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Abstract
Absolute Concentration Robustness (ACR) was introduced by Shinar and Feinberg
(Science 327:1389-1391, 2010) as robustness of equilibrium species concentration in
a mass action dynamical system. Their aim was to devise a mathematical condition
that will ensure robustness in the function of the biological system being modeled.
The robustness of function rests on what we refer to as empirical robustness—the
concentration of a species remains unvarying, when measured in the long run, across
arbitrary initial conditions. Even simple examples show that the ACR notion intro-
duced in Shinar and Feinberg (Science 327:1389-1391, 2010) (here referred to as static
ACR) is neither necessary nor sufficient for empirical robustness. To make a stronger
connection with empirical robustness, we define dynamic ACR, a property related to
long-term, global dynamics, rather than only to equilibrium behavior. We discuss gen-
eral dynamical systemswith dynamic ACR properties as well as parametrized families
of dynamical systems related to reaction networks. We find necessary and sufficient
conditions for dynamic ACR in complex balanced reaction networks, a class of net-
works that is central to the theory of reaction networks.
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1 Introduction

This work is concerned with the conditions required for empirical robustness of the
concentration of a species in a reaction network. By empirical robustness, we mean
that the measured value of a species concentration in the long run remains unchanged
even when other conditions, especially the initial concentrations of reagents, change
dramatically. Shinar, Alon, and Feinberg considered “the robustness of equilibrium
species concentrations against fluctuations in the overall reactant supply” (Shinar
et al. 2009) (bold fonts and italics ours). Our goal is to broaden the inquiry by studying
the dynamics of the system, not merely the equilibrium values. This requires careful
consideration of issues related to convergence to a robust value. Moreover, since we
want to allow arbitrary initial conditions, we must consider global dynamics of the
system, a task much more difficult than studying the location of steady states.

Wefirst describe robustness in a biochemical systemand themeans of its experimen-
tal detection via an idealized experimental design. Then we discuss the mathematical
property that closely reflects empirical robustness.
An idealized experimental design to detect species robustness in a biochemical system
(see Fig. 1).

Step 0 (statistical tolerance) Designate a variable X as an output variable. For
concreteness, assume the output variable is the concentration of some bio-
chemical species. Decide an error threshold p for multiple recordings made
under identical circumstances.

Step 1 (initial recording) Perform multiple recordings of the output variable X at
successive time points t1, . . . , tk , such that the inter-recording intervals are
all different: ti+1 − ti ̸= t j+1 − t j for i ̸= j . Denote the set of recordings by
RI . Sufficiently small variance in the set of initial recordings, Var [RI ] < p,
provides evidence thatX is at rest, andnot oscillatingor growingor evolving in

Fig. 1 A schematic to illustrate the idealized experimental design to identify empirical robustness
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time (see Fig. 2). Multiple recordings also ensure a more accurate estimation
of the true rest value of the output variable. Denote the average value of the
initial recordings by E[RI ].

Step 2 (flow phase) In this phase, a supply of reactants is added to increase the
overall concentrations in the reactionvolume.The influxcanbe instantaneous,
constant over a large time period, increasing in time, or some other more
complicated function of time. Eventually, the flow ceases and a large time
period is allowed to lapse.

Step 3 (final recording) A second set of recordings of X is made. Denote this set of
recordings by RF . If this set of recordings shows a large variance,Var [RF ] >
p, thenmore time is allowed to lapse before this step is repeated. If eventually
it is the case that Var [RF ] < p, then this provides evidence that the output
variable has settled down to a rest value. Denote the average value of the final
recordings by E[RF ].

Step 4 (comparison/analysis):The distributions of the initial and the final recordings
are compared (see Fig. 3). The simplest comparison is that of the average
values of the initial and the final recordings. For instance, suppose that the
difference between the two averages is small, i.e. comparable in magnitude
to the measurement accuracy and design tolerance:

|E[RI ] − E[RF ]| ≈ max
(√

Var [RI ],
√
Var [RF ]

)
.

Further suppose that this finding holds up over repeated trials and a wide vari-
ety of flow/influx conditions. Then we conclude that the experiment provides
strong evidence in favor of the hypothesis that the measured variable shows
empirical robustness to the influx process.

The formula in Step 4 is only meant to be suggestive of a statistical test to compare
two group means: before-flow group and after-flow group. The left side is just the
absolute value of the group mean difference. The right side is a measure of the within-
group variability. To get some evidence of robustness requires that the between-group
difference not be too much higher than the within-group variability.
An important remark on the experimental design: It is worth emphasizing that we
are not making any claims about the state of the variables that are not recorded. A
non-recorded species concentration may be oscillating, growing in time, converging
to zero, or otherwise evolving in time.

Nowwe consider issues related to mathematical modeling of a biochemical system.
What mathematical property describes empirical robustness sufficiently accurately?
An important step in the direction of answering this question was taken by Shinar and
Feinberg (2010), who defined absolute concentration robustness (ACR). We quote:

A biological system shows absolute concentration
robustness (ACR) for an active molecular species if
the concentration of that species is identical in every
positive steady state the system might admit.
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Fig. 2 Multiple recordings are necessary to distinguish between ‘output variable at rest’ and ‘output variable
changing with time’. Either only initial recordings (before flow) or final recordings (after flow) of the output
variable are used.Due to smallmeasurement errors, recordings of the output variable at restmay not coincide
exactly but should fall within a small tolerance window (left). If the output variable is changing in time, we
are likely to see a distribution similar to the one on the right

Fig. 3 We compare the initial and final recordings of the output variable to find evidence in favor of (right)
or against (left) empirical robustness

Mathematically, the statement is equivalent to:All positive steady states of the resulting
dynamical system are in some hyperplane {xi = a∗

i }. The condition ensures that if xi
is designated as the output variable, then it will remain invariant across positive steady
states. Shinar andFeinberg (2010) then gave a remarkable (sufficient but not necessary)
network condition for ACR: ‘Suppose that a reaction network has deficiency one, and
two non-terminal complexes (see Sect. 3 for definitions) differ in exactly one species.
Then the concentration of that species shows ACR.’ The appeal of this criterion is that
the network conditions can be checked fairly easily, and they immediately reveal the
ACR property for an entire parametrized family of dynamical systems associated with
the reaction network.

Clearly, the elegance and simplicity of the Shinar-Feinberg criterion lends weight
to their notion of ACR (which from now we refer to as static ACR). However, if the
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(a)
(b)

Fig. 4 The Euclidean embedding of a reaction network (A+ B → 2B, 2A+ B → 3A) (left) is important
for determining the phase plane trajectories (right). In the one-dimensional case, trajectories (shown in red)
are simply parallel to the reaction vectors. The vertical green line in the phase plane is made up of positive
steady states. The static ACR property is due to the fact that all positive steady states are contained in a line
(hyperplane when there are 2 species) parallel to a coordinate axis. However, all positive steady states are
unstable, leading to trajectories moving away from ACR value. Note that this reaction network satisfies the
Shinar-Feinberg criterion for static ACR

aim is to model empirical robustness, the definition of static ACR misses the mark to
some extent. We go on to quote from (Shinar and Feinberg 2010):

The function of an ACR-possessing system is thereby
protected even against large changes in the overall
supply of the system’s components.

Clearly, the function of a biochemical systemmust depend onmeasurable aspects such
as species concentrations. We show that static ACR by itself does not confer empirical
robustness and so static ACR is not enough to preserve the function of the system.
Moreover, there might be systems which lack static ACR, including some that have
no steady states whatsoever, but nevertheless the system has a variable that shows
empirical robustness. We illustrate these points by first giving two simple examples of
networks which have static ACR as well as satisfy the Shinar-Feinberg criterion but
nevertheless fail to model empirical robustness. Following this, we give two examples
of networks which do not have static ACR and yet show robustness in an output
variable.

First, consider the reaction network depicted below in Fig. 4a, along with some
sample trajectories in Fig. 4b (see Ex 6. for more details).

The network in Fig. 4a satisfies the Shinar-Feinberg ACR criterion:

• The deficiency is one—the two reactions only span a 1 dimensional subspace
instead of 2 (see Sect. 3),

• The non-terminal complexes A + B and 2A + B differ by the species A – the
reactant polytope (green line) is parallel to the A axis,

which implies that the concentration of A shows static ACR. Indeed we can see in the
figure on the right that all positive steady states lie on a vertical line.

123



53 Page 6 of 33 B. Joshi, G. Craciun

(a)
(b)

Fig. 5 A reaction network (A → 2A, A + B → 2B, B → 0) that has static ACR in both species by the
Shinar-Feinberg criterion. However, no initial condition leads to convergence to the ACR value

However, as the numerical solutions in Fig. 4b show, every positive steady state is
unstable, and any initial condition (other than the unstable steady state), will result in
extinction of one of the species. The troublewith the last example is that there is another
attracting set outside the hyperplane of interest, in this instance a set of boundary steady
states. Even when there are no other attracting sets, we are not guaranteed convergence
to the static ACR hyperplane, as shown by the classic Lotka-Volterra system (Fig. 5a,
also see Ex 8.).

The network in Fig. 5a satisfies the Shinar-Feinberg ACR criterion:

• The deficiency is one—the three reactions only span a 2 dimensional subspace
instead of 3,

• The reactant polytope (green triangle) whose vertices are non-terminal complexes
has edges parallel to the A axis and the B axis,

which implies that the concentrations of both A and B show static ACR. However,
the system has no attractors whatsoever. The unique positive steady state implied by
the Shinar-Feinberg criterion is not an attractor, none of the cycles in the figure on
the right are attracting (because they are densely/continuously nested), the boundary
trajectories are not attracting, and the steady state at the origin is not attracting. Even
infinity is not an attractor, since all trajectories with positive initial values remain
bounded. This system will generically fail to converge to the ACR value in either
coordinate and thus is not a candidate for empirical robustness.

Now we move on to the flip side of the robustness coin. Consider the extremely
simple monomolecular network 0 → A → B shown in Fig. 6a. A → B might
represent the inactivation of a protein, A being the active form and B being the inactive
form, while 0 → A might be a transport process that replenishes the active form.

This network has deficiency 0, so the Shinar-Feinberg criterion does not apply.
Clearly, all trajectories diverge to infinity, so there are no steady states at all. Nev-
ertheless, as shown in Fig. 6b, all initial conditions result in the concentration of A
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(a)
(b)

Fig. 6 A reaction network (0 → A → B) that is not ACR and has no steady states, but shows convergence
to the same value of concentration of A despite trajectories diverging to infinity

(a)
(b)

Fig. 7 A reaction network (A + B → 2B, B → A, 0 → A) that is not ACR and has no steady states, but
shows convergence to the same value of concentration of A despite trajectories diverging to infinity

converging to a unique value. If we designate the concentration of A as the output
variable, then the system will show empirical robustness in its value.

The next example, shown in in Fig. 7a, is similar to the previous one in that there are
no steady states, all trajectories go to infinity, and yet the concentration of one variable
converges to a robust value. Moreover, unlike the previous example, the robust value
does not change as the inflow rate of the robust species A is changed. The robust value
depends only on the rates of the true chemical reactions A + B → 2B and B → A,
and not on the rate of the transport/inflow reaction 0 → A. A rigorous analysis of this
system will appear in future work, here we show the robustness in concentration of A
by simulating some trajectories, shown in Fig. 7b.
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We now return to the project of constructing a theoretical framework that would
better capture the property of empirical robustness in the context of mathematical
models based on deterministic dynamical systems. The simplest way to proceed seems
to be to insist that the hyperplane {x ∈ Rn

≥0 | xi = a∗
i > 0} as a whole be an attractor

to all initial conditions that are compatible with the hyperplane (see Definition 2.3).
We will call this notion dynamic ACR. Clearly dynamic ACR requires that there are no
attracting sets outside {xi = a∗

i }. But it does not require that {xi = a∗
i } be invariant, see

for instance the network in Fig. 7a—the figure shows trajectories (red curves) crossing
over the attracting hyperplane (green line) but eventually converging to it.

Establishing clear mathematical foundations for the study of empirical robustness
is essential for the theory to make consequential predictions relevant to biochemistry.
Empirical robustness has been observed experimentally in a large class of bacterial
two-component signaling systems (Russo and Silhavy 1993; Hsing et al. 1998; Batch-
elor and Goulian 2003; Shinar et al. 2007). The circuit design for signal transduction,
where a signal is transported from the cell environment to its interior, uses amechanism
involving a bifunctional component (Alon 2019). A bifunctional component exerts two
opposing forces, for instance promoting phosphorylation as well as dephosphoryla-
tion of a substrate. Such a mechanism ensures that the output depends on the signal
strength but not on the details of the circuit implementation, for instance the number
of signaling proteins that form the circuit. In future work, we will prove that networks
with a bifunctional component have the property of dynamic ACR, and not merely
static ACR. In particular this means that in a signal transduction circuit with a bifunc-
tional component, for any initial value (which encodes the circuit implementation),
the cell response converges to a value that only depends on the signal strength.

This article is organized as follows. Section2 contains the central definitions of
this article, and some propositions to highlight the connections with existing notions.
Section3 contains some background information on deterministic modeling of the
dynamics of reaction networks and previous work on static ACR. Section4, the main
course, has several illustrative examples which delineate the specific conditions in the
definitions. Section5 applies the previous concepts to reaction networks and contains
a discussion on static and dynamic ACR at the network level. Section6 is about the
interplay between ACR and complex balance, two important ideas in reaction network
theory.

2 Basic definitions of static ACR and dynamic ACR in real dynamical
systems

Throughout the article, we consider a dynamical system D defined by ẋ = f (x) with
x ∈ Rn

≥0 and a smooth vector field f for which Rn
≥0 is forward invariant. A point

x0 ∈ Rn
≥0 is a steady state of D if f (x0) = 0.

Definition 2.1 The kinetic subspace of D is defined to be the linear span of the image
of f , denoted by span(Im( f )). The points x, y ∈ Rn

≥0 are compatible if y − x ∈
span(Im( f )). The sets S, S′ ⊆ Rn

≥0 are compatible if there are x ∈ S and x ′ ∈ S′
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such that x and x ′ are compatible. A compatibility class S is a nonempty subset of
Rn

≥0 such that x, y ∈ S if and only if y − x ∈ span(Im( f )).

We first define the Shinar-Feinberg notion of ACR, which we refer to as static ACR
since it relates only to a property of the set of steady states and since it allows us to
make a distinction with dynamic ACR.

Definition 2.2 D is a static ACR system ifD has a positive steady state and there is an
i ∈ {1, . . . , n} and a positive a∗

i ∈ R>0 such that any positive steady state x ∈ Rn
>0 is

contained in the hyperplane {xi = a∗
i }. Any such xi and a∗

i is a static ACR variable
and its static ACR value, respectively.

We now introduce dynamicACRwith the explicit goal ofmore accuratelymodeling
empirical robustness.

Definition 2.3 D is a dynamic ACR system if there is an i ∈ {1, . . . , n} with fi ̸≡ 0
and a positive a∗

i ∈ R>0 such that for any x(0) ∈ Rn
>0 that is compatible with

{x ∈ Rn
>0 | xi = a∗

i }, a unique solution to ẋ = f (x) exists up to some maximal

T0(x(0)) ∈ (0,∞], and xi (t)
t→T0−−−→ a∗

i . Any such xi and a∗
i is a dynamic ACR

variable and its dynamic ACR value, respectively.

If the dynamical system ẋ = f (x) does not have the possibility of a finite-time
blow-up, then T0(x(0)) = ∞ for any x(0) ∈ Rn

>0. None of the examples in this
paper have the possibility of a finite-time blow-up, however the definition is more
generally applicable to allow for this possibility. The use of “its” dynamic ACR value
in Definition 2.3 is justified by the next result.

Theorem 2.4 Suppose that D is a static (dynamic resp.) ACR system. Each static
(dynamic resp.) ACR variable has a unique static (dynamic resp.) ACR value.

Proof The statement about a static ACR system follows immediately from the defi-
nition. Suppose that xi is a dynamic ACR variable with distinct ACR values a∗

i and
b∗
i . Then {x ∈ Rn

>0 | xi = a∗
i } and {x ∈ Rn

>0 | xi = b∗
i } are not compatible, which

implies that {x ∈ Rn
>0 | xi = a∗

i } and {x ∈ Rn
>0 | xi = ci } are not compatible for any

positive ci ̸= a∗
i . But then the set of points compatible with {x ∈ Rn

>0 | xi = a∗
i } is

contained in {x ∈ Rn
>0 | xi = a∗

i } which implies that fi ≡ 0, a contradiction. So a
dynamic ACR variable must have a unique dynamic ACR value. ⊓⊔

Dynamic ACR requires all compatible initial values to result in convergence of the
ACR variable to the ACR value. But the set of compatible initial values can be quite
different for different systems.

Definition 2.5 Suppose that D is a dynamic ACR system which has a dynamic ACR
variable xi with ACR value a∗

i . Let πi (y) denote the projection of y ∈ Rn on the
i-axis and let Ni,a∗

i
:={πi (y) | y ∈ Rn

>0 not compatible with {x ∈ Rn
>0 | xi = a∗

i }}.
The variable xi is a wide basin dynamic ACR variable if Ni,a∗

i
has an upper bound.

Otherwise, xi is a narrow basin dynamic ACR variable. Finally, xi is a full basin
dynamic ACR variable if Ni,a∗

i
= ∅.
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Theorem 2.6 The following hold for a dynamical system D : ẋ = f (x), x ∈ Rn
≥0.

1. D has a unique positive steady state if and only if every variable is a static ACR
variable.

2. If D has a globally attracting positive steady state (i.e. the basin of attraction is
the positive orthant) then every variable is a full basin dynamic ACR variable.

3. If every variable is a dynamic ACR variable then D has a globally attracting
positive steady state.

Proof The first two statements are immediate from the definitions.
In order to prove the third statement, assume that for every i ∈ {1, . . . , n}, xi is a

dynamic ACR variable with dynamic ACR value a∗
i . Note that, since fi ̸≡ 0, it follows

that there exists a neighborhood N∗ of a∗:=(a∗
1 , . . . , a

∗
n) in Rn

>0 that is compatible
with the hyperplane {xi = a∗

i } for all i . Indeed, fi ̸≡ 0 implies that the kinetic subspace
of D is transversal to {xi = a∗

i }, which implies that there exists a neighborhood N∗
i

of a∗ in Rn
>0 that is compatible with the hyperplane {xi = a∗

i }; we can then define

N∗ =
⋂

1≤i≤n

N∗
i .

Then, since xi is dynamic ACR for all i , we conclude that for any x0 ∈ N∗ the
trajectory that starts at x0 converges to a∗. This allows us to prove that the kinetic
subspace ofD is the wholeRn . Indeed, assume that this is not true, in order to obtain a
contradiction. It follows that there exists some compatibility class (i.e., shifted version
of the kinetic subspace, of the form x0 + span(Im( f ))) that intersects N∗ but does
not contain a∗; note also that (x0 + span(Im( f ))) ∩ Rn

≥0 is an invariant set of D.
Then it follows that there exist a point x∗ ∈ N∗ such that the trajectory that starts at
x∗ does not converge to a∗, a contradiction.

Therefore, the kinetic subspace ofD isRn , which implies that a∗ is globally attract-
ing. ⊓⊔
Corollary 2.7 If every variable in a dynamical system D is dynamic ACR then every
variable in D is full basin dynamic ACR.

Under somemild additional hypotheses (existenceof steady states and compatibility
conditions), dynamic ACR implies static ACR for a given variable.

Theorem 2.8 Consider a dynamical system D where xi is a dynamic ACR variable
with ACR value a∗

i . Let B denote the set of positive steady states of D. The following
are equivalent:

1. xi is a static ACR variable with static ACR value a∗
i .

2. ∅ ̸= B ⊆ {y ∈ Rn
>0 : y compatible with {xi = a∗

i }}.
Proof We first show that (1 0⇒ 2). Suppose that B = ∅. Then D is not static ACR
and there are no static ACR variables. If there is a positive steady state that is not
compatible with {x ∈ Rn

>0 | xi = a∗
i } then in particular, there is a positive steady state

which is not on the hyperplane {x ∈ Rn
>0 | xi = a∗

i }, which shows that D is not static
ACR.
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Now we show that (2 0⇒ 1). Suppose D has positive steady states and each of
these is compatible with {x ∈ Rn

>0 | xi = a∗
i }. Consider one such positive steady state,

say z. By definition, if (y(t))y≥0 is a trajectory with y(0) = z, then y(t) = z for all

t ≥ 0. But since, by definition of dynamic ACR, y(t)
t→∞−−−→ {xi = a∗

i }, we must have
z ∈ {xi = a∗

i }, i.e. zi = a∗
i . Therefore, xi is the static ACR variable with static ACR

value a∗
i . ⊓⊔

3 Background information on reaction networks

The definitions and claims appearing thus far have been about general real dynamical
systems. We mostly work with reaction networks and mass action systems, for which
we use standard notation and terminology. Here we only give a quick summary of the
conventions, see for instance (Joshi and Shiu 2015) for further details. In Example 3.2,
we illustrate all concepts defined below.

Throughout this paper, we use upper case letters (X ,Y , Z , A, B) for species par-
ticipating in reactions and the corresponding lower case letters (x, y, z, a, b) for their
concentrations, which are dynamic, time-dependent quantities. An example of a reac-
tion is X + Y → 2Z , where X + Y is referred to as the source complex, while 2Z is
the product complex. The rate of any given reaction is a nonnegative-valued function
of species concentrations. We usually use mass action kinetics wherein the rate is
proportional to the product, taken with multiplicity, of reactant concentrations. The
proportionality constant, called the reaction rate constant, is placed adjacent to the

reaction arrow, as follows: X + Y
k−→ 2Z . The rate of this reaction under mass action

kinetics is kxy. The reaction vector for this reaction is the difference between the
product complex and the source complex, i.e. 2Z − (X +Y ), which under a choice of
standard basis can also be written as (−1,−1, 2). A reaction network is a nonempty
set of reactions, such that every species participates in at least one reaction, and none
of the reaction vectors is the zero vector. The stoichiometric subspace of a reaction
network is the subspace spanned by the set of reaction vectors of the reaction network.
A reaction network G is said to bemass conserving if there is a positive, linear conser-
vation law involving all species, in other words, if there is a positive vector orthogonal
to the stoichiometric subspace.

We say that two complexes are in the same linkage class if there is a sequence of
reactions (backward or forward) connecting the two complexes. For kinetic systems of
reaction networks where each linkage class has precisely one terminal strong linkage
class (see Definitions 8, 9, 10 and Theorem in Section 6 of Feinberg and Horn (1977)),
the kinetic subspace in Definition 2.1 coincides with the stoichiometric subspace. The
deficiency of a reaction network is δ = n− ℓ− s, where n is the number of complexes
in the reaction network, ℓ is the number of linkage classes and s is the dimension of
the stoichiometric subspace.

We use G to denote a reaction network and K to denote a specific choice of mass
action kinetics for G, so that (G, K ) is a mass action dynamical system. A mass action
system (G, K ) is complex balanced if at every positive steady state, for each complex
C, the sum of reaction rates where C is the reactant complex equals the sum of reaction
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rates where C is the product complex. A network is weakly reversible if every reaction
is part of a cycle of reactions. The mass action system (G, K ) is complex balanced for
any choice of K if G is weakly reversible and has zero deficiency.

A complex is non-terminal if it is not in a terminal strong linkage class.

Theorem 3.1 (Shinar and Feinberg 2010 criterion for static ACR). Consider a reaction
network G such that (i) the deficiency of G is 1, and (ii) there are two non-terminal
complexes C1 and C2 in G such that C1 − C2 = αX for some α ̸= 0. Then for any
choice of K such that (G, K ) has a positive steady state, the concentration of X is a
static ACR variable in (G, K ).

Example 3.2 An example of a reaction network is

S + E
k1
!
k2

C
k3−→ P + E

P
k4−→ S

The species {S, E,C, P} have time-dependent concentrations {s(t), e(t), c(t), p(t)},
respectively. The reaction S+E

k1−→ C has source complex S+E , product complexC ,
mass action reaction rate constant k1 and the mass action reaction rate k1se. Assuming
an arbitrary ordering of the species set (S, E,C, P), the stoichiometric subspace is a
subspace ofR4 spannedby the following set of four reactionvectors (ordered according
to their reaction rate constants)

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝

−1
−1
1
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

1
1

−1
0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0
1

−1
1

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

1
0
0

−1

⎞

⎟⎟⎠

⎫
⎪⎪⎬

⎪⎪⎭
.

The reaction network is mass conserving since (1, 1, 2, 1) is a positive vector that is
orthogonal to the stoichiometric subspace. In the linkage class P → S, the terminal
strong linkage class is {S}. The reaction network is not weakly reversible since the
terminal strong linkage class does not coincide with the linkage class. The reaction
network has two linkage classes and each linkage class has precisely one terminal
strong linkage class. This implies that the kinetic subspace is same as the stoichiometric
subspace. The deficiency is δ = n − ℓ − s = 5 − 2 − 2 = 1.

Previous work on ACR: Before proceeding with the remainder of the paper, we give a
brief, and by no means exhaustive, survey of existing literature on static ACR. Since
the seminal work by Shinar and Feinberg in 2010 Shinar and Feinberg (2010), ACR
has generated tremendous interest and enthusiasm. Shinar and Feinberg gave further
results on connections between network structure and ACR properties (Shinar and
Feinberg 2011). Karp, Pérez Millán, Dasgupta, Dickenstein, Gunawardena studied
the ACR conditions from a broader point of view of complex-linear invariants (Karp
et al. 2012). Dexter and Gunawardena (2013) showed that “homodimerization of IDH
and bifunctionality of its regulatory enzyme” lead to robustness in a biochemically
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(a) (b) (c)

Fig. 8 The red arrows depict reactions. An arrow originates at the source complex and terminates at the
product complex. (Left:) The reaction network A + B → 2B, 2A + B → 3A. (Middle:) The reaction
network A + B → A, B → 2B. (Right:) The reaction network A + B → 2B, B → A.The green line-
segment that joins the two sources complexes depicts the reactant polytope of the network. Since the reactant
polytope is parallel to a coordinate axis (the A axis) in all cases, all networks are static ACR, with A as the
only static ACR species. Only the network in (c) is dynamic ACR

realisticmathematical model of the IDH system.Dexter et al. (2015) gave other classes
of invariants besides ACR to include bounds on concentration, hybrid robustness,
and robust concentration ratio. Stochastic (continuous-time Markov chain) models
of reaction networks with the ACR property were studied in Anderson et al. (2014),
Anderson et al. (2017), Enciso (2016) and control theory aspects in Cappelletti et al.
(2020), Kim and Enciso (2020). Pascual-Escudero and Feliu (2020) make a distinction
between networks with ACR and a broader class with the property of zero sensitivity
with respect to initial conditions.

4 Illustrative examples of static and dynamic ACR systems

4.1 Examples with one species

Ex 1. (Unique positive steady state implies static ACR.) Consider the network

{2A k′
−→ 3A, A

k−→ 0} whose mass action system is ȧ = a(k′a − k). Existence
of the unique positive steady state a = k/k′ implies the system is static ACR for
positive k and k′; a is the static ACR variable with value k/k′. The steady state is
repelling for any choice of k and k′, so the system is not dynamic ACR.

Ex 2. (Globally attracting steady state implies dynamic ACR.) Consider the net-

work 0
k
!
k′

A and its mass action system ȧ = k − k′a, which has a globally

attracting positive steady state a = k/k′. Therefore, the system is both static
and dynamic ACR. Moreover, a is a full basin dynamic ACR variable with its
(static and dynamic) ACR value k/k′.

4.2 Two species, one-dimensional system, infinitely many steady states
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Ex 3. (Aminimal full basin dynamic ACR system.)Consider themass action system
associated to the reaction network

A + B
k1
!
k2

B,

whose mass action ODEs are

ȧ = −k1ab + k2b, ḃ = 0.

Within each one-dimensional compatibility class {b = b(0)}, there is a unique
globally attracting positive steady state (a, b) = (k2/k1, b(0)). So for any choice
of rate constants, the resulting system is full basin dynamic ACR. The static and
dynamic ACR variable is a with ACR value k2/k1.

Ex 4. (Archetypal wide basin dynamic ACR system.) A minimal, non-trivial,
archetypal model for ACR is the network (see also Figs. 8c and 9a):

A + B
k1−→ 2B, B

k2−→ A,

whose mass action ODEs are ȧ = −b(k1a − k2), ḃ = b(k1a − k2). The positive
steady states form a hyperplane (ray) defined by a = k2/k1. Moreover, the positive
steady states are stable and compatible with any {(a, b) ∈ R2

>0 | a + b > k2/k1},
i.e. for any (a(0), b(0)) ∈ R2

>0\{(a, b) : a+ b ≤ k2/k1}, the trajectory converges
to some steady state whose a coordinate is k2/k1. Since |{a : a + b ≤ k2/k1}| ≤
k2/k1, a is a wide basin dynamic ACR variable with ACR value k2/k1. See Fig. 9b
for some sample trajectories.

Ex 5. (Static but not dynamic ACR: fi ≡ 0.) Consider the reaction network (see
also Fig. 8b)

A + B
k1−→ A, B

k2−→ 2B,

whose mass action ODE system is ȧ = 0, ḃ = −b(k1a − k2). Here a is a static
ACR variable with value k2/k1. But a is not a dynamic ACR variable since ȧ ≡ 0.
Ex 6. (Static but not dynamic ACR system: Only repelling steady states.) Consider
the reaction network (see also Fig. 8a)

A + B
k2−→ 2B, 2A + B

k1−→ 3A

whose mass action ODEs are ȧ = ab(k1a − k2), ḃ = −ab(k1a − k2).
Similar to the previous examples, the positive steady states form a hyperplane
(ray) defined by a = k2/k1. The positive steady states are compatible with any
{(a, b) ∈ R2

≥0 | a + b > k2/k1}, but the steady states are unstable. The system is
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(a)
(b)

Fig. 9 (Archetypal Wide Basin Dynamic ACR Network) A dynamic ACR reaction network (A + B →
2B, B → A) with A as a wide basin dynamic ACR variable. The concentration of A is bounded within the
subset of R2

≥0 that is not compatible the ACR hyperplane {a = 1} (non-compatible region shown here in
cyan)

static ACR, with a as the unique static ACR variable with ACR value k2/k1, but
the system is not dynamic ACR.

Ex 7. (A minimal narrow basin dynamic ACR system.) Consider the reaction net-
work (see also Figs. 10a and 13b)

A + B
k1−→ 0, B

k2−→ A + 2B,

whose mass action ODEs are ȧ = −b(k1a − k2), ḃ = −b(k1a − k2). The
positive steady states form a ray defined by a = k2/k1. Moreover, the positive
steady states are stable and compatible with any {(a, b) ∈ R2

>0 | a − b < k2/k1}.
This shows that the system is dynamic ACR in variable a with value k2/k1. Since
|{a : a − b ≥ k2/k1}| has no upper bound, a is narrow basin dynamic ACR. See
Fig. 10b for some sample trajectories.

4.3 Higher dimensional systems

Ex 8. (Static ACR in all variables but dynamic ACR in none.) Consider the classic
Lotka-Volterra system

A + B → 2B, B → 0, A → 2A

We can apply the Shinar-Feinberg ACR criterion (Shinar and Feinberg 2010) to
this system. We check that it has deficiency 6− 3 − 2 = 1, and two non-terminal
complexes differ in exactly one species. In fact, the last holds for both species,
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(a) (b)

Fig. 10 (Archetypal Narrow Basin Dynamic ACR Network) A dynamic ACR reaction network (A+ B →
0, B → A + 2B) with A as a narrow basin dynamic ACR variable. The concentration of A is unbounded
within the subset ofR2

≥0 that is not compatible the ACR hyperplane {a = 1} (non-compatible region shown
here in cyan)

A = (A+ B)− B and B = (A+ B)− A. So, by the Shinar-Feinberg ACR crite-
rion, for all positive rate constants, the system is static ACR and concentrations of
both A and B are static ACR variables. By Theorem 2.6, the system has a unique
positive steady state for every choice of rate constants. The system is not dynamic
ACR because for any choice of positive rate constants, the unique positive steady
state is not attracting.

Ex 9. (Unique positive steady state which is stable for some but not all parameters:
Static ACR for all rate constants; dynamic ACR system for some but not all rate
constants.) Consider the following reaction network, which is a simplified version
of the Sel’kov oscillator (Sel’Kov 1968).

0
ρ−→ X

σ−→ Y
1−→ 0, X + 2Y

1−→ 3Y . (4.1)

The mass action ODE system is

ẋ = ρ − σ x − xy2, ẏ = −y + σ x + xy2. (4.2)

It is easy to check that for all positive rate constants, the system has a unique
positive steady state whose value is

(
x∗, y∗) =

(
ρ/(σ + ρ2), ρ

)
. Therefore, for

all positive rate constants, the system is static ACR and both x and y are static
ACR variables. Furthermore, it can be checked that for σ = 0.1 and ρ = 0.5, the
steady state is not attracting, so that for this choice of rate constants, the system
is not dynamic ACR. For σ = 1 and ρ = 1, the unique positive steady state is a
global attractor, and so for this choice of rate constants both x and y are full basin
dynamic ACR variables.
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Ex 10. (Static ACR in all variables; dynamic ACR in one variable or all variables
depending on rate constants.) Consider the following reaction network, which has
embedded within it the Sel’kov oscillator.

0
ρ−→ X

σ−→ Y
1−→ 0, X + 2Y

1−→ 3Y , Z + X
k1
!
k2

X (4.3)

The mass action ODE system is

ẋ = ρ − σ x − xy2, ẏ = −y + σ x + xy2, ż = x(k2 − k1z) (4.4)

It is easy to check that for all positive rate constants, the systemhas a uniquepositive
steady state whose value is

(
x∗, y∗, z∗

)
=

(
ρ/(σ + ρ2), ρ, k2/k1

)
. Therefore, for

all positive rate constants, the system is static ACR and all three variables x, y, and
z are static ACR variables. Moreover, for any choice of positive rate constants and
for any initial value, z

t→∞−−−→ k2/k1. It follows then that for any choice of positive
rate constants, the system is dynamic ACR, and that z is a full basin dynamic ACR
variable whose dynamic ACR value is k2/k1. Note that this value is the same as
the static ACR value of z. Furthermore, it can be checked that for σ = 0.1 and
ρ = 0.5, the steady state is not attracting, so that for this choice of rate constants,
the only dynamic ACR variable is z. For σ = 1 and ρ = 1, the unique positive
steady state is a global attractor, and so for this choice of rate constants all three
variables, x, y and z are full basin dynamic ACR variables. See Fig. 11 for the
trajectories for the two choices of rate constants.

4.4 Dynamic ACR but not static ACR

Ex 11. (Adding reactions with unrelated species can destroy static ACR but always

preserves dynamic ACR.) The system 0
k
!
k′

A in Ex 2., is both static and dynamic

ACR for any choice of rate constants. Suppose we add a flow reaction of the type
0

g−→ B, so that the new mass action system is ȧ = k − k′a, ḃ = g > 0. Then
since the concentration of B goes to infinity there are no positive steady states,
and so the system is not static ACR. However a is still a full basin dynamic ACR
variable with the same value k/k′. Similar considerations apply if instead of the

inflow 0
g−→ B, we add the outflow reaction B

ℓ−→ 0.

The result in the previous example holds in general.

Proposition 4.1 Consider two dynamical systemsDx given by ẋ = f (x)with x ∈ Rn
≥0

andDy given by ẏ = g(y)with y ∈ Rm
≥0. Suppose thatDx has a dynamicACRvariable

xi with value a∗
i . Then the dynamical systemDx ∪Dy given by {ẋ = f (x), ẏ = g(y)}

with (x, y) ∈ Rn+m
≥0 has xi as a dynamic variable with the same value a∗

i .
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Fig. 11 Solutions of the system in (4.4). (Top:) For σ = 1 and ρ = 1, the solution converges to a positive
steady state for any positive initial value. Therefore, the system is dynamic ACR, and all variables are

dynamic ACR variables. (Bottom:) For σ = 0.1 and ρ = 0.5, z(t)
t→∞−−−−→ k2/k1, while x(t) and y(t)

converge to non-constant periodic functions of time t . Therefore, the system is dynamic ACR and only z is
a dynamic ACR variable

Even when the dynamics are bounded and do not converge to the boundary, it is
possible to have a dynamic ACR system which is not static ACR, as the following
example shows.

Ex 12. (Dynamic ACR but not static ACR in a mass conserving system.) Consider
the mass action dynamical system resulting from the following reaction network,
where the labels on the arrows indicate reaction rate constants.

A + 2B
2−→ 2A + B

1−→ 3A

3A + B
1−→ 2A + 2B

2−→ A + 3B (4.5)

The resulting system of ODEs is:

ȧ = −ab(a + 2b)(a − 1)

ḃ = ab(a + 2b)(a − 1)
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Fig. 12 Systems that are not static ACR because there are additional steady states outside a positive hyper-
plane (ray). (Left:) Dynamic ACR system. All positive initial values compatible with {a = 1} result in
convergence to a = 1. (Right:) Not dynamic ACR. For sufficiently large positive initial conditions (in this
case a(0)+ b(0) > 2), there is convergence to a = 1

Note that (a + b)(t) is a constant function of time t . The variable a is static and
full basin dynamic ACR with the ACR value of 1, since clearly for any positive
initial condition a

t→∞−−−→ 1, and a = 1 gives a unique positive steady state that is
compatible with any initial condition with a(0)+ b(0) > 1.

Now consider the same reaction network as (4.5) with one additional reaction, and
the reaction rate constants as shown below.

A + B
1−→ 2B

A + 2B
2−→ 2A + B

2−→ 3A

3A + B
1−→ 2A + 2B

2−→ A + 3B (4.6)

The resulting system of ODEs is:

ȧ = −ab(a + 2b − 1)(a − 1)

ḃ = ab(a + 2b − 1)(a − 1)

Once again, (a+b)(t) is a constant function of time t . The system has positive steady
states given by a = 1 or a+ 2b = 1 (see Fig. 12 (left)). Clearly, then the system is not
static ACR. For a positive initial condition (a(0), b(0)) to be compatible with a = 1, it
must be the case that a(0)+b(0) > 1 which implies that a(t)+2b(t) ≥ a(t)+b(t) =
a(0) + b(0) > 1, and so again for any positive initial condition compatible with
{a = 1}, we have a t→∞−−−→ 1. Therefore the system is dynamic ACR with a as a wide
basin dynamic ACR variable with ACR value 1.
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Finally, consider the same reaction network as (4.6) but with different rate constants
as below.

A + B
2−→ 2B

A + 2B
2−→ 2A + B

3−→ 3A

3A + B
1−→ 2A + 2B

2−→ A + 3B (4.7)

The resulting system of ODEs is:

ȧ = −ab(a + 2b − 2)(a − 1)

ḃ = ab(a + 2b − 2)(a − 1)

This system is again not static ACR. Furthermore, if 1 < a(0) + b(0) < 2, then
(a(0), b(0)) is compatiblewith {(a, b) ∈ R2

>0 |a = 1}, buta ̸→ 1 for every such initial

condition. Finally, a
t→∞−−−→ 1 if a(0)+ b(0) > 2, and thus we do have convergence to

a steady state with a = 1 outside a compact set (see Fig. 12 (right)).

Remark 4.2 The last example suggests a naturally arising weaker version of dynamic
ACR. For instance, we might want to say that (4.7) is dynamic ACR on {a + b > 2}.
We study this and other weaker forms of dynamic ACR in Joshi and Craciun (2022).

If a small positive inflow parameter is added either to ȧ or ḃ (corresponding to
influx of species A or B into the system), one can show that the resulting system is
dynamic ACR in all three cases (4.5), (4.6), and (4.7).

4.5 Wide basin dynamic ACR

The condition for a dynamic ACR variable to be wide basin dynamic ACR is that
within the set of positive points that are incompatible with the steady states, the ACR
variable is bounded. In other words, if the initial concentration of the ACR variable is
sufficiently large, the ACR variable will converge to its ACR value. Even so, the set
of incompatible points can be both empty or unbounded. We start with an example of
an unbounded case.

Ex 13. (Set of initial values that do not converge to ACR value may be unbounded.)
TheACRvariable has an upper bound in the set of initial values that do not converge
to the ACR value, by definition. But the other variables may not have any upper
bound as the following example shows. Consider the reaction network:

X + Y + Z
k1−→ 2X + 2Y

X + Y
k2−→ Z

The stoichiometric subspace is the span of the vector (1, 1,−1), so there are two
independent conservation relations, for instance x + z = c1 and y + z = c2. The
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system of ODEs is

−ẋ = −ẏ = ż = −k1xy(z − k∗),

where k∗ = k2/k1. It’s easy to see that z is a dynamic ACR variable with ACR value
k∗. Furthermore, the following result holds, which we state without proof since the
proof is easy.

Claim 4.3 Consider the system −ẋ = −ẏ = ż = −k1xy(z − k∗), with c1 =
x(0) + z(0) > 0 and c2 = y(0) + z(0) > 0. Let c:=min{c1, c2}. If c ≤ k∗, then
(x(t), y(t), z(t))

t→∞−−−→ (c1 − c, c2 − c, c), i.e. convergence is to a boundary steady

state. If c > k∗, then (x(t), y(t), z(t))
t→∞−−−→ (c1 − k∗, c2 − k∗, k∗), i.e. convergence

is to a positive steady state with z converging to the ACR value.

Proof The solution of the initial value problem D = {−ẋ = −ẏ = ż = −k1xy(z −
k∗), x(0) = x0, y(0) = y0, z(0) = z0} and that of D̃ = {− ˙̃x = − ˙̃y = ˙̃z = −( z̃ −
k∗), x̃(0) = x0, ỹ(0) = y0, z̃(0) = z0} are equivalent as trajectories when restricted
to the nonnegative orthant R3

≥0. The initial value problem D̃ can be explicitly solved:

x̃(t) =
(
x0 + z0 − k∗) −

(
z0 − k∗) e−t

ỹ(t) =
(
y0 + z0 − k∗) −

(
z0 − k∗) e−t

z̃(t) = k∗ +
(
z0 − k∗) e−t .

If c > k∗, then the set of points {(̃x(t), ỹ(t), z̃(t)) : t ≥ 0} is entirely contained in the
positive orthant R3

>0 and so {(̃x(t), ỹ(t), z̃(t)) : t ≥ 0} = {(x(s), y(s), z(s)) : s ≥ 0}
as a set and moreover, lims→∞(x(s), y(s), z(s)) = limt→∞(̃x(t), ỹ(t), z̃(t)) = (c1−
k∗, c2 − k∗, k∗).

On the other hand, if c ≤ k∗, then limt→∞(̃x(t), ỹ(t), z̃(t)) = (c1 − k∗, c2 −
k∗, k∗) /∈ R3

>0. Therefore, lims→∞(x(s), y(s), z(s)) is either the intersection point
of {(̃x(t), ỹ(t), z̃(t)) : t ≥ 0} with the boundary of R3

≥0 (when c < k∗) or equal to
limt→∞(̃x(t), ỹ(t), z̃(t)) = (c1 − k∗, c2 − k∗, k∗) (when c = k∗). In either case,
(x(t), y(t), z(t))

t→∞−−−→ (c1 − c, c2 − c, c). ⊓⊔
Notice in particular the region of initial conditions that do not result in

convergence to the ACR value is min{c1, c2} ≤ k∗ which includes points
with small x and z values but arbitrarily large y values. Thus the set S =
{s(0) ∈ R3

≥0 | s(0) not compatible with {z = k∗} ∩ R3
≥0} is non-compact. However

{z(0) | (x(0), y(0), z(0)) ∈ S} is bounded above by k∗, which shows that z is a wide
basin dynamic ACR variable.

Ex 14. (Set of initial values that do not converge to ACR may be empty: full basin
dynamic ACR.) The flip side of the previous category is the class of full basin
dynamic ACR systems, for which every positive initial condition converges to
an ACR value. We consider a simplified model of the ground state of a carbon
nanotube rope (Cobden et al. 1998). The ground state may have fractional or
integral spin, alternating between the two as a spin +1/2 electron is absorbed or
emitted by the carbon nanotube rope.
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Suppose that ce and co denote the concentration of carbon nanotube ropes that have
even and odd number of electrons, respectively, in the ground state. Suppose x is the
concentration of free electrons in the ambient space. We assume that electrons are
absorbed or emitted with a rate constant that depends only on the odd or even state.
Then we can represent the system as a reaction network.

X + Ce
k1
!
k2

Co, X + Co
k3
!
k4

Ce

The system of mass action ODEs associated with the network is:

ẋ = −k1xce + k2co − k3xco + k4ce,

ċe = −k1xce + k2co + k3xco − k4ce,

ċo = k1xce − k2co − k3xco + k4ce.

The quantity ce + co is conserved over time, so the dynamics are restricted to a two-
dimensional affine set or compatibility class Sc:={(x, ce, co) ∈ R3

≥0 : ce + co = c >
0}. The deficiency is 4 − 2 − 2 = 0 and the network is weakly reversible (i.e. every
reaction is part of a cycle). Many things are known about the dynamical properties
of reversible, deficiency 0 systems (Horn 1972; Feinberg 2019), see also Sect. 6. For
instance, reversible, zero deficiency systems have a unique positive steady state within
each compatibility class {c > 0}, and each of these steady states attracts all compatible,
positive initial values. To explicitly solve for the positive steady state, note that each
of the two binomials k1xce − k2co and k3xco − k4ce must vanish at the steady state.
So, if we denote a steady state by (x∗, c∗

e , c
∗
o) then we have

x∗ = k2c∗
o

k1c∗
e
= k4c∗

e

k3c∗
o

0⇒ c∗
e

c∗
o
=

√
k2k3
k1k4

0⇒ x∗ =
√
k2k4
k1k3

.

Note that the value of x∗ is independent of c. From general results about reversible,
zero deficiency systems, x is a dynamic ACR variable with the dynamic ACR value√
k2k4/(k1k3). Thus the basin of attraction of {x∗ = √

k2k4/(k1k3)} is the entire
positive orthant. Note further that while neither ce nor co is an ACR variable, their
ratio ce/co behaves as an ACR variable. This type of “ratio ACR” will be discussed
in detail in future work.

5 Static and dynamic ACR reaction networks

We are often interested in mass action systems resulting from reaction networks. It
is possible that the mass action system resulting from a reaction network is a dynamic
ACR system for one choice of rate constants but not for another choice. Moreover, it
may be that a specific variable is dynamic ACR for only a proper subset of choices
of rate constants for which the overall system is dynamic ACR. Similar remarks may
hold even for static ACR. For instance, a bifurcation from a unique positive steady
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state to two or more steady states is likely to turn a static ACR system into one that
is not static ACR. It behooves us to single out for special attention a reaction network
that results in a static or dynamic ACR system for any choice of rate constants.

Definition 5.1 Suppose that (G, K ) is a mass action system resulting from the reaction
network G, where K denotes the specific choice of mass action rate constants.

• We say that G has capacity for static (dynamic) ACR if there is a K such that the
mass action system (G, K ) is a static (dynamic) ACR system.

• We say that G is a static (dynamic) ACR network if (G, K ) is a static (dynamic)
ACR system for all choices of K .

• We say a species X in a network G is a static (respectively: dynamic, wide basin
dynamic, narrow basin dynamic, full basin dynamic) ACR species if the concen-
tration of X is a static (respectively: dynamic, wide basin dynamic, narrow basin
dynamic, full basin dynamic) ACR variable in (G, K ) for all choices of K .

Remark 5.2 The above definition deviates somewhat from the Shinar-Feinberg defini-
tion of an ACR species. Since they restrict attention to a fixed mass action system (i.e.
fixed rate constants), their notion of an ACR species is analogous to our notion of an
ACR variable in a dynamical system.

We now set about to present examples of networks which answer to these questions:
(i) does the network have capacity for static ACR? (ii) is the network static ACR? (iii)
does the network have capacity for dynamic ACR? (iv) is the network dynamic ACR?
Of the 24 = 16 distinct possibilities of yes or no answers to these questions, we can a
priori rule out ‘no’ to (i) and ‘yes’ to (ii) – a static ACR network must have capacity
for static ACR. We can similarly rule out ‘no’ to (iii) and ‘yes’ to (iv). We are left then
with 3 × 3 = 9 distinct possibilities of yes/no answers to the four questions. Each
of these possibilities is realized in a fairly simple network involving no more than 2
species and no more than 4 reactions. The results are presented in Table 1.

Ex15. (Has capacity for staticACRbut not for dynamicACR)Consider the reaction
network

0
k1
!
k2

A, 2A
k3−→ 3A. (5.1)

The mass action ODE system is

ȧ = k1 − k2a + k3a2. (5.2)

The mass action system has a unique positive steady state if and only if the rate
constants satisfy k22 = 4k1k3. Furthermore, this unique steady state is unstable.
This implies that when the constraint is satisfied, the system is static ACR but not
dynamic ACR. For any other choice, there are either no positive steady states or
two distinct positive steady states. In either case, the system is neither static ACR
nor dynamic ACR. We conclude that the reaction network has capacity for static
ACR, is not a static ACR reaction network, and has no capacity for dynamic ACR.

123



Foundations of static and dynamic absolute concentration... Page 25 of 33 53

Ex 16. (Has capacity for static and dynamic ACR but neither static nor dynamic
ACR network due to multistationarity) Consider the reaction network

0
k1
!
k2

A, 2A
k3
!
k4

3A. (5.3)

The mass action ODE system is

ȧ = k1 − k2a + k3a2 − k4a3. (5.4)

It is fairly easy to show that for ki = 1 for i ∈ {1, 2, 3, 4}, there is a unique positive
steady state which is globally attracting. So the system has capacity for static and
dynamic ACR, and the variable a is full basin dynamic ACR for this choice of rate
constants.

For k1 = 4, k2 = 8, k3 = 3.5, k4 = 0.4, there are three positive steady states and
so the resulting system is neither static nor dynamic ACR. Therefore, the network is
neither static nor dynamic ACR.

A network that satisfies the Shinar-Feinberg criterion may lack steady states for all
choices of rate constants. Such a network obviously has no capacity for static ACR.
Somewhat more surprisingly, there exist networks that satisfy the Shinar-Feinberg
criterion and have steady states for some but not all choices of rate constants. Such a
network has the capacity for static ACR but is not static ACR. We present an example
below.

Ex 17. (Has capacity for static and dynamic ACR but neither static nor dynamic
ACR network due to possible absence of steady states) Consider the reaction net-
work

0
k1←− A

k2
!
k3

2A (5.5)

The mass action ODE system is

ȧ = a (k2 − k1 − k3a) (5.6)

If k2 ≤ k1 then there are no positive steady states and the system is neither static
nor dynamic ACR. If k2 > k1, then a∗ = (k2−k1)/k3 is the unique positive steady
state which means that a is a static ACR variable with ACR value (k2 − k1)/k3.
In fact, in this case a is a full basin dynamic ACR variable.

Ex18. (Has no capacity for staticACRbut has capacity for dynamicACR)Consider
the reaction network

0
k1−→ A + B, A

k2−→ B, A
k3−→ 2A. (5.7)
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(a) (b) (c) (d)

Fig. 13 Minimal (in terms of total stoichiometry), non-trivial (has more than one positive steady state) static
ACR networks. A is a static ACR species for each network and also a dynamic ACR species for networks
(b)-(d). The reactant polytope for each network is the line segment joining the complexes B and A + B.
The total stoichiometry for each network is 6

The mass action ODE system is

ȧ = k1 − (k2 − k3) a, ḃ = k1 + k2a (5.8)

Clearly b
t→∞−−−→ ∞, so the system has no capacity for static ACR. If k2 ≤ k3,

then a
t→∞−−−→ ∞, so in this case the system is not dynamic ACR. But if k2 > k3,

then a
t→∞−−−→ k1/(k2 − k3) for any positive initial condition, which implies that

the system is full basin dynamic ACR.

Ex 19. (Has no capacity for static ACR but is dynamic ACR) Consider the reaction
network

0
k1−→ A + B, A

k2−→ B. (5.9)

The mass action ODE system is

ȧ = k1 − k2a, ḃ = k1 + k2a (5.10)

Clearly b
t→∞−−−→ ∞, so the system has no capacity for static ACR. On the other

hand, a
t→∞−−−→ k1/k2 for any positive initial condition, which implies that the

system is full basin dynamic ACR for any choice of rate constants. Therefore, A
is a full basin dynamic ACR species.

Proposition 5.3 A network G is a static (dynamic) ACR network if G has a static
(dynamic) ACR species.

Proof Suppose that G has a static (dynamic) ACR species, label it by X . So, the
concentration of X is a static (dynamic) ACR variable for all choices of rate constants
K . Then (G, K ) is a static (dynamic) ACR system for all choices of K , and so G is a
static (dynamic) ACR network. ⊓⊔
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The converse to Proposition 5.3 may not hold. To see this, consider a static
(dynamic) ACR network G. Let K and K ′ be some distinct choices of kinetics, so
that (G, K ) and (G, K ′) are both static (dynamic) ACR systems. Suppose that both
systems have only one ACR variable, but these are concentrations of different species
X and X ′ in cases of (G, K ) and (G, K ′), respectively. Then G does not have any
ACR species. Whether such an example can be constructed within the mass action
framework is an open question.

Ex 20. (Dynamic ACR network with dynamic ACR species, has capacity for static
ACR but no static ACR species) Consider the reaction network

0
k1
!
k2

A, A + B
k3−→ A, B

k4−→ 2B. (5.11)

The mass action ODE system is

ȧ = k2(k1/k2 − a), ḃ = −k3b(a − k4/k3). (5.12)

It is clear that a
t→∞−−−→ k1/k2 for any initial value in R2

≥0, and so A is a dynamic
ACR species with dynamic ACR value of k1/k2. There are no positive steady states
if k1/k2 ̸= k4/k3, and so for any such rate constants the system is not static ACR.
This implies that there is no static ACR species. Note that for the special case
k1/k2 = k4/k3, a is a static ACR variable with static ACR value of k1/k2, which
is the same as its dynamic ACR value.

A concrete representation of networks with various ACR properties is in Fig.13,
where we depict specific stoichoimetries by embedding the network in the plane. All
networks in Fig. 13 are static ACR. By embedding the networks as close to the origin as
possible, and making the reaction arrows as small as possible, we get minimal motifs
of various ACR types: static ACR, narrow basin dynamic ACR, wide basin dynamic
ACR, and full basin dynamic ACR.

Based only on the examples in Fig. 13, it might be tempting to think that the rea-
son 13b is narrow basin dynamic ACR is because it is not mass conserving, unlike 13c
and 13d. However, there do exist mass conserving narrow basin dynamicACR systems
as the following example shows.

Ex21. (Existence ofmass conserving, narrowbasin dynamicACR system/network)
Consider the following reaction network

X + 2Z
k1−→ 2X + Y , X + Y + 2Z

k2−→ 4Z . (5.13)

The mass action ODE system is

ẋ = xz2(k1 − k2y), ẏ = xz2(k1 − k2y), ż = −2xz2(k1 − k2y). (5.14)

A mass conservation law involving all the species is x + y + z = c > 0, i.e. the
sum of concentrations of all the species is constant over time. Clearly Y is a static
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and a dynamic ACR species, i.e. for all rate constants, y is a static and dynamic ACR
variable with ACR value k1/k2. This means that, if an initial condition is compatible
with the set {y∗ = k1/k2}, then y

t→∞−−−→ k1/k2.

Claim 5.4 For the mass action system (5.14), {(x, y, z) | y − x > k1/k2} is not com-
patible with {(x, y, z) | y = k1/k2}.
Proof Two points (x1, y1, z1) and (x2, y2, z2) are compatible with each other if and
only if (x1 − x2, y1 − y2, z1 − z2) ∈ span(1, 1,−2). Suppose that (x1, y1, z1) ∈
{(x, y, z) | y−x > k1/k2} and let c1:=y1−x1 > k1/k2, so that (x1, y1, z1) = (x1, x1+
c1, z1). Suppose that (x2, y2, z2) ∈ {(x, y, z) | y = k1/k2}, so that (x2, y2, z2) =
(x2, k1/k2, z2). Then,

(x1 − x2, y1 − y2, z1 − z2) = (x1 − x2, x1 + c1 − k1/k2, z1 − z2).

But then, (y1− y2)−(x1−x2) = c1−k1/k2+x2 > x2 > 0, i.e. (y1− y2) ̸= (x1−x2),
and so (x1 − x2, y1 − y2, z1 − z2) /∈ span(1, 1,−2). This proves the claim. ⊓⊔

In particular, the set C :={(0, k1/k2 + α, 0) : α ∈ R>0} is not compatible with
{(x, y, z) | y = k1/k2} and clearly {y : (x, y, z) ∈ C} has no upper bound. This
implies that Y is a narrow basin dynamic ACR species in the network (5.13).

6 ACR in complex balanced systems

Complex balanced systems (as well as the more restrictive detailed balanced systems
Horn and Jackson 1972) have played a central role in study of mathematical models of
reaction networks (Yu and Craciun 2018). It turns out that a complete characterization
of static and dynamic ACR property can be found for complex balanced systems, as
described below.While large families of static ACR systems are easy to come by, here
we describe a large family of dynamic ACR systems. We give network conditions that
guarantee dynamic ACR as well as network conditions that forbid dynamic ACR in
complex balanced systems.

Theorem 6.1 Suppose that G is a reaction network such that for the choice of mass
action kinetics K , the system (G, K ) is complex balanced. Let S be the stoichiometric
subspace of G. Let ei denote the standard basis unit vector, with 1 in the i th component
and 0 elsewhere. The following statements are equivalent.

A1. xi is a static ACR variable.
A2. ei ∈ S.
A3. There exist reactions y1 → y′

1, y2 → y′
2, ..., ym → y′

m in G such that for some
λi ∈ Z we have

∑m
i=1 λi (y′

i − yi ) = αXi , where α ∈ Z\{0}.
The following statements are equivalent.

B1. xi is a dynamic ACR variable.
B2. xi is a wide basin dynamic ACR variable.
B3. xi is a full basin dynamic ACR variable.
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Moreover, Bi 0⇒ Aj for i, j ∈ {1, 2, 3}. Furthermore, if the steady states of (G, K )

are globally attracting then all six statements are equivalent.

Proof The equivalence of conditions A2 and A3 follows just from the definition
of the stoichiometric subspace S. We now show that conditions A1 and A2 are also
equivalent. Let x̃ be a complex balanced steady state of (G, K ). Then from (Horn and
Jackson 1972), the set Z of all positive steady states of (G, K ) satisfies:

log Z = log x̃ + S⊥,

where S⊥ is the orthogonal complement of S. Furthermore, the condition A1 is
equivalent to Z ⊂ {xi = a∗

i } for some a∗
i > 0, which in turn is equivalent to

log Z ⊂ {y : yi = log a∗
i }, i.e. log Z is in a hyperplane parallel to a coordinate

hyperplane. Since S⊥ is a subspace and a translation of log Z ,

S⊥ ⊂ {xi = 0},

which in turn is equivalent to condition A2.
With regard conditions B1, B2, B3, it is clear that B3 0⇒ B2 0⇒ B1. To see

that B1 0⇒ B3, note that B1 0⇒ A1 0⇒ A2. But, this implies that any initial
value x0 ∈ Rn

>0 is compatible with any hyperplane of the form {x ∈ Rn
>0 | xi = a∗

i }
with a∗

i > 0. Therefore, if xi is a dynamic ACR variable, then the convergence of
solutions to the hyperplane {x ∈ Rn

>0 | xi = a∗
i } holds for any positive initial value,

which implies B3. ⊓⊔
Corollary 6.2 Suppose that G is a reaction network such that for the choice of mass
action kinetics K , the system (G, K ) is complex balanced. If two complexes in the
same linkage class differ only in the species Xi , then xi is a static ACR variable. In
particular, if 0 → Xi or Xi → 0 is in G, then xi is a static ACR variable.

Since any weakly reversible network with deficiency δ = 0 is complex balanced
for any choice of rate constants, we also obtain the following.

Corollary 6.3 Suppose that G is weakly reversible and has 0 deficiency. Let S be the
stoichiometric subspace of G. Let ei denote the standard basis unit vector, with 1 in
the i th component and 0 elsewhere. The following are equivalent:

A1. Xi is a static ACR species.
A2. ei ∈ S.
A3. There exist reactions y1 → y′

1, y2 → y′
2, ..., ym → y′

m in G such that for some
λi ∈ Z we have

∑m
i=1 λi (y′

i − yi ) = αXi , where α ∈ Z\{0}.
Moreover, the following properties are also equivalent:

B1. Xi is a dynamic ACR species.
B2. Xi is a wide basin dynamic ACR species.
B3. Xi is a full basin dynamic ACR species.

Moreover, Bi 0⇒ Aj for i, j ∈ {1, 2, 3}. Furthermore, if the steady states of (G, K )

are globally attracting for any K , then all six properties above are equivalent.
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Remark 6.4 (Regarding equivalence ofA andB statements) It is known that the positive
steady states of a complex balanced system (G, K ) are globally attracting (within
the set of positive compatible points) for any K if G satisfies any of the following
conditions.

1. G is connected (Anderson 2011).
2. S is at most three dimensional (Pantea 2012; Craciun et al. 2013).

According to the Global Attractor Conjecture (Craciun et al. 2009; Craciun 2015),
any complex balanced system is globally attracting.

Corollary 6.5 Suppose that a mass action system (G, K ) is mass conserving and com-
plex balanced. Then (G, K ) is neither static ACR nor dynamic ACR.

Corollary 6.6 If a networkG is deficiency zero,weakly reversible, andmass conserving,
then G does not have capacity for static ACR nor for dynamic ACR.

Ex 22. (Network that has no capacity for static ACR nor for dynamic ACR) Con-
sider the reaction network A ! B. By Corollary 6.6, the network does not have
the capacity for static ACR nor for dynamic ACR.
For other conditions that thwart static ACR, see Theorem 9.7.1 in Feinberg (2019).

Ex 23. (Network that is both static and dynamic ACR) Consider the weakly
reversible, deficiency zero reaction network G depicted below.

C

A + B

B

By Corollary 6.3, A is a static ACR species. Furthermore, by Remark 6.4 (1. or
2.), A is a full basin dynamic ACR species.
Assuming the global attractor conjecture (Craciun et al. 2009; Craciun 2015) is
true, we have the following fact: if a complex balanced system has full dimension,
then it is dynamic ACR in all species. The following example illustrates this fact.

Ex 24. (Network that is both static and dynamic ACR in all species) Consider the
weakly reversible, deficiency zero reaction network G depicted below.

A

A + B

B

By Corollary 6.3, both A and B are static ACR species. Furthermore, by
Remark 6.4 (1. or 2.), both A and B are full basin dynamic ACR species.
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7 Discussion and future work

Biochemical reaction networks need to maintain robustness in their outputs against
highly variable protein or enzyme concentrations. An example of this can be found
in bacterial two-component signaling systems, a class that encompasses several thou-
sands of systems (Alon 2019). We refer to empirical robustness as the property that
the long-termmeasured concentration of a biochemical species (say X ) is independent
of initial conditions of all species as well as independent of long-term values of other
species besides X . In this paper, we have developed a mathematical framework which
will allow proper modeling of empirical robustness. We refer to the mathematical
property by dynamic ACR – there is a positive translation of a coordinate hyperplane
that attracts all trajectories. This single notion covers a wide variety of dynamical
behaviors. For instance there could be globally attracting steady states on the ACR
hyperplane or otherwise there could be attracting limit cycle oscillations confined
entirely to the ACR hyperplane. Most intriguingly, the ACR hyperplane could be an
attractor to unbounded trajectories, which means that unbounded trajectories never-
theless have a bounded and robust component. This has implications for robustness in
growing systems.

The previous approach to model empirical robustness was to define static ACR,
wherein all steady states are confined to the ACR hyperplane. The obvious problem
with this approach is that static ACR by no means guarantees dynamic convergence to
the steady states or to the ACR hyperplane. So the long-term behavior of static ACR
systems may not show concentration robustness. Dynamic ACR not only remedies
this problem, but has other advantages. As discussed in Proposition 4.1, unlike static
ACR, the property of dynamic ACR is unaffected when taking a union of networks
with unrelated species, thus networks with dynamic ACR are structurally robust. In
Theorem2.6, we discuss connections between the dynamicACRproperty and globally
attracting steady states.

The range of dynamical behaviors captured by dynamic ACR suggests that finding
network conditions for dynamic ACR will require a complex research program. In
this paper, we gave necessary and sufficient conditions for dynamic ACR in complex
balanced systems, an importance class of systems in reaction network theory. In Joshi
and Craciun (2022), we study static and dynamic ACR in small reaction networks,
specifically thosewith 2 reactions and atmost 2 species.We show that for such reaction
networks, the network motif (the relative locations of the reactant complexes and the
orientation of the reaction arrows in the Euclidean plane) is deeply connected with the
dynamical properties, especially those related to ACR.

Finally, in this paper, we have discussed consequences of static and dynamic ACR.
Surprisingly, both static and dynamic ACR are compatible not only with steady states
but also with oscillations (Ex 8. and Ex 10.). In future work, we discuss biochemi-
cally realistic networks and some remarkable robustness properties of networks with
dynamic ACR.
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