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Motion Planning as Online Learning: A Multi-Armed
Bandit Approach to Kinodynamic
Sampling-Based Planning

Marco Faroni

Abstract—Kinodynamic motion planners allow robots to per-
form complex manipulation tasks under dynamics constraints or
with black-box models. However, they struggle to find high-quality
solutions, especially when a steering function is unavailable. This
letter presents a novel approach that adaptively biases the sam-
pling distribution to improve the planner’s performance. The
key contribution is to formulate the sampling bias problem as a
non-stationary multi-armed bandit problem, where the arms of
the bandit correspond to sets of possible transitions. High-reward
regions are identified by clustering transitions from sequential runs
of kinodynamic RRT and a bandit algorithm decides what region
to sample at each timestep. The letter demonstrates the approach
on several simulated examples as well as a 7-degree-of-freedom
manipulation task with dynamics uncertainty, suggesting that the
approach finds better solutions faster and leads to a higher success
rate in execution.

Index Terms—Integrated planning and learning, motion and
path planning, planning under uncertainty.

1. INTRODUCTION

HYSICS simulators and deep-learning models allow robots
to reason about complex manipulation tasks such as manip-
ulation of deformable objects [1], [2], [3], liquid handling [4],
[5], and contact-rich manipulation [6], [7]. Kinodynamic motion
planning can find a sequence of controls that brings such systems
to a desired state. For example, consider the tabletop scenario
in Fig. 1: A compliant manipulator moves a heavy object across
the table; because of the payload and the compliant control, the
trajectory execution will deviate from the planned path, possibly
causing unexpected collisions. Suppose we have a function that
maps the robot state to an estimate of the end-effector Cartesian
error; we can avoid unexpected collisions in execution by finding
a trajectory that minimizes such a function.
Sampling-based planners, such as rapidly exploring random
trees (RRT) [8] are widely used in robotics because of their
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Fig. 1. 7-degree-of-freedom manipulator carrying a weight in a cluttered
environment with uncertain tracking control.

effectiveness in high-dimensional problems. Despite the fact that
asymptotically optimal algorithms [9], [10] ensure convergence
to the optimal solution for an infinite number of iterations, their
convergence rate is often slow for practical applications. This
issue holds especially if a steering function (i.e., a function that
connects two given states) is not available or computationally
expensive, which is often the case for learned or simulated
dynamics models [11].

Planning performance can be improved by biasing the sam-
pling distribution, e.g., to find a solution faster [12] or to reduce
the cost of the solution [13]. RRT-like planners with biased
sampling extend the tree by sampling a target state from a
non-uniform distribution. The biased distribution can be learned
offline [14], [15], [16] or adapted online based on previous iter-
ations [17], [18]. We approach the problem of biased sampling
from an online-learning perspective. That is, we consider biased
sampling as a sequential decision-making process where each
transition added to the tree is associated with a reward (depen-
dent on the cost function). Then, we decide what transition to
sample at the next iteration based on the rewards estimated from
previous timesteps. In particular, this letter proposes an online
learning approach to biasing samples in a kinodynamic RRT.

We use Multi-Armed Bandit (MAB) algorithms to shape
the sampling probability distribution iteratively. The proposed
method is illustrated in Fig. 2. Our approach builds on the
asymptotically optimal framework AO-RRT [19], which runs
kinodynamic RRT multiple times. Every time a new solution is
found, transitions are clustered based on their reward and spatial
position, and a non-stationary bandit algorithm biases samples
based on the expected reward of each region.

The contributions of this letter are:
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Fig. 2. Sketch of the proposed method. From left to right: (i) a randomized planner searches for a solution without bias; (ii) each time it finds a new solution,

transitions are clustered based on their reward and position; (iii) each cluster is associated with an estimated reward; (iv) a non-stationary bandit algorithm biases

sampling based on the regions’ expected reward.

® An online learning approach to biasing samples in a mo-
tion planner that formulates the bias problem as a non-
stationary Multi-Armed Bandit problem and trades off the
exploration and exploitation of high-reward regions based
on the reward observed at previous timesteps.

® A kinodynamic planner that does not rely on a steering
function and uses the proposed MAB approach to find
better solutions faster.

® A demonstration of the proposed method on a 7-degree-
of-freedom manipulation problem (Fig. 1), showing that
the proposed approach improves the solution cost and, in
the scenario at hand, leads to a higher success rate in exe-
cution. An empirical regret analysis of different sampling
strategies also suggests that a better solution cost coincides
with a lower cumulative regret.

II. RELATED WORK

In the last decade, sampling-based motion planning has seen a
focus shift from finding feasible solutions to finding high-quality
ones, especially after [9] provided conditions for asymptotic
optimality for planners such as RRT* and PRM*. These con-
ditions include the availability of a steering function, making
these planners unsuitable for black-box dynamics models. To
overcome this issue, variants of RRT* have been proposed by
approximating the steering function [10], [20], [21], but these
approaches are only suitable for a limited class of systems. Other
works researched how to guarantee asymptotic optimality with-
out a steering function [11], [19]. In particular, [19] proposed an
asymptotically optimal meta-planning algorithm based on mul-
tiple runs of RRT in an augmented state-cost space, whereas [11]
combined biased node expansion with pruning to refine an initial
solution. Attempts to improve the convergence rate of these
methods include using a heuristic to bias node expansion [22],
[23], pruning and re-usage of previous edges [24], and building
a PRM-like roadmap of edges offline [25].

In this work, we focus on improving the solution quality of
kinodynamic planners via adaptive sampling. Most sampling-
based planners use a uniform sampling distribution; however,
biasing the sampling has been a common strategy to improve the
solution cost [14], [15], [16], [26], [27], [28], [29]. The sampling
bias is often tailored to the specific problem manually [30] or
using machine learning techniques [14], [15], [16]. Other works
leverage the knowledge gathered at the previous iterations to
bias the sampling at the current one. For example, they use
local bias to overcome narrow passages [31], switch between
global and local sampling to find a solution faster [32], or
quickly refine the current solution [17], [33]. The works above

are designed for holonomic motion planners. Informed sampling
is another biased sampling technique that uses cost heuristics to
discard regions with a null probability of improving previous
solutions [13]. How to derive or approximate such heuristics
for non-trivial cost functions is an open research question
[33], [34].

Our approach leverages MAB algorithms to choose the sam-
pling bias online. MAB is an online learning technique used for
repeated decision-making under uncertainty. An MAB problem
is defined by a set of actions (arms) associated with a belief
of their reward function. At each iteration, an agent chooses an
arm and updates the reward estimates according to its realized
reward. MAB algorithms are typically characterized by their
regret, i.e., how much worse they perform compared to a strategy
that picks the best arm at each iteration. Different approaches
(and regret bounds) have been derived based on different as-
sumptions on the reward distribution. Common algorithms are
UCB-1 [35] and Thompson Sampling [36] for constant reward
distributions and their variants for non-stationary rewards [37].
A comprehensive overview of the topic can be found in
[38], [39].

Recent works applied the MAB framework to motion plan-
ning, aiming to automatically balance the trade-off between
exploration and exploitation [40], [41], [42]. To the best of
our knowledge, MAB was applied to sampling-based planning
only to overcome narrow passages in bi-directional search [31],
[43]. They consider trees as bandits’ arms and decide which
tree to expand depending on the estimated probability of a
successful expansion. However, this technique is specific to
narrow passages and works only with multiple trees and the
availability of a steering function.

III. PROBLEM STATEMENT

Consider a dynamics model & = f(z,u), v € X, ue U,
where X and U are the state and the control spaces and
Xiee € X is the set of valid states. Solving a kinodynamic
motion planning problem means finding a control function
v :10,T] € U thatinduces a trajectory o : [0,7] — X such that
0(0) = Zgar and 0 (T') € Xgour, and (t) € Xipee Vt € [0,T7]. In
optimal motion planning, we also aim to minimize a Lipschitz
continuous cost function ¢(o). In this work, we restrict -y to be a
staircase function defined by a sequence of controls and control
durations, {(u;, d;)},sothat ", d; = T andy(t) = u,; with j €
LYo di < t; < 1o die

Sampling-based planners such as kinodynamic RRT solve this
problem by randomly sampling a target state, xy,, retrieving the
closest node on the tree, x,,, and expanding this node by forward
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Algorithm 1: MAB-RRT.
Input: Zgpare, Xgoal, ¢(-), p(+), K >0
Olltpllt: Obests Cbest

1 Obest < 0, Chest — 400, T < 0

2 G« 0, G.add(@sart)

3 initializeBandits(0,0)

4 forkinl,..., K do

5 T < sampleAndPropagate(C,§G)

6

7

8

9

updateBanditArms(p(T))
G.add(7)
if Zpext € Xgoal then

0 < retracePath(r)
10 if ¢(0) < cpest then
11 | Obest = 0, Chest < ¢(0)
12 T+ TUug
13 C,R < clustering(T)
14 initializeBandits(Ri,...,Rm)
15 | G« 0, G.add(Tstart)

16 return opest, Chest

propagation. We denote by 7 = (2, 4, d, ., Zy,) the transition
from x, to x. induced by u and d; note that 7 also stores the
target zy, from which 7 originated.

The search strategy above is a sequential decision-making
process, where the planner has to choose which node to expand
next and in what direction. We consider this process from an
online-learning perspective, where each new transition is asso-
ciated with a reward r = p(7), where 0 < p < 1!. The planner
observes the reward of a transition after each iteration and
chooses the next transition to maximize the total reward over
K, possibly infinite, timesteps. MAB is a framework to address
this kind of problems. In the MAB settings, an agent can choose
among M actions (the arms) for K, possibly infinite, rounds.
The goal is to maximize the cumulative reward, assuming each
action yields a reward from an unknown distribution and the
agent can only observe the reward of the selected action.

We frame the problem of choosing the next transition in a
kinodynamic RRT as an MAB problem where the arms are sets
of transitions. Selecting an arm then corresponds to sampling a
transition 7 from a certain set and using it to extend the tree. Our
goal is to use MAB to improve the path cost over iterative runs of
kinodynamic RRT by trading off the exploitation of high-reward
regions (according to the reward obtained at previous runs) and
the exploration of transitions with a highly uncertain reward (i.e.,
less-explored regions).

IV. METHOD

Our approach can be summarized as follows: (a) we iteratively
re-plan with kinodynamic RRT, using MAB to select regions for
sampling transitions; (b) every time we find a new solution tra-
jectory, we identify high-reward regions by clustering previous
transitions; (c) our MAB method estimates the non-stationary
reward distribution as we plan during a run of kinodynamic RRT.

INote that p(7) should be inversely proportional to the cost of 7; however, its
definition may be problem-specific. We propose examples of the reward function
in Section V and VL.
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This section describes the planning framework and methods for
clustering and biased sampling.

A. Planning Framework

We propose a kinodynamic planner based on the AO-RRT
meta-planning paradigm [19], which runs instances of RRT
sequentially and keeps the best solution so far. Algorithm 1
summarizes the proposed algorithm (the differences with respect
to AO-RRT are in red). At each iteration, sampleAndProp-
agate (line 5) samples a transition. The new transition is
added to the tree (line 7). If the goal condition is satisfied, the
solution is retrieved by retracePath (lines 8-9) and RRT is
reset (line 15). After K iterations, Algorithm 1 returns the best
solution so far, opest, and its cost, cpest. We embed our adaptive
sampling strategy in AO-RRT in two steps: (a) clustering and
(b) bandit-based sampling.

1) Clustering: At the end of each RRT run, we add all the
transitions to the set of all previous transitions, 7, and cluster
them into a set of clusters C (lines 12 and 13) by using HDB-
SCAN [44]. Then, we associate each cluster C; with a bandit’s
arm and use each cluster’s average reward, R;, to initialize the
bandit’s expected rewards (line 14).

2) Bandit-Based Sampling: An MAB algorithm in sam-
pleAndPropagate decides whether to sample the next tran-
sition 7 from a cluster, the uniform distribution, or the goal set.
Then, we extend the tree from 7.z, by forward propagation. Af-
ter the extension, the MAB updates the arms’ rewards according
to the reward realized by the new transition (line 6). Note that
the reward function is non-stationary with respect to the tree, as
detailed in Section IV-C and IV-D, because the transition reward
depends on the current state of the tree.

The next sections detail the clustering and sampling phases.
Tuning guidelines are given in Appendix A.

B. Online Learning of High-Reward Regions

We aim to find groups of transitions that constitute high-
reward regions. Because full state-space coverage is often in-
tractable, we do not try to create a partition of the entire space of
possible transitions, instead focusing on the transitions obtained
from previous iterations. Given a set of transitions 7, we cluster
them according to their reward and spatial distribution through
the distance function:

d(m, 1) = ||T1.2p — T2.2p||
(D

where A > 0, and p(7;) is the reward of 7;. Although any
clustering techniques could be used, we use HDBSCAN because
of its effectiveness at identifying irregular clusters and ease of
tuning (see also Appendix A). Hence, we obtain a set of clusters
{Cy,...,Cn} and each cluster is associated with an average
reward R; = 1/|c;| er cc, P(7j). These clusters are subsets of
transitions, which will be used to bias sampling.

+llmae = m2zel| + Alp(m) = p(72)]

C. Adaptive Sampling of High-Reward Regions

We bias the probability of sampling cluster C; according to its
expected reward. We model the problem of finding the optimal
sampling bias as an MAB problem, where each C; is an arm
and R; is its initial reward. We also consider uniform and goal
sampling as arms of the MAB problem. Therefore, we define a
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Algorithm 2: sampleAndPropagate.

Algorithm 3: sampleCluster.

Input: C, G
Output: (z,, u, d, T¢, Tirg)
1 2, ¢ NULL, Zyyg ¢ NULL
2 while x, = NULL or x;; = NULL do

3 1 <—selectNextBanditArm ()

4 if i = 1 then

5 Tirg < unif(X)

6 xp < G.nearest (i)

7 else if : = 2 then

8 Tirg < unif(Xgoal)

9 xp < G.nearest (i)

10 else

11 Tp, Tirg < sampleCluster (C;, G)
12 if x, = NULL or z,;, = NULL then
13 | updateBanditArms(0)

14 2, u, d < sampleTo(Zp, Tirg, )
15 return (z,, u, d, T., Tiyg)

set of M arms, {a1,...,ayn}, with M = N + 2:

uniform sampling over X ife=1
a; = ¢ uniform sampling over Xgoq if i = 2 2)
sampling C; o ifi >3

MAB selects where to sample the next transition from (line 3 of
Algorithm 2). If the MAB selects the first or second arm, 7.2
is a random state or a goal state, respectively, while 7., is the
node of the tree closest to 7.2y, (lines 4-9 of Algorithm 2). For
all other arms, the algorithm tries to sample a transition from the
selected cluster (Algorithm 3). Cluster sampling depends on the
search tree because:

1) We want to avoid over-sampling regions that the current
tree has already explored; thus, we discard a candidate 7.
if 7.2y 1s too close to the current tree;

2) We select 7, only if its pre-conditions are met; i.e., if 7.z,
is close enough to the current search tree;

3) If it is impossible to sample a transition whose pre-
conditions are met, we try to extend the tree in such a
way as to meet the pre-conditions in future timesteps; i.e.,
we set 7.z, as the target of the new sample 7.

Algorithm 3 implements these considerations. It randomly

draws candidate transitions, 7., from a cluster and perturbs them
until 7.2 is further than 6; from G and 7., is closer than d, to
G (lines 6-11). If it is impossible to satisfy the second condition
(i.e., G is too far from the selected cluster), we try to expand the
tree toward that cluster by looking for a transition whose parent
is closer than d3 > J- to G (line 12) by selecting its parent as
the new target. If we could not draw a valid transition from the
selected cluster, we discourage its future selection by assigning
a reward equal to zero (line 13). Finally, sampleTo (line 14
of Algorithm 2) generates a transition by propagating a random
action for a random duration if ¢ < 2.If 7 > 2, sampleTo tries
to extend toward xy, by sampling IV, random controls, u € U,
and durations, d € [0, T,,], with T}, > 0, and selecting the closest
transition to L.

Input: C;, G

Output: ), Tirg

Parameters: K > 0,091,052 > 0,05 > 02, w > 0
1 T+ NULL, Zyyg ¢ NULL
2 for kin 1,..., K do
3 Te < unif(C;)

4 Te-Lp = Te.Tp + unif([—w, w))

5 Te-Lirg = Te-Tirg + unif([—w, wl)

6 if ||7c.24g — G.nearest(7..2g)|| < 91 then
7 | continue

8 if ||7..xp— G.nearest(r..x,)|| <02 then

9 xp < G.nearest(r..xp)

10 Tirg — Te-Lirg

11 | break

12 if ||7..xp— G.nearest(r..x,)|| <03 then
13 xp < G.nearest(r..2p)
14 L Ttrg S~ TeZp

15 return r,, Ty

D. Non-Stationary Rewards

We update the estimated reward distributions when we add
a transition to the tree (line 6 of Algorithm 1) and if we could
not sample a valid candidate transition from the selected cluster
C; (line 13 of Algorithm 2). In the first case, we use the reward
p(7) realized by the transition; in the second case, we use a
reward equal to zero to discourage sampling C; if it does not
satisfy conditions i, ii, or iii from Section IV-C. In both cases,
the reward realized by a transition depends on the tree state.
We model the variability of the reward with respect to the
tree state as a non-stationary MAB problem, where the reward
distribution can vary over iterations. Standard MAB algorithms
such as UCB-1 [35] perform poorly under these conditions
because they adapt too slowly to the reward changes [37]. We
therefore use a non-stationary bandit algorithm, which accounts
for shifts in the reward distribution. Specifically, we use the
Kalman Filter-Based solution for Non-stationary Multi-Arm
Bandit (KF-MANB) algorithm [37]. KF-MANB models each
arm’s reward as a normal distribution. At each iteration, it selects
the next arm via Thompson Sampling [36]. When it observes the
reward, KF-MANB updates the estimated distributions using
a Kalman Filter update rule, which allows for tracking non-
stationary rewards over time.

E. Completeness and Optimality

Note that not all variants of RRT are probabilistically com-
plete [45]. Assumed that (i) the dynamics system is Lipschitz
continuous, and (ii) there exists a robust solution with clearance
0 > 0, kinodynamic RRT is probabilistically complete if it ex-
tends the tree by forward propagating random controls v € U for
arandom duration d € [0, T},], with T,, > 0 [24]. This is true for
our method because sampleTo in Algorithm 2 chooses random
controls and durations when the first two arms (i.e., uniform
and goal sampling) are chosen by the MAB algorithm. Note
that these arms have a non-zero probability of being selected
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Fig. 4. Cost trends for the scenarios of Fig. 3 (30 repetitions; solid lines: mean values; shadow: 95% confidence interval).

at each iteration (like any other arm of the MAB). Therefore,
under the assumptions that f(x, u) from Section III is Lipschitz
continuous and there exists a solution with clearance 6 > 0, each
run of RRT in MAB-RRT is probabilistically complete.

As for asymptotic optimality, [19] proved that AO-RRT is
asymptotically optimal if the underlying RRT is well-behaved
in the augmented state-cost space. In a refined version of the
proof, [46] argues that well-behavedness holds if the dynamics
system and the cost function derivative are Lipschitz continuous,
and the optimal trajectory is robust with clearance § > 0, proving
the asymptotic optimality of a single-tree version of AO-RRT.
Because Algorithm 1 uses a multi-tree implementation and runs
RRT in the state space, we cannot derive asymptotic optimality
directly from [46]. Nonetheless, results in Sections V and VI
suggest that the solution cost decreases consistently with iter-
ations. We therefore leave the formal analysis of MAB-RRT
asymptotic optimality as future work.

V. SIMULATION RESULTS

This section shows that our approach improves the solution
cost faster than AO-RRT and yields smaller cumulative regret
with 2D problems. We consider a single integrator & = u,
X =[0,1]%,U € [0.5,0.5], and the five scenarios in Fig. 3. We
consider the reward function p(7) = 0.5(px(T.2p) + pz(T.2¢))
where p,, € [0,1] as in Fig. 3 and the cost function ¢(o) =
>, o (L= p(™))Iry — .

The scenarios serve as illustrative examples of problems with
different features. For example, in Scenario A, the optimal
solution should take a long path through a narrow passage, while
Scenarios C and D are examples of “trap” problems, where the
high-reward region leads to a dead end. Scenario E combines
these issues into a more complex problem.

A. Cost Analysis

We compare our MAB-RRT-KFMANB with AO-RRT [19]
and other variants of MAB-RRT using UCB-1 [35] and Thomp-
son Sampling [36]. Fig. 4 shows the average cost trends for 30
repetitions. Except for Scenario C, MAB-RRT-KFMANB im-
proves the solution significantly faster than AO-RRT, suggesting

that the online bias learning drives the search to more promising
regions. In Scenario C, MAB-RRT-KFMANB has a slightly
worse convergence rate because the high-reward region (yellow
in Fig. 3) leads to a dead end (notice that the optimal path mainly
lies in the low-reward region). MAB-RRT-KFMANB outper-
forms AO-RRT even in Scenario D, where the high-reward
region leads to a dead end: after an initial exploration of the high-
reward, MAB-RRT spots the medium-reward region and quickly
improve the solution cost. As expected, MAB-RRT-KFMANB
outperforms the stationary variants. Overall, MAB-RRT-UCB1
and MAB-RRT-TS perform comparably to AO-RRT, showing
the importance of the non-stationary MAB to account for the
changing reward.

B. Regret Analysis

A standard metric to evaluate MAB is regret, i.e., the differ-
ence between the reward one would have obtained by sampling
the best action and the reward realized by the chosen action at
iteration k. We can define the expected regret of a sampling
strategy over a (possibly infinite) horizon K as

E[R(K)] =Y E[r] — Elri] 3)

where 75 and 7, are the rewards of the best sampling strategy
and the chosen sampling strategy at iteration k, respectively. We
evaluate the regret of the following sampling strategies:

e kf-manb, ucbl, TS: our method as described in Algo-
rithm 2 using KF-MANB, UCB-1, and Thompson Sam-
pling;
random: uniform sampling over X, as in standard RRT;
astar: it mimics the A* search strategy; the control
space is discretized as U = {—0.5,—0.25,0,0.25,0.5}>
and, at each iteration, the node with the lower estimated
cost and with unexplored children is expanded. We use
h(z1,22) = (1 — max, p,(z))||z1 — 22|| as admissible
heuristic, where max,, p,(x) = 0.99 according to Fig. 3.

The regret computation is described in Algorithm 4, which

runs at the beginning of each iteration £ in Algorithm 1. It
samples a batch of points from each arm of each sampling
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Algorithm 4: Regret computation.

Input: tree G, iteration k

Output: expected regret F[Rgirategy] for all strategies
1 strategies = {kfmanb, ucbl, TS, random, astar}
2 for strategy in strategies do
3 if strategy in {kfmanb, ucbl, TS} then
4 draw a batch of points for each arm of the
MAB and a batch of points using Alg. 2

5 if strategy = random then
6 draw a batch of points using the random
sampling strategy

7 if strategy = astar then
8 draw a batch of points using the astar
sampling strategy

9 For all batches of points, generate the
corresponding transitions with respect to G;

10 For all batches of transitions, compute the expected
reward (Trng, 7ax, Tkfmanb,is Tucbl,i> TTS,i Vi=1...M)

11 Compute the best expected reward E[r* (k)] as the
maximum of the average rewards of all batches;

12 for strategy in strategies do

13 L regret E[Rstrategy] = E[’I"*U{?)] - Fstrategy;

strategy (lines 2-9) and computes the average reward of each
one (line 10). The best arm reward is the maximum average
reward across all batches (line 11) and is used to compute the
regret of each strategy (line 13). Note that the regret comparison
requires the sampling strategies to be evaluated at each iteration
given the same tree. For this reason, we grow the tree by using
samples from kfmanb to obtain the tree at the next timestep.

Results are in Fig. 5. Interestingly, astar yields very small
regret in four out of five scenarios; k fmanb yields significantly
lower regret than random, ucbl and TS, suggesting a corre-
lation between the cost and the regret for all scenarios.

C. Discussion

The results confirm that the proposed sampling technique
reduces the cumulative regret compared to uniform sampling.
The regret reduction coincides with smaller trajectory costs
compared to AO-RRT. Interestingly, A* accumulates the low-
est regret because its heuristic search tends to expand nodes
with low cost-to-come, focusing more on high-reward regions.
Unfortunately, A* is inefficient for high-dimensional problems,
making the proposed method attractive from the perspective of
high-dimensional kinodynamic planning.
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Fig. 6. Experimental results of the manipulation scenario.

Computationally, MAB-RRT differs from AO-RRT in the
MAB-based sampling and the clustering. Given the same num-
ber of control propagations, N, in the sampleTo function,
AO-RRT and MAB-RRT perform the same number of collision
checks and forward dynamics propagations, leading to similar
average iteration time (0.26 ms and 0.29 ms, respectively, with
N, = 100). Clustering time grows with the number of transitions
and the state-space dimensionality. With an off-the-shelf Python
implementation of HDBSCAN [47] we observed an almost-
linear clustering time between 2 and 80 ms for 100 and 5000
transitions. Because of clustering and computational overheads,
the average total planning time was 0.60 s for MAB-RRT and
0.43 s for AO-RRT. Note that such difference is expected to
become thinner for more complex scenarios, where the iteration
time is predominant compared to the clustering time.

VI. EXPERIMENTS

We demonstrate our approach on a manipulation task with
uncertain dynamics and show that it finds trajectories with a
lower cost and a higher success rate in execution. We consider a
tabletop application where a Kuka ITWA 7 arm moves a dumbbell
(6 kg) across the table, as in Fig. 1. Note that the payload
(gripper + dumbbell) is around 9 kg, exceeding the maximum
payload of the robot. We implemented all the planners with
OMPL [48] in a ROS/Gazebo [49] simulation environment. The
robot is controlled in joint-space impedance mode, which makes
it compliant with the environment, yet causes large tracking
errors with large payloads. The state and control spaces are joint
position and velocity, respectively. We devise a cost function
proportional to the robot Cartesian-space tracking error and
dependent on the robot joint states:

c(o) = Zé(T)HT..’L‘p — 1.zl and p(7) =1 — &(7)

TEO

“

where é € [0, 1] is proportional to the end-effector Cartesian-
space error (see Appendix B for its derivation). By minimizing
¢, the planner is expected to find trajectories that avoid large
tracking errors, thus reducing the risk of unexpected collisions.
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Fig. 7.

We compare MAB-RRT (with KF-MANB) and AO-RRT over
three queries repeated 30 times. Fig. 6(a) and (b) show the path
cost and the execution success rate on the real robot (i.e., the
percentage of runs that reached the goal without collisions). To
compare different queries, costs were normalized with respect
to the best cost found for the corresponding query. Fig. 6(a)
shows that MAB-RRT’s cost after 1500 iterations is significantly
smaller than that of AO-RRT (—25%). Intuitively, a good so-
lution avoids configurations where the payload causes a large
deviation from the path. This translates into a higher success
rate when the trajectory is executed in the real-world (+65%).
As shown in Fig. 7 and in the attached video, the paths found by
MAB-RRT are more likely to avoid obstacles by retracting the
arm (top images). On the contrary, the path computed by AO-
RRT (bottom images) passes above the obstacle while stretching
the arm. In this configuration, the high payload causes a large
path deviation, resulting in an unexpected collision. Fig. 6(c)
also shows the cumulative regret of kfmanb and random for
a single experiment. The trend qualitatively confirms the regret
results discussed in Section V-B.

VII. CONCLUSION

We presented an online learning approach to biased sampling
for kinodynamic motion planning. The approach runs RRT mul-
tiple times and uses MAB to choose between uniform sampling
and sampling regions identified during the previous runs. We
showed that the proposed approach finds better solutions faster
than an unbiased planner. The experiments also suggested a
correlation between low regret and cost in different scenarios.
Future works will investigate how to improve the performance of
the approach, e.g., via pruning and a single-tree implementation
as in [46] and [11].

APPENDIX
A. Parameter Tuning

We tune the parameters of MAB-RRT planner almost inde-
pendently for each main module of the method.

1) Clustering: HDBSCAN requires the minimum number
Nnin of points in a cluster. Small values of NV, favor the iden-
tification of small clusters with sparse data (which is likely the
case for high-dimensional planning problems). Because small
values of Npi, allow for spotting small high-reward clusters,
we empirically set Npi, at random between 2 and 5 at each

Examples of executions of two trajectories planned with MAB-RRT (Top) and AO-RRT (Bottom).

clustering. Moreover, the reward weight A in (1) is needed
to define the clustering distance function. Large values of A
tend to favor clusters with similar rewards; small values favor
state-space proximity. We observed a low sensitivity to A in all
our experiments; A € [1,10] yielded satisfactory performance.

2) Bandit Algorithm: KF-MANB requires initializing the
expected rewards ji;(0), their variance o7(0), and the Kalman
filter’s noise factors o, o2 and 7). 02, controls how much we
believe the new observed reward (the larger o2, the faster the
Kalman Filter adapts the arm’s distribution mean). o2 increases
the variance of non-selected arms to favor their exploration. 7 is
a tuning parameter to scale the covariance to match the reward
scale. While performance on individual experiments could be
marginally improved by using different values, we found that
0i(0)=02Viel,...,M, o4, =10"* and 02 = 10~* gave
satisfactory results for all of our planning tasks. Concerning
the initial rewards, we set fi;(0) = R; Vi € 1,..., M. Finally,
we set 7 dynamically to 7(k + 1) = max(1071°,0.9n(k) +
0.1|r(k + 1)|) as in [50].

3) Cluster Sampling: Algorithm 3 requires thresholds 61,
02, and d3. We relate their values to the dispersion of each clus-
ter so that, for all clusters, 6, = d = median({dy, ..., d|7;}),
where d; = min, ||z — 7|| V7 € T;}, and 03 = 2 ds.

B. Cost Function Proportional to Cartesian Error

Assuming we do not know the actual controller parameters,
we consider a simplified proportional joint-space controller
Emot = H(Q)erp + C(Qv Q)q + Q(Q)v where {0 € R7 is the
torque required to the joint motors, K, > 0, and H R C, g are
the estimated inertia, Coriolis, and gravity matrices. Assuming
quasi-static conditions and perfect knowledge of robot inverse
dynamics, we can write H(q)Kpe, — J(q)" fex = 0, where
fext € RO is the external wrench (owed to the payload), and
J is the robot Jacobian. By approximating Az ~ JAq for
small Agq, the estimated maximum Cartesian-space position
error is exy, = K, ' [I303.3] J(q)H(q)J(q)" fex. Because
K, is a constant scalar, we can set K, =1 and scale ey,
between 0 and 1 to obtain é, = min(max(les:l)/ey, 1) and
é(1) = 0.5(éq(T.p) + é¢(T.2c)), where ema is an empirical
estimate of the maximum value of max(|ey,|). In our
experiments, we set en.x = 70 by computing the maximum
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value of max(|ey,|) from 10° random . [ and .J are from the
URDF model provided by the robot manufacturer.
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