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Abstract 
Motivation: Gene deletion is traditionally thought of as a nonadaptive process that removes functional redundancy from genomes, such that it 
generally receives less attention than duplication in evolutionary turnover studies. Yet, mounting evidence suggests that deletion may promote 
adaptation via the “less-is-more” evolutionary hypothesis, as it often targets genes harboring unique sequences, expression profiles, and 
molecular functions. Hence, predicting the relative prevalence of redundant and unique functions among genes targeted by deletion, as well as 
the parameters underlying their evolution, can shed light on the role of gene deletion in adaptation.
Results: Here, we present CLOUDe, a suite of machine learning methods for predicting evolutionary targets of gene deletion events from 
expression data. Specifically, CLOUDe models expression evolution as an Ornstein–Uhlenbeck process, and uses multi-layer neural network, 
extreme gradient boosting, random forest, and support vector machine architectures to predict whether deleted genes are “redundant” or 
“unique”, as well as several parameters underlying their evolution. We show that CLOUDe boasts high power and accuracy in differentiating 
between classes, and high accuracy and precision in estimating evolutionary parameters, with optimal performance achieved by its neural 
network architecture. Application of CLOUDe to empirical data from Drosophila suggests that deletion primarily targets genes with unique 
functions, with further analysis showing these functions to be enriched for protein deubiquitination. Thus, CLOUDe represents a key advance in 
learning about the role of gene deletion in functional evolution and adaptation.
Availability and implementation: CLOUDe is freely available on GitHub (https://github.com/anddssan/CLOUDe).

1 Introduction

Gene deletion is a mutational process that primarily affects mem-
bers of multi-copy gene families (Albalat and Ca~nestro 2016). 
Thus, gene duplication and deletion are naturally intertwined, to-
gether contributing to evolutionary turnover that drives diver-
gence and speciation (Zhang 2003, Albalat and Ca~nestro 2016). 
In particular, gene duplication produces two copies of an ances-
tral gene, both of which may be evolutionarily retained through 
mechanisms that either result in their functional redundancy 
(conservation; Ohno 1970, Zhang 2003) or uniqueness (neofunc-
tionalization, subfunctionalization, or both; Ohno 1970, Force 
et al. 1999, Stoltzfus 1999, Zhang 2003, He and Zhang 2005, 
Rastogi and Liberles 2005). Traditionally, deletion is thought of 
as a nonadaptive process that rids genomes of functional redun-
dancy, such that it generally receives less attention than duplica-
tion in evolutionary turnover studies (Albalat and Ca~nestro 
2016, Assis 2019). Yet, mounting evidence suggests that deletion 
may promote adaptation via the “less-is-more” evolutionary hy-
pothesis (Olson 1999), as it often targets genes harboring unique 
sequences, expression profiles, and molecular functions (Hottes 
et al. 2013, Kvitek and Sherlock 2013, Albalat and Ca~nestro 
2016, Assis 2019). Hence, determining the relative prevalence of 
redundant and unique functions among deleted genes, as well as 

the parameters underlying their evolution, can shed light on the 
role of deletion in adaptation.

Though several studies have investigated the adaptive signifi-
cance of deleted genes (Hottes et al. 2013, Kvitek and Sherlock 
2013, Albalat and Ca~nestro 2016, Assis 2019), there are cur-
rently no methods for predicting their functional redundancy or 
underlying evolutionary parameters. However, DeGiorgio and 
Assis (2021) recently developed an analogous method for gene 
duplication, CLOUD (CLassification using Ornstein–Uhlenbeck 
of Duplications), which uses expression data from two species 
to predict the evolutionary mechanisms and parameters in-
volved in the retention of duplicate genes. Specifically, CLOUD 
first models expression evolution after gene duplication along a 
phylogeny relating the two species as an Ornstein–Uhlenbeck 
(OU) process (DeGiorgio and Assis 2021), an extension of the 
Brownian motion random walk that is constrained by a con-
stant pull toward an optimum (Martins 1994). Hence, random 
drift is represented by Brownian motion, natural selection by 
pull, and fittest phenotype by the optimum (Hansen 1997, 
Butler and King 2004). Then, CLOUD uses a multi-layer neural 
network architecture to predict evolutionary retention mecha-
nisms and parameters of duplicate genes (DeGiorgio and Assis 
2021). Recently, a similar machine learning framework, PiXi 
(PredIcting eXpression dIvergence), was designed for predicting 
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expression divergence and expression optima of single-copy 
genes in two species (Piya et al. 2023). PiXi also models expres-
sion evolution as an OU process and uses a multi-layer neural 
network, as well as two additional machine learning architec-
tures—random forest and support vector machine—for making 
predictions (Piya et al. 2023). Encouragingly, both CLOUD 
(DeGiorgio and Assis 2021) and PiXi (Piya et al. 2023) demon-
strate high predictive power and accuracy and also globally out-
perform alternative distance-based methods (Perry and Assis 
2016, Piya et al. 2023), highlighting the utility of leveraging ma-
chine learning for these types of evolutionary questions.

With this in mind, we present CLassification using Ornstein– 
Uhlenbeck of Deletions (CLOUDe). Similar to CLOUD 
(DeGiorgio and Assis 2021) and PiXi (Piya et al. 2023), 
CLOUDe models expression evolution after gene deletion along 
a phylogeny relating two sister species as an OU process. As 
with PiXi (Piya et al. 2023), the output of these models is fed to 
predictors composing multi-layer neural network, random for-
est, and support vector machine architectures—in addition to a 
newly implemented extreme gradient boosting architecture— 
which classify deleted genes as either “redundant” or “unique” 
and estimate several parameters driving their evolution. We 
show through an array of simulations that CLOUDe achieves 
high power and accuracy in differentiating between 
“redundant” and “unique” classes, as well as high accuracy 
and precision in estimating evolutionary parameters. Further, in 
contrast to the evolutionary scenarios examined by CLOUD 
(DeGiorgio and Assis 2021) and PiXi (Piya et al. 2023), here we 
apply maximum likelihood models based on OU evolution and 
demonstrate the superior predictive ability of CLOUDe. 
Application of the CLOUDe neural network predictor to empir-
ical data from Drosophila (Assis 2019) indicates that most de-
leted genes possess unique gene expression profiles, and that 
evolution after deletion is driven by a combination of neutral 
and selective forces, together supporting the hypothesis that 
gene deletion can often be adaptive. CLOUDe has been imple-
mented as an open-source R package and is available with 
instructions and an example dataset at https://github.com/andds 
san/CLOUDe. Its input data can include gene expression mea-
sured for a single or multiple conditions of varying types, such 
as tissues or developmental stages, making it applicable to a 
wide range of unicellular and multicellular organisms.

2 Methods

2.1 Development of the CLOUDe predictors
Here we consider the scenario in which duplication created 
two gene copies in the common ancestor of a pair of related 
species, Species 1 and Species 2, and subsequent deletion 
resulted in the loss of one of these gene copies in the lineage 
of Species 1 (Fig. 1). Thus, Species 1 represents the derived 
state and carries one gene copy, whereas Species 2 represents 
the ancestral state and harbors both gene copies. We desig-
nate the gene in Species 1 as “derived” (D), the ortholog of 
this gene in Species 2 as “survived” (S), and the gene present 
in Species 2 that was deleted in Species 1 as “lost” (L). 
Additionally, let h1 denote the expression optimum for D and 
S genes. Similarly, let h2 denote the expression optimum for 
the L gene, for the duplicate genes immediately after duplica-
tion in the ancestor, and for the single-copy gene prior to du-
plication in the ancestor. We thus assume that at least one of 
the duplicate gene copies retained the expression optimum 
from the ancestral copy, as this assumption is supported by 

empirical findings in several diverse taxa (Assis and Bachtrog 
2013, Assis and Bachtrog 2015, Chau and Goodisman 2017, 
Jiang and Assis 2019). We then adapt the OU framework to 
model expression evolution along a phylogeny relating the D, 
S, and L genes, with random changes occurring through phe-
notypic drift with strength r2, and changes toward expres-
sion optima h1 and h2 through selection with strength a. For 
each deletion, we seek to predict whether the ancestral dupli-
cate gene targets were functionally “redundant” (h1 ¼ h2) or 
“unique” (h1 6¼ h2), as well as h1, h2, and the relative strength 
of drift to selection log10ðr

2=ð2aÞÞ, i.e. the log-transformed 
stationary variance (Khabbazian et al. 2016, Bartoszek et al. 
2017), underlying the evolution of the D, S, and L genes.

In our OU model, we assume that the gene expression vec-
tor for D, S, and L genes e ¼ eD; eS; eLð Þ 2 R3 for a given con-
dition is distributed as multivariate normal (MVN) with 
mean l and covariance matrix R (Brawand et al. 2011), 
denoted by e � MVN l;Rð Þ. Therefore, the p ¼ 3m-dimen-
sional input expression vector across m conditions is given by 

x ¼ eD1; eS1; eL1; . . . ; eDm; eSm; eLmð Þ 2 R3m; (1) 

where ejk is the expression measurement for gene j 2
D; S; Lf g in condition k 2 1;2; . . . ;mf g of a given deletion 

event (see Section 2):
Following the approach used by PiXi (Piya et al. 2023), we 

use expression data to predict evolutionary targets and 
parameters of gene deletions. Given the input feature vector 
x, we seek to predict the output response y, which for classifi-
cation is a single qualitative value for the label from either of 
the K ¼ 2 classes “redundant” and “unique”, and for regres-
sion is the 3m-dimensional vector of quantitative responses 
for 3m parameter estimates h1, h2, and log10ðr

2=ð2aÞÞ in each 
of the m conditions. For these classification and regression 
tasks, we follow the approaches of DeGiorgio and Assis 
(2021) and Piya et al. (2023) in constructing three CLOUDe 

Figure 1. Schematic of the deletion scenario considered in this study. 
Depicted is the relationship between two species (black outer phylogeny) 
and their genes (green inner phylogeny). At time tDuplication, a gene 
(blue) underwent a duplication event, resulting in a pair of duplicate genes 
in the ancestral lineage. At time tSpeciation, a speciation event led to the 
emergence of the Species 1 and Species 2 lineages. At time tDeletion, 
the pair of duplicate genes underwent a deletion event, resulting in the 
loss of one gene copy in the lineage of Species 1 (red cross). Here, the 
single-copy gene in Species 1 is denoted as D, the ortholog of this gene 
in Species 2 as S, and the gene present in Species 2 that was deleted in 
Species 1 as L. Note that either duplicate gene copy can be deleted, and 
both possibilities are considered in this study.
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architectures that account for diverse linear and nonlinear 
relationships between x and y: multi-layer neural network 
(NN), random forest (RF), and support vector machine 
(SVM), in addition to a newly implemented extreme gradient 
boosting architecture (XGB).

2.2 Modeling gene expression as an OU process
Following Brawand et al. (2011), gene expression e ¼
eD; eS; eLð Þ 2 R3 in each condition is distributed as multivariate 

normal (MVN) with mean 

l ¼

1 � e�aTDSð Þh1 þ e�aTDSh2

1 � e�aTDSð Þh1 þ e�aTDSh2

h2

2

6

4

3

7

5
2 R3 (2) 

and covariance matrix 

R ¼
r2

2a

1 e�2aTDS e�2aTDSL

e�2aTDS 1 e�2aTDSL

e�2aTDSL e�2aTDSL 1

2

6

4

3

7

5
2 R3�3; (3) 

denoted by e � MVN l;Rð Þ. Here, TDSL denotes the time 
since the gene duplication event and is scaled to have a value 
of one, whereas TDS represents the coalescence time of the D 
and S gene copies and is drawn uniformly at random within 
the interval 0;1½ �. We assume that expression is independent 
across conditions, but this assumption can be relaxed to ac-
count for inter-condition expression covariance (Revell 2008, 
Revell and Collar 2009, Eastman et al. 2011, Clavel 
et al. 2015).

2.3 Construction of the CLOUDe NN, XGB, RF, and 
SVM predictors
We closely followed the procedure outlined by DeGiorgio 
and Assis (2021) to design a dense feed-forward NN, with 
the exception of considering two additional hidden layers, i.e. 
L 2 f0; 1; 2;3; 4;5g (Supplementary Tables S5 and S6). 
Similarly, we used the approach of Piya et al. (2023) to con-
struct RF and SVM predictors (Supplementary Table S5). For 
the construction of the XGB architecture (Supplementary 
Table S6), we used extreme gradient boosted decision trees 
with maximum depths D 2 f1;2; 3;4; 5;6g with p ¼ 3m in-
put features. Extreme gradient boosting is an ensemble 
method that combines the results from sequential weak deci-
sion trees to produce a stronger final outcome (Chen and 
Guestrin 2016). As with other implementations of gradient 
boosting algorithms (Drucker and Cortes 1995), in extreme 
gradient boosting each decision-tree-like predictor attempts 
to correct the errors of its predecessor (Chen and Guestrin 
2016). This correction is specifically achieved by applying 
gradient descent, which minimizes the cost when adding new 
learners (Drucker and Cortes 1995, Chen and Guestrin 
2016). Then the final prediction for a given observation is the 
weighted mean of predictions from each tree, leading to a 
more precise result (Drucker and Cortes 1995, Chen and 
Guestrin 2016). For the regression problem, the predictions 
are the final result, whereas for the classification problem, 
two probabilities (one for each class) are predicted, and then 
the observation is classified according to the class with the 
highest probability. These four machine learning architec-
tures were implemented in R (R Core Team 2021), using 
Keras (Chollet et al. 2017) with a TensorFlow backend 

(Abadi et al. 2016) for the NN, xgboost (Chen and Guestrin 
2016) for the XGB, ranger (Wright and Ziegler 2017) for the 
RF, and liquidSVM (Steinwart and Thomann 2017) for 
the SVM.

2.4 Training and testing the CLOUDe NN, XGB, RF, 
and SVM predictors on simulated data
As with their construction, we followed DeGiorgio and Assis 
(2021) and Piya et al. (2023) in training and testing the NN, 
RF, and SVM architectures of CLOUDe, in addition to the 
newly implemented XGB architecture. We first generated a 
balanced training dataset with 20 000 observations (10 000 
from each class) and an independent balanced test dataset 
with 2000 observations (1000 from each class). To generate 
these observations, we assumed m ¼ 6 independent condi-
tions, which is the number of tissues in the empirical dataset 
from Drosophila on which we later applied our method (see 
Application of CLOUDe to empirical data from 
Drosophila), for a total of p ¼ 18 input features. For both 
datasets, parameters h1; h2, a; and r2 were sampled indepen-
dently across many orders of magnitude, i.e. h1; h2 2 ½0;5�, 
log10ðaÞ 2 ½0; 3�, and log10ðr

2Þ 2 �2; 3½ �. These specific 
ranges were chosen to capture the full distributions of poten-
tial parameter values, thus aiming to not inflate model perfor-
mance, as done for PiXi (Piya et al. 2023) and CLOUD 
(DeGiorgio and Assis 2021). Specifically, the range for h1 

and h2 was matched to that observed in the empirical dataset 
used in CLOUDe (see Application of CLOUDe to empirical 
data from Drosophila), whereas those for log10ðaÞ and 
log10 r2ð Þ were matched to wide ranges used in several previ-
ous studies (Hansen 1997, Butler and King 2004, Rohlfs 
et al. 2014, Rohlfs and Nielsen 2015, DeGiorgio and Assis 
2021, Piya et al. 2023). Thus, unless there is knowledge 
about these parameter ranges in a particular study system, we 
recommend that the same settings for log10ðaÞ and log10 r2ð Þ

be used for other empirical analyses.
In our implemented rejection sampling step, parameters 

h1; h2, a; and r2 were repeatedly drawn for each simulated 
observation until a set of expression values consistent with 
the empirical values were obtained across all tissues for that 
observation. Here, the class was determined to be 
“redundant” when h1 ¼ h2 and “unique” when h1 6¼ h2. We 
simulated gene expression data x 2 R3m under model param-
eters for a given class, generating 10 000 simulated replicates 
of parameter values. Then, we followed DeGiorgio and Assis 
(2021) and Piya et al. (2023) to train the NN, RF, and SVM, 
specifically using different hyperparameter settings for each 
(Supplementary Table S5). For the NN, we used 5-fold cross- 
validation to estimate optimal hyperparameters L, k and c. 
Whereas L is defined as the number of hidden layers in the 
NN, hyperparameters k and c are used to control the degrees 
of regularization and model sparsity, respectively. We consid-
ered six values of L 2 f0;1; . . . ;5g, 11 values of c chosen 
evenly across ½0; 1�, and 25 values of log10ðkÞ chosen evenly 
across ½�12;�3�. For the RF, we implemented Breiman’s al-
gorithm (Breiman 2001) with T ¼ 500 trees, which was cho-
sen to be large enough such that the out-of-bag error 
plateaued in initial experiments. For the SVM, we used 5-fold 
cross-validation to estimate hyperparameters c and C. 
Hyperparameter c influences the width of the radial basis ker-
nel, whereas C is a tuning parameter that defines penalization 
of observations that violate the margin of the support vectors. 
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We considered seven values of log10ðCÞ chosen evenly across 
½�3; 3�, and 11 values of c chosen evenly across ½0:001; 5�.

Likewise, the newly implemented XGB architecture was 
trained using different hyperparameter settings (Supplementary 
Table S5), and only the model with the lowest cross-validation 
loss was used for testing. Specifically, we used optimization for 
up to 500 iterations—with early stopping after 50 rounds with-
out cost minimization—and 5-fold cross-validation to estimate 
hyperparameters D (parameter “max_depth” in xgboost; Chen 
and Guestrin 2016), c, k, and g (Supplementary Table S5). In 
xgboost (Chen and Guestrin 2016), “max_depth” controls the 
size of the tree, or the maximum number of decision internal 
splits in each predictor. Analogous to the NN architecture, k 

and c are used here to control the degrees of regularization and 
model sparsity, respectively. Thus, interactions of hyperpara-
meters k and c in the form of kð1 � cÞ and kc were used as the 
values for parameters “lambda” and “alpha” in xgboost, re-
spectively. Finally, g (parameter “eta” in xgboost) is the learn-
ing rate that acts to shrink the feature weights obtained after 
each boosting step, making the boosting process more conserva-
tive (Chen and Guestrin 2016). We considered six values of 
D 2 f1; 2; . . . ; 6g, 11 values of c chosen evenly across ½0; 1�, 
25 values of log10ðkÞ chosen evenly across ½�12;�3�, and four 
values of g chosen evenly across ½0:01; 0:3�.

To evaluate whether differences in the sequencing depth of 
the test or empirical data affects classification performance, 
we generated new simulated expression values with added 
noise drawn from a normal distribution with a mean of zero 
and a standard deviation of 0.001, 0.01, 0.1, or 1. 
Therefore, a total of four new test sets were generated, each 
serving as a proxy for expression values derived from tran-
scriptomic data sequenced at different hypothetical depths, 
with greater noise corresponding to shallower depths. Last, 
we used the previously trained four models of CLOUDe at 
optimal settings (Supplementary Table S5) to classify the 
newly simulated observations. Shapley analysis was per-
formed on the balanced, simulated training dataset using the 
R package iml (Molnar 2018) and the CLOUDe 
NN classifier.

2.5 Construction of the LRT predictor
After using an OU process to model the expression evolution 
of deletion events, we used maximum likelihood to estimate 
their parameters h1, h2, a, and r2, and then a LRT to classify 
them as either “redundant” or “unique”. For estimation of 
evolutionary parameters, we built “unique” and “redundant” 
models by using general-purpose optimization based on 
Nelder-Mead (Nelder and Mead 1965) implemented in the 
“optim” function of the R programming language (R Core 
Team 2021). We followed Brawand et al. (2011) to generate 
“redundant” and “unique” log-likelihood functions for opti-
mization. Both optimization and log-likelihood functions ran 
on evolutionary parameters that were drawn independently 
across many orders of magnitude, with h1; h2 2 ½0; 5�, 
log10ðaÞ 2 ½0; 3�, log10ðr

2Þ 2 ½�2; 3�, and TDS 2 ½0; 1�, as-
suming m ¼ 6 conditions. As with the CLOUDe architec-
tures, our implemented rejection sampling step assured that 
parameters h1; h2, a; and r2 were continuously drawn for 
each simulated observation until a set of expression values 
consistent with empirical values were obtained across all con-
ditions for that observation. For classification, we used hy-
pothesis testing in the form of a LRT involving the 
“redundant” and “unique” models. Specifically, to 

investigate whether changes in expression optima have oc-
curred, we tested the null hypothesis in which genes in the 
two lineages share the same optimum (h1 ¼ h2, “redundant”) 
against the alternative hypothesis of different optima 
(h1 6¼ h2, “unique”) (Brawand et al. 2011). In a LRT, the null 
hypothesis is nested within the alternative hypothesis (Lewis 
et al. 2011), and the resulting P-value is used to assess the 
probability of each model (Brawand et al. 2011), in which 
P< .05 provides support for the alternative hypothesis.

2.6 Application of CLOUDe to empirical data 
from Drosophila
We applied the best CLOUDe NN models to empirical data 
consisting of 100 deletion events and their respective expression 
abundances measured in six tissues of Drosophila melanogaster 
and Drosophila pseudoobscura from the Dryad dataset associ-
ated with Assis (2019; found at https://doi.org/10.5061/dryad. 
742564m). To identify these deletions, Assis (2019) performed 
phylogenetic comparisons across 12 fully sequenced and anno-
tated Drosophila species to ascertain orthologous gene families, 
extracted gene families with sizes of either one or two in both 
D.melanogaster and D.pseudoobscura, and used parsimony to 
infer and polarize deletion events. Of these 100 deletions, 54 
occurred in the D.melanogaster lineage, and 46 in the 
D.pseudoobscura lineage (Assis 2019). Expression abundances 
were computed as fragments per kilobase of exon per million 
fragments mapped (FPKM; Trapnell et al. 2013), quantile- 
normalized, log-transformed, and filtered to remove genes with 
little or no expression in all tissues (Assis 2019). It is important 
to note that predictions may be inaccurate if genes are not 
expressed, and users should therefore ensure that all genes are 
expressed prior to applying CLOUDe to their data. We applied 
the trained NN models with 2 hidden layers for the classifica-
tion problem, and 3 hidden layers for the regression problem, to 
the 100 deletion events to predict their class as either 
“redundant” or “unique”, and the 3 parameters h1, h2, 
and log10ðr

2=ð2aÞÞ.
Of the with 46 L genes in D.melanogaster, 11 are associated 

with lethal phenotypes in FlyBase (Gramates et al. 2022). To 
compare this proportion to the genome-wide proportion, we 
performed exact binomial tests with the “binom.test” function 
of the R stats package (R Core Team 2021). Specifically, we set 
“x” to 11, “n” to 46, and “p” to 0.39 to denote the genome- 
wide proportion of genes associated with lethal phenotypes in 
FlyBase (Gramates et al. 2022). Of the 11 L genes associated 
with lethal phenotypes, eight are classified as “unique”. To 
compare this proportion to the proportion for “redundant” L 
genes, we set “x” to 8, “n” to 11, and “p” to 0.55 to denote 
the proportion of deleted “unique” genes.

To evaluate consistency between ranges of empirical and sim-
ulated log-transformed expression values, we simulated expres-
sion values from the three predicted evolutionary parameters 
for the empirical data. It is important to note that CLOUDe 
estimates the log-transformed stationary variance— 
log10ðr

2=ð2aÞÞ—rather than log10ðaÞ and log10ðr
2Þ separately 

for each deletion event. Therefore, there are an infinite number 
of combinations of a and r2 that are compatible with a particu-
lar stationary variance. Therefore, we first needed to indepen-
dently and uniformly at random draw log10ðaÞ 2 ½0; 3�, and 
then use this value to obtain log10ðr

2Þ from the predicted sta-
tionary variance. We repeated this procedure 200 times for each 
empirical observation. Because these 200 combinations of a and 
r2 values derive from the same deletion event, we also 
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associated them with the same pair of h1 and h2 values pre-
dicted for that deletion event. At the end of this process a total 
of 20 000 derived observations were generated. Then we used 
CLOUDe to simulate expression data using the h1, h2, a, and r2 

assigned for each observation derived from the empirical data-
set, and compared these simulated expression values to the cor-
responding empirical values.

As a final empirical analysis, we used all “redundant” and 
“unique” genes in D.melanogaster and D.pseudoobscura as 
input for the DAVID Functional Annotation tool (Huang 
et al. 2009, Sherman et al. 2022) to perform enrichment anal-
yses of annotated GO terms with default settings. The output 
represented significant (P < :05) functional enrichments after 
the Benjamini-Hochberg procedure.

3 Results

3.1 Prediction performance of CLOUDe
To assess prediction performance of CLOUDe, we trained and 
tested each of its four architectures on the same independent 
balanced datasets simulated under “redundant” and “unique” 
classes (see Section 2). The training set consisted of 20 000 
observations (10 000 for each class), and the test set consisted 
of 2000 observations (1000 for each class). We followed similar 
training and testing approaches as in DeGiorgio and Assis 
(2021) and Piya et al. (2023), drawing OU parameters h1; h2, a;
and r2 for each dataset independently across many orders of 
magnitude, i.e. h1; h2 2 ½0; 5�, log10ðaÞ 2 ½0;3�, and 
log10ðr

2Þ 2 �2;3½ �, so as not to inflate model performance (see 
Section 2). However, we implemented an additional rejection 
sampling step in which simulation replicates with expression 
values that were lower or higher than the respective minimum 
or maximum expression values in an empirical dataset on which 
we later applied CLOUDe (see Analysis of empirical data from 
Drosophila) were rejected until a set of expression values consis-
tent with the empirical values was obtained across all condi-
tions. We drew these 4 evolutionary parameters for each of 
m ¼ 6 conditions to match the number of tissues in the empiri-
cal dataset, yielding a total of 24 random parameters per simu-
lated replicate. For comparison to our CLOUDe architectures, 
we also applied a maximum likelihood approach that is classi-
cally used in the OU framework (Casella and Berger 2002, 
Brawand et al. 2011, Clavel et al. 2015) to the same test data. 
Specifically, we used maximum likelihood under an OU model 
to estimate the evolutionary parameters h1, h2, a, and r2 under 
both “redundant” (h1 ¼ h2) and “unique” (h1 and h2 uncon-
strained) settings, and used a likelihood ratio test (LRT) to com-
pare the likelihoods of the estimated parameters under these 
two settings and distinguish between “redundant” and 
“unique” classes (see Section 2).

We first examined the power and accuracy of each of the 
four CLOUDe architectures and the LRT in distinguishing be-
tween “redundant” and “unique” classes (Fig. 2). Across the 
wide parameter space considered, classification power is highest 
with the NN, slightly lower with the XGB, substantially lower 
with the RF and SVM, and lowest with the LRT (Fig. 2A). 
Classification accuracy follows a similar trend, with accuracies 
of 97.90%, 96.10%, 93.60%, 90.45%, and 85.75% for the 
NN, XGB, RF, SVM, and LRT, respectively (Fig. 2B). Even 
when instead trained on highly unbalanced “redundant- 
skewed” or “unique-skewed” datasets (see Section 2), the NN 
demonstrates higher power and accuracy (96.65% and 
96.35%; Supplementary Fig. S1) than the other CLOUDe 

architectures trained on ideal balanced datasets (Fig. 2). Thus, 
regardless of the chosen training set, the best overall classifica-
tion performance is achieved with the NN.

To assess how sequencing depth of the test data affects 
classification performance, we applied CLOUDe to simulated 
expression values with varying degrees of added noise (see 
Section 2), as we expect that lower sequencing depths would 
provide more uncertainty, and thus elevated noise in mea-
sured expression values. We generated a total of four new 
test sets, each representing a hypothetical degree of noise 
added to expression values (see Section 2), and applied the 
CLOUDe classifier to each. We found that CLOUDe is still 
able to achieve high power in differentiating between 
“redundant” and “unique” classes for the noise scenarios 
considered (Supplementary Fig. S2). Specifically, both the 
NN and XGB retain high power with large amounts of noise, 
with the NN still the best performer overall. Though these 
results appear promising, we acknowledge that the perfor-
mance of CLOUDe, as with any other method, can be hin-
dered by shallow sequencing depth of the transcriptome, and 
we assume that the expression values used as input to 
CLOUDe are reliably measured.

As an additional experiment to assess the classification 
power of CLOUDe, we considered an alternative evolution-
ary scenario in which the expression optimum for the single- 
copy gene prior to duplication in the ancestor is h0, which is 
permitted to differ from h1 and h2. In this scenario, the ex-
pression optima of the duplicate genes immediately after du-
plication in the ancestor are denoted by h1 and h2. Following 
the original scenario considered here, h1 denotes the expres-
sion optima for D and S genes, whereas h2 denotes the ex-
pression optimum for the L gene (Supplementary Fig. S3A). 
We then generated a new test dataset using this model, and 
used the previously trained CLOUDe NN, XGB, RF, and 
SVM models to classify simulated observations. We found 
that in this alternate scenario, CLOUDe still achieves high 
power in differentiating between “redundant” and “unique” 
classes (Supplementary Fig. S3B).

Given that CLOUDe retains high classification power even 
when an alternative evolutionary scenario is considered, for 
practical purposes we elected to proceed with the original sce-
nario presented in Fig. 1, investigating next how the classifi-
cation power and accuracy of the four CLOUDe 
architectures and the LRT vary across smaller regions of the 
parameter space with combinations of strength of selection 
(a) and phenotypic drift (r2) representing specific evolution-
ary scenarios (Fig. 3). Consistent with our findings for the 
broad parameter space (Fig. 2), the four CLOUDe architec-
tures generally show comparable classification power and ac-
curacy in smaller regions of the parameter space, perhaps 
because drawing test data from a restricted parameter space 
yields similar values of features across conditions. As in re-
lated studies (DeGiorgio and Assis 2021, Piya et al. 2023), 
these methods tend to have highest power and accuracy when 
selection is strong (large a) or phenotypic drift is weak (small 
r2; Supplementary Fig. S4), and lowest power when selection 
is weak (small a) or phenotypic drift is strong (large r2; Fig. 3 
and Supplementary Table S1). Also, consistent with our find-
ings for the broad parameter space (Fig. 2), all four CLOUDe 
architectures typically have substantially higher power and 
accuracy than the LRT when the parameter space is re-
stricted. The LRT performs relatively poorly for almost all 
pairs of ranges for a and r2, with low power and accuracy 
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even in the ideal classification scenario with strong selection 
(large a) and weak drift (small r2), when it often misclassifies 
“unique” observations as “redundant” (Supplementary Fig. 
S5). A possible explanation for this finding is that, as op-
posed to the four CLOUDe methods, classification with the 
LRT is conditional on maximum likelihood estimates of five 
model parameters (h1, h2, a, r2, and TDS). Because there are 
only three sets of input features, these parameters may not be 
estimated well, resulting in higher misclassification rates with 
the LRT than with any of the CLOUDe architectures. 
Overall, CLOUDe demonstrates uniformly high classification 
power and accuracy across a wide range of evolutionary 
parameters, regardless of the chosen architecture, in a similar 
manner as its predecessors (DeGiorgio and Assis 2021, Piya 
et al. 2023).

Last, we assessed the accuracy and precision of each of the 
four CLOUDe architectures and the LRT in predicting evolu-
tionary parameters h1; h2, and log10ðr

2=ð2aÞÞ by examining 
distributions of their prediction errors (Fig. 4). This analysis 
revealed that parameter predictions of all methods are gener-
ally accurate, with errors centered approximately on zero 
(Supplementary Table S2), mirroring findings from related 
studies (DeGiorgio and Assis 2021, Piya et al. 2023). Also 
consistent with prior findings (DeGiorgio and Assis 2021, 
Piya et al. 2023), comparisons of distribution widths show 
that precision is notably higher for h1 and h2 than for 
log10ðr

2=ð2aÞ), as well as higher for the “redundant” than 
for the “unique” class, likely due to the additional degree of 
freedom in estimating parameters for the “unique” class. 
Despite these differences, all four CLOUDe architectures dis-
play higher precision than the LRT in parameter estimation 
for both classes, with the NN again outshining the others by 

also demonstrating the highest precision for estimat-
ing log10ðr

2=ð2aÞÞ.
As with classification, prediction performance of CLOUDe 

is dependent on values of a and r2 (Fig. 5, Supplementary 
Figs S6 and S7; Supplementary Table S1). However, this de-
pendence differs among the parameter estimates. Specifically, 
prediction performance for the expression optima h1 and h2 

tends to be best when selection is strong (large a) and drift is 
weak (small r2), as found in prior studies of related methods 
(DeGiorgio and Assis 2021, Piya et al. 2023). On the other 
hand, prediction performance for log10 r2=ð2aÞ

� �

is best 
when drift is slightly weaker than selection. Moreover, 
though all four CLOUDe architectures demonstrate compa-
rable overall performance in predicting expression optima in 
most evolutionary scenarios, the NN noticeably outperforms 
the others in predicting log10 r2=ð2aÞ

� �

when drift is strong 
(large r2) or weak (small r2). Last, similar to our findings for 
restricted parameter spaces (Fig. 3), all four CLOUDe archi-
tectures typically outperform the LRT by a considerable mar-
gin—though this is mitigated for log10 r2=ð2aÞ

� �

. Overall, the 
LRT performs relatively poorly for almost all pairs of ranges 
for a and r2, with high error even in the ideal classification 
scenario with strong selection (large a) and weak drift 
(small r2).

As a final analytical procedure, we conducted Shapley 
analysis on the NN classifier to investigate the importance of 
each feature for classification (see Section 2). We found that 
features associated with the L gene are most important for 
discriminating between classes (Supplementary Fig. S8). This 
finding is consistent with how classes are defined in 
CLOUDe, as only the expression optimum of the L gene is 
allowed to be different from the expression optima of the D 

Figure 2. Classification performance of the four CLOUDe architectures and LRT on balanced data simulated under parameters and (A) log10 (a) ‰ [0,] 
log10 (r2) ‰ [—2,3] Receiver operating characteristic curves evaluating true positive rate (i.e. power) across the full range of false positive rates (top) and 
zoomed in to show false positive rates �25% and true positive rates �75% (bottom). (B) Confusion matrices depicting classification rates for the 
two classes.
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Figure 3. Classification performance of the four CLOUDe architectures and LRT for balanced data simulated under specific parameter ranges for a and 
r

2. Top: power curves in which each datapoint represents the true positive rate at a 5% false positive rate for a pair of ranges for a and r2. Bottom: 
accuracy curves in which each datapoint represents the accuracy for a pair of ranges for a and r2. For additional ranges of a and r2, see Supplementary 
Fig. S4 and Supplementary Table S1.

Figure 4. Parameter prediction performance of the four CLOUDe architectures and LRT for data simulated under parameters log10ðaÞ 2 ½0; 3� and 
log10ðr

2Þ 2 �2; 3½ �. Violin plots display distributions of parameter prediction errors across m ¼ 6 conditions.
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and S genes, ultimately defining the prediction problem for a 
given observation.

3.2 Analysis of empirical data from Drosophila
Our simulation analyses demonstrate that CLOUDe has high 
power and accuracy in predicting evolutionary targets, and 
high accuracy and precision in predicting evolutionary 
parameters, of gene deletions, with the best overall perfor-
mance achieved by its NN architecture. We thus applied the 
CLOUDe NN to predict evolutionary targets and parameters 
of gene deletion in Drosophila from expression data mea-
sured in six tissues (Assis 2019). We specifically analyzed 100 
deletion events that occurred in either the D.melanogaster or 
D.pseudoobscura lineage after 1. Note that, unlike for the 
simulated data, the true classes of these 100 gene deletion 
events are unknown.

Of the 100 deletion events examined, CLOUDe classified 55 
as belonging to the “unique” class. Thus, consistent with the 
results of a previous analysis of these deletions (Assis 2019), 
CLOUDe predicts that the majority of Drosophila duplicate 
genes possess unique expression profiles prior to deletion. These 
results are also consistent with findings in many other systems 
(Hottes et al. 2013, Kvitek and Sherlock 2013, Albalat 
and Ca~nestro 2016), providing additional support for the “less- 
is-more” (Olson 1999) rather than the loss of redundancy expla-
nation for gene deletion (Albalat and Ca~nestro 2016). As 

expected by our model, “redundant” D, S, and L genes have sim-
ilar expression across tissues, whereas “unique” L genes have dif-
ferent (and typically lower) expression across tissues than D and 
S genes (Supplementary Figs S9 and S10). Of the 46 L genes in 
D.melanogaster, 11 (� 24%) are associated with lethal 
phenotypes (see Section 2), a proportion that is significantly 
lower than the genome-wide proportion (� 39%; 
p ¼ 4:81 � 10�2; exact binomial test). Though eight of these 
11 L genes (� 73%) belong to the “unique” class, this their diver-
gence (see Section 2), such that there are two gene copies in one 
species and one gene copy in the other (Assis 2019), as in the sce-
nario depicted in Figure proportion is not significantly different 
than that for the “redundant” class when we consider that 
“unique” genes are more often targeted by deletion 
(p ¼ 3:65 � 10�1; exact binomial test), suggesting that there is 
no bias toward removing essential genes from either class.

Distributions of absolute differences between predicted h1 

and h2 (i.e. jh1 � h2jÞ and of predicted log10 r2=ð2aÞ
� �

differ 
for the two classes (Fig. 6). In particular, jh1 � h2j is signifi-
cantly larger for the “unique” class (p < 2:22 � 10�16, 
Mann-Whitney U test, see Section 2), consistent with expect-
ations of the OU model underlying CLOUDe. Additionally, 
predicted log10 r2=ð2aÞ

� �

values tend to be negative for both 
classes (p ¼ 6:96 � 10�46 for “redundant” and p ¼
7:30 � 10�56 for “unique”, Wilcoxon signed-rank tests, see 
Section 2), perhaps indicating that selection generally plays 

Figure 5. Parameter prediction performance of the four CLOUDe architectures and LRT for data simulated under specific parameter ranges for a and r2. 
Each datapoint represents the mean squared error of a parameter estimate (rows) for each pair of a (columns) and r2 (x-axes) across m ¼ 6 conditions. 
For additional ranges of a and r2, see Supplementary Figs S6 and S7, and Supplementary Table S1.
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a larger role than drift in evolution after gene deletion (see 
Section 4 for other possible reasons). However, distributions 
of predicted log10 r2=ð2aÞ

� �

are not significantly different be-
tween “redundant” and “unique” classes, suggesting that the 
strength of drift relative to that of selection acting on these 
genes is the same regardless of class. It is important to note 
that log10 r2=ð2aÞ

� �

reflects the stationary variance along the 
D, S, and L phylogeny (see Fig. 1), suggesting that caution 
should be taken when interpreting the roles of selection and 
drift at various evolutionary timepoints involving gene dele-
tion events.

To evaluate consistency between empirical and simulated ex-
pression values, we compared empirical expression values to 
those simulated from parameter predictions obtained from ap-
plication of CLOUDe to our empirical dataset (see Section 2). 
We found that distributions of empirical and simulated expres-
sion values are similar for D and S genes, but significantly differ-
ent for L genes (p ¼ 2:70 � 10�11; Mann-Whitney U test), 
which have larger predicted than empirical values 
(Supplementary Fig. S11A). One explanation for this observa-
tion is that our model allows the expression optimum of the L 
gene to be different from the expression optima of the D and S 
genes in the “unique” class, which can result in inflated, but not 
unexpected, values. However, upon further investigation, we 
found that this discrepancy may be due to the very low expres-
sion of some L genes, as CLOUDe does not predict expression 
values of zero and rarely predicts expression values close to zero 
(Supplementary Fig. S11B). Indeed, if we apply a common 
threshold for expression and remove values with FPKM < 1 
(i.e. less than log10 1þFPKMð Þ ¼ log10ð1 þ 1Þ � 0:3), then the 
distributions of empirical and simulated expression values are 
no longer significantly different (Supplementary Fig. S11C).

We next studied functions associated with ancestral pairs 
of Drosophila duplicate genes prior to deletion (S and L 
genes; Fig. 1) by using DAVID (Huang et al. 2009, Sherman 
et al. 2022) to evaluate the enrichment of gene ontology 
(GO) terms (Ashburner et al. 2000, Gene Ontology 
Consortium et al. 2023) in a target gene list against the 
genome-wide background (see Section 2). We ran DAVID 
twice, with the target list containing predicted “redundant” 

genes first, and “unique” genes the second time (see Section 
2). Comparisons of statistically significant GO terms between 
runs revealed distinct functional differences between 
“redundant” (Supplementary Table S3 and Supplementary 
Fig. S12A) and “unique” (Supplementary Table S4 and 
Supplementary Fig. S12B) genes. In particular, “redundant” 
genes are primarily enriched for functions related to protein 
processing (biological process), and specifically to acyl trans-
ferase activity (molecular function), on the external side of 
the plasma membrane (cellular component). In contrast, 
“unique” genes are enriched for functions related to protein 
deubiquitination (biological process), and specifically to 
thiol-dependent ubiquitin-specific protease activity (molecu-
lar function), in the mitochondrial outer membrane (cellu-
lar component).

Last, we performed a case study of the “unique” genes with 
the largest absolute difference between h1 and h2 (i.e. jh1 � h2jÞ
and the highest magnitude negative log-transformed stationary 
variance, as such genes display the greatest evidence of unique-
ness. These genes represent a scenario in which there was a dele-
tion in the D.pseudoobscura lineage, such that the 
D.melanogaster lineage contains the ancestral pair of “unique” 
duplicate genes Ran (CG1404, S) and Ran-like (CG7815, L). In 
this case, Ran is the parent gene that gave rise to a duplicate 
gene copy Ran-like (Tracy et al. 2010, Larracuente and 
Presgraves 2012), which was then deleted in the D.pseudoobs-
cura lineage. Ran is broadly expressed across all tissues ana-
lyzed here and is most highly expressed in ovary, whereas Ran- 
like is tissue-specific and primarily expressed in testis (Kunte 
2009, Gramates et al. 2022). This case is therefore an example 
of the long-standing “out of the testis” hypothesis for the origin 
of genes created by gene duplication (Kaessmann 2010), as well 
as of the recent “into the ovary” hypothesis, which posits that 
gene deletion preferentially removes genes that are not highly 
expressed in ovary, perhaps promoting adaptation by salvaging 
genes that contribute to the evolution of female reproductive 
phenotypes (Assis 2019). Indeed, Ran is a biologically impor-
tant gene (Tracy et al. 2010, Boudhraa et al. 2020, Mirsalehi 
et al. 2021, Gramates et al. 2022) with many associated lethal 
phenotypes, in contrast to no lethal phenotypes observed for 

Figure 6. Parameter estimates for the CLOUDe NN applied to empirical data from Drosophila. Box plots overlaid onto strip plots showing distributions of 
absolute differences between predicted expression optima h1 and h2, and predicted log10 r2=ð2aÞ

� �

. Six estimates per deletion event corresponding to 
the six tissues in the empirical dataset are plotted. �P < :001:
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Ran-like (Gramates et al. 2022). Moreover, overexpression of 
Ran are associated with numerous forms of cancers, including 
ovarian and breast carcinomas (Boudhraa et al. 2020). On the 
other hand, disruptions in the expression of Ran-like causes 
spermatid disfunction and other germline conflicts during sper-
matogenesis (Kunte 2009, Tracy et al. 2010, Larracuente and 
Presgraves 2012). These conflicts may explain its deletion in the 
D.pseudoobscura lineage, perhaps representing an interesting 
avenue of future research.

4 Discussion

CLOUDe represents the first model-based machine learning 
framework tailored to the problem of predicting evolutionary 
targets and parameters of gene deletion from expression data. 
Specifically, CLOUDe uses an OU model overlaid by NN, 
XGB, RF, and SVM architectures for predicting whether the 
targets of gene deletion are “redundant” or “unique”, as well 
as their expression optima and relative roles of selection and 
drift in their evolution. Applications of CLOUDe to simu-
lated data demonstrate innately high power and accuracy in 
differentiating between “redundant” and “unique” genes 
(Figs 2 and 3), as well as high accuracy and precision in esti-
mating their evolutionary parameters (Figs 4 and 5), regard-
less of the machine learning architecture used. These analyses 
also reveal the NN as the globally best performer in predict-
ing both evolutionary targets and parameters of gene dele-
tion. Though they do not exhibit the best performance in our 
study, the XGB, RF, and SVM architectures of CLOUDe can 
be of great value in other settings. Specifically, XGB and RF 
may be ideal when expression data are unavailable for some 
conditions or genes, as these methods are able to naturally 
handle missing data (Drucker and Cortes 1995, Breiman 
2001, Hastie et al. 2009, Chen and Guestrin 2016). The 
SVM architecture, on the other hand, may be advantageous 
when there are expression data for one or few conditions, as 
it can increase dimensionality (Sch€olkopf et al. 2001, 
Chapelle et al. 2006). Therefore, the inclusion of these four 
machine learning architectures in CLOUDe promotes flexibil-
ity in its usage. Additionally, though expression data for mul-
tiple of the same conditions in three or more species are 
currently scarce, future extensions of the CLOUDe frame-
work to more than two species may improve its prediction 
performance.

Our application of the CLOUDe NN to empirical data 
from Drosophila reveals that deletion often targets genes 
with unique expression profiles, supporting the hypothesis 
that gene deletion is not simply an evolutionary mechanism 
for ridding the genome of redundancy (Olson 1999, Hottes 
et al. 2013, Kvitek and Sherlock 2013, Albalat and Ca~nestro 
2016, Assis 2019). Moreover, predicted expression optima 
are generally consistent with theoretical expectations for each 
class (Fig. 6), and predicted log-transformed stationary var-
iances are typically negative for both classes (Fig. 6), implying 
that selection plays a larger role in the evolution of deleted 
genes. However, one has to consider that here the log- 
transformed stationary variance is generally expected to be 
negative for two reasons: the magnitudes of selection scenar-
ios considered in relation to drift (i.e. stationary variance is 
proportional to the ratio of r2 and a), and the fact that 
log10ðaÞ is always non-negative whereas log10ðr

2Þ is allowed 
to be negative when drawing parameters for our simulations. 
Moreover, our investigation of empirical expression values 

showed that most “unique” L genes in Drosophila are pri-

marily expressed in testis and accessory gland tissues. Thus, 

many such cases possibly represent examples of the long- 

standing “out of the testis” hypothesis for the origin of genes 

created by gene duplication (Kaessmann 2010), as in our case 

study. Further, functional enrichment analyses of these em-

pirical data show that “redundant” genes are often involved 

in protein processing activities on the external side of the 

plasma membrane, whereas “unique” genes are often associ-

ated with protein deubiquitination in the mitochondrial outer 

membrane, suggesting that deletion targets distinct functions 

when removing “redundant” versus “unique” genes from the 

genome. Together, these findings support the reliability of 

CLOUDe predictions.
Last, we wish to highlight that the joint application of 

CLOUD and CLOUDe can detail the pathway that ultimately 

leads to the loss of unique genes. For example, a previous ap-

plication of CLOUD to empirical data from Drosophila 

showed that most duplicate genes rapidly acquire unique ex-

pression profiles (DeGiorgio and Assis 2021). Thus, it is not 

surprising that our application of the CLOUDe NN to de-

leted genes from the same species indicates that most targets 

of gene deletion possess unique expression profiles. Further, 

CLOUD and CLOUDe both predict classes from gene expres-

sion, which is widely regarded as an ideal proxy for function, 

as divergent expression profiles correlate with protein-coding 

gene sequence divergence (Nuzhdin et al. 2004, Subramanian 

and Kumar 2004, Lemos et al. 2005, Hunt et al. 2013, Assis 

and Kondrashov 2014, Jiang and Assis 2017, M€ahler et al. 

2017, Assis 2019) and other functional metrics (Ge et al. 

2001, Zhou et al. 2002, Bhardwaj and Lu 2005, French and 

Pavlidis 2011). Indeed, our functional enrichment analyses 

uncovered distinct functions in “redundant” and “unique” 

genes targeted by deletion in Drosophila. Our case study of a 

pair of “unique” genes also provides support for their unique 

functions, as these genes are highly expressed in opposite sex 

tissues (Chippindale et al. 2001, Kunte 2009, Patten and 

Haig 2009, Tracy et al. 2010, Domingues 2014). Hence, this 

example demonstrates how researchers with expression data 

from duplication and deletion events can combine the output 

of CLOUD and CLOUDe to shed light on functional out-

comes of gene turnover in a biological system of interest.
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