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Abstract

Motivation: Gene deletion is traditionally thought of as a nonadaptive process that removes functional redundancy from genomes, such that it
generally receives less attention than duplication in evolutionary turnover studies. Yet, mounting evidence suggests that deletion may promote
adaptation via the “less-is-more” evolutionary hypothesis, as it often targets genes harboring unique sequences, expression profiles, and
molecular functions. Hence, predicting the relative prevalence of redundant and unique functions among genes targeted by deletion, as well as
the parameters underlying their evolution, can shed light on the role of gene deletion in adaptation.

Results: Here, we present CLOUDe, a suite of machine learning methods for predicting evolutionary targets of gene deletion events from
expression data. Specifically, CLOUDe models expression evolution as an Ornstein—Uhlenbeck process, and uses multi-layer neural network,
extreme gradient boosting, random forest, and support vector machine architectures to predict whether deleted genes are “redundant” or
“unique”, as well as several parameters underlying their evolution. We show that CLOUDe boasts high power and accuracy in differentiating
between classes, and high accuracy and precision in estimating evolutionary parameters, with optimal performance achieved by its neural
network architecture. Application of CLOUDe to empirical data from Drosophila suggests that deletion primarily targets genes with unique
functions, with further analysis showing these functions to be enriched for protein deubiquitination. Thus, CLOUDe represents a key advance in

learning about the role of gene deletion in functional evolution and adaptation.
Availability and implementation: CLOUDe is freely available on GitHub (https://github.com/anddssan/CLOUDe).

1 Introduction

Gene deletion is a mutational process that primarily affects mem-
bers of multi-copy gene families (Albalat and Canestro 2016).
Thus, gene duplication and deletion are naturally intertwined, to-
gether contributing to evolutionary turnover that drives diver-
gence and speciation (Zhang 2003, Albalat and Canestro 2016).
In particular, gene duplication produces two copies of an ances-
tral gene, both of which may be evolutionarily retained through
mechanisms that either result in their functional redundancy
(conservation; Ohno 1970, Zhang 2003) or uniqueness (neofunc-
tionalization, subfunctionalization, or both; Ohno 1970, Force
et al. 1999, Stoltzfus 1999, Zhang 2003, He and Zhang 2005,
Rastogi and Liberles 2005). Traditionally, deletion is thought of
as a nonadaptive process that rids genomes of functional redun-
dancy, such that it generally receives less attention than duplica-
tion in evolutionary turnover studies (Albalat and Canestro
2016, Assis 2019). Yet, mounting evidence suggests that deletion
may promote adaptation via the “less-is-more” evolutionary hy-
pothesis (Olson 1999), as it often targets genes harboring unique
sequences, expression profiles, and molecular functions (Hottes
et al. 2013, Kvitek and Sherlock 2013, Albalat and Canestro
2016, Assis 2019). Hence, determining the relative prevalence of
redundant and unique functions among deleted genes, as well as

the parameters underlying their evolution, can shed light on the
role of deletion in adaptation.

Though several studies have investigated the adaptive signifi-
cance of deleted genes (Hottes et al. 2013, Kvitek and Sherlock
2013, Albalat and Canestro 2016, Assis 2019), there are cur-
rently no methods for predicting their functional redundancy or
underlying evolutionary parameters. However, DeGiorgio and
Assis (2021) recently developed an analogous method for gene
duplication, CLOUD (CLassification using Ornstein—Uhlenbeck
of Duplications), which uses expression data from two species
to predict the evolutionary mechanisms and parameters in-
volved in the retention of duplicate genes. Specifically, CLOUD
first models expression evolution after gene duplication along a
phylogeny relating the two species as an Ornstein—Uhlenbeck
(OU) process (DeGiorgio and Assis 2021), an extension of the
Brownian motion random walk that is constrained by a con-
stant pull toward an optimum (Martins 1994). Hence, random
drift is represented by Brownian motion, natural selection by
pull, and fittest phenotype by the optimum (Hansen 1997,
Butler and King 2004). Then, CLOUD uses a multi-layer neural
network architecture to predict evolutionary retention mecha-
nisms and parameters of duplicate genes (DeGiorgio and Assis
2021). Recently, a similar machine learning framework, PiXi
(Predlcting eXpression dIvergence), was designed for predicting
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expression divergence and expression optima of single-copy
genes in two species (Piya et al. 2023). PiXi also models expres-
sion evolution as an OU process and uses a multi-layer neural
network, as well as two additional machine learning architec-
tures—random forest and support vector machine—for making
predictions (Piya et al. 2023). Encouragingly, both CLOUD
(DeGiorgio and Assis 2021) and PiXi (Piya et al. 2023) demon-
strate high predictive power and accuracy and also globally out-
perform alternative distance-based methods (Perry and Assis
2016, Piya et al. 2023), highlighting the utility of leveraging ma-
chine learning for these types of evolutionary questions.

With this in mind, we present CLassification using Ornstein—
Uhlenbeck of Deletions (CLOUDe). Similar to CLOUD
(DeGiorgio and Assis 2021) and PiXi (Piya et al. 2023),
CLOUDe models expression evolution after gene deletion along
a phylogeny relating two sister species as an OU process. As
with PiXi (Piya et al. 2023), the output of these models is fed to
predictors composing multi-layer neural network, random for-
est, and support vector machine architectures—in addition to a
newly implemented extreme gradient boosting architecture—
which classify deleted genes as either “redundant” or “unique”
and estimate several parameters driving their evolution. We
show through an array of simulations that CLOUDe achieves
high power and accuracy in differentiating between
“redundant” and “unique” classes, as well as high accuracy
and precision in estimating evolutionary parameters. Further, in
contrast to the evolutionary scenarios examined by CLOUD
(DeGiorgio and Assis 2021) and PiXi (Piya et al. 2023), here we
apply maximum likelihood models based on OU evolution and
demonstrate the superior predictive ability of CLOUDe.
Application of the CLOUDe neural network predictor to empir-
ical data from Drosophila (Assis 2019) indicates that most de-
leted genes possess unique gene expression profiles, and that
evolution after deletion is driven by a combination of neutral
and selective forces, together supporting the hypothesis that
gene deletion can often be adaptive. CLOUDe has been imple-
mented as an open-source R package and is available with
instructions and an example dataset at https://github.com/andds
san/CLOUDe. Its input data can include gene expression mea-
sured for a single or multiple conditions of varying types, such
as tissues or developmental stages, making it applicable to a
wide range of unicellular and multicellular organisms.

2 Methods
2.1 Development of the CLOUDe predictors

Here we consider the scenario in which duplication created
two gene copies in the common ancestor of a pair of related
species, Species 1 and Species 2, and subsequent deletion
resulted in the loss of one of these gene copies in the lineage
of Species 1 (Fig. 1). Thus, Species 1 represents the derived
state and carries one gene copy, whereas Species 2 represents
the ancestral state and harbors both gene copies. We desig-
nate the gene in Species 1 as “derived” (D), the ortholog of
this gene in Species 2 as “survived” (S), and the gene present
in Species 2 that was deleted in Species 1 as “lost” (L).
Additionally, let 6, denote the expression optimum for D and
S genes. Similarly, let 0, denote the expression optimum for
the L gene, for the duplicate genes immediately after duplica-
tion in the ancestor, and for the single-copy gene prior to du-
plication in the ancestor. We thus assume that at least one of
the duplicate gene copies retained the expression optimum
from the ancestral copy, as this assumption is supported by
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Figure 1. Schematic of the deletion scenario considered in this study.
Depicted is the relationship between two species (black outer phylogeny)
and their genes (green inner phylogeny). At time tDuplication, a gene
(blue) underwent a duplication event, resulting in a pair of duplicate genes
in the ancestral lineage. At time tSpeciation, a speciation event led to the
emergence of the Species 1 and Species 2 lineages. At time tDeletion,
the pair of duplicate genes underwent a deletion event, resulting in the
loss of one gene copy in the lineage of Species 1 (red cross). Here, the
single-copy gene in Species 1 is denoted as D, the ortholog of this gene
in Species 2 as S, and the gene present in Species 2 that was deleted in
Species 1 as L. Note that either duplicate gene copy can be deleted, and
both possibilities are considered in this study.

empirical findings in several diverse taxa (Assis and Bachtrog
2013, Assis and Bachtrog 2015, Chau and Goodisman 2017,
Jiang and Assis 2019). We then adapt the OU framework to
model expression evolution along a phylogeny relating the D,
S, and L genes, with random changes occurring through phe-
notypic drift with strength ¢%, and changes toward expres-
sion optima 61 and 6, through selection with strength o. For
each deletion, we seek to predict whether the ancestral dupli-
cate gene targets were functionally “redundant” (6; = 6,) or
“unique” (01 # 6,), as well as 61, 0, and the relative strength
of drift to selection log;,(0?/(2%)), i.e. the log-transformed
stationary variance (Khabbazian et al. 2016, Bartoszek et al.
2017), underlying the evolution of the D, S, and L genes.

In our OU model, we assume that the gene expression vec-
tor for D, S, and L genes e = (ep, es,e1) € R? for a given con-
dition is distributed as multivariate normal (MVN) with
mean p and covariance matrix X (Brawand et al. 2011),
denoted by e ~ MVN(u, X). Therefore, the p = 3m-dimen-
sional input expression vector across 7 conditions is given by

x:(ED],ESl,eL],.-.,EDm,eSm,ELm) €R3m7 (1)

where e is the expression measurement for gene j€
{D, S, L} in condition k € {1,2,...,m} of a given deletion
event (see Section 2).

Following the approach used by PiXi (Piya et al. 2023), we
use expression data to predict evolutionary targets and
parameters of gene deletions. Given the input feature vector
x, we seek to predict the output response y, which for classifi-
cation is a single qualitative value for the label from either of
the K = 2 classes “redundant” and “unique”, and for regres-
sion is the 3m-dimensional vector of quantitative responses
for 3m parameter estimates 01, 0, and log;,(¢?/(22)) in each
of the m conditions. For these classification and regression
tasks, we follow the approaches of DeGiorgio and Assis
(2021) and Piya et al. (2023) in constructing three CLOUDe
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architectures that account for diverse linear and nonlinear
relationships between x and y: multi-layer neural network
(NN), random forest (RF), and support vector machine
(SVM), in addition to a newly implemented extreme gradient
boosting architecture (XGB).

2.2 Modeling gene expression as an OU process

Following Brawand et al. (2011), gene expression e =
(ep,es,eL) € R3 in each condition is distributed as multivariate
normal (MVN) with mean

(1 — eiaTD“)Ol + e Tos 0,
p=|(1—eTos)gy e oTsg, | €R’ (2)
0,

and covariance matrix

) 1 efszDS e*lﬂtTDS]_
o
D P K 1 ¥ | eR (3)
efzo(TDgL efzo(TDgL 1

denoted by e ~ MVN(u,X). Here, Tps, denotes the time
since the gene duplication event and is scaled to have a value
of one, whereas Tps represents the coalescence time of the D
and S gene copies and is drawn uniformly at random within
the interval [0, 1]. We assume that expression is independent
across conditions, but this assumption can be relaxed to ac-
count for inter-condition expression covariance (Revell 2008,
Revell and Collar 2009, Eastman et al. 2011, Clavel
etal. 2015).

2.3 Construction of the CLOUDe NN, XGB, RF, and
SVM predictors

We closely followed the procedure outlined by DeGiorgio
and Assis (2021) to design a dense feed-forward NN, with
the exception of considering two additional hidden layers, i.e.
L e€{0,1,2,3,4,5} (Supplementary Tables S5 and S6).
Similarly, we used the approach of Piya et al. (2023) to con-
struct RF and SVM predictors (Supplementary Table S5). For
the construction of the XGB architecture (Supplementary
Table S6), we used extreme gradient boosted decision trees
with maximum depths D € {1,2,3,4,5,6} with p = 3m in-
put features. Extreme gradient boosting is an ensemble
method that combines the results from sequential weak deci-
sion trees to produce a stronger final outcome (Chen and
Guestrin 2016). As with other implementations of gradient
boosting algorithms (Drucker and Cortes 1995), in extreme
gradient boosting each decision-tree-like predictor attempts
to correct the errors of its predecessor (Chen and Guestrin
2016). This correction is specifically achieved by applying
gradient descent, which minimizes the cost when adding new
learners (Drucker and Cortes 1995, Chen and Guestrin
2016). Then the final prediction for a given observation is the
weighted mean of predictions from each tree, leading to a
more precise result (Drucker and Cortes 1995, Chen and
Guestrin 2016). For the regression problem, the predictions
are the final result, whereas for the classification problem,
two probabilities (one for each class) are predicted, and then
the observation is classified according to the class with the
highest probability. These four machine learning architec-
tures were implemented in R (R Core Team 2021), using
Keras (Chollet et al. 2017) with a TensorFlow backend

(Abadi ef al. 2016) for the NN, xgboost (Chen and Guestrin
2016) for the XGB, ranger (Wright and Ziegler 2017) for the
RF, and liquidSVM (Steinwart and Thomann 2017) for
the SVM.

2.4 Training and testing the CLOUDe NN, XGB, RF,
and SVM predictors on simulated data

As with their construction, we followed DeGiorgio and Assis
(2021) and Piya et al. (2023) in training and testing the NN,
RF, and SVM architectures of CLOUDe, in addition to the
newly implemented XGB architecture. We first generated a
balanced training dataset with 20 000 observations (10 000
from each class) and an independent balanced test dataset
with 2000 observations (1000 from each class). To generate
these observations, we assumed 7 = 6 independent condi-
tions, which is the number of tissues in the empirical dataset
from Drosophila on which we later applied our method (see
Application of CLOUDe to empirical data from
Drosopbhila), for a total of p = 18 input features. For both
datasets, parameters 01, 0>, o, and ¢ were sampled indepen-
dently across many orders of magnitude, i.e. 01,0, € [0, 5],
log,o(2) €[0,3], and log,o(c?) € [-2,3]. These specific
ranges were chosen to capture the full distributions of poten-
tial parameter values, thus aiming to not inflate model perfor-
mance, as done for PiXi (Piya et al. 2023) and CLOUD
(DeGiorgio and Assis 2021). Specifically, the range for 64
and 0, was matched to that observed in the empirical dataset
used in CLOUDe (see Application of CLOUDe to empirical
data from Drosophila), whereas those for log,,(«) and
log,,(a?) were matched to wide ranges used in several previ-
ous studies (Hansen 1997, Butler and King 2004, Rohlfs
et al. 2014, Rohlfs and Nielsen 2015, DeGiorgio and Assis
2021, Piya et al. 2023). Thus, unless there is knowledge
about these parameter ranges in a particular study system, we
recommend that the same settings for log;,(2) and log,,(s?)
be used for other empirical analyses.

In our implemented rejection sampling step, parameters
01,05, o, and o> were repeatedly drawn for each simulated
observation until a set of expression values consistent with
the empirical values were obtained across all tissues for that
observation. Here, the class was determined to be
“redundant” when 0; = 0, and “unique” when 0; # 0,. We
simulated gene expression data x € R*” under model param-
eters for a given class, generating 10 000 simulated replicates
of parameter values. Then, we followed DeGiorgio and Assis
(2021) and Piya et al. (2023) to train the NN, RF, and SVM,
specifically using different hyperparameter settings for each
(Supplementary Table S5). For the NN, we used 5-fold cross-
validation to estimate optimal hyperparameters L, A and 7.
Whereas L is defined as the number of hidden layers in the
NN, hyperparameters 1 and y are used to control the degrees
of regularization and model sparsity, respectively. We consid-
ered six values of L € {0,1,...,5}, 11 values of y chosen
evenly across [0, 1], and 25 values of log,,(4) chosen evenly
across [—12,—3]. For the RF, we implemented Breiman’s al-
gorithm (Breiman 2001) with T = 500 trees, which was cho-
sen to be large enough such that the out-of-bag error
plateaued in initial experiments. For the SVM, we used 5-fold
cross-validation to estimate hyperparameters 7 and C.
Hyperparameter 7y influences the width of the radial basis ker-
nel, whereas C is a tuning parameter that defines penalization
of observations that violate the margin of the support vectors.
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We considered seven values of log;,(C) chosen evenly across
[-3, 3],and 11 values of y chosen evenly across [0.001, 5].

Likewise, the newly implemented XGB architecture was
trained using different hyperparameter settings (Supplementary
Table S5), and only the model with the lowest cross-validation
loss was used for testing. Specifically, we used optimization for
up to 500 iterations—with early stopping after 50 rounds with-
out cost minimization—and 5-fold cross-validation to estimate
hyperparameters D (parameter “max_depth” in xgboost; Chen
and Guestrin 2016), 7, 4, and  (Supplementary Table S3). In
xgboost (Chen and Guestrin 2016), “max_depth” controls the
size of the tree, or the maximum number of decision internal
splits in each predictor. Analogous to the NN architecture, 1
and y are used here to control the degrees of regularization and
model sparsity, respectively. Thus, interactions of hyperpara-
meters A and 7 in the form of 2(1 — 7) and Ay were used as the
values for parameters “lambda” and “alpha” in xgboost, re-
spectively. Finally,  (parameter “eta” in xgboost) is the learn-
ing rate that acts to shrink the feature weights obtained after
each boosting step, making the boosting process more conserva-
tive (Chen and Guestrin 2016). We considered six values of
D e€{1,2,...,6}, 11 values of y chosen evenly across [0, 1],
25 values of logy(4) chosen evenly across [-12, —3], and four
values of i chosen evenly across [0.01, 0.3].

To evaluate whether differences in the sequencing depth of
the test or empirical data affects classification performance,
we generated new simulated expression values with added
noise drawn from a normal distribution with a mean of zero
and a standard deviation of 0.001, 0.01, 0.1, or 1.
Therefore, a total of four new test sets were generated, each
serving as a proxy for expression values derived from tran-
scriptomic data sequenced at different hypothetical depths,
with greater noise corresponding to shallower depths. Last,
we used the previously trained four models of CLOUDe at
optimal settings (Supplementary Table S5) to classify the
newly simulated observations. Shapley analysis was per-
formed on the balanced, simulated training dataset using the
R package iml (Molnar 2018) and the CLOUDe
NN classifier.

2.5 Construction of the LRT predictor

After using an OU process to model the expression evolution
of deletion events, we used maximum likelihood to estimate
their parameters 01, 0>, o, and ¢2, and then a LRT to classify
them as either “redundant” or “unique”. For estimation of
evolutionary parameters, we built “unique” and “redundant”
models by using general-purpose optimization based on
Nelder-Mead (Nelder and Mead 1965) implemented in the
“optim” function of the R programming language (R Core
Team 2021). We followed Brawand et al. (2011) to generate
“redundant” and “unique” log-likelihood functions for opti-
mization. Both optimization and log-likelihood functions ran
on evolutionary parameters that were drawn independently
across many orders of magnitude, with 01, 0, € [0, 5],
logo(2) € [0, 3], logyo(d?) € [-2, 3], and Tps € [0, 1], as-
suming m = 6 conditions. As with the CLOUDe architec-
tures, our implemented rejection sampling step assured that
parameters 01,0, o, and ¢> were continuously drawn for
each simulated observation until a set of expression values
consistent with empirical values were obtained across all con-
ditions for that observation. For classification, we used hy-
pothesis testing in the form of a LRT involving the
“redundant” and “unique” models. Specifically, to
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investigate whether changes in expression optima have oc-
curred, we tested the null hypothesis in which genes in the
two lineages share the same optimum (6 = 6,, “redundant”)
against the alternative hypothesis of different optima
(01 # 0, “unique”) (Brawand et al. 2011). In a LRT, the null
hypothesis is nested within the alternative hypothesis (Lewis
et al. 2011), and the resulting P-value is used to assess the
probability of each model (Brawand et al. 2011), in which
P <.05 provides support for the alternative hypothesis.

2.6 Application of CLOUDe to empirical data
from Drosophila

We applied the best CLOUDe NN models to empirical data
consisting of 100 deletion events and their respective expression
abundances measured in six tissues of Drosophila melanogaster
and Drosophila pseudoobscura from the Dryad dataset associ-
ated with Assis (2019; found at https://doi.org/10.5061/dryad.
742564m). To identify these deletions, Assis (2019) performed
phylogenetic comparisons across 12 fully sequenced and anno-
tated Drosophila species to ascertain orthologous gene families,
extracted gene families with sizes of either one or two in both
D.melanogaster and D.pseudoobscura, and used parsimony to
infer and polarize deletion events. Of these 100 deletions, 54
occurred in the D.melanogaster lineage, and 46 in the
D.pseudoobscura lineage (Assis 2019). Expression abundances
were computed as fragments per kilobase of exon per million
fragments mapped (FPKM; Trapnell et al. 2013), quantile-
normalized, log-transformed, and filtered to remove genes with
little or no expression in all tissues (Assis 2019). It is important
to note that predictions may be inaccurate if genes are not
expressed, and users should therefore ensure that all genes are
expressed prior to applying CLOUDe to their data. We applied
the trained NN models with 2 hidden layers for the classifica-
tion problem, and 3 hidden layers for the regression problem, to
the 100 deletion events to predict their class as either
“redundant” or “unique”, and the 3 parameters 61, 6,
and log,,(a?/(24)).

Of the with 46 L genes in D.melanogaster, 11 are associated
with lethal phenotypes in FlyBase (Gramates et al. 2022). To
compare this proportion to the genome-wide proportion, we
performed exact binomial tests with the “binom.test” function
of the R stats package (R Core Team 2021). Specifically, we set
“x” to 11, “n” to 46, and “p” to 0.39 to denote the genome-
wide proportion of genes associated with lethal phenotypes in
FlyBase (Gramates et al. 2022). Of the 11 L genes associated
with lethal phenotypes, eight are classified as “unique”. To
compare this proportion to the proportion for “redundant” L
genes, we set “x” to 8, “n” to 11, and “p” to 0.55 to denote
the proportion of deleted “unique” genes.

To evaluate consistency between ranges of empirical and sim-
ulated log-transformed expression values, we simulated expres-
sion values from the three predicted evolutionary parameters
for the empirical data. It is important to note that CLOUDe
estimates the log-transformed  stationary  variance—
log,, (2 /(2a))—rather than log,,(2) and log,,(c?) separately
for each deletion event. Therefore, there are an infinite number
of combinations of « and ¢ that are compatible with a particu-
lar stationary variance. Therefore, we first needed to indepen-
dently and uniformly at random draw log,,(2) € [0, 3], and
then use this value to obtain log;,(s?) from the predicted sta-
tionary variance. We repeated this procedure 200 times for each
empirical observation. Because these 200 combinations of « and

o2 values derive from the same deletion event, we also
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associated them with the same pair of 6; and 6, values pre-
dicted for that deletion event. At the end of this process a total
of 20 000 derived observations were generated. Then we used
CLOUDe to simulate expression data using the 01, 0, o, and 62
assigned for each observation derived from the empirical data-
set, and compared these simulated expression values to the cor-
responding empirical values.

As a final empirical analysis, we used all “redundant” and
“unique” genes in D.melanogaster and D.pseudoobscura as
input for the DAVID Functional Annotation tool (Huang
et al. 2009, Sherman et al. 2022) to perform enrichment anal-
yses of annotated GO terms with default settings. The output
represented significant (P < .05) functional enrichments after
the Benjamini-Hochberg procedure.

3 Results
3.1 Prediction performance of CLOUDe

To assess prediction performance of CLOUDe, we trained and
tested each of its four architectures on the same independent
balanced datasets simulated under “redundant” and “unique”
classes (see Section 2). The training set consisted of 20 000
observations (10 000 for each class), and the test set consisted
of 2000 observations (1000 for each class). We followed similar
training and testing approaches as in DeGiorgio and Assis
(2021) and Piya et al. (2023), drawing OU parameters 01, 0>, o,
and ¢? for each dataset independently across many orders of
magnitude, ie. 01,0, €[0,5], logy(a) €[0,3], and
log,y(6%) € [-2,3], so as not to inflate model performance (see
Section 2). However, we implemented an additional rejection
sampling step in which simulation replicates with expression
values that were lower or higher than the respective minimum
or maximum expression values in an empirical dataset on which
we later applied CLOUDe (see Analysis of empirical data from
Drosophila) were rejected until a set of expression values consis-
tent with the empirical values was obtained across all condi-
tions. We drew these 4 evolutionary parameters for each of
m = 6 conditions to match the number of tissues in the empiri-
cal dataset, yielding a total of 24 random parameters per simu-
lated replicate. For comparison to our CLOUDe architectures,
we also applied a maximum likelihood approach that is classi-
cally used in the OU framework (Casella and Berger 2002,
Brawand et al. 2011, Clavel et al. 2015) to the same test data.
Specifically, we used maximum likelihood under an OU model
to estimate the evolutionary parameters 01, 0, o, and ¢ under
both “redundant” (0, = 6,) and “unique” (6 and 6, uncon-
strained) settings, and used a likelihood ratio test (LRT) to com-
pare the likelihoods of the estimated parameters under these
two settings and distinguish between “redundant” and
“unique” classes (see Section 2).

We first examined the power and accuracy of each of the
four CLOUDe architectures and the LRT in distinguishing be-
tween “redundant” and “unique” classes (Fig. 2). Across the
wide parameter space considered, classification power is highest
with the NN; slightly lower with the XGB, substantially lower
with the RF and SVM, and lowest with the LRT (Fig. 2A).
Classification accuracy follows a similar trend, with accuracies
of 97.90%, 96.10%, 93.60%, 90.45%, and 85.75% for the
NN, XGB, RF, SVM, and LRT, respectively (Fig. 2B). Even
when instead trained on highly unbalanced “redundant-
skewed” or “unique-skewed” datasets (see Section 2), the NN
demonstrates higher power and accuracy (96.65% and
96.35%; Supplementary Fig. S1) than the other CLOUDe

architectures trained on ideal balanced datasets (Fig. 2). Thus,
regardless of the chosen training set, the best overall classifica-
tion performance is achieved with the NN.

To assess how sequencing depth of the test data affects
classification performance, we applied CLOUDe to simulated
expression values with varying degrees of added noise (see
Section 2), as we expect that lower sequencing depths would
provide more uncertainty, and thus elevated noise in mea-
sured expression values. We generated a total of four new
test sets, each representing a hypothetical degree of noise
added to expression values (see Section 2), and applied the
CLOUDe classifier to each. We found that CLOUDe is still
able to achieve high power in differentiating between
“redundant” and “unique” classes for the noise scenarios
considered (Supplementary Fig. S2). Specifically, both the
NN and XGB retain high power with large amounts of noise,
with the NN still the best performer overall. Though these
results appear promising, we acknowledge that the perfor-
mance of CLOUDe, as with any other method, can be hin-
dered by shallow sequencing depth of the transcriptome, and
we assume that the expression values used as input to
CLOUDe are reliably measured.

As an additional experiment to assess the classification
power of CLOUDe, we considered an alternative evolution-
ary scenario in which the expression optimum for the single-
copy gene prior to duplication in the ancestor is 0y, which is
permitted to differ from 0; and 6,. In this scenario, the ex-
pression optima of the duplicate genes immediately after du-
plication in the ancestor are denoted by 67 and 0,. Following
the original scenario considered here, 6, denotes the expres-
sion optima for D and S genes, whereas 6, denotes the ex-
pression optimum for the L gene (Supplementary Fig. S3A).
We then generated a new test dataset using this model, and
used the previously trained CLOUDe NN, XGB, RF, and
SVM models to classify simulated observations. We found
that in this alternate scenario, CLOUDe still achieves high
power in differentiating between “redundant” and “unique”
classes (Supplementary Fig. S3B).

Given that CLOUDe retains high classification power even
when an alternative evolutionary scenario is considered, for
practical purposes we elected to proceed with the original sce-
nario presented in Fig. 1, investigating next how the classifi-
cation power and accuracy of the four CLOUDe
architectures and the LRT vary across smaller regions of the
parameter space with combinations of strength of selection
() and phenotypic drift (62) representing specific evolution-
ary scenarios (Fig. 3). Consistent with our findings for the
broad parameter space (Fig. 2), the four CLOUDe architec-
tures generally show comparable classification power and ac-
curacy in smaller regions of the parameter space, perhaps
because drawing test data from a restricted parameter space
yields similar values of features across conditions. As in re-
lated studies (DeGiorgio and Assis 2021, Piya et al. 2023),
these methods tend to have highest power and accuracy when
selection is strong (large o) or phenotypic drift is weak (small
o%; Supplementary Fig. $4), and lowest power when selection
is weak (small &) or phenotypic drift is strong (large o?; Fig. 3
and Supplementary Table S1). Also, consistent with our find-
ings for the broad parameter space (Fig. 2), all four CLOUDe
architectures typically have substantially higher power and
accuracy than the LRT when the parameter space is re-
stricted. The LRT performs relatively poorly for almost all
pairs of ranges for « and ¢2, with low power and accuracy
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Figure 2. Classification performance of the four CLOUDe architectures and LRT on balanced data simulated under parameters and (A) log10 (a) € [0,]
log10 (62) € [—2,3] Receiver operating characteristic curves evaluating true positive rate (i.e. power) across the full range of false positive rates (top) and
zoomed in to show false positive rates <25% and true positive rates >75% (bottom). (B) Confusion matrices depicting classification rates for the

two classes.

even in the ideal classification scenario with strong selection
(large o) and weak drift (small 62), when it often misclassifies
“unique” observations as “redundant” (Supplementary Fig.
S5). A possible explanation for this finding is that, as op-
posed to the four CLOUDe methods, classification with the
LRT is conditional on maximum likelihood estimates of five
model parameters (01, 0, o, 62, and Tps). Because there are
only three sets of input features, these parameters may not be
estimated well, resulting in higher misclassification rates with
the LRT than with any of the CLOUDe architectures.
Overall, CLOUDe demonstrates uniformly high classification
power and accuracy across a wide range of evolutionary
parameters, regardless of the chosen architecture, in a similar
manner as its predecessors (DeGiorgio and Assis 2021, Piya
et al. 2023).

Last, we assessed the accuracy and precision of each of the
four CLOUDe architectures and the LRT in predicting evolu-
tionary parameters 0y,0,, and log;,(¢?/(22)) by examining
distributions of their prediction errors (Fig. 4). This analysis
revealed that parameter predictions of all methods are gener-
ally accurate, with errors centered approximately on zero
(Supplementary Table S2), mirroring findings from related
studies (DeGiorgio and Assis 2021, Piya et al. 2023). Also
consistent with prior findings (DeGiorgio and Assis 2021,
Piya et al. 2023), comparisons of distribution widths show
that precision is notably higher for 6; and 6, than for
log,o(c%/(2a)), as well as higher for the “redundant” than
for the “unique” class, likely due to the additional degree of
freedom in estimating parameters for the “unique” class.
Despite these differences, all four CLOUDe architectures dis-
play higher precision than the LRT in parameter estimation
for both classes, with the NN again outshining the others by

also demonstrating the highest precision for estimat-
ing log,o(a/(22)).

As with classification, prediction performance of CLOUDe
is dependent on values of o and ¢? (Fig. 5, Supplementary
Figs S6 and S7; Supplementary Table S1). However, this de-
pendence differs among the parameter estimates. Specifically,
prediction performance for the expression optima 60; and 0,
tends to be best when selection is strong (large o) and drift is
weak (small ¢2), as found in prior studies of related methods
(DeGiorgio and Assis 2021, Piya et al. 2023). On the other
hand, prediction performance for log,(c?/(22)) is best
when drift is slightly weaker than selection. Moreover,
though all four CLOUDe architectures demonstrate compa-
rable overall performance in predicting expression optima in
most evolutionary scenarios, the NN noticeably outperforms
the others in predicting log,,(d%/(22)) when drift is strong
(large o%) or weak (small ¢?). Last, similar to our findings for
restricted parameter spaces (Fig. 3), all four CLOUDe archi-
tectures typically outperform the LRT by a considerable mar-
gin—though this is mitigated for log;,(c?/(2x)). Overall, the
LRT performs relatively poorly for almost all pairs of ranges
for o and ¢2, with high error even in the ideal classification
scenario with strong selection (large «) and weak drift
(small a?).

As a final analytical procedure, we conducted Shapley
analysis on the NN classifier to investigate the importance of
each feature for classification (see Section 2). We found that
features associated with the L gene are most important for
discriminating between classes (Supplementary Fig. S8). This
finding is consistent with how classes are defined in
CLOUDe, as only the expression optimum of the L gene is
allowed to be different from the expression optima of the D
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and S genes, ultimately defining the prediction problem for a
given observation.

3.2 Analysis of empirical data from Drosophila

Our simulation analyses demonstrate that CLOUDe has high
power and accuracy in predicting evolutionary targets, and
high accuracy and precision in predicting evolutionary
parameters, of gene deletions, with the best overall perfor-
mance achieved by its NN architecture. We thus applied the
CLOUDe NN to predict evolutionary targets and parameters
of gene deletion in Drosophila from expression data mea-
sured in six tissues (Assis 2019). We specifically analyzed 100
deletion events that occurred in either the D.melanogaster or
D.pseudoobscura lineage after 1. Note that, unlike for the
simulated data, the true classes of these 100 gene deletion
events are unknown.

Of the 100 deletion events examined, CLOUDe classified 55
as belonging to the “unique” class. Thus, consistent with the
results of a previous analysis of these deletions (Assis 2019),
CLOUDe predicts that the majority of Drosophila duplicate
genes possess unique expression profiles prior to deletion. These
results are also consistent with findings in many other systems
(Hottes et al. 2013, Kvitek and Sherlock 2013, Albalat
and Canestro 2016), providing additional support for the “less-
is-more” (Olson 1999) rather than the loss of redundancy expla-
nation for gene deletion (Albalat and Canestro 2016). As

expected by our model, “redundant” D, S, and L genes have sim-
ilar expression across tissues, whereas “unique” L genes have dif-
ferent (and typically lower) expression across tissues than D and
S genes (Supplementary Figs S9 and S10). Of the 46 L genes in
D.melanogaster, 11 (~24%) are associated with lethal
phenotypes (see Section 2), a proportion that is significantly
lower than the genome-wide proportion (~ 39%;
p =4.81 x 1072, exact binomial test). Though eight of these
11 L genes (~ 73%) belong to the “unique” class, this their diver-
gence (see Section 2), such that there are two gene copies in one
species and one gene copy in the other (Assis 2019), as in the sce-
nario depicted in Figure proportion is not significantly different
than that for the “redundant” class when we consider that
“unique” genes are more often targeted by deletion
(p = 3.65 x 1071, exact binomial test), suggesting that there is
no bias toward removing essential genes from either class.
Distributions of absolute differences between predicted 04
and 0, (i.e. |01 — 02]) and of predicted log,,(c?/(22)) differ
for the two classes (Fig. 6). In particular, |01 — 01| is signifi-
cantly larger for the “unique” class (p <2.22 x 107",
Mann-Whitney U test, see Section 2), consistent with expect-
ations of the OU model underlying CLOUDe. Additionally,
predicted log,,(%/(22)) values tend to be negative for both
classes (p =6.96 x107*  for “redundant” and p =
7.30 x 107°¢ for “unique”, Wilcoxon signed-rank tests, see
Section 2), perhaps indicating that selection generally plays
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a larger role than drift in evolution after gene deletion (see
Section 4 for other possible reasons). However, distributions
of predicted log;,(a/(2%)) are not significantly different be-
tween “redundant” and “unique” classes, suggesting that the
strength of drift relative to that of selection acting on these
genes is the same regardless of class. It is important to note
that log;,(a?/(2a)) reflects the stationary variance along the
D, S, and L phylogeny (see Fig. 1), suggesting that caution
should be taken when interpreting the roles of selection and
drift at various evolutionary timepoints involving gene dele-
tion events.

To evaluate consistency between empirical and simulated ex-
pression values, we compared empirical expression values to
those simulated from parameter predictions obtained from ap-
plication of CLOUDe to our empirical dataset (see Section 2).
We found that distributions of empirical and simulated expres-
sion values are similar for D and S genes, but significantly differ-
ent for L genes (p =2.70 x 1071, Mann-Whitney U test),
which  have larger predicted than empirical values
(Supplementary Fig. S11A). One explanation for this observa-
tion is that our model allows the expression optimum of the L
gene to be different from the expression optima of the D and S
genes in the “unique” class, which can result in inflated, but not
unexpected, values. However, upon further investigation, we
found that this discrepancy may be due to the very low expres-
sion of some L genes, as CLOUDe does not predict expression
values of zero and rarely predicts expression values close to zero
(Supplementary Fig. S11B). Indeed, if we apply a common
threshold for expression and remove values with FPKM < 1
(i-e. less than log,,(1+FPKM) = log,,(1 + 1) & 0.3), then the
distributions of empirical and simulated expression values are
no longer significantly different (Supplementary Fig. S11C).

We next studied functions associated with ancestral pairs
of Drosophila duplicate genes prior to deletion (S and L
genes; Fig. 1) by using DAVID (Huang et al. 2009, Sherman
et al. 2022) to evaluate the enrichment of gene ontology
(GO) terms (Ashburner et al. 2000, Gene Ontology
Consortium ef al. 2023) in a target gene list against the
genome-wide background (see Section 2). We ran DAVID
twice, with the target list containing predicted “redundant”

genes first, and “unique” genes the second time (see Section
2). Comparisons of statistically significant GO terms between
runs revealed distinct functional differences between
“redundant” (Supplementary Table S3 and Supplementary
Fig. S12A) and “unique” (Supplementary Table S4 and
Supplementary Fig. S12B) genes. In particular, “redundant”
genes are primarily enriched for functions related to protein
processing (biological process), and specifically to acyl trans-
ferase activity (molecular function), on the external side of
the plasma membrane (cellular component). In contrast,
“unique” genes are enriched for functions related to protein
deubiquitination (biological process), and specifically to
thiol-dependent ubiquitin-specific protease activity (molecu-
lar function), in the mitochondrial outer membrane (cellu-
lar component).

Last, we performed a case study of the “unique” genes with
the largest absolute difference between 0 and 0, (i.e. |01 — 0;])
and the highest magnitude negative log-transformed stationary
variance, as such genes display the greatest evidence of unique-
ness. These genes represent a scenario in which there was a dele-
tion in the D.pseudoobscura lineage, such that the
D.melanogaster lineage contains the ancestral pair of “unique”
duplicate genes Ran (CG1404, S) and Ran-like (CG7815, L). In
this case, Ran is the parent gene that gave rise to a duplicate
gene copy Ran-like (Tracy et al. 2010, Larracuente and
Presgraves 2012), which was then deleted in the D.pseudoobs-
cura lineage. Ran is broadly expressed across all tissues ana-
lyzed here and is most highly expressed in ovary, whereas Ran-
like is tissue-specific and primarily expressed in testis (Kunte
2009, Gramates et al. 2022). This case is therefore an example
of the long-standing “out of the testis” hypothesis for the origin
of genes created by gene duplication (Kaessmann 2010), as well
as of the recent “into the ovary” hypothesis, which posits that
gene deletion preferentially removes genes that are not highly
expressed in ovary, perhaps promoting adaptation by salvaging
genes that contribute to the evolution of female reproductive
phenotypes (Assis 2019). Indeed, Ran is a biologically impor-
tant gene (Tracy et al. 2010, Boudhraa et al. 2020, Mirsalehi
et al. 2021, Gramates et al. 2022) with many associated lethal
phenotypes, in contrast to no lethal phenotypes observed for
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Ran-like (Gramates et al. 2022). Moreover, overexpression of
Ran are associated with numerous forms of cancers, including
ovarian and breast carcinomas (Boudhraa et al. 2020). On the
other hand, disruptions in the expression of Ran-like causes
spermatid disfunction and other germline conflicts during sper-
matogenesis (Kunte 2009, Tracy et al. 2010, Larracuente and
Presgraves 2012). These conflicts may explain its deletion in the
D.pseudoobscura lineage, perhaps representing an interesting
avenue of future research.

4 Discussion

CLOUDe represents the first model-based machine learning
framework tailored to the problem of predicting evolutionary
targets and parameters of gene deletion from expression data.
Specifically, CLOUDe uses an OU model overlaid by NN,
XGB, RF, and SVM architectures for predicting whether the
targets of gene deletion are “redundant” or “unique”, as well
as their expression optima and relative roles of selection and
drift in their evolution. Applications of CLOUDe to simu-
lated data demonstrate innately high power and accuracy in
differentiating between “redundant” and “unique” genes
(Figs 2 and 3), as well as high accuracy and precision in esti-
mating their evolutionary parameters (Figs 4 and 5), regard-
less of the machine learning architecture used. These analyses
also reveal the NN as the globally best performer in predict-
ing both evolutionary targets and parameters of gene dele-
tion. Though they do not exhibit the best performance in our
study, the XGB, RF, and SVM architectures of CLOUDe can
be of great value in other settings. Specifically, XGB and RF
may be ideal when expression data are unavailable for some
conditions or genes, as these methods are able to naturally
handle missing data (Drucker and Cortes 1995, Breiman
2001, Hastie et al. 2009, Chen and Guestrin 2016). The
SVM architecture, on the other hand, may be advantageous
when there are expression data for one or few conditions, as
it can increase dimensionality (Scholkopf et al. 2001,
Chapelle et al. 2006). Therefore, the inclusion of these four
machine learning architectures in CLOUDe promotes flexibil-
ity in its usage. Additionally, though expression data for mul-
tiple of the same conditions in three or more species are
currently scarce, future extensions of the CLOUDe frame-
work to more than two species may improve its prediction
performance.

Our application of the CLOUDe NN to empirical data
from Drosophila reveals that deletion often targets genes
with unique expression profiles, supporting the hypothesis
that gene deletion is not simply an evolutionary mechanism
for ridding the genome of redundancy (Olson 1999, Hottes
et al. 2013, Kvitek and Sherlock 2013, Albalat and Canestro
2016, Assis 2019). Moreover, predicted expression optima
are generally consistent with theoretical expectations for each
class (Fig. 6), and predicted log-transformed stationary var-
iances are typically negative for both classes (Fig. 6), implying
that selection plays a larger role in the evolution of deleted
genes. However, one has to consider that here the log-
transformed stationary variance is generally expected to be
negative for two reasons: the magnitudes of selection scenar-
ios considered in relation to drift (i.e. stationary variance is
proportional to the ratio of ¢ and a), and the fact that
log;,() is always non-negative whereas log;,(c?) is allowed
to be negative when drawing parameters for our simulations.
Moreover, our investigation of empirical expression values

Campelo dos Santos et al.

showed that most “unique” L genes in Drosophila are pri-
marily expressed in testis and accessory gland tissues. Thus,
many such cases possibly represent examples of the long-
standing “out of the testis” hypothesis for the origin of genes
created by gene duplication (Kaessmann 2010), as in our case
study. Further, functional enrichment analyses of these em-
pirical data show that “redundant” genes are often involved
in protein processing activities on the external side of the
plasma membrane, whereas “unique” genes are often associ-
ated with protein deubiquitination in the mitochondrial outer
membrane, suggesting that deletion targets distinct functions
when removing “redundant” versus “unique” genes from the
genome. Together, these findings support the reliability of
CLOUDe predictions.

Last, we wish to highlight that the joint application of
CLOUD and CLOUDe can detail the pathway that ultimately
leads to the loss of unique genes. For example, a previous ap-
plication of CLOUD to empirical data from Drosophila
showed that most duplicate genes rapidly acquire unique ex-
pression profiles (DeGiorgio and Assis 2021). Thus, it is not
surprising that our application of the CLOUDe NN to de-
leted genes from the same species indicates that most targets
of gene deletion possess unique expression profiles. Further,
CLOUD and CLOUDe both predict classes from gene expres-
sion, which is widely regarded as an ideal proxy for function,
as divergent expression profiles correlate with protein-coding
gene sequence divergence (Nuzhdin et al. 2004, Subramanian
and Kumar 2004, Lemos et al. 2005, Hunt et al. 2013, Assis
and Kondrashov 2014, Jiang and Assis 2017, Mabhler ef al.
2017, Assis 2019) and other functional metrics (Ge et al.
2001, Zhou et al. 2002, Bhardwaj and Lu 2005, French and
Pavlidis 2011). Indeed, our functional enrichment analyses
uncovered distinct functions in “redundant” and “unique”
genes targeted by deletion in Drosophila. Our case study of a
pair of “unique” genes also provides support for their unique
functions, as these genes are highly expressed in opposite sex
tissues (Chippindale et al. 2001, Kunte 2009, Patten and
Haig 2009, Tracy et al. 2010, Domingues 2014). Hence, this
example demonstrates how researchers with expression data
from duplication and deletion events can combine the output
of CLOUD and CLOUDe to shed light on functional out-
comes of gene turnover in a biological system of interest.
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