ON THE SPECTRUM OF ASYMPTOTIC ENTROPIES OF
RANDOM WALKS

OMER TAMUZ AND TIANYI ZHENG

ABsTRACT. Given a random walk on a free group, we study the random
walks it induces on the group’s quotients. We show that the spectrum
of asymptotic entropies of the induced random walks has no isolated
points, except perhaps its maximum.

1. INTRODUCTION

Let G be a finitely generated group, and let u be a probability measure on
G. The p-random walk on G is a time homogeneous Markov chain g1, go, . ..
on the state space G whose steps are distributed i.i.d. u: for g,h € G the
transition probability from g to h is u(g~'h). An important statistic of a
random walk is its Avez Asymptotic Entropy [3]
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where H(-) is the Shannon entropy. The importance of asymptotic entropy
is due to the fact that it vanishes if and only if every bounded p-harmonic
function is constant; that is, if the py-random walk has a trivial Poisson
boundary [3, 29]. Moreover, as the asymptotic entropy is the limit of the
mutual information I(gi; g,) between the first step of the random walk and
its position in later time periods, it quantifies the extent by which the random
walk fails to have the Liouville property.

Suppose that G has d generators, and let p be the symmetric measure
that assigns 1/(2d) to each generator and its inverse. The main question
that we ask in this paper is: what possible values of h(G, 1) are attained as
we vary the group G?

To formalize and generalize this question, we consider the following set-
ting. Given G and p, and given a quotient I' = G/N, the induced ran-
dom walk g1 N, goN, ... on I' has step distribution ur, where, for v = gN,
pur(y) = p(gN). In other words, ur is the push-forward of p under the
quotient map; we will simply write p instead of ur whenever this is unam-
biguous. For a given G and u, what values can be realized as the asymptotic
random walk entropies of such quotients? This is particularly interesting
when G has many quotients, and we indeed focus on the case that of Fg, the
free groups with d > 2 generators.

Omer Tamuz was supported by a grant from the Simons Foundation (#419427).
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Given (G, u) we denote the spectrum of random walk entropies by
H(G,p) :={h(,p): T is a quotient group of G}.

We will consider measures 4 on G that have finite first moment, that is,
>_gec 19ls #(g) < oo, where || is the word length with respect to generat-
ing set S. Recall that u is non-degenerate if its support generates G as a
semigroup.

Our main result is the following.

Theorem 1.1. Let u be a non-degenerate probability measure with finite
Jirst moment on the free group Fq, d > 2. Suppose I' is a proper quotient
of Fq. Then for any € > 0, there exists a quotient group I' of Fq such thal
F;—»>T —-1T and

hT, ) < (T, p) < h(T, p1) +e.

In particular, the set H(F 4, 1) has no isolated points, except perhaps its maz-
1mum.

It follows from Theorem [1.1| that if $(F4, i) is a closed subset in R, then
it must be the full interval [0, h(Fg, 1)]. To the best of our knowledge, it is
not known whether the set $(Fg, 1) is closed.

The key ingredient in the proof of Theorem is an explicit construction,
which might be of independent interest, of a sequence of groups in the space
Gq of d-marked groups with the following properties.

Proposition 1.2. Let p be a non-degenerate probability measure on Fg,
d > 2, with finite first moment. Then there exists o sequence of marked
groups (Tn, Sp))oey in Gq such that:

(i): The sequence (I'y,Sy) converges to (Fq,S) as n — oo in the space of
d-marked groups.

(ii): The sequence of asymptotic entropies h(I'y, u) — 0 as k — oo.

(iii): For each n € N, I'y, is non-amenable, has no nontrivial amenable nor-
mal subgroups, and has only countably many amenable subgroups.

The moment condition on u is used to bound the asymptotic entropy. It
seems to be an interesting question whether Proposition remains true
assuming only that p has finite entropy.

Property (iii) in the statement above implies that the action of I';, on the
Poisson boundary of (I'y, 1) is essentially free. This property is crucial for
our purposes. Any sequence of d-marked finite groups with girth growing to
infinity would satisfy properties (i) and (ii), but the Poisson boundaries are
trivial for finite groups.

We construct the sequence of marked groups as stated via taking exten-
sions of the Fabrykowski-Gupta group. Necessary terminology and back-
ground are reviewed in Section [2| Provided the sequence of marked groups
stated in Proposition [I.2] the proof of Theorem is completed by taking
suitable diagonal product of groups; see Section
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1.1. Boundary entropies. A closely related question—and, to our knowl-
edge, a much better studied one—is that of the spectrum of Furstenberg
entropies. Let (X, v) be a standard Borel space, equipped with a probability
measure, and on which G acts by measure class preserving transformations.
We say that (X, v) is a (G, u)-space, if the measure v is p-stationary, that is
p* v = v. The Furstenberg entropy of a (G, u)-space (X,v) is a numerical
invariant defined in [18] as

-1

hu(X,v) = Z,u(g)/ —log dgd Y aw.
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The Furstenberg entropy realization problem asks given (G, ), what is
the spectrum of the Furstenberg entropy h,(X,v), as (X, v) varies over all
ergodic u-stationary actions of G.

We briefly summarize what is known about this problem. In Kaimonovich
and Vershik [29)] it is shown that h,(X,v) < h(G, 1). The Poisson bound-
ary of an induced random walk on a quotient group G/N is a (G, u)-space,
whose Furstenberg entropy is equal to the random walk’s asymptotic en-
tropy. Hence every realizable random walk entropy value is also a realizable
Furstenberg entropy value.

Nevo [36] shows that whenever G has Kazhdan’s property (T) then there
is a constant ¢ > 0, depending on (G, p), such that whenever h,(X,v) < c
then it in fact vanishes. In [I2], Bowen showed that for the free group
Fy, d > 2, and p uniform on the symmetric free generating set S U S™1,
all values in [0, h(Fg, )] can be realized as the Furstenberg entropy of an
ergodic stationary action of Fd.m

A particularly important class of (G, u)-space are the (G, u)-boundaries.
These are the G-factors of the Poisson boundary of (G, i), and include the
Poisson boundaries of the induced random walks on quotient groups. For
such boundaries, the next result is an analogue of Theorem

Theorem 1.3. In the setting of Theorem [1.1], suppose (X,v) is a (Fq,p)-
boundary such that the action of ¥y is not essentially free. Then for any

€ > 0, there exists a (Fg, p)-boundary <)~(, D) such that

h(X,v) < h(X,D) < h(X,v) +e,
and (X,v) is an Fy-factor of (X, ).

IThe approach in [12] is to take an ergodic invariant random subgroup of G and con-
struct an ergodic stationary system (which can be referred to as a Poisson bundle, using
the terminology introduced in [28]). The Furstenberg entropy of this stationary system is
then studied by considering random walk entropies on the coset spaces associated with the
invariant random subgroups. Recall that an IRS is a Borel probability measure n on the
Chabauty space Sub(G) of closed subgroups of G, which is invariant under conjugation by
G. For further work on the Furstenberg entropy realization problem using the IRS-Poisson
bundle approach, see [25] 26] and references therein.
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Note that if an ergodic invariant random subgroup is not almost surely a
normal subgroup, then the corresponding Poisson bundle is not a quotient
of the Poisson boundary of (G, i) because of the measure-preserving factor
to the invariant random subgroup. Hence Bowen’s results do not resolve the
question for Furstenberg entropies of (Fg4, u)-boundaries, or for asymptotic
random walk entropies.

1.2. Spectral radii. The same kind of construction as in the proof of The-
orem implies the following result on spectral radii of symmetric random
walks. Recall that the spectral radius of a y-random walk on I' is defined as
p(T, ) = limsup p™ (idr) 7,
2

n—0o0

where p(™ is the n-fold convolution of x with itself.

Theorem 1.4. Let u be a symmetric non-degenerate probability measure on
the free group Fq, d > 2. Suppose I' is a proper quotient of Fq. Then for
any € > 0, there exists a quotient group I' of Fg such that Fy - ' - T and

p(T,p) — e < p(T', ) < p(T, p).

Our construction uses a diagonal product of marked groups, and is similar
to the construction in [30]. A result of Kassabov and Pak [31] states that the
set of the spectral radii {p(T', ) : T is a quotient of Fy} contains a subset
homeomorphic to the Cantor set. The same construction shows that the set
$H(F g4, p) contains a subset homeomorphic to the Cantor set as well. It is not
known whether this set of spectral radii is closed.

Acknowledgement. We thank Michael Bjorklund, Jérémie Brieussel, Yair
Hartman and Igor Pak for helpful discussions.

2. PRELIMINARIES

2.1. (G, p)-boundaries. In this paper we only consider countable groups. A
probability measure p on G is non-degenerate if the support of  generates G
as a semigroup. For a countable group G, we say a Lesbesgue space (X, v) is
a G-space, if G acts measurably on X and the probability measure v is quasi-
invariant with respect to the G-action. A G-space (X, v) is ergodic if every
G-invariant subset is either null or conull. A measurable map 7 : (X,v) —
(Y, n) is called a G-map if it is G-equivariant and 7 is the pushforward of v
under .

Given a probability measure ;o on G, let Q = GN be the path space, P, be
the law of the p-random walk starting at ¢d, and Z be the o-field on €2 that is
invariant under time shifts. The Poisson boundary of (G, 1) is denoted by the
measure space (B, F,vp) together with a G-map b : (,Z,P,) — (B, F,vp),
where b~ F = T up to null sets with respect to P, and the o-algebra F is
countably generated and separating points. The existence and uniqueness up
to isomorphism of the Poisson boundary of (G, 1) was shown by Furstenberg
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[18, 191 20]. The G-action on the Poisson boundary (B, vp) is ergodic, and
in fact doubly ergodic, by Kaimanovich [27].

We use the notation (B,vg) to denote a compact model of the Poisson
boundary of (G, i), which exists by the Mackey realization [34]. A (G, u)-
boundary (X, v) is defined to be a G-factor of (B, vp). Moreover, the factor
map (B,vp) — (X,v) is essentially unique, see [4, Theorem 2.14], and we
will denote it by Bx.

Denote by P(X) the space of Borel probability measures on the compact
space X. A factor map 7 : (Y,n) — (X, v) gives a unique disintegration map
D, : X — P(Y) such that for v-a.e. x € X, Dx(z) is supported on the fiber
of z and [y Dy (x)dv(z) =n. Wesay (Y,n) is a relatively measure preserving
extension of X if D is G-equivariant, that is Dx(g-x) = ¢g - D ().

We will need the following properties regarding Furstenberg entropy and
relatively measure preserving extensions.

Proposition 2.1 ([37, Proposition 1.9]). Let = : (Y,n) — (X,v) be a G-
factor map. Suppose h(X,v) < oo and h(Y,n) = h(X,v). Then (Y,n) is a
relative measure preserving extension of (X,v).

Lemma 2.2 ([4 Corollary 2.20|). Let m : (Y,n) — (X,v) be a relatively
measure-preserving extension of two (G, p)-boundaries. Then (Y,n) = (X, v).

2.2. The space of marked groups and convergence to the free group.
Denote by G, the space of d-generated groups (G, S), where S = (s1,...,54)
is a generating tuple, equipped with the Cayley-Grigorchuk topology. We re-
fer to the pair (G, S) as a marked group and G4 the space of d-marked groups.
Recall that in this topology, two marked groups (Gi,S51) and (Ga,S2) are
close if marked balls of large radius in the Cayley graphs of (G, 51) and
(Ga, S2) around the identities are isomorphic. This space is introduced by
Grigorchuk in [23].

Denote by (Fg4,S) a free group of rank d, where S = (s1,...,s4) consists
of the free generators. Let G be a d-generated group. Following the defini-
tion in Akhmedov [2] and Olshanskii-Sapir [38], we say a non-trivial word
w(z1,...,xq) is a d-almost-identity for G, if the identity w(gi,...,g4) = 1
is satisfied for any d-generating tuple (g1, ...,94). By [38, Theorem 9], there
exists a sequence of d-markings (G, S;)?2, that converges to (Fg,S) in the
Cayley-Grigorchuk topology if G is d-generated and satisfies no d-almost
identity.

In [1], Abért gives a general criterion for a group to satisfy no identity.
Suppose G ~ X by permutations. We say G separates X, if for every finite
subset Y of X, the pointwise fixator Gy ={g € G:y-g=yforally € Y}
has no fixed point outside Y. Abért shows that if G separates X then G sat-
isfies no identity. Bartholdi and Erschler [6] provide a criterion for absence
of almost-identities: under the additional assumption that the Frattini sub-
group ®(G) has finite index in G, the condition in Abért’s criterion implies
that G satisfies no almost-identity. Recall that the Frattini subgroup of G
is the intersection of all the maximal subgroups of G.
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Weakly branch groups provide examples of groups satisfying Abért’s cri-
terion. The notion of weakly branch group is introduced by Grigorchuk in
[24]. Let T be a rooted spherical symmetric tree. For a vertex u € T, let
Cy be the set of infinite rays with prefix u. We say a group G acting by
automorphisms on T is weakly branching if it acts level transitively and the
rigid stabilizer Ristg(Cy) of any vertex w € T is nontrivial. Recall that
Ristg(Cy) = {g € G : x-g =z forall z ¢ C,}, that is, the set of group
elements that only move the descendants of u. If G is weakly branching,
then G separates the boundary 0T of the tree, see [I, Proof of Corollary
1.4]. If in addition, the product of rigid stabilizers [[ .7, Ristg(Cu) is a
finite index subgroup of G for every n, then G is said to be a branch group.

3. A SEQUENCE OF MARKED GROUPS

This section is devoted to the proof of Proposition To fix ideas, we
start with the Fabrykowski-Gupta group introduced in [I4]. It is a group
acting on the ternary rooted tree T. Encode vertices of T by finite strings in
the alphabet 0, 1, 2, and the boundary of the tree by infinite strings in 0, 1, 2.
Denote by T,, the level n vertices of the rooted tree T and Stg(n) the level
n stabilizer, that is, Stg(n) = {g € G : u.g = u for all u € T, }.

The Fabrykowski-Gupta group is generated by two elements: a root per-
mutation a which permutes the three subtrees of the root cyclically and a
directed permutation b which fixes the right most ray 2*° and is defined
recursively by

b= (a,id,b).
In other words we have for any ray w € {0, 1,2},

Ow-a=1w, lw-a ="2w, 2w -a = Ow;
Ow-b=0w-a), lw-b=1w, 2w-b=2(w - b).

See Figure For more background on groups acting on rooted trees and
the notation of wreath recursion see the reference [8]. The group G = (a, b)
is called the Fabrykowski-Gupta group. It is an example of non-torsion
Grigorchuk-Gupta-Sidki (GGS) groups.

The group G = (a, b) is known to have the following properties:

e ([7]) G is a just infinite branch group which is regularly branching
over its commutator group [G, G].

e ([I5. @]) G is of intermediate growth.

e ([16]) G has the congruence subgroup property: every finite index
subgroup of G contains some level stabilizer Stg(n).

3.1. Permutation wreath extensions. Let G, be the quotient group

G'/Stg(n), which acts faithfully and transitively on T,. We denote by a,b €

Gy, the images of the generators a, b under the quotient map G — G /St (n).

Consider the level n Schreier graph S, with vertex set T, and edge set

E ={(z,r-a),(z,x-b) : € T,}. Itis afinite graph on 3" vertices. Consider
6
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FiGURE 3.1. The action of the Fabrykowski-Gupta group on
the first four levels of the rooted ternary tree. Self loops
are not depicted. Arrows show the action on the roots of
subtrees, with corresponding arrows in the rest of the subtree
not drawn explicitly. The restriction of S3 to its red (and
likewise gray and blue) vertices forms a copy of Sz. The
Schreier graph Ss is the disjoint union of these three graphs,
with the addition of the three edges labeled by b.

the permutation wreath product of the free product A = (Z/3Z) x (Z/37Z)
and G, over the set T,, that is,

A, Gp, = (B1,A) x Gy,

n

where G, acts on @1, A by permuting the coordinates. We write elements of
Ar, Gy, as pairs (¢, g), where ¢ € @1, A is regarded as a function T,, = A
and g € G,,.

Denote by s and t the two standard generators of A, A = <s, t]s? =13 = 1>.
Consider the subgroup W,, of A1, G,, generated by

(3.1) an = (id,a), by = ( S0+ 53n,5) :

where in the direct sum &1, A, 02 denotes the function that is v at = and
identity elsewhere. We use additive notation 83" +6,°,  # y, for the function
that is v at x, 2 at y, and identity elsewhere.

The choice of (ay, b,) guarantees:

Lemma 3.1. The sequence (Wy, (an,bn)) converges to (G, (a,b)) in the
Cayley-Grigorchuk topology as n — oo. Indeed, (Wyi1, (ant1,bn+1)) is a
marked quotient of (Wi, (an,by)), and the ball of radius 2"~2 around id in
the Cayley graph of (Wi, (an, b)) coincide with the ball of radius 2"~2 around
id in (G, (a,b)).

Proof. The Fabrykowski-Gupta group belongs to the class of bounded au-
tomaton groups. Schreier graphs of bounded automaton groups are studied
7



systematically in Bondarenko’s dissertation [II]. In particular, on the finite
Schreier graph S, we have that the graph distance between the vertices
2710, 2" satisfy ds, (27710,2") = 2" — 1. For more details see [IT, Chapter
VIJ.

Note that G' embeds as a subgroup of G i1, Gy, where the embedding is
given by the wreath recursion

@ (id,a), b (0u-1q+ 031y + 05,0

Now consider a word w = wy . .. wy, where w; € {a*!, b1} and evaluate this
word in G i1, Gy, by the embedding above. Denote the image in G i1, Gy,
by (¢w,w). For the configuration ¢,, € &1, G, we have that

¢w(x) = H(stl(l’ SwWq .. .wi_l).
=1

It follows from the triangle inequality that if £ < 2772 then the trajectory
{x,z-w1,..., 2w ... wp_1} can visit at most one point in the set {2"710,2"}.
In particular, ¢, (x) is an element in either (a) or (b). Thus if we evaluate
the same word w in W), under a — a, and b > by, the resulting element

({bw, w) can be identified with (¢, @) in G o7, Gn. Namely, ¢y, is obtained

from g}bw by replacing s with a and ¢ with b and vice versa.

The quotient map from (W, (an,by)) to (Wyi1, (ant1,bn+1)) is given as
follows. Note that A, Gui1 = (Ao (@) i1, Gn. Let 7: A —
A 0,1,2) (@) be the group homomorphism determined by 7(s) = (id,a)
and 7(t) = (6§ + 6i% + 65, id). The homomorphism 7 extends to &7, A —
&T, (Ao12) (@) coordinate-wise, that is 7(¢)(z) = 7(¢(x)), z € Tp. It
follows that the wreath recursion formula in G that the map

W, — Wn+1

(0,9) = (1(4),9)

is a marked group epimorphism which sends a, to an+1 and b, to bpy1.
O

Next we verify that W, is virtually a direct product of free groups:

Lemma 3.2. The group W, contains &71,[A,A] as a finite index normal
subgroup.

Proof. We proceed by induction on n.

As in the proof of Lemma [3.1, let 7 : A — A 4,2 (@) be the group
homomorphism determined by 7(s) = (id, a) and 7(t) = (65 + 01 + 6%, id),
where a is the 3-cycle (0, 1,2). When n = 1, by definition W is generated by
a1 = 7(s) and by = 7(t). Since ay'ba; = (8¢ + 8¢ + 65, id), it follows that
the projection of Wi N @1, A to the component over vertex 2 is A. Direct
calculation shows that [blaflblal,alblaflbl] = (5§t571t71,id> . It follows
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that [Wl, Wl] O@TIA contains {((5;, Zd) Ty € <sts_1t—1>A}7 while the nor-

mal closure <sts_1t_1>A is exactly the commutator subgroup [A, A]. Since
7(s) acts as a 3-cycle permuting T; = {0, 1,2}, it follows that [IW;, Wi] N
@&T1,A > &71,[A, A]. The quotient group Wi/ &T, [A, A] is a subgroup of
(A/[A, A]) i1, (a), which is finite.

We have shown that 7([A, A]) contains &7, [A, A] as finite index normal
subgroup, which reflects the property that G is regularly branching over its
commutator subgroup.

Suppose the statement is true for n that W), contains &1, [A, A] as a finite
index normal subgroup. To prove the claim for n+ 1, it suffices to show that
(5;n+1,id) € Wyt for any v € [A, A]. Recall the quotient map = : W,, —
W41 explained in the proof of Lemma , where At ., Gpy is identified
with (A 0,1,2} (a)) t1,, G- By the induction hypothesis, (65,id) € W, for
any o € [A, A]. Under the quotient map m, we have

7 (85, id)) = (5;55’),1'61) .

With the map 7 we are back in the situation of the induction base, where
we have shown that 7 ([A, A]) contains &7, [A,A]. In particular, for any
v € [A,A], there is an element o € [A, A] such that 7(0) = (d5,id). It
follows that 7 ((8.,id)) = (5;(10),%() = (0gn41,0d), in particular it is an
element of W,11.

([

3.2. Choices of marked subgroups. We are given a fixed rank d € N,
d > 2. Since the Fabrykowski-Gupta group G = (a, b) is a branch group act-
ing faithfully on the ternary tree T, by Abért’s criterion [1, Theorem 1.1] and
its proof, we have that given any n € N, and any vertex v € T, there exist el-
ements 'yin), ce C(ln) € Ristg(v) such that w (a'yfn), b’yén), :(,)n), e C(ln)> =+
id for all reduced word w of length 1 < |w| < n.

In what follows we fix the choice of v to be the child of the root indexed
by 1. For each n € N, fix a choice of %n)’ - ,’y((i") € Ristg(1) such that
the tuple (ayfn), b’yén),vén), ceey én)) do not satisfy any reduced word w of
length |w| € [1,n].

Lemma 3.3. Denote by H, the subgroup of G generated by the first two
elements of the tuple chosen above,

H, = <a7§n), bvén)> .

Then H, acts level transitively on the rooted ternary tree T.

Proof. The statement is equivalent to that the Schreier graph on level k

vertices Ty with respect to (cw%n), b'yén)) is connected.
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With respect to the original generators a,b, the Schreier graph Si with
vertex set Tx under the action of G can be drawn recursively as follows, see
[11, Chapter V|. The level 1 graph S; on {0, 1,2} has (directed) edges (0, 1),
(1,2), (2,0) labeled by a, and self loops at each vertex labeled by b. To draw
Sk+1, take three copies of Sk, append letter 0, 1, or 2 to the strings indexing
the vertices of Sy respectively in each copy. Then connect the three copies
by edges (28100,2%101), (2¢-101,2%102) and (2¥102,2¥100) labeled by
b. In Figure this is depicted for k = 2. There, S3 is seen to be the union
of three copies of Sz, which are shown with red, gray and blue vertices,
respectively. The three additional edges connecting them and labeled by b
are those in the bottom right of the figure.

It follows that in Sk, if we remove all vertices of the form lu, u €
{0,1,2}*=1 and edges connecting to such vertices, the remaining graph is
connected. Denote the remaining graph by S;. Since %n)’ vén) are chosen to
be in the rigid stabilizer of vertex 1, in the subgraph S; , we may replace label
a by cw%n) and label b by van). The element a'yfn) moves lu, u € {0,1,2}+1
into the vertex set of S}, namely, a string starting with 2. It follows that the

graph on T with respect to (av{n), bvén)) is connected. [l

Denote by ¢, the maximal word length of elements in the tuple chosen,
with respect to the original generating set (a,b), that is,
{a,b}} '

Recall the subgroup Wy, of Ay, Gy, generated by (ag,by), as defined in
. By Lemma , the ball of radius 2¥2 around the identity element
in the Cayley graph of (W, (ax, b)) coincide with the ball of radius 2¢2
around the identity in (G, (a,b)). In particular, for k > 2 + logy(nt,), ele-

ments in the tuple (a’y%n), b’yén), vén), e ,vén)) have images in (W, (ag, b))

(n)

b')/g (n)

(3.2) ¢, = max { ‘a'ygn) Y4

)

‘{a,b} ’ {ab}

under the identification of balls of radius 2¢,, around the identities. Record

(n,k) h[(in,k:)

the image tuple of elements in Wy, as <h1 e ) Finally, denote by

Iy, i the subgroup of Wj, generated by the tuple S, = (hg"’k), ey hgn’k)).

Note that by our choices, for k > 2 + logy(nt,, the ball of radius n around
the identity in the Cayley graph of (I'yk, Spx) is the same as the ball of
radius n in the Cayley graph of the free group (Fgy, S).

3.3. Random walks on I'), ;. Let ;1 be a non-denegerate probability mea-
sure on the free group F;. Next we consider the y-random walk on the group
I’ defined in the previous subsection, with n > 1, k > logy(nf,,). Our goal
is to show that the action of Iy, , on the Poisson boundary of (I'y, x, it) is es-
sentially free; and given any € > 0, for all k sufficiently large, the asymptotic
entropy of the y-random walk on I'y, ;. is smaller than e.
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By [13] Theorem 5.1], for a non-degenerate probability measure p on a
countable group I'; a sufficient condition for the action of I' on the Poisson
boundary of (T, u) to be essentially free is that

(1): T has only countably many amenable subgroups,
(2): T does not contain any non-trivial normal amenable subgroup, in other
words, the amenable radical of I" is trivial.

We verify that these two properties are satisfied by I',, ;, in the following
lemma.

Lemma 3.4. For each n and k > 2 + logy(nty,), the group I'y i is non-
amenable, has no non-trivial normal amenable subgroup, and has only count-
ably many amenable subgroups.

Proof. We first introduce some notations. Given a subgroup H of At Gy =
(®T1,A) % Gy, for g € Gy, let

Su(g) ={pcdr,A: (¢,9) € H}.

Then Sy (idg,) is a subgroup of &1, A. For g € Gy, Sg(g) is either empty,
or a right coset of Sy (idg,) in @1, A. Denote by 7, the natural projection
AT, G — Gy.

As shown in the proof of Lemma [3.3] in the Schreier graph on vertex set
Tj with respect to the generating tuple of H,, there is a path connecting
the vertex 2% to the vertex 2¥710, which does not visit any vertex starting
with letter 1. It then follows by the definition of the generating tuple S, =

<h§n’k), ey hén,k)) of Iy, . that the set of values at the coordinate index by
2F is all A, that is,

{6(2%) 1 ¢ € Ugeq, ST, 1 (9)} = A

Note that this implies that Sr, , (idg,) is non-amenable. Indeed, otherwise
the free product A can be written as a union of finitely many right cosets of
an amenable subgroup, which contradicts the fact that A is non-amenable.
For each x € Ty, write 6, for the projection of ®t, A to the z-coordinate,
that is, 0,(¢) = ¢(x). Then the reasoning above shows that the projection
of I'y 1N (@71, [A, A]) under Oy is non-amenable. Recall that [A, A] is a free
group, By Lemma the action of my, (I'y, ;) is transitive on Ty. It follows
then 0, (I';, , N (&7, [A, A])) is a free group of rank at least 2 for every vertex
in Ty.

Let N be a normal subgroup of I'y, ;, N # {id}. We need to show that N
is non-amenable. Note that for each z € Ty, 6, (N N&1,[A, A]) a normal
subgroup of 0, (I'y, , N (&7, [A, A])), while the latter is a free group of rank at
least 2. Thus if on the contrary NN is amenable, then N N&T, [A, A] = {id}.
Since A/[A,A] is finite, such trivial intersection implies that Sy(idg,) is
finite.

We now argue that Sy(idg,) being a finite group contradicts with the
condition that N is a non-trivial normal subgroup of I';, ;. Note that since
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Gy, is finite, Sy(idg,) being finite implies that N is finite. On the other
hand, since for each x € Ty, 0, (I'y x N (BT, [A, A])) is a free group of rank
at least 2, it follows that for any element h € I'y, i, h # id, its conjugacy class
is infinite. Therefore Sy (idg, ) being a finite group implies that N = {id}.
We conclude that a nontrivial normal subgroup of I, ;. is non-amenable.
Since [A, A] is a free group, the only amenable subgroups are the triv-
ial group and the cyclic groups. It follows that the direct sum @, [A, A]
has only countably many amenable subgroups. The property of having only
countably many amenable subgroups is clearly preserved under taking fi-
nite extensions and taking subgroups. Thus by Lemma I'y 1 has only
countably many amenable subgroups.
O

To bound the asymptotic entropy from above, we simply use the well-
known “fundamental inequality”, see e.g. [I0]. More precisely, let © be a
probability measure on Fy with finite first moment, 7 : ¥y — ' an epimor-
phism. Let S = 7(S) be the induced marking on I' and fp = 7 o u be the
pushforward of . The fundamental inequality implies that

h(T, ) <wr,s - lr g,

where vr g and {1 ; are asymptotic volume growth rate and asymptotic speed
with respect to generating set S:

.1 .1 _(n
vr,s = lim —log Vr,s(r) and frp = lim — EF lglsi™ (9).
g€

By sub-additivity, we have frp < > crlglsfi(9) < >° cp, l9lsp(g). Thus
the asymptotic entropy can be bounded by

(3.3) h(D,m) <vrs Y lglsp(g).
9€F,

The estimate is the only place where the moment condition on p is
needed.

By Lemma the ball of radius 2572 around id in the Cayley graph of
(W, (ag, b)) coincide with the ball of radius 2¥=2 around id in (G, (a,b)). It
follows by sub-multiplicity of the volume growth function that the asymptotic
volume rate satisfy

1 _

Recall the maximal length ¢,, defined in (3.2). By comparing lengths of
generators, we have that for the subgroup Iy, of W}, satisfies

Uy, k+Sn,k < gan}c,(ak,bk)‘
12



3.4. Proof of Proposition We are now ready to prove Proposition
stated in the Introduction.

Completion of proof of Proposition[1.Z, Let p be a non-degenerate probabil-
ity measure on Fy given, where d > 2 and pu is of finite first moment. For
each n € N, choose k,, > logy(nty,) such that I'y, ;. is defined as in subsection

and moreover .

ln Fep—2
ok, 2 108 VG (ah) (2 ) =

This is possible because the Fabrykowski-Gupta group G has sub-exponential
volume growth, that is,

. 1
VG, (a,b) = Tlggo - log Vi, (a,p) (1) = 0,

Now we verify that the sequence (I'y, k,,, Sn i, ) satisfy the properties stated.

(i): By construction, the generating tuple Sy, i, do not satisfy any reduced
word w of length |w| € [1,n].

(ii): The fundamental inequality implies that with respect to the mark-
ing (Fd, S) — (Pn,k’nv Sn,k'n);

1
B (D s 1) S 08, Sk, D l9ls(9) < = > lglsn(g).
geFy geFy

Thus the sequence of asymptotic entropies converge to 0 as n — oo.
(iii): This property is shown in Lemma [3.4]
The proof of Proposition is complete.
O

Remark 3.5. For d > 3, in the proof of Proposition one can use the
first Grigorchuk group Goi2 = (a, b, ¢) introduced in [22] 23] instead of the
Fabrykowski-Gupta group. Recall that Gpi2 acts on the rooted binary tree.
Then one can consider the permutational wreath extension Bt G, where
G, = G/Stg(n) and B = (Z/27) * (Z/27 x 7./27) = ((s)) * ((t) x (u)).
Similar to the sequence of extensions I';;, set
H, = <am bn, Cn) <B T3, Gsp,

where the generators are defined as

an = (id, d)’ b” = (55371 + 5T3"—107 B) » Cn = ( 113” + 5?‘3“—10’ E) :
Similar proof as in this section with I';, replaced by H,, shows that for d > 3,
the statement Proposition is true under the weaker assumption that p
has finite ap-moment and finite entropy, where «q is the exponent in the
growth upper bound vg,,,(r) < ™ from [5] B5], ap ~ 0.7674.

We choose to take extensions of the Fabrykowski-Gupta group G here
because the resulting groups are 2-generated, which allows to cover the case
d = 2. It is remarked in [I7] that all maximal subgroups of G are of finite
index, which would imply that there is a sequence of marking Sy on G such

that (G, Sy) converges to the free group (Fg,S) when & — oo by [6]. Since
13



we could not find a written proof of this statement, in this section we produce
tuples of elements of GG, which a priori do not necessarily generate G, where
only Abért’s criterion [I] is invoked.

4. STATIONARY JOININGS AND PROOF OF THE MAIN RESULTS

Let (X,v) and (Y, n) be two p-stationary G-spaces. Following [21], we say
a probability measure A on X x Y is a stationary joining of v and 7 if it is
p-stationary and its marginals are v and n respectively.

In this section we focus on the situation where both stationary systems
are (G, p)-boundaries. We use notations introduced in Section 2.1l Denote
by (B,vp) a compact model of the Poisson boundary of (G, u). Let (X,v)
and (Y, n) be compact models of two (G, pu)-boundaries and denote by Bx
and By the corresponding maps from the Poisson boundary (B, vg) to (X, v)
and (Y,n). Consider the map

Bx xBy:B—XxY
b (Bx(b), By (b)),

and denote by Z the range (Bx x By) (B) and v 'Y 7 the pushforward of the
harmonic measure vg under Bx X By. Then it’s clear by definition that
(Z,vYn) is a G-factor of the Poisson boundary (B, vp), in other words, it is
a (G, p)-boundary. The G-space (Z,v Y n) is the unique stationary joining
of the p-boundaries (X, v) and (Y,n), see [21, Proposition 3.1].

On the level of groups, given two d-marked groups (G1,S1) and (Ge, S2),
one can take their diagonal product, denoted by (G; ® Gs,S), as the sub-
group of G x Gy generated by

= () o ().

where S; = (sgi), e ,sg)), i = 1,2. This operation on two groups corre-

sponds to taking stationary joinings of the Poisson boundaries:

Lemma 4.1. Let p be a probability measure on ¥4. The Poisson boundary
of (G1 ® Ga, ) is the stationary joining of the Poisson boundaries of (G1, 1)
and (Ga, 1).

Proof. Denote by (B, v;) the Poisson boundary of (G4, u), i = 1,2 and regard
them as G ® Ga-spaces. Denote by (Z,v1 Y v2) the stationary joining of
(By,11) and (Bg,12) as above and 7; : Z — B; the projections. We need to
show (Z,11Y v2) is the maximal (G; ® G, 1)-boundary.

Let (Y,n) be a (G1 ® Go, p)-boundary. Denote by K; the subgroup of
(G1 ® G2 which consists of elements that project to identity in G, that is,

Ki={(g1,92) € G1 x G2 : (g1,92) € G1 ® G2, g; =idg,} .

Denote by Y; = Y//K; the space of K;-ergodic components of Y and 7; the

pushforward of the measure 1 under the K;-factor map ¥ — Y//K;. Since

(Y,n) is an ergodic G; ® Ga-space and K1 N Ky = {id}, we have that ¥ can
14



be viewed as a subset of Yo x Y7. It’s easy to see that by definition of K; that
G1 ® Go/Ky ~ G1. Tt follows that (Ya,72) is a (G1, pu)-boundary. Denote
by By, the boundary map from (Bi,v1) to (Ya,7m2). In the same way we
have (Y1,m) is a (G2, u)-boundary and denote by By, : (B2,v2) — (Y1,m1)
the boundary map. By uniqueness of stationary joinings of y-boundaries, we
have that (Y, n) = (Yo xY1,m2Yn1). It follows that (Y, n) is a factor of (Z, 1Y
v2), where the boundary map is given by z — (By, o m1(2), By, © m2(2)).

[l

With the sequence of marked groups provided by Proposition [1.2] we are
now ready to complete the proofs of Theorem and [L.3]

Proof of Theorem[1.1, Denote by (B,vp) the Poisson boundary of (Fg, u).
Let ((T'k, Sk))peq be a sequence marked groups provided by Proposition .
Denote by (IIg,7nx) the Poisson boundary of (I'y, ). Since (T'g, Sk) can be
identified with a projection 7y : Fg — Tk, we regard (Ilx,nx) as a (Fg, p)-
space, where the Fg-action factors through .

Since I is a proper quotient of Fy, N = ker(7 : Fg — I') is nontrivial. Fix
a choice of element g € N, g # id. Choose an index k € N sufficiently large
such that the balls of radius 2|g|s around identities in (I'y, Sx) and (Fg4,S)
coincide and h(T'y, ) < €. Take T to be the diagonal product (I' ® ', S).
Then

(I @ T, ) < AL, ) + h(Lk, p) < B(T, p) + €.

Since g acts trivially on the Poisson boundary of (I, u) but acts freely on
(Ig, vk ), it follows that (Ilg,vy) is not a Fy-factor of the Poisson boundary
of (T, u). By Lemma 2.2 we conclude that (T’ ® Ty, u) > h(T, p).

U

Proof of Theorem [I.5 The proof is similar to Theorem Since (X, v) is
assumed to be a (Fg, u)-boundary where the action of Fy is not essentially
free, we can choose an element g € Fg, g # 1, such that v(Fixx(g)) > 0.
Choose an index k € N sufficiently large such that the balls of radius 2|g|s
around identities in (I'g, Sk) and (Fg4, S) coincide and h(T'x, u) < e. Take
the stationary joining (Zg,v Y nx) of (X,v) and (Ilg,nx). By the general
inequality, we have

h(Zi, v Y i) < h(X,v) + h(Ilg, nk) < h(X,v) + e

It remains to show that h(Zg,v Y nr) > h(X,v). Suppose on the contrary
equality holds, then by Lemma [2.2] the equality would imply (Zk,v Y ni) =
(X, v). However the action of I'y, on (Ilj, ng) is essentially free, which implies
vY ni (Fixz, (9)) = 0, contradicting v(Fixx(g)) > 0.

O

We now show an analogous result on spectral radii stated as Theorem
in the Introduction. Consider a symmetric non-degenerate probability
measure 4 on I'. In [32] 33] Kesten proved the following theorem: let u be
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a symmetric non-degenerate probability measure on I' and N be a normal
subgroup of I', then the following are equivalent:

(1): p(T', ) = p(U/N, p),
(ii): N is amenable.

Given a proper quotient I' of Fy and € > 0, to prove Theorem we take I’
to be a diagonal product I' ® H, for some appropriate choice of H similar to
the groups used in Theorem

Proof of Theorem[1.J] Let € > 0 be a constant given. Let I' be a proper
quotient of F; and fix a choice of gy € ker(Fg — I"), go # id. Take n > 2|go|s.
As in the beginning of Subsection [3.2] fix a choice of d-tuple of elements in the
Fabrykowski-Gupta group G, T' = <a'y§n),b7§"),7§n), o ,vc(ln)) that do not
satisfy any reduced word of length at most n. Denote the group generated
by this tuple by G,,. Take first the diagonal product I' ® G,,. By the choice
of g and marking on G we have that Ny = ker(I' ® G,, — I') is non-trivial.
Note that Ny can be regarded as a normal subgroup of G,,.

Denote by (Wy) a p-random walk on F4. For a marked group (H,S), we
write wp for the quotient map ¥y — H when the marking is clear from the
context.

Take a small constant €; > 0, choose ¢ large enough such that

P (mpr (We) = idr) > (1 = e1)p(T, )"

For g € Ny, set

P(mrec(We) = g)

Q) = Bap (W) = i)

Then @ is a symmetric probability measure on Ny. Equip Ny with the
induced metric | - |7 from (Gp,T). Let R be a sufficiently large radius such
that Q({y € No : |7|r > R}) < €1. Truncate the measure @ at R and let

1
{v:vlr <R}

Since Ny is a subgroup of the Fabrykowski-Gupta group G, thus amenable,
there exists an integer m such that

Qr(g) = o )Q(9>1{|g|TSR}-

7 (idny) > (1= e)*™.

With £,m, R chosen as above, for a sufficiently large index k., to be spec-
ified shortly, and take the marked group (I, %, Sy %) defined in Subsection
. Consider the diagonal product I' ® I, .. By Lemma , the ball of
radius 2872 around id in the Cayley graph of (W, (ay, bx)) coincide with the
ball of radius 2¥=2 around id in (G, (a,b)). Choose k sufficiently large such

that £ > 2mR.
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Now we follow the original argument in Kesten’s theorem (ii) = (i) above
to show p(I' ® Ty 1, ) > p(I', ) — €. Write W(]’ﬁil)@ = W(;I_WWM.

P (nrer, , (Waem) = idrer, )
>P (mizl {ﬂT (W(?f—l)l) = idr, ‘Trrn,k (W(]{;ce—l)ﬁ) )S . < R} N {7‘&'1“2 (Wapm) = idrn,k})
> (1= e)p(T, 1)*™ (1 — €)™ QF" (idny,) > (1 — eg)?m"HAm p2mn,

Choose €1 < €/3, we have that p(I' ® T'y, 1, 1) > (1 — €)p(T', p).
Finally, by Lemma 3.4 T, x has no nontrivial amenable normal subgroups.
Since by the choice of markings ker(I'® G, ,, — I') is nontrivial, the kernel is

non-amenable. By Kesten’s theorem (i) = (i¢), we conclude that p(I', u) <

p(I' ).
O

REFERENCES

[1] M. Abért. Group laws and free subgroups in topological groups. Bull. London Math.
Soc., 37(4):525-534, 2005.

[2] A. Akhmedov. On the girth of finitely generated groups. J. Algebra, 268(1):198-208,
2003.

[3] A. Avez. Théoréme de Choquet-Deny pour les groupes a croissance non exponentielle.
CR Acad. Sci. Paris Sér. A, 279:25-28, 1974.

[4] U. Bader and Y. Shalom. Factor and normal subgroup theorems for lattices in prod-
ucts of groups. Invent. Math., 163(2):415-454, 2006.

[5] L. Bartholdi. The growth of Grigorchuk’s torsion group. Internat. Math. Res. Notices,
(20):1049-1054, 1998.

[6] L. Bartholdi and A. Erschler. Ordering the space of finitely generated groups. Ann.
Inst. Fourier (Grenoble), 65(5):2091-2144, 2015.

[7] L. Bartholdi and R. I. Grigorchuk. On parabolic subgroups and Hecke algebras of
some fractal groups. Serdica Math. J., 28(1):47-90, 2002.

[8] L. Bartholdi, R. I. Grigorchuk, and Z. Sunik. Branch groups. In Handbook of alge-
bra, Vol. 3, volume 3 of Handb. Algebr., pages 989-1112. Elsevier/North-Holland,
Amsterdam, 2003.

[9] L. Bartholdi and F. Pochon. On growth and torsion of groups. Groups Geom. Dyn.,
3(4):525-539, 2009.

[10] S. Blachére, P. Haissinsky, and P. Mathieu. Asymptotic entropy and Green speed for
random walks on countable groups. Ann. Probab., 36(3):1134-1152, 2008.

[11] I. Bondarenko. Groups gemerated by bounded automata and their Schreier graphs.
Texas A&M University, 2007.

[12] L. Bowen. Random walks on random coset spaces with applications to Furstenberg
entropy. Invent. Math., 196(2):485-510, 2014.

[13] L. Bowen, Y. Hartman, and O. Tamuz. Generic stationary measures and actions.
Trans. Amer. Math. Soc., 369(7):4889-4929, 2017.

[14] J. Fabrykowski and N. Gupta. On groups with sub-exponential growth functions. J.
Indian Math. Soc. (N.S.), 49(3-4):249-256 (1987), 1985.

[15] J. Fabrykowski and N. Gupta. On groups with sub-exponential growth functions. II.
J. Indian Math. Soc. (N.S.), 56(1-4):217-228, 1991.

[16] G. A. Fernandez-Alcober, A. Garrido, and J. Uria-Albizuri. On the congruence sub-
group property for GGS-groups. Proc. Amer. Math. Soc., 145(8):3311-3322, 2017.

17



[17]
[18]
[19]
[20]

21]

[22]
23]
[24]
[25]
126]
j27]
28]
129]
1301
131]
132]
133]
134
1351
136]
1371

[38]

D. Francoeur and A. Garrido. Maximal subgroups of groups of intermediate growth.
Adv. Math., 340:1067-1107, 2018.

H. Furstenberg. Noncommuting random products. Transactions of the American
Mathematical Society, 108(3):377-428, 1963.

H. Furstenberg. Random walks and discrete subgroups of Lie groups. Advances in
Probability and Related Topics, 1:1-63, 1971.

H. Furstenberg. Boundary theory and stochastic processes on homogeneous spaces.
Harmonic analysis on homogeneous spaces, 26:193-229, 1973.

H. Furstenberg and E. Glasner. Stationary dynamical systems. In Dynamical
numbers—interplay between dynamical systems and number theory, volume 532 of
Contemp. Math., pages 1-28. Amer. Math. Soc., Providence, RI, 2010.

R. I. Grigorchuk. On Burnside’s problem on periodic groups. Funktsional. Anal. i
Prilozhen., 14(1):53-54, 1980.

R. I. Grigorchuk. Degrees of growth of finitely generated groups and the theory of
invariant means. Izv. Akad. Nauk SSSR Ser. Mat., 48(5):939-985, 1984.

R. I. Grigorchuk. Just infinite branch groups. In New horizons in pro-p groups, volume
184 of Progr. Math., pages 121-179. Birkhduser Boston, Boston, MA, 2000.

Y. Hartman and O. Tamuz. Furstenberg entropy realizations for virtually free groups
and lamplighter groups. Journal d’Analyse Mathématique, 126(1):227-257, 2015.

Y. Hartman and A. Yadin. Furstenberg entropy of intersectional invariant random
subgroups. Compositio Mathematica, 154(10):2239-2265, 2018.

V. A. Kaimanovich. Double ergodicity of the poisson boundary and applications to
bounded cohomology. Geometric & Functional Analysis, 13(4):852-861, 2003.

V. A. Kaimanovich. Amenability and the Liouville property. Israel Journal of Math-
ematics, 149(1):45-85, 2005.

V. A. Kaimanovich and A. M. Vershik. Random walks on discrete groups: boundary
and entropy. Ann. Probab., 11(3):457-490, 1983.

M. Kassabov and I. Pak. Groups of oscillating intermediate growth. Ann. of Math.
(2), 177(3):1113-1145, 2013.

M. Kassabov and I. Pak. Unpublished manuscript. Results announced in Kassabov’s
lecture, https://www.msri.org/workshops/770/schedules/21638.

H. Kesten. Full banach mean values on countable groups. Mathematica Scandinavica,
pages 146-156, 1959.

H. Kesten. Symmetric random walks on groups. Transactions of the American Math-
ematical Society, 92(2):336-354, 1959.

G. W. Mackey. Point realizations of transformation groups. Illinois Journal of Math-
ematics, 6(2):327-335, 1962.

R. Muchnik and I. Pak. On growth of Grigorchuk groups. Internat. J. Algebra Com-
put., 11(1):1-17, 2001.

A. Nevo. The spectral theory of amenable actions and invariants of discrete groups.
Geometriae Dedicata, 100(1):187-218, 2003.

A. Nevo and R.J. Zimmer. Rigidity of Furstenberg entropy for semisimple Lie group
actions. Annales Scientifiques de I’Ecole Normale Supérieure, 33(3):321-343, 2000.
A. Yu. OPshanskii and M. V. Sapir. On Fj-like groups. Algebra Logika, 48(2):245-257,
284, 286-287, 2009.

OMER Tamuz, CALIFORNIA INSTITUTE OF TECHNOLOGY, PAsAaDENA, CA 91125.
EMAIL: OMERTAMUZQGMAIL.COM.

TIANYI ZHENG, UNIVERSITY OF CALIFORNIA, SAN Dieco, La JoLra, CA 92093.
EMAIL: TZHENG2@MATH.UCSD.EDU.

18



	1. Introduction
	1.1. Boundary entropies
	1.2. Spectral radii
	Acknowledgement

	2. Preliminaries
	2.1. (G,µ)-boundaries
	2.2. The space of marked groups and convergence to the free group

	3. A sequence of marked groups 
	3.1. Permutation wreath extensions
	3.2. Choices of marked subgroups
	3.3. Random walks on Γn,k
	3.4. Proof of Proposition 1.2

	4. stationary joinings and proof of the main results
	References

