Discrete and Continuous Dynamical Systems - Series B

3

Al
doi:10.3934 /dcdsb.2023202 \t&

WEAKLY REVERSIBLE DEFICIENCY ONE REALIZATIONS OF
POLYNOMIAL DYNAMICAL SYSTEMS

GHEORGHE CRACIUN™!  ABHISHEK DESHPANDEE2 AND JIAXIN JIN®B

IDepartment of Mathematics and Department of Biomolecular Chemistry,
University of Wisconsin-Madison, USA

2Center for Computational Natural Sciences and Bioinformatics,
International Institute of Information Technology Hyderabad, India

3Department of Mathematics, The Ohio State University, USA

(Communicated by Sigurdur Freyr Hafstein)

ABSTRACT. Given a dynamical system with a polynomial right-hand side, can
it be generated by a reaction network that possesses certain properties? This
question is important because some network properties may guarantee specific
dynamical properties, such as existence or uniqueness of equilibria, persistence,
permanence, or global stability. Here we focus on this problem in the context of
weakly reversible deficiency one networks. In particular, we describe an algo-
rithm for deciding if a polynomial dynamical system admits a weakly reversible
deficiency one realization, and identifying one if it does exist. In addition, we
show that weakly reversible deficiency one realizations can be partitioned into
mutually exclusive Type I and Type II realizations, where Type I realizations
guarantee existence and uniqueness of positive steady states, while Type II
realizations are related to stoichiometric generators, and therefore to multista-
bility.

1. Introduction. By a polynomial dynamical system we mean a dynamical system
of the form

dlL’l
it =pi(21,...,70),
dl’g
it = pa(21,...,T0),
(1)
dx
d7tn = pn(xh ce 7:1777,)5
where each p;(x1,...,2,) is a polynomial in the variables x1, ..., 2,. Such systems

can exhibit exotic behaviors like multistability, presence of oscillations, and chaos
due to the underlying nonlinearities. We are especially interested in the dynamics of
these systems when restricted to the positive orthant, because such systems are very
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common models of biological interaction networks, population dynamics models, or
models for the transmission of infectious diseases [37, 20, 25, 38].

Very often, polynomial dynamical systems are generated by reaction networks.
It is often convenient to study the graphical structure of these networks to make
inferences about their dynamics. It is also possible to study the inverse problem,
i.e., for some given polynomial dynamical systems, ask what reaction networks can
generate them. Due to the phenomenon of dynamical equivalence [13, 27], such a
network may not be unique, i.e., there exist multiple reaction networks that generate
the same dynamics.

A key quantity in the study of these networks is its deficiency. In particular,
networks possessing low deficiency have been studied in reaction network theory
using the Deficiency Zero and Deficiency One theorems [20, 27, 26, 16, 17, 18]. In
particular, the Deficiency One Theorem [20, 18] guarantees uniqueness of the steady
state within each linear invariant subspace; this, together with the existence result
in [5, 4] completely characterizes the steady states of weakly reversible networks
that satisfy the hypotheses of the Deficiency One Theorem. Further, weakly re-
versible networks (i.e., networks where each reaction is part of a cycle) are related
to dynamical properties like persistence, permanence, and the existence of a globally
attracting steady state [23, 2, 12, 6].

The problem of identifying weakly reversible deficiency zero realizations has been
addressed in [10]. Here we analyze the realizability problem for weakly reversible
reaction networks with deficiency one. In particular, given a polynomial dynamical
system, we describe an algorithm to identify if there exists a weakly reversible
deficiency one reaction network that generates this dynamical system.

Moreover, if weakly reversible deficiency one realizations do exist, our algorithm
uses the geometry of some convex cones generated using the net reaction vectors to
construct one such realization explicitly.

Structure of this paper. In Section 2, we recall some basic notions from reac-
tion network theory. Primarily, we introduce dynamical equivalence and the matrix
of net reaction vectors. In Section 3, we give a short primer on weakly reversible
deficiency one reaction networks, and define Type I and Type II weakly reversible
deficiency one realizations. In Section 4, we analyze the pointed cone ker(W)NRY,
and its minimal set of generators in the context of weakly reversible deficiency one
networks. Moreover, we prove there cannot exist a dynamical equivalence between
such networks of two types in Theorem 4.11. In Section 5, we state the main algo-
rithm of our paper: Algorithm 1, which checks the existence of a weakly reversible
deficiency one realization and returns a realization if it exists. In Section 6, we
summarize our findings in this paper and flesh out directions for future work.

Notation. We let RY; and RY, denote the set of vectors in R™ with non-negative

and positive entries respectively. Given two vectors € = (x1,...,2,)T € RZ; and
Y= (Yy,-..,Y,)T € R", we use the vector operation as follows:
Y n
A R

Given a positive integer m, we denote [m] := {1,...,m}.
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2. Reaction networks.
2.1. Terminology.

Definition 2.1. A reaction network G = (V, E), also called the Euclidean em-
bedded graph (E-graph), is a directed graph in R”, where V' C RZ, represents
a finite set of vertices, and £ C V x V represents a finite set of edges. In this
paper, there are neither self-loops nor isolated vertices in G.

(a) Let V ={yq,...,9,,}, and denote the number of vertices in G by m.

(b) We denote a directed edge by (y;,y;) € E, which represents a reaction in the
network. Here y; and y; are called the source vertex and target vertex
respectively. Moreover, we denote the reaction vector associated with the
edge y; — y; by y; —y; € R™.

Definition 2.2. Let G = (V, E) be a Euclidean embedded graph. The stoichio-
metric subspace of G is the vector space spanned by the reaction vectors as
follows:
S =span{y’ —y|y — vy € E}.

Given a subset of vertices Vy C V, the stoichiometric subspace defined by V}
is

S(Vo) =span{y’ —y|y = y' € E and ',y € Vo}.
Furthermore, given a positive vector oy € RZ, the polyhedron (zy + S) NRZ is
called the stoichiometric compatibility class of x.

Definition 2.3. Let G = (V, E) be a Euclidean embedded graph.

(a) The set of vertices V' is partitioned by its connected components, also called
linkage classes. Every connected component is denoted by the set of vertices
belonging to it.

(b) A connected component L C V is strongly connected, if every edge is part
of an oriented cycle. Moreover, a strongly connected component L C V is
terminal strongly connected, if for every vertex y € L and y — ¢’ € F,
we have y' € L.

(¢) G = (V,E) is weakly reversible, if all connected components are strongly
connected.

Remark 2.4. For any weakly reversible reaction network G = (V, E), every vertex
y € V is a source and a target vertex. Moreover, every connected component of G
is strongly connected, and terminal strongly connected.

Definition 2.5. Let G = (V, E) be a Euclidean embedded graph, which contains m
vertices and ¢ connected components. Denote the dimension of the stoichiometric
subspace of G by s = dim(S), the deficiency of G is a non-negative integer as
follows:

d=m—/f—s.

When considering a linkage class with V; C V, we define the deficiency of a

linkage class as
5 = [Vil = 1 — dim S(V;).

¢
5> 4, (2)
=1

One can check that
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where the equality holds when the stoichiometric subspaces of all linkage classes are
linearly independent.

Figure 1 shows two reaction networks represented as Euclidean embedded graphs.

5X+2Y
o
4X+Y/ \?X+Y
O O 2X.+Y
[ a— ) @ I o A ®
X 2X X 4X X 3X

() (b)

FIGURE 1. (a) This reaction network consists of two linkage classes
and contains two terminal strongly connected components (shown in
circles). It has a stoichiometric subspace of dimension 2 and a deficiency
0d=m—£0—5s=7-—2-—2=3. (b) This reaction network is weakly
reversible and contains one terminal strongly connected component. It
has a stoichiometric subspace of dimension 2 and a deficiency 6 = m —
{—s=3-1—-2=0.

Given a reaction network, it can generate an extensive variety of dynamical
systems. Here, we focus on mass-action kinetics, which has been studied in [37, 25,
38, 24, 15, 1].

Definition 2.6. Let G = (V,E) be a Euclidean embedded graph, we let k =
(kyiﬂyj)yiﬁyje]; S ]REO denote the vector of reaction rate constants, where
Icyiﬂyj or k;j is called the reaction rate constant of the edge y, — y; € E.
Furthermore, the associated mass-action system generated by (G, k) on RZ is

dx
T 2 ey v (3)

y,—y,€E

A point * € R is called a positive steady state, if

D7 gy, (T)Vi(y; —y,) = 0. (4)

Y, —Y;€EE

From [27], it is known that every mass-action system admits the following matrix

decomposition:

dx
— =Y Az

where Y is called the matrix of vertices, whose columns are the vertices, defined
as

Y = (y17 y27 R ym)a
xY is the vector of monomials given by

Y = (¥, x¥2, ... 2¥=)T,
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and Ay is the negative transpose of the Laplacian of (G, k), defined as

[Aklji = ky, >y, ifi#jandy, >y, €E,
A=Al == X0 Ky oy,
Yy, —~y;€E
[Aklji =0, otherwise.

Here, Ay is called the Kirchoff matrix, whose column sums are zero from the
definition.

The properties of the kernel of Ay, are well known in reaction network theory [20,
25, 21]. Below we collect some of the most important properties.

Theorem 2.7 ([21]). Let (G, k) be a mass-action system, and Ty, Ts, ..., T; be the
terminal strongly connected components of G. Then there exists a basis {c1,ca,..., ¢t}
for ker(Ag), such that

[egli >0, ify, €Ty,

cq =
[cqli =0,  otherwise.

Proposition 2.8 ([15, Corollary 4.2]). Consider a mass-action system (G, k), then
G is weakly reversible if and only if the kernel of the Kirchoff matrix Ay contains
a positive vector.

2.2. Net reaction vectors and dynamical equivalence. Inspired by the ma-
trix decomposition in (5), we introduce the key concept: net reaction vector, and
illustrate a new matrix decomposition in terms of net reaction vectors.

Definition 2.9. Let (G, k) be a mass-action system, and Vi = {y1,¥5,...,Y,,,.} C
V be the set of source vertices of G. For each source vertex y, € V;, we denote
the net reaction vector w; corresponding to y,; by

wi= Dy, (YY) (6)
y,—yY;EE
Further, we denote the matrix of net reaction vectors of G as follows:
W = (wi,wa,..., Wy, ). (7)
It is convenient to refer to w; even when y; ¢ Vi, in which case we consider w;
represents an empty sum, i.e., w; = 0.

From Definition 2.9, every net reaction vector w, corresponding to y, can be
expressed as

w; = Z kyiﬁy,‘yj - ( Z k’yqayj)yi- (8)
y;—y,€E y;—y, €L
Using a direct computation, we rewrite the mass-action system in (3) as
dx
= = Wa¥s, 9
where Y, is called the matrix of source vertices, whose columns are source
vertices, defined as

Ys = (yla Yos - - ayms)a
and xY¢ is the vector of monomials given by

x¥e = (x¥1,x¥2,. .., xYms )T,
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Note that for any weakly reversible mass-action system (G, k), we have Vy, = V
and Y, = Y. Moreover, we derive that W = Y A, which follows from matrix
decomposition in (5).

Definition 2.10. Let (G, k) and (G, k) be two mass-action systems. Then (G, k)
and (G, k) are called dynamically equivalent, if for any « € RZ,

y—oy'clk gy ek

Remark 2.11. From Equation (10), we achieve a necessary and sufficient condition
for dynamical equivalence between (G, k) and (G, k): for every vertex y, € Vs UV,

Z ky,—y(y —yo) = Z ];yo%y’ (¥ — o), (11)

Yo—yYEeL yo—y'€E
From Definition 2.9, this is equivalent to
wo = Wy. (12)

Note that if either y, & V, or y, € Vs, then one side of Equation (11) gives an
empty sum, i.e., wg = 0 or wg = 0.

Example 2.12. Two dynamically equivalent mass-action systems are presented in
Figure 2. The mass-action systems (a) (G, k) and (b) (G’, k') share the vertices

we): ) ()

The reaction network G’ has an additional vertex

vi=(1):

Given the rate constants in Figure 2, we note that y; is the only source vertex in
both G and G’. Thus, it suffices to check whether two systems satisfy Equation (11)
on the vertex y;.

For the system (G, k), we have

D ky gy —y1) = ki (g) + k13 (g) = (i) : (13)

y,—yck

For the system (G’, k'), we have
0 2 1 4
Z Ky, —y (Y — Y1) = k1o <2) + ki3 <0> + ks (1> = (4> . (14)
yl_)y/eE/

This shows two systems have the same net reaction vector corresponding to the
source vertex y;, and are hence dynamically equivalent.
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yg y2
[ ] [ )
Yy
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(a) (b)

FIGURE 2. Examples of dynamically equivalent systems (a) and (b).

3. Weakly reversible deficiency one networks. Deficiency analysis [26, 17,
18, 19] forms an integral component of reaction network theory. The dynamics
generated by reaction networks with low deficiency has been studied extensively
using the Deficiency zero and Deficiency one theorems [20, 16, 17, 18]. In particu-
lar, properties like the existence of a unique equilibrium within each stoichiometric
compatibility class, local asymptotic stability of the equilibrium owing to the ex-
istence of a Lyapunov function have been established. In this paper, we focus on
weakly reversible deficiency one reaction networks. Such networks are ubiquitous
in applications, and some noteworthy examples are listed below.

Example 3.1 (Edelstein network, [22]).
X1 \:‘2)(17 X1+X2 ﬁXg \:‘XQ
This is a weakly reversible reaction network with deficiency § =5 -2 —2 = 1.

Example 3.2 (Symmetry breaking network, [20]).
L+2R+P=3R+Q, R+2L+P=3L+Q, P=0=0Q

This is a weakly reversible reaction network with the stoichiometric subspace
given by (vectors are arranged by the species order L, P,Q, R)

S:Span{(fl,flvlal)-ra (Lfl,lafl)Tv (val,OaO)Tv (0,0’,170)T}7

It is a three-dimensional stoichiometric subspace. The network has deficiency § =
7T-3-3=1

From inequality (2), deficiency one networks can be classified into the following
typesl:

e §=1=06;+d2+ -+ . We call this a Type I network.

e 0=1>6+6+ -+ 6. We call this a Type II network.

Weakly reversible deficiency one networks for which § =1 =61 +do2 + -+ - + ¢
(Type I) fall into the regime of the Deficiency one Theorem, which we state below.

Theorem 3.3 (Deficiency One Theorem, [17, 18]). Consider a reaction network
G consisting of £ linkage classes Ly, Lo, --- , Ly. Let us assume that G satisfies the
following conditions:

IWithout loss of generality, we always assume 61 = ... = dy_1 = 0, dp = 1 in Type I networks,
and 01 = ... =6y = 0 in Type II networks in the rest of this paper.
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1. 6; < 1.
¢
2. 3 0;=0.
i=1
3. Each linkage class L; contains exactly one terminal strongly connected com-
ponent.

If there exists a k for which the mass-action system (G,k) possesses a positive
equilibrium, then every stoichiometric compatibility class has exactly one positive
equilibrium. If G is weakly reversible, then for all values of k the mass-action
system (G, k) possesses a positive equilibrium.

We also state a theorem [5] that guarantees the existence of positive steady states
for weakly reversible systems.

Theorem 3.4 ([5]). For weakly reversible mass-action systems, there ezists a pos-
itive steady state within each stoichiometric compatibility class.

Using Theorem 3.4 in conjunction with the Deficiency one Theorem, we conclude
that for any weakly reversible deficiency one network of Type I, there exists a unique
equilibrium within each stoichiometric compatibility class for all values of the rate
constants k.

Now we define a geometric property called affine independence.

Definition 3.5. A set of vectors {yg,¥y1,.--,¥,}, where y, € R™ is said to be
affinely independent if the set of vectors {y; —yo|j = 1,2,...,7} are linearly
independent.

For weakly reversible deficiency one networks of Type II, all linkage classes have
deficiency zero and they possess the following geometric property:

Proposition 3.6 ([11, Theorem 9]). Consider a reaction network G. Let Ly be a
linkage class of G. Then Ly has deficiency zero if and only if its vertices are affinely
independent.

Recall that a set X is a polyhedral cone ifX = {z : M < 0 for some matrix M}.
Such a cone is convex. It is pointed, or strongly convex if it does not contain a
positive dimensional linear subspace. A pointed polyhedral cone admits a unique
(up to scalar multiple) minimal set of generators where these generating vectors are
called extreme vectors [8].

Lemma 3.7. Consider a mass-action system (G, k) with vertices {y;}7",. Let W
be the matriz of net reaction vectors of G, then we have:

(a) ker(W)NRY, is a pointed polyhedral cone.

(b) There exists the minimal set of generators for ker(W) N RZ,.

Proof.  (a) Tt is clear that the set ker(W)NRZ, is the solution to Wv > 0, -Wv >
0, and I,,v > 0, and the set is a polyhedral cone. From the definition, a cone
contained in the positive orthant R, is always pointed. Therefore, we deduce
that ker(W) NRZ, is a pointed polyhedral cone.

(b) Since ker(W)NRZ, is a pointed cone, by the Minkowski-Weyl theorem [8, 32],
we have

ker(W) NRZ) = Gid;, (15)
j=1
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where {d;};_ is the unique (up to scalar multiple) minimal set of generators
of the cone ker(W) NRZ,.

O
Furthermore, using the rank-nullity theorem, we have
dim(ker(W)) = dim(ker(Ag)) + dim(ker(Y") N Im(Ag)).
Thus the minimal set of generators can be divided into two groups. The next

definition illustrates this point.

Definition 3.8 ([7]). Consider a mass-action system (G, k) and let W be the matrix
of net reaction vectors of G. An extreme vector d; of the cone ker(W) N RY, is
called -

1. a cyclic generator, if d; € ker(Ag).
2. a stoichiometric generator, if Agd; € ker(Y)\{0}.

Here we give an example where a reaction network possesses both cyclic and
stoichiometric generators.

Example 3.9. Consider the network shown in Figure 3. This weakly reversible
reaction network has two linkage classes, and the deficiency of the entire network is
one (i.e. 6 = 1). Moreover, the net reaction vector matrix follows:

123 45 11 -2 1 -1
3‘(0 10 0 0>’and W_<1 -1 0 0 0)’ (16)

ker(W) = span{(1,1,1,0,0)7, (1,1,0,-2,0)7, (1,1,0,0,2)T}. (17)

and

Therefore, we can compute the minimal set of generators of ker(W) NRZ:

(i) Cyclic generators:

dy = (1,1,1,0,0)T, dy=(0,0,0,1,1)T. (18)
(ii) Stoichiometric generators:
ds = (1,1,0,0,2)T, dy=(0,0,1,2,0)T. (19)
2X+Y

SN

.41—. [ m—
X 3 4x 1 5%

F1GURE 3. The mass-action system corresponds to Example 3.9,
which has both cyclic and stoichiometric generators.

In general, both cyclic and stoichiometric generators can be studied by flux mode
analysis. Further, Conradi et al. [7] defined subnetworks generated by stoichiometric
generators, and showed that under some conditions if these subnetworks exhibit
multistationarity, then so does the original network.

As remarked before, weakly reversible deficiency one realizations of Type I sat-
isfy the conditions of the Deficiency One Theorem. This implies that there exists a



10 GHEORGHE CRACIUN, ABHISHEK DESHPANDE AND JIAXIN JIN

unique equilibrium within each stoichiometric compatibility class for all values of the
rate constants k of these realizations. Weakly reversible deficiency one realizations
of Type II are also important since the subnetworks generated by the stoichiomet-
ric generators can help answer questions about multistationarity. It is therefore
important to identify and analyze weakly reversible deficiency one realizations.

4. The pointed cone ker(W) N RZ,. The goal of this section is to analyze the
pointed cone ker(W) N RY, for weakly reversible deficiency one reaction networks.
Specifically, we focus on the extreme vectors of ker(W) N RY,.

Lemma 4.1. Consider a weakly reversible mass-action system (G, k) with vertices
{y,}>,. Let W be the matriz of net reaction vectors of (G, k), and {d1,...,d,} be
the minimal set of generators of ker(W) NRZ, then

U supp(d;) = [m). (20)

,
Proof. For contradiction, assume there exists j € [m], such that j ¢ |J supp(d;).
i=1

Then for any v = (v1,...,vm)T € ker(W) NRY,, we obtain that

v; =0. (21)
Since (G, k) is a weakly reversible mass-action system, by Proposition 2.8 there
exists a positive vector in the kernel of the Kirchoff matrix Ag. Note that weakly
reversibility indicates W =Y Ag. Thus we have

ker(Ag) C ker(Y Ag) = ker(W).

This implies the existence of a positive vector in ker(W) MRy, contradicting Equa-
tion (21). O

Lemma 4.2 ([9]). Consider a weakly reversible mass-action system (G, k) with
vertices {y,; }, and stoichiometric subspace S. Let W be the matrixz of net reaction
vectors of G, then

Im(W) =S. (22)

The following lemma concerns the dimension of ker(W) in various cases.

Lemma 4.3. Consider a weakly reversible mass-action system (G, k) with vertices
{y;}™, and stoichiometric subspace S. Let W be the matriz of net reaction vectors
of G.
(a) If G has deficiency 0 and a single linkage class (i.e. £ =1), we have
dim(ker(W)) =6 + 1. (23)
Moreover, if 6 =0, then for any z € ker(W)\{0}, supp(z) = [m].
(b) If G has deficiency one and £ > 1 linkage classes, we have
dim(ker(W)) = £+ 1. (24)
Proof. (a) Since G has deficiency ¢ and one linkage class, we have
dim(S) =s=m — (0 +1).

By Lemma 4.2, rank(W') = dim(Im(W')) = s. Using the rank-nullity theorem, we
obtain
dim(ker(W)) =6 + 1.
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Furthermore, if § = 0, we deduce that
dim(ker(W)) = 1. (25)

As a weakly reversible mass-action system, (G, k) possesses a strictly positive steady
state & € R%, by Theorem 3.4. Using Equation (3), we get

Doa¥ Y kW)= Y @%w; =0, (26)
jem]  y,oueR jetm]
Note that (&¥',&Y>,...,&Y") € RZ,, and it spans ker(W') due to Equation (25).
(b) Since the deficiency of G is one, we get
dim(S)=s=m—-£—-5d=m— ({+1).
From Lemma 4.2, we conclude that
dim(ker(W)) = m — dim(Im(W)) = m — dim(S) = £+ 1.
O

Here we start with the minimal set of generators of ker(W) NRZ, when weakly
reversible mass-action systems contain a single linkage class.

Lemma 4.4. Consider a weakly reversible mass-action system (G, k) that has de-
ficiency & and a single linkage class L = {yy,...,Y,,}- Let W be the matriz of
net reaction vectors of G, and {di,...,d.} be the minimal set of generators of
ker(W) NRY,, then
r>d6+1. (27)

Moreover, if § = 1, then r = 2. Assume {d1,ds} is the minimal set of generators,
then

supp(dy) & [m], supp(dz) S [m], supp(di) U supp(dz) = [m]. (28)
Proof. Since G has deficiency § and one linkage class, from Lemma 4.3.(a) we obtain

dim(ker(W)) =6 + 1.

Using Equation (26) in Lemma 4.3, we set d = (¥, x¥2,..., ¥~ ) where x € R,
is a steady state for the system, and obtain d € ker(W) NRZ,. Then there exists
a basis of ker(W) that contains d as follows.

B={d,e,...,es}.

Since d € RYZ, for any weights A1,..., s, we can always find a sufliciently large

A > 0, such that
5

> Aiei+Md € R,
i=1
Thus, we conclude
r > dim(ker(W)) =0 + 1.
Furthermore, if the system has deficiency one (i.e. 6 = 1), we derive that
dim(ker(W))=46+1=2,
and thus ker(W) N RY is a two-dimensional pointed cone. Therefore, the cone
ker(W) N RY, must have two generators, i.e., r = 2.
Now assume {d;,d>} is the minimal set of generators of ker(W) NRZ,, when the
system has deficiency one. Using d = (x¥%1,a¥2,... x¥=) € RY, we derive that

supp(d;) Usupp(ds) = [m].
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Suppose supp(di) = [m], thus di € RT;. Then we can find a sufficiently large
A > 0, such that

v = Adi — dy € ker(W) NRZ,.
Note that d; and ds are linearly independent, this contradicts with {d;, d>} being
the generating set of ker(W)NRZ,. Thus, we derive that supp(d;) C [m]. Similarly,
we can show supp(dz) € [m], and conclude (28). O

Lemma 4.5. Consider a weakly reversible mass-action system (G, k) with a single
linkage class L ={yy,...,Y,,}, and let W be the matriz of net reaction vectors of
G. Then there exists a vector d € R, generating the cone ker(W) NRZ, if and
only if the system has deficiency zero. a

Proof. First, suppose the system has deficiency zero. From Equation (26) in Lemma
4.3, we set d = (x¥1,x¥2,..., x¥") where € RY is a steady state for the system
(G, k), and obtain
ker(W') = span{d}.
One can check d € R, and hence d generates ker(W) N RZ,,.
On the other hand, consider a vector d that generates ker(W) NRZ,. Using (27)
and deficiency is non-negative, we get that

0<éf<1-1=0. (29)
Thus, we conclude the deficiency of the system is zero. O
The remark below follows from Lemmas 4.4 and 4.5.

Remark 4.6. Consider a weakly reversible mass-action system (G, k) with a single
linkage class L = {y,;}!™,. Let W be the matrix of net reaction vectors of G.
Suppose two vectors di,ds form the minimal set of generators of ker(W') N RZ,,
then (G, k) has deficiency one. N

Next, we work on the minimal set of generators of ker(W)NRZY,, when the weakly
reversible deficiency one networks have multiple linkage classes.

Lemma 4.7. Consider a weakly reversible deficiency one mass-action system (G, k)
of Type I that has ¢ > 1 linkage classes, denoted by L1,...,Ly. Let W be the matrix
of net reaction vectors of G, and {Wp}f,:1 be the matriz of net vectors corresponding
to linkage classes {Lp}f)zl, then

(a)

dim(ker(W1)) + - - - + dim(ker(W,)) = dim(ker(W)) = £+ 1, (30)
where
1, for1<i</{-1,
dim(ker(W;)) =
2, fori=={.
Moreover, for any 1 <i<{—1 and z € ker(W;)\{0}, supp(z) = L,.
(b) There exist {+1 vectorsdy, ..., dgy1, which form the minimal set of generators
of the cone ker(W) NRY,, such that
supp(d;) = L, for 1 <i</{-—1, (31)

and

supp(dy) © Ly, supp(dey1) © Lo, supp(de) U supp(des1) = Le. (32)
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Proof. (a) From the assumption, the network G is of Type I with §; = -+ = §y_1 =
0 and §; = 1. Using Lemma 4.3, we get

dim(ker(Wy)) =6, + 1 =2, dim(ker(W;))=6,+1=1, for 1 <i</¢—1.

Further, for any 1 <i < ¢—1 and z € ker(W;)\{0},
supp(z) = L;.

Note that G has deficiency one, thus dim(ker(W)) = £+ 1, and we derive (30).

(b) Now we construct the minimal set of generators of ker(W)NRY;, denoted by
{d1,...,d.}. It will follow from the construction that r = £ 4+ 1 = dim(ker(W)).

Since (G, k) is a weakly reversible mass-action system, it possesses a strictly pos-
itive steady state & € RZ by Theorem 3.4. Following Equation (26) in Lemma 4.3,

we can build £—1 vectors dy,...,d;—1. Wedefined; = (dy1,...,d1 ) € ker(W)N
RYy, such that

tYi, forie L
di, =% e (33)
0, for i ¢ L.

It is clear that supp(d;) = Ly. Analogously, for i = 1,...,¢ — 1, we can define d;
corresponding to the linkage classes L; with supp(d;) = L;.

Note that G is of Type I and the linkage class L, has deficiency one. Let L, =
{v,, }:’Zl with my, = |Lg|. From Lemma 4.4, the cone dim(ker(W)) "RZ{ has two

generators, denoted by {g;,g,}. Suppose g, = (glvi)iELg and g, = (g27i)ieu, then

we define dp = (dg1,...,dem), des1 = (des11,- -, dev1m) a8
. forie L . forie L
déi _ gl,m or Z € Ly, and d£+1i _ 92,7,7 or Z € Ly, (34)
' 0, for i ¢ Ly. ’ 0, fori ¢ Ly.

Note that both dg, de+1 € ker(W) NRY,, and satisfy Equation (32).

We claim that the vectors dy, ..., d, form a set of generators for ker(W)NRZ,,.
From Equations (33) and (34), we deduce that the vectors {d;}*Z] are linearly inde-
pendent. Together with dim(ker(W')) = £+1, we derive that the set {d1,...,d¢11}
is a basis for ker(W). Thus, any vector v € ker(W) NRZ, can be expressed as

v =a1dy +azdy + -+ apr1deyr € RY, (35)
where ay,...,ar41 € R. So it suffices to prove all {ai}fi% are non-negative. Recall

{L;}_, are linkage classes with supp(d;) = L;, and supp(dy), supp(des1) C Ly,
then we obtain
a; >0, fori=1,...,0—1.

¢
Moreover, we set © = aggy + ag+1g5. From Y dim(ker(W;)) = dim(ker(W)), we
i=1
derive

v € ker(W,) NRTG.
Since g4, g, form the generators of the cone dim(ker(W,)) NRT, we have
ag >0, agrq 2> 0.

Therefore, we prove the claim.

Finally, we show {d1,da, ..., ds1} is the minimal set of generators for ker(W)N
R7,. Note from Equations (33) and (34), dgy1 cannot be generated by {d;}f_;,
thus it suffices to show {d1,ds,...,d;} are all extreme vectors.
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Suppose not, there exists 1 < j < £, such that d; is not an extreme vector. Then
we can find two vectors v, 6 € ker(W) NRZ, and 0 < A < 1, such that

M+ (1—-X)0=d,, (36)
where v # v for any constant v. From Equation (35), we can express v and 6 as
the conical combination of {dy,ds,...,ds+1} as

41 +1

i=1 =1

where v;, 6; > 0,fort=1,..., 0+ 1.

If j # ¢, from supp(d;) = L; and Equation (36), we derive that v; = §; = 0 for
1<i<¢+1,i%# j. This implies v = 7;d; and 6 = 6;d;, which contradicts with
v #£ v.

If j = ¢, we deduce that v; = 6; =0 for 1 < ¢ < £+ 1 such that ¢ # j in a similar
way. This implies v = v¢d; and 0 = 0,d;, which also contradicts with v # v.
Therefore we conclude that {dy,...,d¢41} is the minimal set of generators of the
cone ker(W) NRZ,. O

Here, we provide an example to which is consistent with the statement of Lemma
4.7.

Example 4.8. Consider a weakly reversible deficiency one mass-action system
shown in Figure 4. This reaction network has two linkage classes. One linkage
class has deficiency zero, and the other has deficiency one (i.e. 6; =0, d3 = 1), and
the deficiency of the entire network is one (i.e. § = 1). Therefore, we have

1=0=01 + bo. (37)

For all reactions y — ¢’ € E, we assume ky_,, = 1, and get

1 -1 00 0 1 -1 00 0
W1<0 0)’ W2<1 0 —1>’ W(o 0 1 0 —1>' (38)

So we can derive that

0 1
ker(W')) = span { (1) } , ker(Wy)) =span¢ | 1|, |0 , (39)
0 1
and
1 0 0
1 0 0
ker(W') = span of, (o], |1 (40)
0 1 0
0 0 1
For any vector z; € ker(W;)\{0}, we have
supp(z1) = L1. (41)
Then, we compute the minimal set of generators of ker(W) N R‘;o:
1 0 0
1 0 0
do=10[, da=1]0], ds=]1 (42)
0 1 0
0 0 1
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This shows that the number of extreme vectors: r = 3, and
r = dim(ker(W)) = £+ 1, (43)
where ¢ = 2. Moreover, for ¢ = 2,3,
supp(di1) = L1, supp(dy) N L2 G L2, supp(dz) Usupp(ds) = L2, (44)

which is consistent with the statement of Lemma 4.7.

e 3X+2Y

—

X 2X 3X

FIGURE 4. A weakly reversible deficiency one mass-action system
of Type I from Example 4.8

Lemma 4.9. Consider a weakly reversible deficiency one mass-action system (G, k)
of Type II that has ¢ > 1 linkage classes denoted by L1, ..., Ly. Let W be the matrix
of net reaction vectors of G, and {Wp}f;:l be the matrixz of net reaction vectors
corresponding to linkage classes {L,}!_, then

(o) 7
dim(ker(W)) + - - - + dim(ker(W,)) = dim(ker(W)) — 1 = ¢, (45)
where
dim(ker(W;)) =1, for1<i<U{.

Moreover, for any 1 < i </{ and z € ker(W;)\{0}, supp(z) = L;.
(b) There exist £+2 vectors dy, ..., dgya, which form the minimal set of generators
of the cone ker(W) N R, such that fori=1,...,¢,

supp(d;) = L;, 0 # supp(dey1) N L C Ly, 0 # supp(des2) N L; S L. (46)

Proof. (a) From the assumption, the network G is of Type Il with §; =--- = §, = 0.
Using Lemma 4.3, we get for i =1,...,/,

dim(ker(W;)) =6, +1=1.
Further, for any 1 <7 < ¢ and z € ker(W;)\{0},
supp(z) = L;.
Note that G has deficiency one, thus dim(ker(W)) = £ + 1, and we derive (45).

(b) Now we construct the minimal set of generators of ker(W') NRZ,,, denoted by
{dy,...,d,}. Tt will follow from the construction that r = £+2 = dim(ker(W))+ 1.
Since (G, k) is a weakly reversible mass-action system, it possesses a strictly pos-
itive steady state & € RZ by Theorem 3.4. Following Equation (26) in Lemma 4.3,
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we can build £ vectors dy,...,d,. We define di = (di1,...,d1,mn) € ker(W)NRYZ,,
such that B

di;=

)

{myi, for i € Ly, (47)

0, fori ¢ Ly,

It is clear that supp(d;) = L;. Analogously, for i = 1,...,¢, we can define d;
corresponding to the linkage classes L;, with supp(d;) = L;.
Now we show that there exists a non-zero vector dgy1 € ker(W)NRZ,, such that

supp(des1)NL; C Ly, fori=1,...,¢. (48)
From Equation (45), there exists a vector d € ker(W)\{0}, which is linearly inde-

pendent from {d;}{_;. Since d; € ker(W) N R%, with supp(d;) = L;, we set for
i=1,...,0, -

dj,
@i ?éaﬁf{ T din } (49)
Then we define dy41 as
¢
d@+1 = Z aidi + El (50)
i=1

For any 1 < j </ and 6 € L;, we obtain that

- d
dep1o=0a;dig+dg > — 0

0,0

dig+dy=0,

and the inequality holds when # = k € L; in Equation (49). Moreover, the linear
independence between d and {d;}¢_, implies that d;, is non-zero. Thus, we show
de+1 € ker(W) NRY,, and it satisfies Equation (48).

Furthermore, we claim that there exist at least two linkage classes: L;, L; with
1<4,j </¢andi# j, such that

supp(dey1) N Li # 0, supp(der1) N Lj # 0. (51)
Suppose not, we assume that only the linkage class L satisfies supp(dyy1)N Ly # 0.
This implies that
supp(dg_H) n L1 g_ Ll.
Using dim(ker(W)) = 1, we get that d,1; must be a scalar multiple of dy, contra-
dicting Equation (50).

Next, we construct another non-zero vector dy1o € ker(W) NRZ,, such that

supp(dei2) N L; C L;, fori=1,...,¢. (52)
Given dy, ... ,dy,dp1 € RT, we set fori=1,...,¢,
doik
- LAREAY 53
p g&)f{ d; } (33)

It is clear that 8; > 0 for 1 <14 < ¢, then we define d42 as

4
depo =Y Bidi — dyyy. (54)
=1

For any 1 <j </ and 6 € L;, we get

dei10

doyog = Bidig —dir10 > dip—dpi19=0.

0,0
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The inequality holds when 8 = k € L; in Equation (53). Moreover, the linear
independence between dyy1 and {d;}{_, implies that dy o is non-zero. Thus, we
show dyio € ker(W) NRY,, and it satisfies Equation (52). Similarly as in (51),
there also exist at least two linkage classes: L;, L; with 1 <4,j < £ and i # j, such
that
supp(de+2) N Li # 0, supp(der2) N Lj # 0. (55)
We claim that the vectors dy,...,dsr2 form a set of generators of ker(W) N
R7,. Using Equations (47) and (50), we deduce the vectors {d;}!Z] are lincarly
independent. Together with dim(ker(W)) = 41, we get that the set {dy, ..., d¢1}
is a basis for ker(W'). Thus, any vector v € ker(W) NRZ, can be expressed as

v=a1d; +asdy+ -+ ap1dpy € Rgbov (56)

where ai,...,ap1 € R. Recall {L;}{_, are linkage classes with supp(d;) = L;, for
i=1,...,¢ and supp(ds+1) in Equation (48), then we obtain
a; >0, fori=1,...,¢.
If apy1 > 0, it is clear that v can be expressed as a conical combination of
{di1,ds,...,ds1} from Equation (56). Otherwise, if asy; < 0, we rewrite v as
¢
v=aydy + -+ ady + a1 () Bidi — diya)
i=1
d (57)
=ady + -+ agdy +agpr Yy Bidi —agiadigs
i=1
= (a1 +apy1P1)dy + -+ (ag + apr1Be)de — apy1diya.
Using v € ker(W) NRY,; and Equation (52), we get that for i =1,...,/,
a; +ag18; > 0,
which implies that v can be generated by {di,...,ds, dpi2}.
Finally, we show {d;,da, ..., ds 2} is the minimal set of generators for ker(W)N

¢
RZ,. Note that dy,...,dp+1 form a basis for ker(W) and doro = Y Sid; — dot1,
> i=1

thus dyy2 cannot be generated by {dz}fill So it suffices to show {d;,da,...,dp11}
are all extreme vectors.
Suppose not, there exists 1 < j < ¢4 1, such that d; is not an extreme vector.
Then we can find two vectors 7, 0 € ker(W) NRZ; and 0 < A < 1, such that
Ay + (1 —-XMN)8 =d;, (58)

where v # vf for any constant v. Then we write v and 6 as the combination of
{di}it,

£4+1 041
Y=Y wdi, 0= 6id;.
i=1 i=1
Since 7,60 € RY, we have for : = 1,...,¢,
v >0, 6; > 0.

If j # ¢+ 1, from Equation (58), we can derive that ; = 6; = 0 when 1 < i <
¢,i # j. Since 7,6 € RZ,, and supp(d¢y1) N L; & L; for i = 1,...,¢, we derive
Ye41 = Op+1 = 0. This implies v = ~;d; and 6 = 6;d;, and this contradicts with
v # v.
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If j =¢+1, in a similar way we can deduce that v, = 6; = 0 for 1 <1 < /.
This implies v = vypp1dey1 and 0 = 0y 1dyy1, which also contradicts with v # 6.
Therefore we conclude that {dy,...,d¢2} is the minimal set of generators of the
cone ker(W) NRZ,. O

We also illustrate an example which is consistent with the statement of Lemma
4.9.

Example 4.10. Consider a weakly reversible deficiency one mass-action system
shown in Figure 5. This reaction network has two deficiency zero linkage classes
(i.e. 01 = 02 = 0), and the deficiency of the entire network is one (i.e. § = 1).
Therefore, we have

1=0>08 +35=0+0. (59)

For all reactions y — ¢y’ € E, we assume ky_,, = 1, and get

1 -1 1 -1 1 -1 1 -1
Wl:(o 0)’W2:<0 0>’W:<0 0 0 0)' (60)

So we can derive that

ker(W1)) = ker(Ws)) = span { G) } , (61)

and
1 -1 1
ker(W)) = span (1) , (1) , 8 (62)
0 0 1
For any vectors z; € ker(W1)\{0} and zs € ker(W3)\{0}, we have
supp(z1) = L1, supp(zz2) = La. (63)
Then, we compute the minimal set of generators of ker(W) N R‘éoz
1 0 0 1
di=|g| da=|7] ds=|]] di=], (64)
0 1 0 1
This indicates the number of extreme vectors: r = 4 and
r=dimker(W))+1=10+2, (65)
where ¢ = 2. Moreover, for p =1, 2,
supp(dp) = Lp, supp(det1) N Ly & Ly, supp(der2) N Ly & Ly, (66)

which is consistent with the statement of Lemma 4.9.

X 2X 3X 4X

FIGURE 5. A weakly reversible deficiency one mass-action system
of Type II from Example 4.10
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To conclude this section, we show that given a mass-action system that admits
weakly reversible deficiency one realizations, then these realizations must be of the
same type. First, we recall a special result from [14]:

Theorem 4.11 ([14, Theorem 6.3]). Consider two weakly reversible mass-action
systems (G, k) and (G',k') having a deficiency of one and the same number of
linkage classes. Let (G,k) be of Type I and (G', k') be of Type II. Then (G, k) and
(G, k') cannot be dynamically equivalent.

After Theorem 4.11, we are ready to prove the more general result as follows:

Theorem 4.12. Given two weakly reversible deficiency one mass-action systems:
(G, k) of Type I and (G', k') of Type II, then (G, k) and (G', k') cannot be dynam-
ically equivalent.

Proof. For contradiction, assume that the two weakly reversible deficiency one mass-
action systems (G = (V, E), k) of Type I, and (G’ = (V', E’), k") of Type II are
dynamically equivalent. By Remark 2.11, they have the same set of non-zero net
reaction vectors. Using Im(W) = S from Lemma 4.2, we get that (G, k) and (G, k')
share the same stoichiometric subspace.

Now we claim that (G,k) and (G’, k') have the same number of vertices. For
contradiction, suppose there exists a vertex y € V' such that y ¢ V. Let w, and
w’y represent the net reaction vectors corresponding to the vertex y in G and G’.
From Remark 2.11, we deduce that

wy = Y kyy (y;—y) =0. (67)

y—)yjeE’

Since the network G’ is of Type II, each linkage of G’ has deficiency zero. By Propo-
sition 3.6, we get that its vertices are affinely independent within each linkage class.
This implies that the reaction vectors {y; — Y}y sy,cr are linearly independent,
contradicting Equation (67).

Assume that there exists a vertex y € L C V where L is a linkage class in G,
such that y ¢ V', Following the steps in the first part, we have for any y’ € V’,
wy, # 0. This shows that V' C V. Moreover, from y ¢ V', we get that

wy = 0.
This implies that the vertices in the linkage class L are not affinely independent.
Therefore the deficiency of linkage class L is one. Since (G, k) and (G’, k') have
the same stoichiometric subspace and deficiency, we deduce that G has at least one
more linkage class than G’. From the Pigeonhole Principle, there exists at least one

linkage class in G’ that is split into different linkage classes in G. Let us call this
linkage class as L} C V. Using Lemma 4.3, we have

dim(ker(W?)) > 1.

where W/ is the matrix of net reaction vectors on Lj. This implies that the
stoichiometric subspaces corresponding to the linkage classes in GG are not linearly
independent, contradicting the fact that G is of Type I.

Since (G, k) and (G’, k") have the same stoichiometric subspace, number of ver-
tices, and deficiency we obtain that (G, k) and (G’,k’) possess the same number
of linkage classes. Finally, applying Theorem 4.11, we get that (G, k) and (G, k')
cannot be dynamically equivalent, which leads to a contradiction. O

The following remark is a direct consequence of Theorem 4.12.
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Remark 4.13. For any mass-action system (G, k), it has most has one type of
weakly reversible deficiency one realization, i.e. either Type I or Type II.

5. Main results. This section aims to present the main algorithm of this paper,
which checks the existence of a weakly reversible deficiency one realization and
outputs one if it exists. In this algorithm, the inputs are the matrices of source
vertices and net reaction vectors via

Y:.=(Y1,Ys -, Y,) and W = (wi,wa, ..., wpy)

respectively. For the sake of simplicity, we temporarily let dyw = {dy,ds,...,d,}
denote the minimal set of generators of ker(W) NRZ, in this section.

To build the main algorithm, we need an algorithm to search for a weakly re-
versible realization with a single linkage class. We use the algorithm in [9] and
summarize its main idea as follows.

First, the algorithm in [9] checks whether there exists a reaction network realiza-
tion that generates the given dynamical system such that all the target vertices are
among the source vertices, without imposing the restrictions that (i) the network
should be weakly reversible, and (it) there should be only one linkage class. Next,
if such a realization exists, the algorithm greedily searches for a maximal realiza-
tion (a realization containing the maximum number of reactions) that generates the
same dynamical system, while still imposing the restriction that all target vertices
are among the source vertices. The algorithm uses the fact that if the initial realiza-
tion was weakly reversible and consisted of a single linkage class, then the maximal
realization found using this procedure preserves weakly reversibility and a single
linkage class. Finally, based on this maximal realization, the algorithm constructs
a Kirchoff matrix @ and checks whether dim(ker(Q)) = 1 and supp(ker(Q)) = [m].
If both conditions are satisfied, then the maximal realization is weakly reversible
and consists of a single linkage class. Otherwise, there is no such realization that
generates the given polynomial dynamical system.

For more details on this algorithm and its implementation and complexity, please
see [9]. In what follows, we will refer to the algorithm in [9] as Alg-WR*=1.

5.1. Algorithm for weakly reversible and deficiency one realization. Now
we state the main algorithm. The key idea is to find a proper decomposition on W =
Y Ag, which allows a weakly reversible and deficiency one realization. We apply
Alg-WR! to ensure weak reversibility and the single linkage class condition, and
use results in Section 4 to guarantee that the deficiency of the network is one.

Algorithm 1 (Check the existence of a weakly reversible deficiency one
realization)

Input: The matrices of source vertices Y5 = (yq,...,¥,,), and net reaction vectors
m

W = (wy,...,w,,) that generate the dynamical system & = ) a¥iw;.
i=1

Output: A weakly reversible deficiency one realization if exists or output that it
does not exist.

1: Set flag = 0 and dim(ker(W)) = w*;
2: Find the minimal set of generators dyw = {dy,ds,...,d,} of the pointed cone
ker(W) NRY,.
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if r<2or U supp(d;) # [m]: then
Exit thel niain program;
else if r = 2 then
Pass Y, W through Alg-WR*=!
if Alg-WR=! outputs that a weakly reversible realization consisting of a
single linkage class does not exist then
Exit the main program,;
else
flag=1;
Exit the main program:;
end if
else
fori=1,2,...,r—1do
for j=i+1,i+2,...,7r do
Sl = {dz, dj}
So = dw \ S1 and 2set Sy = {&p ;;%
if r = w™* and the support of S; and every member of S5 are disjoint
then

Define linkage classes to be {L,, ;;}, where L), := {supp(&p), d, €

Sy} for 1 <p<r—2,and L,_; := {supp(d;) Usupp(d;)}.
Let Y, denotes the vertices in linkage class L,, and W, denotes
the matrix of net reaction vectors corresponding to Y.
forp=1tor—1do
Pass Y, W, through Alg-WR*=!
if Alg-WR'=! outputs that a weakly reversible realization
consisting of a single linkage class does not exist then
Go to line 15;
end if
end for
flag=2;
Exit the main program,;
else if r = w* + 1 and the support of the members of Sy partition
[m] then

Define linkage classes to be {Lp};;f, where L, := {supp(d,),d, €
S} for 1 <p<r—2.
Let Y, denotes the vertices in linkage class L,, and W, denotes
the matrix of net reaction vectors corresponding to Y.
if dim(ker(W)) = dim(ker(W,)) = -+ = dim(ker(W,_3)) =1
then
forp=1tor—2do
Pass Y, W, through Alg-WR*=!
if Alg-WR!=! outputs that a weakly reversible realization
consisting of a single linkage class does not exist then
Go to line 15;
end if

end for

2For the simplicity of notations, we use a new symbol d to represent the vectors in Sa
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flag=3;
Exit the main program:;
end if
end if
end for
end for
end if

End of main program

if flag = 0 then

Print: No weakly reversible and deficiency one realization exists.
else if flag = 1 then

Print: Weakly reversible and deficiency one realization consisting of a single
linkage class exists.
else if flag = 2 then

Print: Weakly reversible and deficiency one realization of Type I exists.
else if flag = 3 then

Print: Weakly reversible and deficiency one realization of Type II exists.
end if
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Y= (y17 RN ym) S Find a minimal set of generators
W = (wla--~7wm) e R™*™ dw ={di,d2,...,d.}
Set flag = 0, dim(ker(W)) = w* of the pointed cone ker(W') NRY,
if U supp(d;) # [m] or other r if r=2 if r>2 and r =w"* or w*+1
i=1
Y
‘( ( )
o ] no Check Y s, W output a weakly reversible
Exit with flag = 0 <
J realization with a single linkage class
(. J
yes
Y
( )
Exit with flag = 1
(. J

for t=1,...,r—1

A

for j=i+1,...,r

Y
e A
Set 51 = {dl,dj} and SQ = dW \ 51
Y
e A

Depend on r = w* or w* + 1, and

the supports on vectors in S; and Sz

Define linkage classes {L,}"_1 or {L,} 3

p=1 p=1>
Set Y ,, W, associated to linkage class L,
Exit with flag = 2 ] ~ <
A . Y .
if r=w"* Check if all pair matrices Y, W
yes
output a weakly reversible realization
if r=w"+1 consisting of a single linkage class
\( (S J
no
Exit with flag = 3
endfor
endfor
Y
[ Exit with flag = 0 ]

FIGURE 6. Algorithm 1 for finding a weakly reversible deficiency one
realization that generates a given polynomial dynamical system @& =

m
> x¥iw;.
i=1
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Now we show the correctness of Algorithm 1 via the following two lemmas.

Lemma 5.1. Suppose Algorithm 1 exits with a positive flag value, then there exists a

m
weakly reversible deficiency one realization of the dynamical system & = Y x¥iw;.
i=1
Moreover, we have
(a) If flag = 1, the system admits a weakly reversible deficiency one realization
consisting of a single linkage class.
(b) If flag = 2, the system admits a weakly reversible deficiency one realization of
Type 1.
(c) If flag = 3, the system admits a weakly reversible deficiency one realization of
Type II.

Proof. (a) From flag = 1, we obtain that r = 2 with supp(d;) U supp(dz) = [m].
Moreover, the input matrices Y, and W pass through Alg-WR*=!,

Then there exists a weakly reversible realization with a single linkage class that
generates the dynamical system & = Y a¥iw,. Using Remark 4.6, we conclude its

i=1

deficiency is one.

(b) From flag = 2, we get r = dim(ker(W)) > 2, and r — 1 linkage classes
{L1,...,L._1} as follows. There exists some 1 <i < j <7,

Sl = {d,,dj} and SQ = dW \Sl

For the simplicity of notations, we rename r — 2 vectors in Sy as Sy := {Elp};j and
set

L,= {Supp(&p) : &p € 5}, for 1<p<r—2
Ly = {supp(d;) Usupp(d;)},

with Ly, Lo, ..., L._; partition [m].

Moreover, for any 1 < ¢ < r — 1, the matrices of source vertices and net reaction
vectors Y ,, W, related to the linkage class L, pass through Alg-WR/=!. Thus
each linkage class L, admits a weakly reversible realization. Together with {L, ;;%
partitioning [m], we have

ker(W,) = {span(d,)}, for 1 <p <r—2,

(68)
ker(Wr_l) = span{di, d]}

Using Lemma 4.5 and Remark 4.6 on the realization under Alg-WR/=!, we get
(51 == 6r—1 =0 and (57_1 = 1, (69)

where §, represents the deficiency of linkage class L.
Now we compute the deficiency of the whole realization J. From (68), we obtain

dim(ker(W)) + dim(ker(Ws)) + - - - + dim(ker(W,._1)) = r = dim(ker(W). (70)

Applying Lemma 4.2 and Lemma 4.3 on Equation (70), we deduce for p =1,...,7r—
1,
r—1

dim(ker(W,)) =14 94 = |Lq| — 54 and qu =s,

q=1
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where s, and s represent the stoichiometric subspace for linkage class L, and whole
network respectively. Then we do the summation from ¢ = 1 to r — 1, and get

r—1 r—1
Z(|Lq| —8g)=m—s= (T*1)+Z§Q'
qg=1 qg=1

From Equation (69), we conclude that
r—1
5:m757(7'71):25q:1,
q=1
and the system admits a weakly reversible deficiency one realization of Type L.
(¢) From flag = 3, we get r = dim(ker(W)) +1 > 2, and r — 2 linkage classes
{L1,...,L._5} as follows. There exists some 1 < i< j <7,

Sl = {d,,d]} and SQ = dW \Sl
Similarly, we rename r — 2 vectors in Sp as Sy := {(Aip};j and set
L,= {Supp(&p) : &p € 5}, for 1<p<r—2,

with Lq, Lo, ..., L,._o partition [m].

Moreover, for any 1 < p < r — 2, the matrices of source vertices and net reaction
vectors Y, W, related to the linkage class L, pass through Alg-WR*!. Thus
each linkage class L, admits a weakly reversible realization with dim(ker(W,)) = 1.
Applying that {Lp};;% partition [m], we have

ker(W,) = {span(d,) : d, € Sy}, for 1 <p <r—2. (71)
Using Lemma 4.5 on the realization under Alg-WR*=!, we get
0= =0p_2=0, (72)

where ¢, represents the deficiency of linkage class L.
Now we compute the deficiency of the whole realization §. From (71), we obtain

dim(ker(W1))+dim(ker(Ws))+- - - +dim(ker(W,_3)) = r—2 = dim(ker(W)) — 1.
(73)
Applying Lemma 4.2 and Lemma 4.3 on Equation (73), we deduce forp=1,...,7r—
2,
r—2
dim(ker(W,)) =140, =|L,| — s, and ZSP =s+1,
p=1
where s, and s represent the stoichiometric subspace for linkage class L, and whole
network respectively. Summing from p =1 to r — 2, we get

i(|LP|fsp):mf(s+l):(r—2)+i5q.

From Equation (72), we conclude that
r—1
52m—3—(r—2):25q+1:1,
q=1

and the system admits a weakly reversible deficiency one realization of Type II. [
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Lemma 5.2. Suppose the dynamical system & = Zmyiwi admits a weakly re-

i=1
versible deficiency one realization, then Algorithm 1 must set the flag value to be
either 1,2 or 3.

Proof. Note that every weakly reversible deficiency one network belongs to the
following:
1. Weakly reversible deficiency one realization consisting of a single linkage class.
2. Weakly reversible deficiency one realization of Type I, with two or more linkage
classes.
3. Weakly reversible deficiency one realization of Type II.

Therefore, we split our proof into the above three cases.

Case 1: Suppose the system admits a weakly reversible deficiency one realiza-
tion consisting of a single linkage class. From Lemma 4.4, we obtain that r = 2
and the input Y and W pass through Alg-WR=! from the weakly reversibility.
Therefore, Algorithm 1 will exit with flag = 1.

Case 2: Suppose the system admits a weakly reversible deficiency one realiza-
tion of Type I with ¢ > 1 linkage classes, denoted by Li, Lo, ..., Ly. From Lemma
4.7, we have

dim(ker(Wy)) =2 and dim(ker(W),)) =1, for 1 <p</{—1,
dim(ker(W)) = dim(ker(W1)) + - - - + dim(ker(W,)) =0+ 1 =r.

Moreover, there exist £+1 vectors dy, . . ., dy11 forming the minimal set of generators
of ker(W) NRY,, such that forp=1,...,0 -1,

supp(d,) = L,,

supp(de) & Le, supp(det1) & Le, supp(de) Usupp(de+1) = Ly
Thus, when i = ¢ and j = ¢+ 1, (ie. d; = dy and dj = dy41), Algorithm 1 will exit
with flag = 2.

Case 3: Suppose the system admits a weakly reversible deficiency one realiza-
tion of Type II with ¢ > 1 linkage classes, denoted by L1, Lo, ..., L;. From Lemma
4.9, we have

dim(ker(W,)) =1, for 1 <p <,
dim(ker(W)) — 1 = dim(ker(W1)) + - - - + dim(ker(Wy)) = ¢ = r — 2.
Moreover, there exist /+2 vectors dy, . . ., dy1o forming the minimal set of generators
of ker(W) N RY,, such that for p=1,...,¢,

supp(d,) = Lp, supp(de1) N Ly & Ly, supp(des2) N Ly S L.
Again when we pick ¢ = £ and j = ¢+ 1, Algorithm 1 will exit with flag = 3.

Lastly, we show every mass-action system admitting a weakly reversible defi-
ciency one realization has a unique flag value after applying Algorithm 1. Following
Remark 4.13, we deduce that if flag = 3 after passing the same mass-action system
through the algorithm, the flag value cannot equal 1 or 2. From Lemma 4.5 and
Lemma 4.7, we have r = 2 if flag = 1, and r = £+ 1 > 2 if flag = 2. Thus, it is
also impossible that the flag equals both 1 and 2 on the same mass-action system.
Therefore, we show the uniqueness and prove this lemma. O

The following remark is a direct consequence of Lemma 5.2.
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Remark 5.3. If Algorithm 1 sets the value of flag to 0, then & = > x¥%w; does
i=1

not admit a weakly reversible deficiency one realization.

Example 5.4. Consider the system of differential equations

gb:x—xg,

.. ( (74)

Yy = x° + xsy — xsyZ.

We have n = 2 for the two state variables, and m = 5 for the five distinct
monomials. The matrices of source vertices and net direction vectors are

12 3 3 3 1 -1 00 0
YS_(O 00 1 2>’andw_(0 0 1 1 —1)' (75)

respectively, which are inputs to Algorithm 1.
Then, we can compute that dim(ker(W')) = 3, and extreme vectors of ker(W) N
RY, is given by

dy = , do = , ds =

OO O ==
_ O O O
_ o= OO

—_

This shows that r = 3, and the algorithm enters line 13.

Next, when we pick ¢ = 2, S; = {ds,d3} and Sy = {d;}. Note that r =
dim(ker(W)) = 3, and the support of S; and every member of Sy are disjoint, the
algorithm defines candidate linkage classes are follows:

Ly = {supp(d1)} = {1,2}, Lo = {supp(d2) Usupp(ds)} = {3,4,5}.
Following the candidate linkage classes L1, Lo, we derive the corresponding matrices
of source vertices and net direction vectors:

12 1 -1 3 3 3 00 0
Y1<0 0>’ W1<0 0>’and Y2<0 1 2)’ W2<1 1 —1>'

After that, we pass two pairs (Y1, W1) and (Y5, W) through Alg-WR*=!.
Both pairs pass successfully through Alg-WR=! i.e., a weakly reversible single
linkage class exists for both arrangements. Finally, the algorithm sets flag = 2
on line 27, and exits. Therefore, (74) admits a weakly reversible deficiency one
realization of Type I, whose E-graph is shown in Figure 7.

e 3X+2Y
‘1
® 3X+Y

1

[ ]
X 12X 3X

FIGURE 7. A weakly reversible deficiency one mass-action system
from Example 5.4
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Example 5.5. Consider the system of differential equations

. 2

r=—-x+x°,

. (76)
y=0.

We have n = 2 for the two state variables, and m = 2 for the two distinct monomials.

The matrices of source vertices and net direction vectors are

Y, = <(1) g) ,and W = (_01 é) : (77)

respectively, which are inputs to Algorithm 1.
Then, we compute that dim(ker(W)) = 1, and the extreme vector of ker(W) N

Rzzo is
1
di = (1) |

This shows that » = 1, then the algorithm satisfies the condition on line 4 and
exits the program with initial flag = 0. Therefore, there doesn’t exist any weakly
reversible deficiency one realization for this system.

5.2. Implementation of Algorithm 1. In this section, we discuss how to imple-

ment Algorithm 1. The algorithm is designed to find a weakly reversible deficiency
m

one realization that generates the dynamical system & = > @¥iw,, and it has three
i=1

key steps:

1. Compute dim(ker(W)) and dim(ker(W;)).
2. Find the extreme vectors of the cone ker(W) NRZ,,.
3. Pass pairs of the matrices Y, W or Y;, W, through Alg-WR*".

In Step 1, the implementation needs a rank-revealing factorization; we need to
find a basis of W or W, and then we can check the number of vectors in this basis.
This is equivalent to solving a linear programming problem.

In Step 2, we note that by the Minkowski-Weyl theorem [8, 32|, there exists two
representations of a polyhedral cone C given by:
(a) H-representation: There exists a matrix A, such that the cone C can be

written as
C ={Az <0}.
(b) V-representation: The cone C has the minimal set of generators {d;}, such
that .
C=> \d,
i=1
where A\; > 0.

To find the extreme vectors of the cone ker(W)NRY,, we need a way to convert
from the H-representation to the V-representation. There are two popular ways of
performing this conversion:

(a) Double description method: This is an example of an incremental method,
where the conversion from H-representation to V-representation is performed
assuming that the solution to a smaller problem is already known [31]. In
particular, let C(A) := {Az < 0}. Let J be a subset of the row indices of A.
We will denote by A; the submatrix of A obtained by selecting the J rows
of A. Let us assume that we have found the minimal set of generators for
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the cone C(Ay). We will denote by E the generating matrix whose columns
are the extreme vectors of C(Ay). The double description algorithm selects
an index h that is not present in J and constructs the generating matrix E’
that corresponds to the A ;4. This is repeated for several iterations until the
generating matrix for C'(A4) is found. This algorithm is useful in cases where
the inputs are degenerate and the dimension of the cone is small.

(b) Pivoting methods: In this method, the extreme vectors of the cone are found
by the reverse search technique, where the simplex algorithm (that uses pivots
iteratively) is run in reverse for the linear programming problem Az < 0. The
reverse search method determines the extreme vectors of the cone by building
a tree in a depth-first-search fashion. This method was developed by Avis and
Fukuda [3]. It is particularly useful for non-degenerate inputs where it runs
in a time polynomial of the input size.

In Step 3, we apply Alg-WR=!, and this step can be done by solving a sequence
of linear programming problems. More details can be found in section 4.4 in [9].

6. Discussion. Weakly reversible deficiency one networks are ubiquitous in bio-
chemistry, and are known to have the capacity to exhibit sophisticated dynamics.
Some notable examples include the Edelstein network, as in Example 3.1. To bet-
ter understand their dynamics, we divide them into two categories: (i) Type I
networks, where all linkage classes have deficiency zero except one linkage class
having deficiency one, and (ii) Type II networks, where all linkage classes have de-
ficiency zero. The crucial quantity in the analysis of such networks is the pointed
cone ker(W) NRYZ,, where W is the matrix formed by the net reaction vectors. In
particular, the extreme vectors of this cone can be divided into two classes: cyclic
generators and stoichiometric generators. Networks of Type I possess only cyclic
generators and satisfy the conditions of the Deficiency One Theorem. Consequently,
for Type I networks, there exists a unique steady state within every stoichiometric
compatibility class. For Type II networks, the set of stoichiometric generators is
not empty. The stoichiometric generators define subnetworks, such that if these
subnetworks possess multiple steady states, then the original network also allows
multiple steady states [7].

In addition, we show that networks of different types cannot be dynamically
equivalent. Theorem 4.12 establishes this fact, and this implies that any mass-
action system, at most, has one type of weakly reversible deficiency one realization,
either Type I or Type II. In Section 4 we analyze in depth the extreme vectors of the
cone ker(W) NRY, for weakly reversible deficiency one networks. In particular, we
show that for Type I networks with ¢ linkage classes, there exist ¢ + 1 generators,
while for Type II networks with ¢ linkage classes, there exist ¢ + 2 generators.
Lemmas 4.7 and 4.9 establish these facts.

In Section 5 we describe our main result: the construction and the proof of
correctness of Algorithm 1. This algorithm takes as input a matrix of source vertices
and the corresponding matrix of net reaction vectors. Algorithm 1 uses Alg-WR=!
as a subroutine and determines whether or not there exists a weakly reversible
deficiency one realization for this input. It is interesting to put this algorithm in the
context of existing algorithms in the literature. There has been seminal work in this
direction [28, 30, 36, 33, 34, 35, 29] based mostly on optimization methods that rely
on mixed integer linear programming to determine the existence of realizations of a
certain type. The algorithm in this paper uses a novel and straightforward geometric
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approach by focusing on the extreme vectors of the cone ker(W) N RY,, instead of
posing it as a constrained optimization problem. Algorithm 1 uses Alg-WR/=! and
the properties of the extreme vectors of the cone ker(W) NRZ, to determine the
existence of weakly reversible deficiency one realizations. This geometric approach
in both algorithms allows for a fully self-contained mathematical analysis of the
correctness of these algorithms.

This work opens up interesting new avenues for future research. In particular,
the relationship between the minimal set of generators of the cone ker(W') N RZ,
and the deficiency of the network can be explored in greater depth. One could also
explore the existence of mutually exclusive types of weakly reversible realizations
for networks of higher deficiency. Another possible direction would be to explore
the geometry of this minimal set of generators for weakly reversible networks of
higher deficiency.
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