system (G,k)
of Type II that has ` > 1 linkage classes denoted by L1, . . . , L`. Let W be the matrix
of net reaction vectors of G, and {W p}`p=1 be the matrix of net reaction vectors

corresponding to linkage classes {Lp}`p=1, then

(a)

dim(ker(W 1)) + · · ·+ dim(ker(W `)) = dim(ker(W ))� 1 = `, (45)

where

dim(ker(W i)) = 1, for 1  i  `.

Moreover, for any 1  i  ` and z 2 ker(W i)\{0}, supp(z) = Li.
(b) There exist `+2 vectors d1, . . . ,d`+2, which form the minimal set of generators

of the cone ker(W ) \ Rm
�0, such that for i = 1, . . . , `,

supp(di) = Li, ; 6= supp(d`+1) \ Li ( Li, ; 6= supp(d`+2) \ Li ( Li. (46)

Proof. (a) From the assumption, the network G is of Type II with �1 = · · · = �` = 0.
Using Lemma 4.3, we get for i = 1, . . . , `,

dim(ker(W i)) = �i + 1 = 1.

Further, for any 1  i  ` and z 2 ker(W i)\{0},

supp(z) = Li.

Note that G has deficiency one, thus dim(ker(W )) = `+ 1, and we derive (45).

(b) Now we construct the minimal set of generators of ker(W )\Rm
�0, denoted by

{d1, . . . ,dr}. It will follow from the construction that r = `+2 = dim(ker(W ))+1.
Since (G,k) is a weakly reversible mass-action system, it possesses a strictly pos-

itive steady state x̂ 2 Rn
>0 by Theorem 3.4. Following Equation (26) in Lemma 4.3,
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we can build ` vectors d1, . . . ,d`. We define d1 = (d1,1, . . . ,d1,m) 2 ker(W )\Rm
�0,

such that

d1,i =

(
xyi , for i 2 L1,

0, for i /2 L1,
(47)

It is clear that supp(d1) = L1. Analogously, for i = 1, . . . , `, we can define di

corresponding to the linkage classes Li, with supp(di) = Li.
Now we show that there exists a non-zero vector d`+1 2 ker(W )\Rm

�0, such that

supp(d`+1) \ Li ( Li, for i = 1, . . . , `. (48)

From Equation (45), there exists a vector d̃ 2 ker(W )\{0}, which is linearly inde-
pendent from {di}`i=1. Since di 2 ker(W ) \ Rm

�0 with supp(di) = Li, we set for
i = 1, . . . , `,

↵i = max
k2Li

n
� d̃k

di,k

o
. (49)

Then we define d`+1 as

d`+1 =
X̀

i=1

↵idi + d̃. (50)

For any 1  j  ` and ✓ 2 Lj , we obtain that

d`+1,✓ = ↵jdi,✓ + d̃✓ � � d̃✓

di,✓
di,✓ + d̃✓ = 0,

and the inequality holds when ✓ = k 2 Lj in Equation (49). Moreover, the linear
independence between d̃ and {di}`i=1 implies that d`+1 is non-zero. Thus, we show
d`+1 2 ker(W ) \ Rm

�0, and it satisfies Equation (48).
Furthermore, we claim that there exist at least two linkage classes: Li, Lj with

1  i, j  ` and i 6= j, such that

supp(d`+1) \ Li 6= ;, supp(d`+1) \ Lj 6= ;. (51)

Suppose not, we assume that only the linkage class L1 satisfies supp(d`+1)\L1 6= ;.
This implies that

supp(d`+1) \ L1 ( L1.

Using dim(ker(W 1)) = 1, we get that d`+1 must be a scalar multiple of d1, contra-
dicting Equation (50).

Next, we construct another non-zero vector d`+2 2 ker(W ) \ Rm
�0, such that

supp(d`+2) \ Li ( Li, for i = 1, . . . , `. (52)

Given d1, . . . ,d`,d`+1 2 Rm
�0, we set for i = 1, . . . , `,

�i = max
k2Li

nd`+1,k

di,k

o
. (53)

It is clear that �i � 0 for 1  i  `, then we define d`+2 as

d`+2 =
X̀

i=1

�idi � d`+1. (54)

For any 1  j  ` and ✓ 2 Lj , we get

d`+2,✓ = �jdi,✓ � d`+1,✓ � d`+1,✓

di,✓
di,✓ � d`+1,✓ = 0.
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The inequality holds when ✓ = k 2 Lj in Equation (53). Moreover, the linear
independence between d`+1 and {di}`i=1 implies that d`+2 is non-zero. Thus, we
show d`+2 2 ker(W ) \ Rm

�0, and it satisfies Equation (52). Similarly as in (51),
there also exist at least two linkage classes: Li, Lj with 1  i, j  ` and i 6= j, such
that

supp(d`+2) \ Li 6= ;, supp(d`+2) \ Lj 6= ;. (55)

We claim that the vectors d1, . . . ,d`+2 form a set of generators of ker(W ) \
Rm

�0. Using Equations (47) and (50), we deduce the vectors {di}`+1
i=1 are linearly

independent. Together with dim(ker(W )) = `+1, we get that the set {d1, . . . ,d`+1}
is a basis for ker(W ). Thus, any vector v 2 ker(W ) \ Rm

�0 can be expressed as

v = a1d1 + a2d2 + · · ·+ a`+1d`+1 2 Rm
�0, (56)

where a1, . . . , a`+1 2 R. Recall {Li}`i=1 are linkage classes with supp(di) = Li, for
i = 1, . . . , `, and supp(d`+1) in Equation (48), then we obtain

ai � 0, for i = 1, . . . , `.

If a`+1 � 0, it is clear that v can be expressed as a conical combination of
{d1,d2, . . . ,d`+1} from Equation (56). Otherwise, if a`+1 < 0, we rewrite v as

v = a1d1 + · · ·+ a`d` + a`+1(
X̀

i=1

�idi � d`+2)

= a1d1 + · · ·+ a`d` + a`+1

X̀

i=1

�idi � a`+1d`+2

= (a1 + a`+1�1)d1 + · · ·+ (a` + a`+1�`)d` � a`+1d`+2.

(57)

Using v 2 ker(W ) \ Rm
�0 and Equation (52), we get that for i = 1, . . . , `,

ai + a`+1�i � 0,

which implies that v can be generated by {d1, . . . ,d`,d`+2}.
Finally, we show {d1,d2, . . . ,d`+2} is the minimal set of generators for ker(W )\

Rm
�0. Note that d1, . . . ,d`+1 form a basis for ker(W ) and d`+2 =

P̀
i=1

�idi � d`+1,

thus d`+2 cannot be generated by {di}`+1
i=1 . So it su�ces to show {d1,d2, . . . ,d`+1}

are all extreme vectors.
Suppose not, there exists 1  j  ` + 1, such that dj is not an extreme vector.

Then we can find two vectors �, ✓ 2 ker(W ) \ Rm
�0 and 0 < � < 1, such that

�� + (1� �)✓ = dj , (58)

where � 6= ⌫✓ for any constant ⌫. Then we write � and ✓ as the combination of
{di}`+1

i=1 ,

� =
`+1X

i=1

�idi, ✓ =
`+1X

i=1

✓idi.

Since �, ✓ 2 Rm
�0, we have for i = 1, . . . , `,

�i � 0, ✓i � 0.

If j 6= ` + 1, from Equation (58), we can derive that �i = ✓i = 0 when 1  i 
`, i 6= j. Since �, ✓ 2 Rm

�0, and supp(d`+1) \ Li ( Li for i = 1, . . . , `, we derive
�`+1 = ✓`+1 = 0. This implies � = �jdj and ✓ = ✓jdj , and this contradicts with
� 6= ⌫✓.
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If j = ` + 1, in a similar way we can deduce that �i = ✓i = 0 for 1  i  `.
This implies � = �`+1d`+1 and ✓ = ✓`+1d`+1, which also contradicts with � 6= ⌫✓.
Therefore we conclude that {d1, . . . ,d`+2} is the minimal set of generators of the
cone ker(W ) \ Rm

�0.

We also illustrate an example which is consistent with the statement of Lemma
4.9.

Example 4.10. Consider a weakly reversible deficiency one mass-action system
shown in Figure 5. This reaction network has two deficiency zero linkage classes
(i.e. �1 = �2 = 0), and the deficiency of the entire network is one (i.e. � = 1).
Therefore, we have

1 = � > �1 + �2 = 0 + 0. (59)

For all reactions y ! y0 2 E, we assume ky!y0 = 1, and get

W 1 =

✓
1 �1
0 0

◆
, W 2 =

✓
1 �1
0 0

◆
, W =

✓
1 �1 1 �1
0 0 0 0

◆
. (60)

So we can derive that

ker(W 1)) = ker(W 2)) = span

⇢✓
1
1

◆�
, (61)

and

ker(W )) = span

8
>><

>>:

0

BB@

1
1
0
0

1

CCA ,

0

BB@

�1
0
1
0

1

CCA ,

0

BB@

1
0
0
1

1

CCA

9
>>=

>>;
. (62)

For any vectors z1 2 ker(W 1)\{0} and z2 2 ker(W 2)\{0}, we have

supp(z1) = L1, supp(z2) = L2. (63)

Then, we compute the minimal set of generators of ker(W ) \ R4
�0:

d1 =

0

BB@

1
1
0
0

1

CCA , d2 =

0

BB@

0
0
1
1

1

CCA , d3 =

0

BB@

0
1
1
0

1

CCA , d4 =

0

BB@

1
0
0
1

1

CCA . (64)

This indicates the number of extreme vectors: r = 4 and

r = dim(ker(W )) + 1 = `+ 2, (65)

where ` = 2. Moreover, for p = 1, 2,

supp(dp) = Lp, supp(d`+1) \ Lp ( Lp, supp(d`+2) \ Lp ( Lp, (66)

which is consistent with the statement of Lemma 4.9.

!" #"$""

Figure 5. A weakly reversible deficiency one mass-action system
of Type II from Example 4.10
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To conclude this section, we show that given a mass-action system that admits
weakly reversible deficiency one realizations, then these realizations must be of the
same type. First, we recall a special result from [14]:

Theorem 4.11 ([14, Theorem 6.3]). Consider two weakly reversible mass-action
systems (G,k) and (G0,k0) having a deficiency of one and the same number of
linkage classes. Let (G,k) be of Type I and (G0,k0) be of Type II. Then (G,k) and
(G0,k0) cannot be dynamically equivalent.

After Theorem 4.11, we are ready to prove the more general result as follows:

Theorem 4.12. Given two weakly reversible deficiency one mass-action systems:
(G,k) of Type I and (G0,k0) of Type II, then (G,k) and (G0,k0) cannot be dynam-
ically equivalent.

Proof. For contradiction, assume that the two weakly reversible deficiency one mass-
action systems (G = (V,E),k) of Type I, and (G0 = (V 0, E0),k0) of Type II are
dynamically equivalent. By Remark 2.11, they have the same set of non-zero net
reaction vectors. Using Im(W ) = S from Lemma 4.2, we get that (G,k) and (G0,k0)
share the same stoichiometric subspace.

Now we claim that (G,k) and (G0,k0) have the same number of vertices. For
contradiction, suppose there exists a vertex y 2 V 0 such that y /2 V . Let wy and
w0

y represent the net reaction vectors corresponding to the vertex y in G and G0.
From Remark 2.11, we deduce that

w0
y =

X

y!yj2E0

k0y!yj
(yj � y) = 0. (67)

Since the network G0 is of Type II, each linkage of G0 has deficiency zero. By Propo-
sition 3.6, we get that its vertices are a�nely independent within each linkage class.
This implies that the reaction vectors {yi � y}y!yi2E0 are linearly independent,
contradicting Equation (67).

Assume that there exists a vertex y 2 L ✓ V where L is a linkage class in G,
such that y /2 V 0. Following the steps in the first part, we have for any y0 2 V 0,
w0

y 6= 0. This shows that V 0 ( V . Moreover, from y /2 V 0, we get that

wy = 0.

This implies that the vertices in the linkage class L are not a�nely independent.
Therefore the deficiency of linkage class L is one. Since (G,k) and (G0,k0) have
the same stoichiometric subspace and deficiency, we deduce that G has at least one
more linkage class than G0. From the Pigeonhole Principle, there exists at least one
linkage class in G0 that is split into di↵erent linkage classes in G. Let us call this
linkage class as L0

1 ( V 0. Using Lemma 4.3, we have

dim(ker(W 0
1)) � 1.

where W 0
1 is the matrix of net reaction vectors on L0

1. This implies that the
stoichiometric subspaces corresponding to the linkage classes in G are not linearly
independent, contradicting the fact that G is of Type I.

Since (G,k) and (G0,k0) have the same stoichiometric subspace, number of ver-
tices, and deficiency we obtain that (G,k) and (G0,k0) possess the same number
of linkage classes. Finally, applying Theorem 4.11, we get that (G,k) and (G0,k0)
cannot be dynamically equivalent, which leads to a contradiction.

The following remark is a direct consequence of Theorem 4.12.



20 GHEORGHE CRACIUN, ABHISHEK DESHPANDE AND JIAXIN JIN

Remark 4.13. For any mass-action system (G,k), it has most has one type of
weakly reversible deficiency one realization, i.e. either Type I or Type II.

5. Main results. This section aims to present the main algorithm of this paper,
which checks the existence of a weakly reversible deficiency one realization and
outputs one if it exists. In this algorithm, the inputs are the matrices of source
vertices and net reaction vectors via

Y s = (y1,y2, . . . ,ym) and W = (w1,w2, . . . ,wm)

respectively. For the sake of simplicity, we temporarily let dW = {d1,d2, . . . ,dr}
denote the minimal set of generators of ker(W ) \ Rm

�0 in this section.

To build the main algorithm, we need an algorithm to search for a weakly re-
versible realization with a single linkage class. We use the algorithm in [9] and
summarize its main idea as follows.

First, the algorithm in [9] checks whether there exists a reaction network realiza-
tion that generates the given dynamical system such that all the target vertices are
among the source vertices, without imposing the restrictions that (i) the network
should be weakly reversible, and (ii) there should be only one linkage class. Next,
if such a realization exists, the algorithm greedily searches for a maximal realiza-
tion (a realization containing the maximum number of reactions) that generates the
same dynamical system, while still imposing the restriction that all target vertices
are among the source vertices. The algorithm uses the fact that if the initial realiza-
tion was weakly reversible and consisted of a single linkage class, then the maximal
realization found using this procedure preserves weakly reversibility and a single
linkage class. Finally, based on this maximal realization, the algorithm constructs
a Kircho↵ matrix Q and checks whether dim(ker(Q)) = 1 and supp(ker(Q)) = [m].
If both conditions are satisfied, then the maximal realization is weakly reversible
and consists of a single linkage class. Otherwise, there is no such realization that
generates the given polynomial dynamical system.

For more details on this algorithm and its implementation and complexity, please
see [9]. In what follows, we will refer to the algorithm in [9] as Alg-WR`=1.

5.1. Algorithm for weakly reversible and deficiency one realization. Now
we state the main algorithm. The key idea is to find a proper decomposition onW =
Y Ak, which allows a weakly reversible and deficiency one realization. We apply
Alg-WR`=1 to ensure weak reversibility and the single linkage class condition, and
use results in Section 4 to guarantee that the deficiency of the network is one.

Algorithm 1 (Check the existence of a weakly reversible deficiency one
realization)

Input: The matrices of source vertices Y s = (y1, . . . ,ym), and net reaction vectors

W = (w1, . . . ,wm) that generate the dynamical system ẋ =
mP
i=1

xyiwi.

Output: A weakly reversible deficiency one realization if exists or output that it
does not exist.

1: Set flag = 0 and dim(ker(W )) = w⇤;
2: Find the minimal set of generators dW = {d1,d2, . . . ,dr} of the pointed cone

ker(W ) \ Rm
�0.
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3: if r < 2 or
r[

i=1

supp(di) 6= [m]: then

4: Exit the main program;
5: else if r = 2 then
6: Pass Y s,W through Alg-WR`=1

7: if Alg-WR`=1 outputs that a weakly reversible realization consisting of a
single linkage class does not exist then

8: Exit the main program;
9: else

10: flag=1;
11: Exit the main program;
12: end if
13: else
14: for i = 1, 2, . . . , r � 1 do
15: for j = i+ 1, i+ 2, . . . , r do
16: S1 = {di,dj}.
17: S2 = dW \ S1 and 2set S2 := {d̂p}r�2

p=1.
18: if r = w⇤ and the support of S1 and every member of S2 are disjoint

then
19: Define linkage classes to be {Lp}r�1

p=1, where Lp := {supp(d̂p), d̂p 2
S2} for 1  p  r � 2, and Lr�1 := {supp(di) [ supp(dj)}.

20: Let Y p denotes the vertices in linkage class Lp, and W p denotes
the matrix of net reaction vectors corresponding to Y p.

21: for p = 1 to r � 1 do
22: Pass Y p,W p through Alg-WR`=1

23: if Alg-WR`=1 outputs that a weakly reversible realization
consisting of a single linkage class does not exist then

24: Go to line 15;
25: end if
26: end for
27: flag=2;
28: Exit the main program;
29: else if r = w⇤ + 1 and the support of the members of S2 partition

[m] then
30: Define linkage classes to be {Lp}r�2

p=1, where Lp := {supp(d̂p), d̂p 2
S2} for 1  p  r � 2.

31: Let Y p denotes the vertices in linkage class Lp, and W p denotes
the matrix of net reaction vectors corresponding to Y p.

32: if dim(ker(W 1)) = dim(ker(W 2)) = · · · = dim(ker(W r�2)) = 1
then

33: for p = 1 to r � 2 do
34: Pass Y p,W p through Alg-WR`=1

35: if Alg-WR`=1 outputs that a weakly reversible realization
consisting of a single linkage class does not exist then

36: Go to line 15;
37: end if
38: end for

2For the simplicity of notations, we use a new symbol d̂ to represent the vectors in S2
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39: flag=3;
40: Exit the main program;
41: end if
42: end if
43: end for
44: end for
45: end if

46: End of main program

47: if flag = 0 then
48: Print: No weakly reversible and deficiency one realization exists.
49: else if flag = 1 then
50: Print: Weakly reversible and deficiency one realization consisting of a single

linkage class exists.
51: else if flag = 2 then
52: Print: Weakly reversible and deficiency one realization of Type I exists.
53: else if flag = 3 then
54: Print: Weakly reversible and deficiency one realization of Type II exists.
55: end if
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Exit with flag = 0

Exit with flag = 0

Y s =
�
y1, . . . ,ym

�
2 Rn⇥m

W =
�
w1, . . . ,wm

�
2 Rn⇥m

Set flag = 0, dim(ker(W )) = w⇤

Find a minimal set of generators

dW = {d1,d2, ...,dr}

of the pointed cone ker(W ) \ Rm
�0
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supp(di) 6= [m] or other r

Check Y s,W output a weakly reversible

realization with a single linkage class
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Set S1 = {di,dj} and S2 = dW \ S1

if r > 2 and r = w⇤ or w⇤ + 1

for i = 1, . . . , r � 1
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p=1,
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•

no

Figure 6. Algorithm 1 for finding a weakly reversible deficiency one
realization that generates a given polynomial dynamical system ẋ =
mP
i=1

xyiwi.
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Now we show the correctness of Algorithm 1 via the following two lemmas.

Lemma 5.1. Suppose Algorithm 1 exits with a positive flag value, then there exists a

weakly reversible deficiency one realization of the dynamical system ẋ =
mP
i=1

xyiwi.

Moreover, we have

(a) If flag = 1, the system admits a weakly reversible deficiency one realization
consisting of a single linkage class.

(b) If flag = 2, the system admits a weakly reversible deficiency one realization of
Type I.

(c) If flag = 3, the system admits a weakly reversible deficiency one realization of
Type II.

Proof. (a) From flag = 1, we obtain that r = 2 with supp(d1) [ supp(d2) = [m].
Moreover, the input matrices Y s and W pass through Alg-WR`=1.

Then there exists a weakly reversible realization with a single linkage class that

generates the dynamical system ẋ =
mP
i=1

xyiwi. Using Remark 4.6, we conclude its

deficiency is one.

(b) From flag = 2, we get r = dim(ker(W )) > 2, and r � 1 linkage classes
{L1, . . . , Lr�1} as follows. There exists some 1  i < j  r,

S1 = {di,dj} and S2 = dW \ S1.

For the simplicity of notations, we rename r�2 vectors in S2 as S2 := {d̂p}r�2
p=1 and

set

Lp = {supp(d̂p) : d̂p 2 S2}, for 1  p  r � 2,

Lr�1 = {supp(di) [ supp(dj)},

with L1, L2, . . . , Lr�1 partition [m].
Moreover, for any 1  q  r� 1, the matrices of source vertices and net reaction

vectors Y q,W q related to the linkage class Lq pass through Alg-WR`=1. Thus
each linkage class Lq admits a weakly reversible realization. Together with {Lq}r�1

q=1

partitioning [m], we have

ker(W p) = {span(d̂p)}, for 1  p  r � 2,

ker(W r�1) = span{di,dj}.
(68)

Using Lemma 4.5 and Remark 4.6 on the realization under Alg-WR`=1, we get

�1 = · · · = �r�1 = 0 and �r�1 = 1, (69)

where �q represents the deficiency of linkage class Lq.
Now we compute the deficiency of the whole realization �. From (68), we obtain

dim(ker(W 1)) + dim(ker(W 2)) + · · ·+ dim(ker(W r�1)) = r = dim(ker(W ). (70)

Applying Lemma 4.2 and Lemma 4.3 on Equation (70), we deduce for p = 1, . . . , r�
1,

dim(ker(W q)) = 1 + �q = |Lq|� sq and
r�1X

q=1

sq = s,
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where sq and s represent the stoichiometric subspace for linkage class Lq and whole
network respectively. Then we do the summation from q = 1 to r � 1, and get

r�1X

q=1

(|Lq|� sq) = m� s = (r � 1) +
r�1X

q=1

�q.

From Equation (69), we conclude that

� = m� s� (r � 1) =
r�1X

q=1

�q = 1,

and the system admits a weakly reversible deficiency one realization of Type I.

(c) From flag = 3, we get r = dim(ker(W )) + 1 > 2, and r � 2 linkage classes
{L1, . . . , Lr�2} as follows. There exists some 1  i < j  r,

S1 = {di,dj} and S2 = dW \ S1.

Similarly, we rename r � 2 vectors in S2 as S2 := {d̂p}r�2
p=1 and set

Lp = {supp(d̂p) : d̂p 2 S2}, for 1  p  r � 2,

with L1, L2, . . . , Lr�2 partition [m].
Moreover, for any 1  p  r� 2, the matrices of source vertices and net reaction

vectors Y p,W p related to the linkage class Lp pass through Alg-WR`=1. Thus
each linkage class Lq admits a weakly reversible realization with dim(ker(W p)) = 1.
Applying that {Lp}r�2

p=1 partition [m], we have

ker(W p) = {span(d̂p) : d̂p 2 S2}, for 1  p  r � 2. (71)

Using Lemma 4.5 on the realization under Alg-WR`=1, we get

�1 = · · · = �r�2 = 0, (72)

where �p represents the deficiency of linkage class Lp.
Now we compute the deficiency of the whole realization �. From (71), we obtain

dim(ker(W 1))+dim(ker(W 2))+ · · ·+dim(ker(W r�2)) = r�2 = dim(ker(W ))�1.
(73)

Applying Lemma 4.2 and Lemma 4.3 on Equation (73), we deduce for p = 1, . . . , r�
2,

dim(ker(W p)) = 1 + �p = |Lp|� sp and
r�2X

p=1

sp = s+ 1,

where sp and s represent the stoichiometric subspace for linkage class Lp and whole
network respectively. Summing from p = 1 to r � 2, we get

r�1X

p=1

(|Lp|� sp) = m� (s+ 1) = (r � 2) +
r�1X

q=1

�q.

From Equation (72), we conclude that

� = m� s� (r � 2) =
r�1X

q=1

�q + 1 = 1,

and the system admits a weakly reversible deficiency one realization of Type II.
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Lemma 5.2. Suppose the dynamical system ẋ =
mX

i=1

xyiwi admits a weakly re-

versible deficiency one realization, then Algorithm 1 must set the flag value to be
either 1, 2 or 3.

Proof. Note that every weakly reversible deficiency one network belongs to the
following:

1. Weakly reversible deficiency one realization consisting of a single linkage class.
2. Weakly reversible deficiency one realization of Type I, with two or more linkage

classes.
3. Weakly reversible deficiency one realization of Type II.

Therefore, we split our proof into the above three cases.

Case 1: Suppose the system admits a weakly reversible deficiency one realiza-
tion consisting of a single linkage class. From Lemma 4.4, we obtain that r = 2
and the input Y and W pass through Alg-WR`=1 from the weakly reversibility.
Therefore, Algorithm 1 will exit with flag = 1.

Case 2: Suppose the system admits a weakly reversible deficiency one realiza-
tion of Type I with ` > 1 linkage classes, denoted by L1, L2, . . . , L`. From Lemma
4.7, we have

dim(ker(W `)) = 2 and dim(ker(W p)) = 1, for 1  p  `� 1,

dim(ker(W )) = dim(ker(W 1)) + · · ·+ dim(ker(W `)) = `+ 1 = r.

Moreover, there exist `+1 vectors d1, . . . ,d`+1 forming the minimal set of generators
of ker(W ) \ Rm

�0, such that for p = 1, . . . , `� 1,

supp(dp) = Lp,

supp(d`) ( L`, supp(d`+1) ( L`, supp(d`) [ supp(d`+1) = L`.

Thus, when i = ` and j = `+1, (i.e. di = d` and dj = d`+1), Algorithm 1 will exit
with flag = 2.

Case 3: Suppose the system admits a weakly reversible deficiency one realiza-
tion of Type II with ` > 1 linkage classes, denoted by L1, L2, . . . , L`. From Lemma
4.9, we have

dim(ker(W p)) = 1, for 1  p  `,

dim(ker(W ))� 1 = dim(ker(W 1)) + · · ·+ dim(ker(W `)) = ` = r � 2.

Moreover, there exist `+2 vectors d1, . . . ,d`+2 forming the minimal set of generators
of ker(W ) \ Rm

�0, such that for p = 1, . . . , `,

supp(dp) = Lp, supp(d`+1) \ Lp ( Lp, supp(d`+2) \ Lp ( Lp.

Again when we pick i = ` and j = `+ 1, Algorithm 1 will exit with flag = 3.

Lastly, we show every mass-action system admitting a weakly reversible defi-
ciency one realization has a unique flag value after applying Algorithm 1. Following
Remark 4.13, we deduce that if flag = 3 after passing the same mass-action system
through the algorithm, the flag value cannot equal 1 or 2. From Lemma 4.5 and
Lemma 4.7, we have r = 2 if flag = 1, and r = ` + 1 > 2 if flag = 2. Thus, it is
also impossible that the flag equals both 1 and 2 on the same mass-action system.
Therefore, we show the uniqueness and prove this lemma.

The following remark is a direct consequence of Lemma 5.2.
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Remark 5.3. If Algorithm 1 sets the value of flag to 0, then ẋ =
mP
i=1

xyiwi does

not admit a weakly reversible deficiency one realization.

Example 5.4. Consider the system of di↵erential equations

ẋ = x� x2,

ẏ = x3 + x3y � x3y2.
(74)

We have n = 2 for the two state variables, and m = 5 for the five distinct
monomials. The matrices of source vertices and net direction vectors are

Y s =

✓
1 2 3 3 3
0 0 0 1 2

◆
, and W =

✓
1 �1 0 0 0
0 0 1 1 �1

◆
. (75)

respectively, which are inputs to Algorithm 1.
Then, we can compute that dim(ker(W )) = 3, and extreme vectors of ker(W )\

Rm
�0 is given by

d1 =

0

BBBB@

1
1
0
0
0

1

CCCCA
, d2 =

0

BBBB@

0
0
0
1
1

1

CCCCA
, d3 =

0

BBBB@

0
0
1
0
1

1

CCCCA
.

This shows that r = 3, and the algorithm enters line 13.
Next, when we pick i = 2, S1 = {d2,d3} and S2 = {d1}. Note that r =

dim(ker(W )) = 3, and the support of S1 and every member of S2 are disjoint, the
algorithm defines candidate linkage classes are follows:

L1 = {supp(d1)} = {1, 2}, L2 = {supp(d2) [ supp(d3)} = {3, 4, 5}.
Following the candidate linkage classes L1, L2, we derive the corresponding matrices
of source vertices and net direction vectors:

Y 1 =

✓
1 2
0 0

◆
, W 1 =

✓
1 �1
0 0

◆
, and Y 2 =

✓
3 3 3
0 1 2

◆
, W 2 =

✓
0 0 0
1 1 �1

◆
.

After that, we pass two pairs (Y 1,W 1) and (Y 2,W 2) through Alg-WR`=1.
Both pairs pass successfully through Alg-WR`=1, i.e., a weakly reversible single
linkage class exists for both arrangements. Finally, the algorithm sets flag = 2
on line 27, and exits. Therefore, (74) admits a weakly reversible deficiency one
realization of Type I, whose E-graph is shown in Figure 7.

!"" #"

#"$%

#"$!%

! &

&&

&

&

Figure 7. A weakly reversible deficiency one mass-action system
from Example 5.4
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Example 5.5. Consider the system of di↵erential equations

ẋ = �x+ x2,

ẏ = 0.
(76)

We have n = 2 for the two state variables, andm = 2 for the two distinct monomials.
The matrices of source vertices and net direction vectors are

Y s =

✓
1 2
0 0

◆
, and W =

✓
�1 1
0 0

◆
. (77)

respectively, which are inputs to Algorithm 1.
Then, we compute that dim(ker(W )) = 1, and the extreme vector of ker(W ) \

R2
�0 is

d1 =

✓
1
1

◆
.

This shows that r = 1, then the algorithm satisfies the condition on line 4 and
exits the program with initial flag = 0. Therefore, there doesn’t exist any weakly
reversible deficiency one realization for this system.

5.2. Implementation of Algorithm 1. In this section, we discuss how to imple-
ment Algorithm 1. The algorithm is designed to find a weakly reversible deficiency

one realization that generates the dynamical system ẋ =
mP
i=1

xyiwi, and it has three

key steps:

1. Compute dim(ker(W )) and dim(ker(W i)).
2. Find the extreme vectors of the cone ker(W ) \ Rm

�0.

3. Pass pairs of the matrices Y s,W or Y i,W i through Alg-WR`=1.

In Step 1, the implementation needs a rank-revealing factorization; we need to
find a basis of W or W i, and then we can check the number of vectors in this basis.
This is equivalent to solving a linear programming problem.

In Step 2, we note that by the Minkowski-Weyl theorem [8, 32], there exists two
representations of a polyhedral cone C given by:

(a) H-representation: There exists a matrix A, such that the cone C can be
written as

C = {Ax  0}.
(b) V-representation: The cone C has the minimal set of generators {di}, such

that

C =
rX

i=1

�idi,

where �i � 0.

To find the extreme vectors of the cone ker(W )\Rm
�0, we need a way to convert

from the H-representation to the V-representation. There are two popular ways of
performing this conversion:

(a) Double description method : This is an example of an incremental method,
where the conversion from H-representation to V-representation is performed
assuming that the solution to a smaller problem is already known [31]. In
particular, let C(A) := {Ax  0}. Let J be a subset of the row indices of A.
We will denote by AJ the submatrix of A obtained by selecting the J rows
of A. Let us assume that we have found the minimal set of generators for
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the cone C(AJ). We will denote by E the generating matrix whose columns
are the extreme vectors of C(AJ). The double description algorithm selects
an index h that is not present in J and constructs the generating matrix E0

that corresponds to the AJ+h. This is repeated for several iterations until the
generating matrix for C(A) is found. This algorithm is useful in cases where
the inputs are degenerate and the dimension of the cone is small.

(b) Pivoting methods : In this method, the extreme vectors of the cone are found
by the reverse search technique, where the simplex algorithm (that uses pivots
iteratively) is run in reverse for the linear programming problem Ax  0. The
reverse search method determines the extreme vectors of the cone by building
a tree in a depth-first-search fashion. This method was developed by Avis and
Fukuda [3]. It is particularly useful for non-degenerate inputs where it runs
in a time polynomial of the input size.

In Step 3, we apply Alg-WR`=1, and this step can be done by solving a sequence
of linear programming problems. More details can be found in section 4.4 in [9].

6. Discussion. Weakly reversible deficiency one networks are ubiquitous in bio-
chemistry, and are known to have the capacity to exhibit sophisticated dynamics.
Some notable examples include the Edelstein network, as in Example 3.1. To bet-
ter understand their dynamics, we divide them into two categories: (i) Type I
networks, where all linkage classes have deficiency zero except one linkage class
having deficiency one, and (ii) Type II networks, where all linkage classes have de-
ficiency zero. The crucial quantity in the analysis of such networks is the pointed
cone ker(W )\Rm

�0, where W is the matrix formed by the net reaction vectors. In
particular, the extreme vectors of this cone can be divided into two classes: cyclic
generators and stoichiometric generators. Networks of Type I possess only cyclic
generators and satisfy the conditions of the Deficiency One Theorem. Consequently,
for Type I networks, there exists a unique steady state within every stoichiometric
compatibility class. For Type II networks, the set of stoichiometric generators is
not empty. The stoichiometric generators define subnetworks, such that if these
subnetworks possess multiple steady states, then the original network also allows
multiple steady states [7].

In addition, we show that networks of di↵erent types cannot be dynamically
equivalent. Theorem 4.12 establishes this fact, and this implies that any mass-
action system, at most, has one type of weakly reversible deficiency one realization,
either Type I or Type II. In Section 4 we analyze in depth the extreme vectors of the
cone ker(W )\Rm

�0 for weakly reversible deficiency one networks. In particular, we
show that for Type I networks with ` linkage classes, there exist ` + 1 generators,
while for Type II networks with ` linkage classes, there exist ` + 2 generators.
Lemmas 4.7 and 4.9 establish these facts.

In Section 5 we describe our main result: the construction and the proof of
correctness of Algorithm 1. This algorithm takes as input a matrix of source vertices
and the corresponding matrix of net reaction vectors. Algorithm 1 usesAlg-WR`=1

as a subroutine and determines whether or not there exists a weakly reversible
deficiency one realization for this input. It is interesting to put this algorithm in the
context of existing algorithms in the literature. There has been seminal work in this
direction [28, 30, 36, 33, 34, 35, 29] based mostly on optimization methods that rely
on mixed integer linear programming to determine the existence of realizations of a
certain type. The algorithm in this paper uses a novel and straightforward geometric
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approach by focusing on the extreme vectors of the cone ker(W ) \Rm
�0, instead of

posing it as a constrained optimization problem. Algorithm 1 uses Alg-WR`=1 and
the properties of the extreme vectors of the cone ker(W ) \ Rm

�0 to determine the
existence of weakly reversible deficiency one realizations. This geometric approach
in both algorithms allows for a fully self-contained mathematical analysis of the
correctness of these algorithms.

This work opens up interesting new avenues for future research. In particular,
the relationship between the minimal set of generators of the cone ker(W ) \ Rm

�0
and the deficiency of the network can be explored in greater depth. One could also
explore the existence of mutually exclusive types of weakly reversible realizations
for networks of higher deficiency. Another possible direction would be to explore
the geometry of this minimal set of generators for weakly reversible networks of
higher deficiency.
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