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Abstract. Given a random walk on a free group, we study the random
walks it induces on the group's quotients. We show that the spectrum
of asymptotic entropies of the induced random walks has no isolated
points, except perhaps its maximum.

1. Introduction

Let G be a �nitely generated group, and let µ be a probability measure on
G. The µ-random walk on G is a time homogeneous Markov chain g1, g2, . . .
on the state space G whose steps are distributed i.i.d.µ: for g, h ∈ G the
transition probability from g to h is µ(g−1h). An important statistic of a
random walk is its Avez Asymptotic Entropy [3]

h(G,µ) := lim
n→∞

1

n
H (gn) ,

where H(·) is the Shannon entropy. The importance of asymptotic entropy
is due to the fact that it vanishes if and only if every bounded µ-harmonic
function is constant; that is, if the µ-random walk has a trivial Poisson
boundary [3, 29]. Moreover, as the asymptotic entropy is the limit of the
mutual information I(g1; gn) between the �rst step of the random walk and
its position in later time periods, it quanti�es the extent by which the random
walk fails to have the Liouville property.

Suppose that G has d generators, and let µ be the symmetric measure
that assigns 1/(2d) to each generator and its inverse. The main question
that we ask in this paper is: what possible values of h(G,µ) are attained as
we vary the group G?

To formalize and generalize this question, we consider the following set-
ting. Given G and µ, and given a quotient Γ = G/N , the induced ran-
dom walk g1N, g2N, . . . on Γ has step distribution µΓ, where, for γ = gN ,
µΓ(γ) = µ(gN). In other words, µΓ is the push-forward of µ under the
quotient map; we will simply write µ instead of µΓ whenever this is unam-
biguous. For a given G and µ, what values can be realized as the asymptotic
random walk entropies of such quotients? This is particularly interesting
when G has many quotients, and we indeed focus on the case that of Fd, the
free groups with d ≥ 2 generators.

Omer Tamuz was supported by a grant from the Simons Foundation (#419427).
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Given (G,µ) we denote the spectrum of random walk entropies by

H(G,µ) := {h(Γ, µ) : Γ is a quotient group of G}.
We will consider measures µ on G that have �nite �rst moment, that is,∑︁

g∈G |g|S µ(g) < ∞, where |·|S is the word length with respect to generat-
ing set S. Recall that µ is non-degenerate if its support generates G as a
semigroup.

Our main result is the following.

Theorem 1.1. Let µ be a non-degenerate probability measure with �nite

�rst moment on the free group Fd, d ≥ 2. Suppose Γ is a proper quotient

of Fd. Then for any ϵ > 0, there exists a quotient group Γ̃ of Fd such that

Fd ↠ Γ̃ ↠ Γ and

h(Γ, µ) < h(Γ̃, µ) < h(Γ, µ) + ϵ.

In particular, the set H(Fd, µ) has no isolated points, except perhaps its max-

imum.

It follows from Theorem 1.1 that if H(Fd, µ) is a closed subset in R, then
it must be the full interval [0, h(Fd, µ)]. To the best of our knowledge, it is
not known whether the set H(Fd, µ) is closed.

The key ingredient in the proof of Theorem 1.1 is an explicit construction,
which might be of independent interest, of a sequence of groups in the space
Gd of d-marked groups with the following properties.

Proposition 1.2. Let µ be a non-degenerate probability measure on Fd,

d ≥ 2, with �nite �rst moment. Then there exists a sequence of marked

groups ((Γn, Sn))
∞
n=1 in Gd such that:

(i): The sequence (Γn, Sn) converges to (Fd,S) as n → ∞ in the space of

d-marked groups.

(ii): The sequence of asymptotic entropies h(Γn, µ) → 0 as k → ∞.

(iii): For each n ∈ N, Γn is non-amenable, has no nontrivial amenable nor-

mal subgroups, and has only countably many amenable subgroups.

The moment condition on µ is used to bound the asymptotic entropy. It
seems to be an interesting question whether Proposition 1.2 remains true
assuming only that µ has �nite entropy.

Property (iii) in the statement above implies that the action of Γn on the
Poisson boundary of (Γn, µ) is essentially free. This property is crucial for
our purposes. Any sequence of d-marked �nite groups with girth growing to
in�nity would satisfy properties (i) and (ii), but the Poisson boundaries are
trivial for �nite groups.

We construct the sequence of marked groups as stated via taking exten-
sions of the Fabrykowski-Gupta group. Necessary terminology and back-
ground are reviewed in Section 2. Provided the sequence of marked groups
stated in Proposition 1.2, the proof of Theorem 1.1 is completed by taking
suitable diagonal product of groups; see Section 4.
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1.1. Boundary entropies. A closely related question�and, to our knowl-
edge, a much better studied one�is that of the spectrum of Furstenberg

entropies. Let (X, ν) be a standard Borel space, equipped with a probability
measure, and on which G acts by measure class preserving transformations.
We say that (X, ν) is a (G,µ)-space, if the measure ν is µ-stationary, that is
µ ∗ ν = ν. The Furstenberg entropy of a (G,µ)-space (X, ν) is a numerical
invariant de�ned in [18] as

hµ(X, ν) :=
∑︂
g∈G

µ(g)

∫︂
X
− log

dg−1ν

dν
dν.

The Furstenberg entropy realization problem asks given (G,µ), what is
the spectrum of the Furstenberg entropy hµ(X, ν), as (X, ν) varies over all
ergodic µ-stationary actions of G.

We brie�y summarize what is known about this problem. In Kaimonovich
and Vershik [29] it is shown that hµ(X, ν) ≤ h(G,µ). The Poisson bound-
ary of an induced random walk on a quotient group G/N is a (G,µ)-space,
whose Furstenberg entropy is equal to the random walk's asymptotic en-
tropy. Hence every realizable random walk entropy value is also a realizable
Furstenberg entropy value.

Nevo [36] shows that whenever G has Kazhdan's property (T) then there
is a constant c > 0, depending on (G,µ), such that whenever hµ(X, ν) < c
then it in fact vanishes. In [12], Bowen showed that for the free group
Fd, d ≥ 2, and µ uniform on the symmetric free generating set S ∪ S−1,
all values in [0, h(Fd, µ)] can be realized as the Furstenberg entropy of an
ergodic stationary action of Fd.

1

A particularly important class of (G,µ)-space are the (G,µ)-boundaries.
These are the G-factors of the Poisson boundary of (G,µ), and include the
Poisson boundaries of the induced random walks on quotient groups. For
such boundaries, the next result is an analogue of Theorem 1.1.

Theorem 1.3. In the setting of Theorem 1.1, suppose (X, ν) is a (Fd, µ)-
boundary such that the action of Fd is not essentially free. Then for any

ϵ > 0, there exists a (Fd, µ)-boundary
(︂
X̃, ν̃

)︂
such that

h(X, ν) < h(X̃, ν̃) < h(X, ν) + ϵ,

and (X, ν) is an Fd-factor of (X̃, ν̃).

1The approach in [12] is to take an ergodic invariant random subgroup of G and con-
struct an ergodic stationary system (which can be referred to as a Poisson bundle, using
the terminology introduced in [28]). The Furstenberg entropy of this stationary system is
then studied by considering random walk entropies on the coset spaces associated with the
invariant random subgroups. Recall that an IRS is a Borel probability measure η on the
Chabauty space Sub(G) of closed subgroups of G, which is invariant under conjugation by
G. For further work on the Furstenberg entropy realization problem using the IRS-Poisson
bundle approach, see [25, 26] and references therein.
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Note that if an ergodic invariant random subgroup is not almost surely a
normal subgroup, then the corresponding Poisson bundle is not a quotient
of the Poisson boundary of (G,µ) because of the measure-preserving factor
to the invariant random subgroup. Hence Bowen's results do not resolve the
question for Furstenberg entropies of (Fd, µ)-boundaries, or for asymptotic
random walk entropies.

1.2. Spectral radii. The same kind of construction as in the proof of The-
orem 1.1 implies the following result on spectral radii of symmetric random
walks. Recall that the spectral radius of a µ-random walk on Γ is de�ned as

ρ(Γ, µ) = lim sup
2n→∞

µ(n)(idΓ)
1
2n ,

where µ(n) is the n-fold convolution of µ with itself.

Theorem 1.4. Let µ be a symmetric non-degenerate probability measure on

the free group Fd, d ≥ 2. Suppose Γ is a proper quotient of Fd. Then for

any ϵ > 0, there exists a quotient group Γ̃ of Fd such that Fd ↠ Γ̃ ↠ Γ and

ρ(Γ, µ)− ϵ < ρ(Γ̃, µ) < ρ(Γ, µ).

Our construction uses a diagonal product of marked groups, and is similar
to the construction in [30]. A result of Kassabov and Pak [31] states that the
set of the spectral radii {ρ(Γ, µ) : Γ is a quotient of Fd} contains a subset
homeomorphic to the Cantor set. The same construction shows that the set
H(Fd, µ) contains a subset homeomorphic to the Cantor set as well. It is not
known whether this set of spectral radii is closed.

Acknowledgement. We thank Michael Björklund, Jérémie Brieussel, Yair
Hartman and Igor Pak for helpful discussions.

2. Preliminaries

2.1. (G,µ)-boundaries. In this paper we only consider countable groups. A
probability measure µ on G is non-degenerate if the support of µ generates G
as a semigroup. For a countable group G, we say a Lesbesgue space (X, ν) is
a G-space, if G acts measurably on X and the probability measure ν is quasi-
invariant with respect to the G-action. A G-space (X, ν) is ergodic if every
G-invariant subset is either null or conull. A measurable map π : (X, ν) →
(Y, η) is called a G-map if it is G-equivariant and η is the pushforward of ν
under π.

Given a probability measure µ on G, let Ω = GN be the path space, Pµ be
the law of the µ-random walk starting at id, and I be the σ-�eld on Ω that is
invariant under time shifts. The Poisson boundary of (G,µ) is denoted by the
measure space (B,F , νB) together with aG-map b : (Ω, I,Pµ) → (B,F , νB),
where b−1F = I up to null sets with respect to Pµ, and the σ-algebra F is
countably generated and separating points. The existence and uniqueness up
to isomorphism of the Poisson boundary of (G,µ) was shown by Furstenberg
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[18, 19, 20]. The G-action on the Poisson boundary (B, νB) is ergodic, and
in fact doubly ergodic, by Kaimanovich [27].

We use the notation (B, νB) to denote a compact model of the Poisson
boundary of (G,µ), which exists by the Mackey realization [34]. A (G,µ)-
boundary (X, ν) is de�ned to be a G-factor of (B, νB). Moreover, the factor
map (B, νB) → (X, ν) is essentially unique, see [4, Theorem 2.14], and we
will denote it by βX .

Denote by P (X) the space of Borel probability measures on the compact
space X. A factor map π : (Y, η) → (X, ν) gives a unique disintegration map
Dπ : X → P (Y ) such that for ν-a.e. x ∈ X, Dπ(x) is supported on the �ber
of x and

∫︁
X Dπ(x)dν(x) = η. We say (Y, η) is a relatively measure preserving

extension of X if Dπ is G-equivariant, that is Dπ(g · x) = g ·Dπ(x).
We will need the following properties regarding Furstenberg entropy and

relatively measure preserving extensions.

Proposition 2.1 ([37, Proposition 1.9]). Let π : (Y, η) → (X, ν) be a G-

factor map. Suppose h(X, ν) < ∞ and h(Y, η) = h(X, ν). Then (Y, η) is a

relative measure preserving extension of (X, ν).

Lemma 2.2 ([4, Corollary 2.20]). Let π : (Y, η) → (X, ν) be a relatively

measure-preserving extension of two (G,µ)-boundaries. Then (Y, η) = (X, ν).

2.2. The space of marked groups and convergence to the free group.
Denote by Gd the space of d-generated groups (G,S), where S = (s1, . . . , sd)
is a generating tuple, equipped with the Cayley-Grigorchuk topology. We re-
fer to the pair (G,S) as a marked group and Gd the space of d-marked groups.
Recall that in this topology, two marked groups (G1, S1) and (G2, S2) are
close if marked balls of large radius in the Cayley graphs of (G1, S1) and
(G2, S2) around the identities are isomorphic. This space is introduced by
Grigorchuk in [23].

Denote by (Fd,S) a free group of rank d, where S = (s1, . . . , sd) consists
of the free generators. Let G be a d-generated group. Following the de�ni-
tion in Akhmedov [2] and Olshanskii-Sapir [38], we say a non-trivial word
w(x1, . . . , xd) is a d-almost-identity for G, if the identity w(g1, . . . , gd) = 1
is satis�ed for any d-generating tuple (g1, . . . , gd). By [38, Theorem 9], there
exists a sequence of d-markings (G,Sk)

∞
k=1 that converges to (Fd,S) in the

Cayley-Grigorchuk topology if G is d-generated and satis�es no d-almost
identity.

In [1], Abért gives a general criterion for a group to satisfy no identity.
Suppose G ↷ X by permutations. We say G separates X, if for every �nite
subset Y of X, the pointwise �xator GY = {g ∈ G : y · g = y for all y ∈ Y }
has no �xed point outside Y . Abért shows that if G separates X then G sat-
is�es no identity. Bartholdi and Erschler [6] provide a criterion for absence
of almost-identities: under the additional assumption that the Frattini sub-
group Φ(G) has �nite index in G, the condition in Abért's criterion implies
that G satis�es no almost-identity. Recall that the Frattini subgroup of G
is the intersection of all the maximal subgroups of G.
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Weakly branch groups provide examples of groups satisfying Abért's cri-
terion. The notion of weakly branch group is introduced by Grigorchuk in
[24]. Let T be a rooted spherical symmetric tree. For a vertex u ∈ T, let
Cu be the set of in�nite rays with pre�x u. We say a group G acting by
automorphisms on T is weakly branching if it acts level transitively and the
rigid stabilizer RistG(Cu) of any vertex u ∈ T is nontrivial. Recall that
RistG(Cu) = {g ∈ G : x · g = x for all x /∈ Cu}, that is, the set of group
elements that only move the descendants of u. If G is weakly branching,
then G separates the boundary ∂T of the tree, see [1, Proof of Corollary
1.4]. If in addition, the product of rigid stabilizers

∏︁
u∈Tn

RistG(Cu) is a
�nite index subgroup of G for every n, then G is said to be a branch group.

3. A sequence of marked groups

This section is devoted to the proof of Proposition 1.2. To �x ideas, we
start with the Fabrykowski-Gupta group introduced in [14]. It is a group
acting on the ternary rooted tree T. Encode vertices of T by �nite strings in
the alphabet 0, 1, 2, and the boundary of the tree by in�nite strings in 0, 1, 2.
Denote by Tn the level n vertices of the rooted tree T and StG(n) the level
n stabilizer, that is, StG(n) = {g ∈ G : u.g = u for all u ∈ Tn}.

The Fabrykowski-Gupta group is generated by two elements: a root per-
mutation a which permutes the three subtrees of the root cyclically and a
directed permutation b which �xes the right most ray 2∞ and is de�ned
recursively by

b = (a, id, b).

In other words we have for any ray w ∈ {0, 1, 2}∞,

0w · a = 1w, 1w · a = 2w, 2w · a = 0w;

0w · b = 0(w · a), 1w · b = 1w, 2w · b = 2(w · b).
See Figure 3.1. For more background on groups acting on rooted trees and
the notation of wreath recursion see the reference [8]. The group G = ⟨a, b⟩
is called the Fabrykowski-Gupta group. It is an example of non-torsion
Grigorchuk-Gupta-Sidki (GGS) groups.

The group G = ⟨a, b⟩ is known to have the following properties:

• ([7]) G is a just in�nite branch group which is regularly branching
over its commutator group [G,G].

• ([15, 9]) G is of intermediate growth.
• ([16]) G has the congruence subgroup property: every �nite index
subgroup of G contains some level stabilizer StG(n).

3.1. Permutation wreath extensions. Let Gn be the quotient group
G/StG(n), which acts faithfully and transitively on Tn. We denote by ā, b̄ ∈
Gn the images of the generators a, b under the quotient map G → G/StG(n).
Consider the level n Schreier graph Sn with vertex set Tn and edge set
E = {(x, x·ā), (x, x·b̄) : x ∈ Tn}. It is a �nite graph on 3n vertices. Consider
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S0

a

S1

b
S2

S3

b

a

b b

Figure 3.1. The action of the Fabrykowski-Gupta group on
the �rst four levels of the rooted ternary tree. Self loops
are not depicted. Arrows show the action on the roots of
subtrees, with corresponding arrows in the rest of the subtree
not drawn explicitly. The restriction of S3 to its red (and
likewise gray and blue) vertices forms a copy of S2. The
Schreier graph S3 is the disjoint union of these three graphs,
with the addition of the three edges labeled by b.

the permutation wreath product of the free product A = (Z/3Z) ∗ (Z/3Z)
and Gn over the set Tn, that is,

A ≀Tn Gn = (⊕TnA)⋊Gn,

where Gn acts on ⊕TnA by permuting the coordinates. We write elements of
A ≀Tn Gn as pairs (φ, g), where φ ∈ ⊕TnA is regarded as a function Tn → A
and g ∈ Gn.

Denote by s and t the two standard generators ofA,A =
⟨︁
s, t|s3 = t3 = 1

⟩︁
.

Consider the subgroup Wn of A ≀Tn Gn generated by

(3.1) an = (id, ā) , bn =
(︂
δs2n−10 + δid2n−11 + δt2n , b̄

)︂
,

where in the direct sum ⊕TnA, δγx denotes the function that is γ at x and
identity elsewhere. We use additive notation δγ1x +δγ2y , x ̸= y, for the function
that is γ1 at x, γ2 at y, and identity elsewhere.

The choice of (an, bn) guarantees:

Lemma 3.1. The sequence (Wn, (an, bn)) converges to (G, (a, b)) in the

Cayley-Grigorchuk topology as n → ∞. Indeed, (Wn+1, (an+1, bn+1)) is a

marked quotient of (Wn, (an, bn)), and the ball of radius 2n−2 around id in

the Cayley graph of (Wn, (an, bn)) coincide with the ball of radius 2n−2 around

id in (G, (a, b)).

Proof. The Fabrykowski-Gupta group belongs to the class of bounded au-
tomaton groups. Schreier graphs of bounded automaton groups are studied
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systematically in Bondarenko's dissertation [11]. In particular, on the �nite
Schreier graph Sn, we have that the graph distance between the vertices
2n−10, 2n satisfy dSn(2

n−10, 2n) = 2n − 1. For more details see [11, Chapter
VI].

Note that G embeds as a subgroup of G ≀Tn Gn, where the embedding is
given by the wreath recursion

a ↦→ (id, ā), b ↦→
(︂
δa2n−10 + δid2n−11 + δb2n , b̄

)︂
.

Now consider a word w = w1 . . . wℓ, where wj ∈ {a±1, b±1} and evaluate this
word in G ≀Tn Gn by the embedding above. Denote the image in G ≀Tn Gn

by (ϕw, w̄). For the con�guration ϕw ∈ ⊕TnG, we have that

ϕw(x) =

n∏︂
i=1

ϕwi(x · w1 . . . wi−1).

It follows from the triangle inequality that if ℓ ≤ 2n−2, then the trajectory
{x, x·w1, . . . , x·w1 . . . wℓ−1} can visit at most one point in the set {2n−10, 2n}.
In particular, ϕw(x) is an element in either ⟨a⟩ or ⟨b⟩. Thus if we evaluate
the same word w in Wn under a ↦→ an and b ↦→ bn, the resulting element(︂
ϕ̃w, w̄

)︂
can be identi�ed with (ϕw, w̄) in G ≀Tn Gn. Namely, ϕw is obtained

from ϕ̃w by replacing s with a and t with b and vice versa.
The quotient map from (Wn, (an, bn)) to (Wn+1, (an+1, bn+1)) is given as

follows. Note that A ≀Tn+1 Gn+1 =
(︁
A ≀{0,1,2} ⟨a⟩

)︁
≀Tn Gn. Let τ : A →

A ≀{0,1,2} ⟨a⟩ be the group homomorphism determined by τ(s) = (id, a)

and τ(t) =
(︁
δs0 + δid1 + δt2, id

)︁
. The homomorphism τ extends to ⊕TnA →

⊕Tn

(︁
A ≀{0,1,2} ⟨a⟩

)︁
coordinate-wise, that is τ(ϕ)(x) = τ(ϕ(x)), x ∈ Tn. It

follows that the wreath recursion formula in G that the map

Wn → Wn+1

(ϕ, g) ↦→ (τ(ϕ), g)

is a marked group epimorphism which sends an to an+1 and bn to bn+1.
□

Next we verify that Wn is virtually a direct product of free groups:

Lemma 3.2. The group Wn contains ⊕Tn [A,A] as a �nite index normal

subgroup.

Proof. We proceed by induction on n.
As in the proof of Lemma 3.1, let τ : A → A ≀{0,1,2} ⟨a⟩ be the group

homomorphism determined by τ(s) = (id, a) and τ(t) =
(︁
δs0 + δid1 + δt2, id

)︁
,

where a is the 3-cycle (0, 1, 2). When n = 1, by de�nition W1 is generated by
a1 = τ(s) and b1 = τ(t). Since a−1

1 b1a1 = (δid0 + δt1 + δs2, id), it follows that
the projection of W1 ∩ ⊕T1A to the component over vertex 2 is A. Direct

calculation shows that
[︁
b1a

−1
1 b1a1, a1b1a

−1
1 b1

]︁
=

(︂
δsts

−1t−1

2 , id
)︂
. It follows
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that [W1,W1]∩⊕T1A contains
{︂
(δγ2 , id) : γ ∈

⟨︁
sts−1t−1

⟩︁A}︂
, while the nor-

mal closure
⟨︁
sts−1t−1

⟩︁A
is exactly the commutator subgroup [A,A]. Since

τ(s) acts as a 3-cycle permuting T1 = {0, 1, 2}, it follows that [W1,W1] ∩
⊕T1A > ⊕T1 [A,A]. The quotient group W1/ ⊕T1 [A,A] is a subgroup of
(A/[A,A]) ≀T1 ⟨a⟩, which is �nite.

We have shown that τ([A,A]) contains ⊕T1 [A,A] as �nite index normal
subgroup, which re�ects the property that G is regularly branching over its
commutator subgroup.

Suppose the statement is true for n thatWn contains ⊕Tn [A,A] as a �nite
index normal subgroup. To prove the claim for n+1, it su�ces to show that(︁
δγ
2n+1 , id

)︁
∈ Wn+1 for any γ ∈ [A,A]. Recall the quotient map π : Wn →

Wn+1 explained in the proof of Lemma 3.1, where A ≀Tn+1 Gn+1 is identi�ed

with
(︁
A ≀{0,1,2} ⟨a⟩

)︁
≀Tn Gn. By the induction hypothesis, (δσ2n , id) ∈ Wn for

any σ ∈ [A,A]. Under the quotient map π, we have

π ((δσ2n , id)) =
(︂
δ
τ(σ)
2n , id

)︂
.

With the map τ we are back in the situation of the induction base, where
we have shown that τ ([A,A]) contains ⊕T1 [A,A]. In particular, for any
γ ∈ [A,A], there is an element σ ∈ [A,A] such that τ(σ) = (δγ2 , id). It

follows that π ((δσ2n , id)) =
(︂
δ
τ(σ)
2n , id

)︂
=

(︁
δγ
2n+1 , id

)︁
, in particular it is an

element of Wn+1.
□

3.2. Choices of marked subgroups. We are given a �xed rank d ∈ N,
d ≥ 2. Since the Fabrykowski-Gupta group G = ⟨a, b⟩ is a branch group act-
ing faithfully on the ternary tree T, by Abért's criterion [1, Theorem 1.1] and
its proof, we have that given any n ∈ N, and any vertex v ∈ T, there exist el-

ements γ
(n)
1 , . . . , γ

(n)
d ∈ RistG(v) such that w

(︂
aγ

(n)
1 , bγ

(n)
2 , γ

(n)
3 , . . . , γ

(n)
d

)︂
̸=

id for all reduced word w of length 1 ≤ |w| ≤ n.
In what follows we �x the choice of v to be the child of the root indexed

by 1. For each n ∈ N, �x a choice of γ
(n)
1 , . . . , γ

(n)
d ∈ RistG(1) such that

the tuple
(︂
aγ

(n)
1 , bγ

(n)
2 , γ

(n)
3 , . . . , γ

(n)
d

)︂
do not satisfy any reduced word w of

length |w| ∈ [1, n].

Lemma 3.3. Denote by Hn the subgroup of G generated by the �rst two

elements of the tuple chosen above,

Hn =
⟨︂
aγ

(n)
1 , bγ

(n)
2

⟩︂
.

Then Hn acts level transitively on the rooted ternary tree T.

Proof. The statement is equivalent to that the Schreier graph on level k

vertices Tk with respect to
(︂
aγ

(n)
1 , bγ

(n)
2

)︂
is connected.
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With respect to the original generators a, b, the Schreier graph Sk with
vertex set Tk under the action of G can be drawn recursively as follows, see
[11, Chapter V]. The level 1 graph S1 on {0, 1, 2} has (directed) edges (0, 1),
(1, 2), (2, 0) labeled by a, and self loops at each vertex labeled by b. To draw
Sk+1, take three copies of Sk, append letter 0, 1, or 2 to the strings indexing
the vertices of Sk respectively in each copy. Then connect the three copies
by edges (2k−100, 2k−101), (2k−101, 2k−102) and (2k−102, 2k−100) labeled by
b. In Figure 3.1 this is depicted for k = 2. There, S3 is seen to be the union
of three copies of S2, which are shown with red, gray and blue vertices,
respectively. The three additional edges connecting them and labeled by b
are those in the bottom right of the �gure.

It follows that in Sk, if we remove all vertices of the form 1u, u ∈
{0, 1, 2}k−1 and edges connecting to such vertices, the remaining graph is

connected. Denote the remaining graph by S ′
k. Since γ

(n)
1 , γ

(n)
2 are chosen to

be in the rigid stabilizer of vertex 1, in the subgraph S ′
k, we may replace label

a by aγ
(n)
1 and label b by bγ

(n)
2 . The element aγ

(n)
1 moves 1u, u ∈ {0, 1, 2}k−1

into the vertex set of S ′
k, namely, a string starting with 2. It follows that the

graph on Tk with respect to
(︂
aγ

(n)
1 , bγ

(n)
2

)︂
is connected. □

Denote by ℓn the maximal word length of elements in the tuple chosen,
with respect to the original generating set (a, b), that is,

(3.2) ℓn = max

{︃⃓⃓⃓
aγ

(n)
1

⃓⃓⃓
{a,b}

,
⃓⃓⃓
bγ

(n)
2

⃓⃓⃓
{a,b}

, . . . ,
⃓⃓⃓
γ
(n)
d

⃓⃓⃓
{a,b}

}︃
.

Recall the subgroup Wk of A ≀Tk
Gk, generated by (ak, bk), as de�ned in

(3.1). By Lemma 3.1, the ball of radius 2k−2 around the identity element
in the Cayley graph of (Wk, (ak, bk)) coincide with the ball of radius 2k−2

around the identity in (G, (a, b)). In particular, for k ≥ 2 + log2(nℓn), ele-

ments in the tuple
(︂
aγ

(n)
1 , bγ

(n)
2 , γ

(n)
3 , . . . , γ

(n)
d

)︂
have images in (Wk, (ak, bk))

under the identi�cation of balls of radius 2ℓn around the identities. Record

the image tuple of elements in Wk as
(︂
h
(n,k)
1 , . . . , h

(n,k)
d

)︂
. Finally, denote by

Γn,k the subgroup of Wk generated by the tuple Sn,k =
(︂
h
(n,k)
1 , . . . , h

(n,k)
d

)︂
.

Note that by our choices, for k ≥ 2 + log2(nℓn, the ball of radius n around
the identity in the Cayley graph of (Γn,k, Sn,k) is the same as the ball of
radius n in the Cayley graph of the free group (Fd,S).

3.3. Random walks on Γn,k. Let µ be a non-denegerate probability mea-
sure on the free group Fd. Next we consider the µ-random walk on the group
Γn,k de�ned in the previous subsection, with n ≥ 1, k ≫ log2(nℓn). Our goal
is to show that the action of Γn,k on the Poisson boundary of (Γn,k, µ) is es-
sentially free; and given any ϵ > 0, for all k su�ciently large, the asymptotic
entropy of the µ-random walk on Γn,k is smaller than ϵ.

10



By [13, Theorem 5.1], for a non-degenerate probability measure µ on a
countable group Γ, a su�cient condition for the action of Γ on the Poisson
boundary of (Γ, µ) to be essentially free is that

(1): Γ has only countably many amenable subgroups,
(2): Γ does not contain any non-trivial normal amenable subgroup, in other

words, the amenable radical of Γ is trivial.

We verify that these two properties are satis�ed by Γn,k in the following
lemma.

Lemma 3.4. For each n and k ≥ 2 + log2(nℓn), the group Γn,k is non-

amenable, has no non-trivial normal amenable subgroup, and has only count-

ably many amenable subgroups.

Proof. We �rst introduce some notations. Given a subgroup H of A ≀Tk
Gk =

(⊕Tk
A)⋊Gk, for g ∈ Gk, let

SH(g) := {ϕ ∈ ⊕Tk
A : (ϕ, g) ∈ H} .

Then SH(idGk
) is a subgroup of ⊕Tk

A. For g ∈ Gk, SH(g) is either empty,
or a right coset of SH(idGk

) in ⊕Tk
A. Denote by πk the natural projection

A ≀Tk
Gk → Gk.

As shown in the proof of Lemma 3.3, in the Schreier graph on vertex set
Tk with respect to the generating tuple of Hn, there is a path connecting
the vertex 2k to the vertex 2k−10, which does not visit any vertex starting
with letter 1. It then follows by the de�nition of the generating tuple Sn,k =(︂
h
(n,k)
1 , . . . , h

(n,k)
d

)︂
of Γn,k that the set of values at the coordinate index by

2k is all A, that is,

{ϕ(2k) : ϕ ∈ ∪g∈Gk
SΓn,k

(g)} = A

Note that this implies that SΓn,k
(idGk

) is non-amenable. Indeed, otherwise
the free product A can be written as a union of �nitely many right cosets of
an amenable subgroup, which contradicts the fact that A is non-amenable.
For each x ∈ Tk, write θx for the projection of ⊕Tk

A to the x-coordinate,
that is, θx(ϕ) = ϕ(x). Then the reasoning above shows that the projection
of Γn,k ∩ (⊕Tk

[A,A]) under θ2k is non-amenable. Recall that [A,A] is a free
group, By Lemma 3.3, the action of πk (Γn,k) is transitive on Tk. It follows
then θx (Γn,k ∩ (⊕Tk

[A,A])) is a free group of rank at least 2 for every vertex
in Tk.

Let N be a normal subgroup of Γn,k, N ̸= {id}. We need to show that N
is non-amenable. Note that for each x ∈ Tk, θx (N ∩ ⊕Tk

[A,A]) a normal
subgroup of θx (Γn,k ∩ (⊕Tk

[A,A])), while the latter is a free group of rank at
least 2. Thus if on the contrary N is amenable, then N ∩⊕Tk

[A,A] = {id}.
Since A/[A,A] is �nite, such trivial intersection implies that SN (idGk

) is
�nite.

We now argue that SN (idGk
) being a �nite group contradicts with the

condition that N is a non-trivial normal subgroup of Γn,k. Note that since
11



Gk is �nite, SN (idGk
) being �nite implies that N is �nite. On the other

hand, since for each x ∈ Tk, θx (Γn,k ∩ (⊕Tk
[A,A])) is a free group of rank

at least 2, it follows that for any element h ∈ Γn,k, h ̸= id, its conjugacy class
is in�nite. Therefore SN (idGk

) being a �nite group implies that N = {id}.
We conclude that a nontrivial normal subgroup of Γn,k is non-amenable.

Since [A,A] is a free group, the only amenable subgroups are the triv-
ial group and the cyclic groups. It follows that the direct sum ⊕Tn [A,A]
has only countably many amenable subgroups. The property of having only
countably many amenable subgroups is clearly preserved under taking �-
nite extensions and taking subgroups. Thus by Lemma 3.2, Γn,k has only
countably many amenable subgroups.

□

To bound the asymptotic entropy from above, we simply use the well-
known �fundamental inequality�, see e.g. [10]. More precisely, let µ be a
probability measure on Fd with �nite �rst moment, π : Fd → Γ an epimor-
phism. Let S = π(S) be the induced marking on Γ and µ̄ = π ◦ µ be the
pushforward of µ. The fundamental inequality implies that

h(Γ, µ̄) ≤ vΓ,S · ℓΓ,µ̄,

where vΓ,S and ℓΓ,µ̄ are asymptotic volume growth rate and asymptotic speed
with respect to generating set S:

vΓ,S = lim
r→∞

1

r
log VΓ,S(r) and ℓΓ,µ̄ = lim

n→∞

1

n

∑︂
g∈Γ

|g|Sµ̄(n)(g).

By sub-additivity, we have ℓΓ,µ̄ ≤ ∑︁
g∈Γ |g|Sµ̄(g) ≤ ∑︁

g∈Fd
|g|Sµ(g). Thus

the asymptotic entropy can be bounded by

(3.3) h (Γ, µ̄) ≤ vΓ,S
∑︂
g∈Fd

|g|Sµ(g).

The estimate (3.3) is the only place where the moment condition on µ is
needed.

By Lemma 3.1, the ball of radius 2k−2 around id in the Cayley graph of
(Wk, (ak, bk)) coincide with the ball of radius 2k−2 around id in (G, (a, b)). It
follows by sub-multiplicity of the volume growth function that the asymptotic
volume rate satisfy

vWk,(ak,bk) ≤
1

2k−2
log VG,(a,b)

(︂
2k−2

)︂
.

Recall the maximal length ℓn de�ned in (3.2). By comparing lengths of
generators, we have that for the subgroup Γn,k of Wk satis�es

vΓn,k,Sn,k
≤ ℓnvWk,(ak,bk).
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3.4. Proof of Proposition 1.2. We are now ready to prove Proposition
1.2 stated in the Introduction.

Completion of proof of Proposition 1.2. Let µ be a non-degenerate probabil-
ity measure on Fd given, where d ≥ 2 and µ is of �nite �rst moment. For
each n ∈ N, choose kn ≫ log2(nℓn) such that Γn,kn is de�ned as in subsection
3.2 and moreover

ℓn
2kn−2

log VG,(a,b)

(︂
2kn−2

)︂
≤ 1

n
.

This is possible because the Fabrykowski-Gupta groupG has sub-exponential
volume growth, that is,

vG,(a,b) = lim
r→∞

1

r
log VG,(a,b)(r) = 0,

Now we verify that the sequence (Γn,kn , Sn,kn) satisfy the properties stated.

(i): By construction, the generating tuple Sn,kn do not satisfy any reduced
word w of length |w| ∈ [1, n].

(ii): The fundamental inequality (3.3) implies that with respect to the mark-
ing (Fd,S) → (Γn,kn , Sn,kn),

h (Γn,kn , µ) ≤ vΓn,kn ,Sn,kn

∑︂
g∈Fd

|g|Sµ(g) ≤
1

n

∑︂
g∈Fd

|g|Sµ(g).

Thus the sequence of asymptotic entropies converge to 0 as n → ∞.
(iii): This property is shown in Lemma 3.4.

The proof of Proposition 1.2 is complete.
□

Remark 3.5. For d ≥ 3, in the proof of Proposition 1.2 one can use the
�rst Grigorchuk group G012 = ⟨a, b, c⟩ introduced in [22, 23] instead of the
Fabrykowski-Gupta group. Recall that G012 acts on the rooted binary tree.
Then one can consider the permutational wreath extension B ≀Tn Gn, where
Gn = G/StG(n) and B = (Z/2Z) ∗ (Z/2Z× Z/2Z) = (⟨s⟩) ∗ (⟨t⟩ × ⟨u⟩).
Similar to the sequence of extensions Γn, set

Hn = ⟨an, bn, cn⟩ < B ≀T3n G3n

where the generators are de�ned as

an = (id, ā), bn =
(︁
δt13n + δs13n−10, b̄

)︁
, cn =

(︁
δu13n + δs13n−10, c̄

)︁
.

Similar proof as in this section with Γn replaced by Hn shows that for d ≥ 3,
the statement Proposition 1.2 is true under the weaker assumption that µ
has �nite α0-moment and �nite entropy, where α0 is the exponent in the
growth upper bound vG012(r) ≲ er

α0 from [5, 35], α0 ≈ 0.7674.
We choose to take extensions of the Fabrykowski-Gupta group G here

because the resulting groups are 2-generated, which allows to cover the case
d = 2. It is remarked in [17] that all maximal subgroups of G are of �nite
index, which would imply that there is a sequence of marking Sk on G such
that (G,Sk) converges to the free group (Fd,S) when k → ∞ by [6]. Since
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we could not �nd a written proof of this statement, in this section we produce
tuples of elements of G, which a priori do not necessarily generate G, where
only Abért's criterion [1] is invoked.

4. stationary joinings and proof of the main results

Let (X, ν) and (Y, η) be two µ-stationary G-spaces. Following [21], we say
a probability measure λ on X × Y is a stationary joining of ν and η if it is
µ-stationary and its marginals are ν and η respectively.

In this section we focus on the situation where both stationary systems
are (G,µ)-boundaries. We use notations introduced in Section 2.1. Denote
by (B, νB) a compact model of the Poisson boundary of (G,µ). Let (X, ν)
and (Y, η) be compact models of two (G,µ)-boundaries and denote by βX

and βY the corresponding maps from the Poisson boundary (B, νB) to (X, ν)
and (Y, η). Consider the map

βX × βY : B → X × Y

b ↦→ (βX(b),βY (b)) ,

and denote by Z the range (βX × βY ) (B) and ν � η the pushforward of the
harmonic measure νB under βX × βY . Then it's clear by de�nition that
(Z, ν �η) is a G-factor of the Poisson boundary (B, νB), in other words, it is
a (G,µ)-boundary. The G-space (Z, ν � η) is the unique stationary joining
of the µ-boundaries (X, ν) and (Y, η), see [21, Proposition 3.1].

On the level of groups, given two d-marked groups (G1, S1) and (G2, S2),
one can take their diagonal product, denoted by (G1 ⊗G2, S), as the sub-
group of G1 ×G2 generated by

S =
(︂(︂

s
(1)
1 , s

(2)
1

)︂
, . . .

(︂
s
(1)
d , s

(2)
d

)︂)︂
,

where Si =
(︂
s
(i)
1 , . . . , s

(i)
d

)︂
, i = 1, 2. This operation on two groups corre-

sponds to taking stationary joinings of the Poisson boundaries:

Lemma 4.1. Let µ be a probability measure on Fd. The Poisson boundary

of (G1 ⊗G2, µ) is the stationary joining of the Poisson boundaries of (G1, µ)
and (G2, µ).

Proof. Denote by (Bi, νi) the Poisson boundary of (Gi, µ), i = 1, 2 and regard
them as G1 ⊗ G2-spaces. Denote by (Z, ν1 � ν2) the stationary joining of
(B1, ν1) and (B2, ν2) as above and πi : Z → Bi the projections. We need to
show (Z, ν1 � ν2) is the maximal (G1 ⊗G2, µ)-boundary.

Let (Y, η) be a (G1 ⊗ G2, µ)-boundary. Denote by Ki the subgroup of
G1 ⊗G2 which consists of elements that project to identity in Gi, that is,

Ki = {(g1, g2) ∈ G1 ×G2 : (g1, g2) ∈ G1 ⊗G2, gi = idGi} .
Denote by Yi = Y//Ki the space of Ki-ergodic components of Y and ηi the
pushforward of the measure η under the Ki-factor map Y → Y//Ki. Since
(Y, η) is an ergodic G1 ⊗G2-space and K1 ∩K2 = {id}, we have that Y can
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be viewed as a subset of Y2×Y1. It's easy to see that by de�nition of Ki that
G1 ⊗ G2/K2 ≃ G1. It follows that (Y2, η2) is a (G1, µ)-boundary. Denote
by βY2 the boundary map from (B1, ν1) to (Y2, η2). In the same way we
have (Y1, η1) is a (G2, µ)-boundary and denote by βY1 : (B2, ν2) → (Y1, η1)
the boundary map. By uniqueness of stationary joinings of µ-boundaries, we
have that (Y, η) = (Y2×Y1, η2�η1). It follows that (Y, η) is a factor of (Z, ν1�
ν2), where the boundary map is given by z ↦→ (βY2 ◦ π1(z), βY1 ◦ π2(z)).

□

With the sequence of marked groups provided by Proposition 1.2, we are
now ready to complete the proofs of Theorem 1.1 and 1.3.

Proof of Theorem 1.1. Denote by (B, νB) the Poisson boundary of (Fd, µ).
Let ((Γk, Sk))

∞
k=1 be a sequence marked groups provided by Proposition 1.2.

Denote by (Πk, ηk) the Poisson boundary of (Γk, µ). Since (Γk, Sk) can be
identi�ed with a projection πk : Fd → Γk, we regard (Πk, ηk) as a (Fd, µ)-
space, where the Fd-action factors through πk.

Since Γ is a proper quotient of Fd, N = ker(π : Fd → Γ) is nontrivial. Fix
a choice of element g ∈ N , g ̸= id. Choose an index k ∈ N su�ciently large
such that the balls of radius 2|g|S around identities in (Γk, Sk) and (Fd,S)

coincide and h(Γk, µ) < ϵ. Take Γ̃ to be the diagonal product (Γ⊗ Γk, S).
Then

h(Γ⊗ Γk, µ) ≤ h(Γ, µ) + h(Γk, µ) < h(Γ, µ) + ϵ.

Since g acts trivially on the Poisson boundary of (Γ, µ) but acts freely on
(Πk, νk), it follows that (Πk, νk) is not a Fd-factor of the Poisson boundary
of (Γ, µ). By Lemma 2.2, we conclude that h(Γ⊗ Γk, µ) > h(Γ, µ).

□

Proof of Theorem 1.3. The proof is similar to Theorem 1.1. Since (X, ν) is
assumed to be a (Fd, µ)-boundary where the action of Fd is not essentially
free, we can choose an element g ∈ Fd, g ̸= 1, such that ν(FixX(g)) > 0.
Choose an index k ∈ N su�ciently large such that the balls of radius 2|g|S
around identities in (Γk, Sk) and (Fd,S) coincide and h(Γk, µ) < ϵ. Take
the stationary joining (Zk, ν � ηk) of (X, ν) and (Πk, ηk). By the general
inequality, we have

h(Zk, ν � ηk) ≤ h(X, ν) + h(Πk, ηk) ≤ h(X, ν) + ϵ.

It remains to show that h(Zk, ν � ηk) > h(X, ν). Suppose on the contrary
equality holds, then by Lemma 2.2, the equality would imply (Zk, ν � ηk) =
(X, ν). However the action of Γk on (Πk, ηk) is essentially free, which implies
ν � ηk (FixZk

(g)) = 0, contradicting ν(FixX(g)) > 0.
□

We now show an analogous result on spectral radii stated as Theorem
1.4 in the Introduction. Consider a symmetric non-degenerate probability
measure µ on Γ. In [32, 33] Kesten proved the following theorem: let µ be
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a symmetric non-degenerate probability measure on Γ and N be a normal
subgroup of Γ, then the following are equivalent:

(i): ρ(Γ, µ) = ρ(Γ/N, µ),
(ii): N is amenable.

Given a proper quotient Γ of Fd and ϵ > 0, to prove Theorem 1.4 we take Γ̃
to be a diagonal product Γ⊗H, for some appropriate choice of H similar to
the groups used in Theorem 1.1.

Proof of Theorem 1.4. Let ϵ > 0 be a constant given. Let Γ be a proper
quotient of Fd and �x a choice of g0 ∈ ker(Fd → Γ), g0 ̸= id. Take n ≥ 2|g0|S.
As in the beginning of Subsection 3.2, �x a choice of d-tuple of elements in the

Fabrykowski-Gupta group G, T =
(︂
aγ

(n)
1 , bγ

(n)
2 , γ

(n)
3 , . . . , γ

(n)
d

)︂
that do not

satisfy any reduced word of length at most n. Denote the group generated
by this tuple by Gn. Take �rst the diagonal product Γ⊗Gn. By the choice
of g and marking on G we have that N0 = ker(Γ ⊗ Gn → Γ) is non-trivial.
Note that N0 can be regarded as a normal subgroup of Gn.

Denote by (Wℓ) a µ-random walk on Fd. For a marked group (H,S), we
write πH for the quotient map Fd → H when the marking is clear from the
context.

Take a small constant ϵ1 > 0, choose ℓ large enough such that

P (πΓ (Wℓ) = idΓ) ≥ ((1− ϵ1)ρ(Γ, µ))
ℓ.

For g ∈ N0, set

Q(g) =
P(πΓ⊗G(Wℓ) = g)

P(πΓ(Wℓ) = idΓ)
.

Then Q is a symmetric probability measure on N0. Equip N0 with the
induced metric | · |T from (Gn, T ). Let R be a su�ciently large radius such
that Q({γ ∈ N0 : |γ|T > R}) ≤ ϵ1. Truncate the measure Q at R and let

QR(g) =
1

Q ({γ : |γ|T ≤ R})Q(g)1{|g|T≤R}.

Since N0 is a subgroup of the Fabrykowski-Gupta group G, thus amenable,
there exists an integer m such that

Q2m
R (idN0) ≥ (1− ϵ1)

2m.

With ℓ,m,R chosen as above, for a su�ciently large index k, to be spec-
i�ed shortly, and take the marked group (Γn,k, Sn,k) de�ned in Subsection
3.2. Consider the diagonal product Γ ⊗ Γn,k. By Lemma 3.1, the ball of

radius 2k−2 around id in the Cayley graph of (Wk, (ak, bk)) coincide with the
ball of radius 2k−2 around id in (G, (a, b)). Choose k su�ciently large such
that k > 2mR.
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Now we follow the original argument in Kesten's theorem (ii) ⇒ (i) above
to show ρ(Γ⊗ Γn,k, µ) > ρ(Γ, µ)− ϵ. Write W kℓ

(k−1)ℓ = W−1
(k−1)ℓWkℓ.

P
(︁
πΓ⊗Γn,k

(W2ℓm) = idΓ⊗Γn,k

)︁
≥ P

(︃
∩2m
k=1

{︃
πΓ

(︂
W kℓ

(k−1)ℓ

)︂
= idΓ,

⃓⃓⃓
πΓn,k

(︂
W kℓ

(k−1)ℓ

)︂⃓⃓⃓
Sn,k

≤ R

}︃
∩
{︁
πΓℓ

(W2ℓm) = idΓn,k

}︁)︃
≥ ((1− ϵ1)ρ(Γ, µ))

2ℓm(1− ϵ1)
2mQ2m

R (idN0) ≥ (1− ϵ1)
2mn+4mρ2mn.

Choose ϵ1 < ϵ/3, we have that ρ(Γ⊗ Γn,k, µ) > (1− ϵ)ρ(Γ, µ).
Finally, by Lemma 3.4, Γn,k has no nontrivial amenable normal subgroups.

Since by the choice of markings ker(Γ⊗Gn,k → Γ) is nontrivial, the kernel is

non-amenable. By Kesten's theorem (i) ⇒ (ii), we conclude that ρ(Γ̃, µ) <
ρ(Γ, µ).

□
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