IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

2111

Learning a Generalizable Trajectory Sampling
Distribution for Model Predictive Control

Thomas Power

Abstract—We propose a sample-based model predictive control
(MPC) method for collision-free navigation that uses a normalizing
flow as a sampling distribution, conditioned on the start, goal,
environment, and cost parameters. This representation allows us to
learn a distribution that accounts for both the dynamics of the robot
and complex obstacle geometries. We propose a way to incorporate
this sampling distribution into two sampling-based MPC methods,
MPPI, and iCEM. However, when deploying these methods, the
robot may encounter an out-of-distribution (OOD) environment.
To generalize our method to OOD environments, we also present
an approach that performs projection on the representation of the
environment. This projection changes the environment represen-
tation to be more in-distribution while also optimizing trajectory
quality in the true environment. Our simulation results on a 2-D
double-integrator, a 12-DoF quadrotor and a seven-DoF kinematic
manipulator suggest that using a learned sampling distribution
with projection outperforms MPC baselines on both in-distribution
and OOD environments over different cost functions, including
OOD environments generated from real-world data.

Index Terms—Deep generative models, deep learning in robotics
and automation, motion and path planning, nonholonomic motion
planning.

I. INTRODUCTION

ODEL predictive control (MPC) methods have been
Mwidely used in robotics for applications, such as au-
tonomous driving [1], bipedal locomotion [2], and manipulation
of deformable objects [3]. For nonlinear systems, sampling-
based approaches for MPC, such as the cross entropy method
(CEM) and model predictive path integral (MPPI) control [1],
[4] have proven popular due to their ability to handle uncertainty,
their minimal assumptions on the dynamics and cost function,
and their parallelizable sampling. However, these methods strug-
gle when randomly sampling low-cost control sequences is un-
likely and can become stuck in local minima, for example when
a robot must find a path through a cluttered environment. This
problem arises because the sampling distributions used by these
methods are not informed by the geometry of the environment.

Manuscript received 20 November 2023; revised 18 January 2024 and 29
January 2024; accepted 5 February 2024. Date of publication 27 February
2024; date of current version 13 March 2024. This paper was recommended for
publication by Associate Editor E. D. Momi and Editor M. Yim upon evaluation
of the reviewers’ comments. This work was supported in part by the NSF under
Grant [IS-1750489 and Grant I1S-2113401, and in part by the ONR under Grant
NO00014-21-1-2118. (Corresponding author: Thomas Power.)

The authors are with the Robotics Department, University of Michigan, Ann
Arbor, MI 48109 USA (e-mail: tpower@umich.edu; dmitryb@umich.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TR0O.2024.3370026, provided by the authors.

Digital Object Identifier 10.1109/TR0O.2024.3370026

and Dmitry Berenson

Fig. 1. (a) Training environment for our learned control sequence posterior.
(b) and (c¢) Point clouds of two real-world environments taken from the 2-D-3-D—
S dataset [5]. (d) One of our proposed methods, FlowMPPIProject, controlling
a dynamic quadrotor in the training environment. (e) and (f) FlowMPPIProject
controlling a dynamic quadrotor to successfully traverse the two real-world en-
vironments. The executed trajectory is shown in blue, and the planned trajectory
is shown in orange at an intermediate point in the execution.

Previous work has investigated the duality between control
and inference [6], [7] and considered both planning and control
as inference problems [8], [9], [10]. Several recent papers have
considered the finite-horizon stochastic optimal control problem
as Bayesian inference, and proposed methods of performing
variational inference (VI) to approximate the distribution used
to sample control sequences [11], [12], [13], [14]. In order to
perform VI, we must specify a parameterized distribution that
is tractable to optimize and sample while also being flexible
enough to provide a good approximation of the true distri-
bution over low-cost trajectories, which may exhibit strong
environment-dependencies and multimodalities. While more
complex representations have been used to represent this distri-
bution [11], [13], these distributions are initially uninformed and
must be iteratively improved during deployment. In this article,
we present a method that uses a normalizing flow to represent
this distribution and we learn the parameters for this model from
data. The advantage of this approach is that it will learn to sample
control sequences, which are likely to be both goal-directed
and collision-free (i.e., low-cost) for the given system. We also
demonstrate how this learned distribution can be integrated with
two sample-based MPC algorithms, iCEM [15] and MPPI [1].

However, as is common in machine learning, a learned model
cannot be expected to produce reliable results when its input
is radically different from the training data. Because the space
of possible environments is very high-dimensional, we cannot
hope to generate enough training data to cover the set of possible
environments a robot could encounter. This problem compounds

1941-0468 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 03,2024 at 19:11:29 UTC from IEEE Xplore. Restrictions apply.

2112

when we generate training data in simulation, but the method
must be deployed in the real-world (i.e., the sim2real problem).
Thus, when deploying this method, the robot may encounter
an out-of-distribution (OOD) environment, i.e., one which is
radically different from those used in training. In such cases,
the learned distribution is unlikely to produce low-cost control
sequences.

To generalize the learned distribution to OOD environments
we propose performing a projection on the representation of the
environment as part of the MPC process. This projection changes
the environment representation to be more in-distribution while
also optimizing trajectory quality in the true environment. In
essence, this method “hallucinates” an environment that is more
familiar to the normalizing flow so that the flow produces reliable
results. However, the key insight behind our projection method is
that the “hallucinated” environment cannot be arbitrary; it should
be constrained to preserve important features of the true envi-
ronment for the MPC problem at hand. For example, consider
a navigation problem for a 2-D point robot. If the normalizing
flow is trained only on environments consisting of disc-shaped
obstacles, an environment with a corridor would be OOD and
the flow would be unlikely to produce low-cost trajectories.
However, if we morph the environment to approximate the
corridor near the robot with disc-shaped obstacles (producing an
in-distribution environment), the flow will then produce low-cost
samples for MPC.

In this article, we extend our previous conference paper [16]
on this topic by incorporating the learned sampling distribution
with another sampling-based MPC algorithm, iCEM [15]. We
show that we can use the same learned sampling distribution with
either iCEM or MPPI without retraining, which speaks to the
generality of our method. In addition, we extend our method by
learning a sampling distribution over a set of parameterized cost
functions and show that we can achieve high performance across
different parameter settings. Further, for the experiments where
smooth control sequences are important, we have removed the
addition of noise to the control sequence samples during training.
This noise, while aiding exploration, resulted in noisy sampled
control sequences. We also extend our methods to motion plan-
ning problems for manipulators and present new experiments
on a seven-DoF manipulator in several simulated and one real
environment. Finally, we expand the discussion of related work
and add a “Discussion” section that presents the limitations of
our method.

Our simulation results on a 2-D double-integrator, a 3-D
12-DoF underactuated quadrotor, and a seven-DoF manipulator
suggest that our flow-based MPC methods with projection out-
perform state-of-the-art MPC baselines on both in-distribution
and OOD environments, including OOD environments gener-
ated from real-world data (see Fig. 1). In addition we validate
our methods on a seven-DoF manipulator in the real world.

II. RELATED WORK

A. Planning and Control as Inference

The connection between control and inference was
established many years ago, with Kalman first establishing the

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

duality between inference in linear Gaussian systems and the
linear quadratic regulator [17]. This duality was later extended
further by Todorov to nonlinear and deterministic systems
subject to some restrictions, such as quadratic control cost and
control-affine dynamics [6].

Early work by Attias framed planning for discrete state and
action spaces as an inference problem over a hidden Markov
model and proposed a message-passing algorithm for plan-
ning [8]. Since then, many message-passing methods have been
proposed for planning in continuous action spaces [9], for solv-
ing stochastic optimal control (SOC) problems [9], [10], [18] and
for policy learning [19]. For situations in which exact inference
is intractable, such as for nonlinear dynamics models, these
methods perform approximate inference by using linearized
Gaussian messages.

Another body of work has exploited the relationship between
SOC problems and inference in diffusion processes [20], leading
to the path-integral approach for control [7], [21], [22], [23],
[24], which solves the SOC problem by performing approxi-
mate inference with Monte-Carlo expectations over trajectories.
MPPI [1] control is one of these algorithms and has enjoyed
widespread use for robot control problems. Another widely used
sampling-based MPC algorithm is the CEM [4], with a recent
variant, improved-CEM (iCEM) [15], showing state-of-the-art
performance on several benchmarks. Recently, Watson and Pe-
ters proposed using a Gaussian process to represent the sam-
pling distribution of control sequences [25], resulting in much
smoother sampled control sequences. However, the resulting
sampling distribution is still Gaussian, and thus cannot capture
multimodal trajectories.

Recently, several approaches to control-as-inference have
been developed that rely on VI to perform approximate infer-
ence [11], [12], [13], [14]. VI techniques rely on approximating
the distribution of interest with a simpler, parameterized distri-
bution. Inference is then performed by optimizing the parame-
ters of this distribution (the variational posterior) to minimize
the Kullback—Leibler divergence between the approximation
and the desired distribution [26]. The choice of parameterized
distribution is thus very important for the tractability of the
approximate inference procedure and the quality of the ap-
proximation. VI methods often use an independent Gaussian
posterior, known as the mean-field approximation [26]. Okada
and Taniguchi represent the variational posterior as a Gaussian
mixture [13], and show how this posterior can be used with
both MPPI and CEM, Lambert et al. proposed using a particle
representation [11], this method uses Stein variational gradient
descent [27], which performs gradient descent on the particles to
maximize their posterior likelihood while also ensuring particle
diversity, where diversity is determined by the choice of an
appropriate kernel function. The authors use a Monte-Carlo
estimate of the posterior gradient for nondifferentiable costs and
dynamics. This method has also been extended to handle param-
eter uncertainty [14]. These representations allow for greater
flexibility in representing complex and multimodal posteriors.
We will similarly use a flexible class of distributions to represent
the posterior, but will further make the posterior dependent on
the start, goal, and environment. To the best of our knowledge,

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 03,2024 at 19:11:29 UTC from IEEE Xplore. Restrictions apply.

POWER AND BERENSON: LEARNING A GENERALIZABLE TRAJECTORY SAMPLING DISTRIBUTION FOR MODEL PREDICTIVE CONTROL

our approach is the first to amortize the cost of computing this
posterior by learning a conditional control sequence posterior
from a dataset.

B. Learning Sampling Distributions for Planning

Our work is related to work on learning sampling distributions
from data for motion planning. Previous work [28] has proposed
learning a rejection sampling policy via reinforcement learning.
This policy is learned across multiple different environments,
but does not take any environment information as input and
thus its output is independent of the environment. Others have
proposed learning a sampling distribution, which is dependent
on the environment, start and goal [29], [30]. These methods
were restricted to geometric planning, but recent work [31]
proposed an approach for kinodynamic planning, which learns a
generator and discriminator that are used to sample states that are
consistent with the dynamics. Recent work by Lai et al. [32] used
a diffeomorphism to learn the sampling distribution; a model
that is similar to a normalizing flow. The model we propose will
also learn to generate samples conditioned on the start, goal,
and environment, though in this work we are considering online
MPC and not offline planning.

Loew et al. [33] uses probabilistic movement primitives
(ProMPs) learned from data as the sampling distribution for
sample-based trajectory optimization; however, the representa-
tion of these ProMPs only allows for unimodal distributions and
the sampling distribution is not dependent on the environment.

Adaptive and learned importance samplers have been used
for path integral controllers [34], [35]. These methods learn
a feedback policy. Sampling control sequences then consists
of sampling perturbations to the output of a feedback policy
rather than open-loop controls, thus modifying the trajectory
sampling distribution. These methods only consider a single
control problem and the learned samplers do not generalize to
different goals and environments.

Parallel work by Sacks and Boots has also proposed us-
ing a normalizing flow to learn the sampling distribution for
MPC [36]. Their approach uses a bilevel optimization to learn
the sampling distribution and demonstrates impressive results
in the low-sample regime. However, the resulting sampling
distribution is specific to a given MPC controller, and they do not
train over multiple environments. In contrast, we demonstrate
that our learned sampling distribution can be used with different
sample-based MPC controllers without retraining, train over
multiple environments, and adapt to novel environments.

III. PROBLEM STATEMENT

This article focuses on the problem of finite-horizon SOC. We
consider a discrete-time system with state 2 € R% and control
u € R% and known transition probability p(zy1|xs, us). We
define finite horizon trajectories with horizon T"as 7 = (X, U),
where X = {l‘o, L1y .JJT} and U = {uo,ul, .. .UTfl}.

Given an initial state x(, a goal state z¢;, and a signed-distance
field (SDF) of the the environment £, our objective is to find U
which minimizes the expected cost E,,(x|i)[.J(7)] for a given

cost function .J, where p(X|U) = [1/=y p(¢+1|2s, us). Note

2113

that we will use J to mean both the cost on the total trajectory
J(7) and the cost of an individual state action pair J(z,u).
This article focuses on the problem of collision-free navigation,
where J is parameterized by (zq, E, p), where p is a set of
parameters specifying the cost. In our experiments, p consists of
parameters penalizing the magnitude of the controls, nonsmooth
controls, and where appropriate, velocities.

This problem is difficult to solve in the general case because
the mapping from environments to collision-free U can be very
complex and depends on the dynamics of the system. To aid in
finding U, we assume access to a dataset D = {E, 2, v, p}*,
which will be used to train our method for a given system. We
will evaluate our method in terms of its ability to reach the
goal without colliding and the cost of the executed trajectory.
Moreover, we wish to solve this problem very quickly (i.e., inside
a control loop), which limits the amount of computation that can
be used.

IV. PRELIMINARIES

A. VI for SOC

We can reformulate SOC as an inference problem (as in [10],
[11], [13], [37]). First, we introduce a binary “optimality” ran-
dom variable o for a trajectory such that

ey

We place a prior p(U) on U, resulting in a prior on 7, p(7) =
p(X|U)p(U) and aim to find posterior distribution p(7]o =
1) o< p(o = 1|7)p(7). In general, this posterior is intractable,
so we use VI to approximate it with a tractable distribution
q(7), which minimizes the KL-divergence KL(q(7)||p(7]o =
1)) [26]. Since we define the trajectory by selecting the controls,
the variational posterior factorizes as p(X|U)q(U). Thus, we
must compute an approximate posterior over control sequences.
The quantity to be minimized is

plo=1|7) x exp (=J(7)).

= = T) 10 7(1(7—) T
KE@(lprlo = 1) = [a(r)tog LT
B op PXIU)q(U)plo =1)
o Rt 6 vy

Since p(o = 1) on the numerator does not depend on U, when
we minimize the above-mentioned divergence it can be dropped.
The result is minimizing the following quantity, the variational
free energy F:

dXdU.

@

F= / a(X,U)log = — flg(U’)U)p RS
= —Ey(r[logp(o|T) +logp(U)] — H(q(U)) ()
= Eqy(n[log J(X, U)] = H(q(U)))

where H(q(U) is the entropy of ¢(U). For the last expres-
sions we have used our formulation that the p(o = 1| X,U) =
exp(—J(X,U)) and we have incorporated the deviation from
the prior into a modified cost function J. For example, a

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 03,2024 at 19:11:29 UTC from IEEE Xplore. Restrictions apply.

2114

i e

R
VAE Decoder <

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Params. Y

7 Sample:
1
VAE Encoder ‘ Control:
e ~ h :
Params. 6 ‘\'Z Sequences:
R
q0(h|E) |

Context net

Conditional

X0, Xg, P

Fig. 2.

Jo

Flow f¢

Architecture of our method for sampling control sequences. We take as input initial and goal states z, ¢, and the environment, converted to an SDF

E. E is input into a VAE to produce a latent distribution gg (h|E), which we sample to get the environment embedding h. This h is used, along with zg, ¢, and
p as input to the network g, to produce a context vector C. C, along with a sample from a Gaussian distribution Z, is input into the CNF f to produce a control
sequence U. During training only, we use a decoder to reconstruct the SDF from h as part of the loss. We also use a normalizing flow prior for the VAE to compute

an OOD score for a given h, which is necessary to perform projection.

zero-mean Gaussian prior on the controls can be equivalently
expressed as a squared cost on the magnitude of the controls.

Intuitively, we can understand that the first term promotes low-
cost trajectories, the second is a regularization on the control, and
the entropy term prevents the variational posterior collapsing to
a maximum a posteriori solution.

B. VI With Normalizing Flows

Normalizing flows are bijective transformations that can be
used to transform a random variable from some base distribution
(i.e., a Gaussian) to a more complex distribution [38], [39], [40].
Consider a random variable z € R? and with known pdf p(z).
Let us define a bijective function f : R — R? and a random
variable y such thaty = f(z) and z = f~1(y). According to the
change of variable formula, we can define p(y) in terms of p(z)
as follows:

-1

_ o1
p(r) = p(z) [det 9 (6)
0
log p(y) = log p(z) — log |det 8—JZC . @)

Normalizing flows can be used as a parameterization of the
variational posterior [38]. By selecting a base PDF p(z) and a
family of parameterized functions fy, we specify a potentially
complex set of possible densities gg(y). Suppose that we want
to approximate some distribution p(y) with some distribution
qo (). The variational objective is to minimize KL (go (v)||p(v))-
This is equivalent to

KL (a0()lp(v)) = / %(y)log %) o

= Eqp(y)[log a0 (y) — log p(y)]

dfe
det E

=E,) {logp(Z) — log - logp(y)} . ®

Thus, we can optimize the parameters 6 of the bijective trans-
form fy to minimize the variational objective. We will use a
normalizing flow to represent the control sequence posterior in
our method.

V. METHODS

Our proposed architecture for learning an MPC sampling
distribution is shown in Fig. 2. In this section, we first introduce
how we represent and learn the control sequence posterior as a
normalizing flow, and train over a dataset consisting of starts,
goals, cost function parameters, and environments to produce a
sampling distribution for control sequences. Next, we show how
this sampling distribution can be used to improve two different
sampling-based MPC methods, MPPI and iCEM. Finally, we
describe an approach for adapting the learned sampling distri-
bution to novel environments, which are outside the training
distribution.

A. Overview of Learning the Control Sequence Posterior

The control sequence posterior introduced in Section IV-A
is specific to each MPC problem. Our approach is to use
dataset D to learn a conditional control sequence posterior
q(Ulzo, g, p,). We will use a conditional normalizing flow
(CNF) [41] to represent this conditional posterior. We use a CNF
as this allows us tractably perform exact likelihood calculations
and generate samples. The CNF takes the form of ¢.(U|C),
where C'is the context vector which we compute as follows.
First, we input E into the encoder of a variational autoencoder
(VAE) [42] to produce a distribution over environment embed-
dings h. We then sample from this distribution to produce an
h. A neural network g, then produces C' from (xo,z¢, p, h)
(see see Fig. 2). Essentially C' is a representation of what is
important about the start, goal, cost parameters, and environment
for generating low-cost trajectories.

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 03,2024 at 19:11:29 UTC from IEEE Xplore. Restrictions apply.

POWER AND BERENSON: LEARNING A GENERALIZABLE TRAJECTORY SAMPLING DISTRIBUTION FOR MODEL PREDICTIVE CONTROL

The above-mentioned models are trained on the dataset D,
which consists of randomly sampled starts, goals, and simu-
lated environments. To train the system we iteratively generate
samples from the control sequence posterior, weigh them by
their cost, and perform a gradient step on the parameters of
our models to maximize the likelihood of low-cost trajectories.
At inference time, we simply compute C' and generate control
sequence samples from g¢(U|C'). In the following, we describe
each component of the method to learn g, (U|C') in detail.

B. Representing the Start, Goal, and Environment as C'

As discussed, our dataset D consists of environments, starts,
and goals. The details of the dataset generation for each task
can be found in Section VI-A. Since the environment is a
high-dimensional SDF, we must first compress it to make it
computationally tractable to train the control sequence posterior.
To encode the environment, we use a VAE with environment em-
bedding h. The VAE consists of an encoder gy (h|E), which is a
convolutional neural network (CNN) that outputs the parameters
of a Gaussian. The decoder is a transposed CNN, which produces
the reconstructed SDF E from h. The decoder log-likelihood
py(E|h) is ||E — El|2, where ¢ are the parameters of the
decoder CNN. Chen et al. [43] showed that learning a latent prior
can improve VAE performance, so we parameterize the latent
prior py(h) as a normalizing flow and learn the prior during
training. The loss for the VAE is

Lyvae = Eqy (n) [—1og py (E[R)]+KL (g0 (M| E)|[ps (h))

=Egy(n5) [—10g py (E|h) +log go(h|E) —log pg(h))] .
)

We then use a multilayer perceptron (MLP) network g, to
generate a context vector C' to use in the normalizing flow, via
C = gu(x0,xa, p, h), which has parameters w.

C. Learning qc(U|C)

We use a CNF parameterized by (to define the conditional
variational posterior, i.e., g¢c (U|C) is defined by U = f¢(Z,C)
for Z ~ p(Z) = N (0, I). The variational free energy (4) then
becomes

F = _Eq(T) [logp(OIT)]

9f(2,C)

det
Y

+Ep2) {logp(Z) — log H . (10)

We can then optimize ¢ to minimize the free energy.

By using a CNF, we are amortizing the cost of computing
the posterior across environments. The CNF U = f.(Z,C) is
invertible with respect to Z, i.e., Z = f~1(U, C). For our CNF
we use an architecture based on real-NVP [39] architecture
with conditional coupling layers [41], the structure is specified
in Section VI-C. Since U is a control sequence, the proposed
normalizing flow is a joint distribution over the entire control
sequence, meaning that the control sequence posterior is able to
represent dependencies across time.

2115

Minimizing (10) via gradient descent requires the cost and
dynamics to be differentiable. To avoid this, we estimate gradi-
ents, using the method in [13]: At each iteration, we sample R
control sequences U; g from ¢¢(U|C') and compute weights

_ 4 (Ui|C) Pp(olr) =
£ ac(U;1C)Fplolr)=

where p(o|T) = exp(—J(7)). These weights represent a trade-
off between low-cost and high entropy control sequences con-
trolled by hyperparameters v and 3. The weights and particles
{Uy. r,w1. r} effectively approximate a posterior, which is
closer to the optimal ¢(U|C). At each iteration of training,
we take one gradient step to maximize the likelihood of Uy g
weighted by w; g, then resample a new set U;_ r. The flow
training loss for this iteration is

(1)

4

R
Eﬂow = — sz log qC(Ui|C).

i=1

12)

This process is equivalent to performing mirror descent on the
variational free energy, see Okada and Taniguchi’s work [13]
for a full derivation. In practice, when sampling Uy r from
g¢c(U|C) we can optionally add a Gaussian perturbation to the
samples, decaying the magnitude of the perturbation during
training. While this means we are no longer performing gradient
descent on F exactly, we found that this empirically improved
exploration during training. Doing this however, results in less
smooth trajectories. We use both options in our method; for
experiments in which smoothness is particularly important, we
do not include this noise. To train the parameters of our system
we perform the following optimization via stochastic gradient
descent:

min Laow + aLvAE
0,¢0,9,w,

13)

for scalar @ > 0. We use a combined loss and train end-to-end
so that h is explicitly trained to be used to condition the con-
trol sequence posterior. We then continue training the control
sequence posterior with a fixed VAE with the optimization

min Laow-
w,¢

(14
D. Using the Control Sequence Posterior for Sample-Based
MPC

In this section, we introduce two approaches for using the
learned control sequence posterior with sample-based MPC
controllers, FlowMPPI and FlowiCEM, based on MPPI [1]
and iCEM [15], respectively. Given a C' computed from
(z0,za, p, E), the control sequence posterior g¢(U|C') can be
used as a sampling distribution. For each of these methods, we
use the same ¢ (U|C) learned via the procedure outlined in the
previous section.

1) FlowMPPI: MPPI iteratively perturbs a nominal control
sequence with Gaussian noise and performs a weighted sum
of the perturbations to find a new control sequence. It is thus
a method for local optimization, and the connection between

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 03,2024 at 19:11:29 UTC from IEEE Xplore. Restrictions apply.

2116

Iteration=0

0 10 20 30 40 50
iterations
2007

2000
1800
4+ 16001
7]
o
%

—— MPPI

6 10 20 30 40 50
iterations

Fig. 3.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Iteration 50

Iteration 25

—— MPPI in flow latent space

- /
7
7

FlowMPPI

FlowMPPI

—— MPPI in flow latent space

Two examples in which we run 50 iterations of MPPI, FlowMPPI, and MPPI in the latent space of the flow in a 2-D navigation task with double-integrator

dynamics. Top: Initial samples from the flow are goal directed, but do not yet fully reach the goal, in contrast the initial samples for MPPI perform poorly. We see
that while MPPI can improve with successive iterations, running MPPI in the latent space of the flow fails to improve the trajectory. In contrast FlowMPPI starts
with a better initialization and is able to improve faster than MPPI. Bottom: Here the initial samples form the control sequence posterior have already reached
the goal, and so no improvement is necessary. In contrast, since MPPI is only performing local improvements to the control sequence it becomes stuck in a local

minima.

MPPI and mirror descent was noted in [44]. As a local opti-
mization method it is susceptible to becoming stuck in local
minima given improper initialization. By sampling Gaussian
perturbations the algorithm is uninformed about the perturbation
direction expected to lower cost.

In contrast, ¢¢(U|C') is able to directly sample collision-free
goal-directed trajectories and produces highly informed sam-
ples. One way in which we might think to use ¢;(U|C) in
an MPC framework is to run MPPI in the latent space of the
flow. This is appealing because ¢.(U|C') generates low-cost
control sequence. This means we would be searching directly
in the space of low-cost control sequences and we would not
waste many samples exploring high-cost control sequences.
Unfortunately this method does not work well in practice, as
visualized in (see Fig. 3). We note that when performing MPPI
in the latent space Z of g (U|C'), while the initial samples are
usually relatively low-cost we fail to locally improve the control
sequence with successive iterations.

One challenge of performing MPPI in the latent space of the
flow is that small changes in Z often lead to large differences in
the resulting control sequence. Another additional challenge is
that by performing MPPI in Z we can only ever generate control
sequences that are produced by ¢¢(U|C). While in principle,
given a highly expressive model that is trained to minimize
(4), all low-cost control sequences should have high density
under . (U|C'), there will inevitably be an approximation gap,
ie., KL(ge(U|C)||p(T|o = 1)) > 0. This approximation gap is
likely to increase in OOD situations.

To avoid this, our first proposed MPC algorithm, FlowMPPI,
uses samples from ¢¢(U|C) while also allowing the control
sequences to improve further beyond what can be sampled from
q¢(U|C). FlowMPPI combines sampling in the latent space Z,
and sampling perturbations to trajectories to get the advantages
of both. For a given sampling budget K, we generate half of the
samples from perturbing the nominal trajectory as in MPPI, and

the other half from sampling from the control sequence posterior.
These samples will be combined as in standard MPPIL.

The algorithm for a single step of FlowMPPI is shown in
Algorithm 1. For a step of FlowMPPI we first perform a shift
operation on the previous nominal control sequence, replacing
the final control in the sequence with Gaussian noise, shown on
lines 3—5. We generate half of the samples and compute their re-
spective costs via the standard MPPI approach using a Gaussian
perturbation to the nominal control sequence, shown lines 6—13.
We generate the samples from the flow by first sampling from
a standard normal distribution and then mapping these samples
through the control sequence posterior flow to generate control
sequences. We then evaluate the costs of these sequences, includ-
ing a perturbation cost on the distance of the sampled control
sequence from the nominal. This cost is given in the algorithm
by the cost Shomina- This cost can be computed either in the flow
latent space with SZ . = Ael, (fd_)l (U,C) — €z). This mirrors
the similar cost in the original MPPI algorithm. However, this re-
quires querying the inverse of the control sequence normalizing
flow. Analternative is S . .. = A||{Ux — U)||4-.. We make use
of both of these in our methods. Finally, we compute the new
nominal control sequence via a weighted sum of the sampled
control sequences, where the weights are determined by the
exponentiated negative costs.

2) FlowiCEM: CEM [4] is an iterative sample-based MPC
algorithm, which uses a Gaussian sampling distribution. It sam-
ples control sequences, selecting the Njis elites with the lowest
cost, and refitting the Gaussian sampling distribution to those
elites. iICEM [15] is a recent method that builds on CEM; where
CEM uses a Gaussian as the sampling distribution, iCEM uses
colored Gaussian noise. iCEM also maintains low-cost control
sequences between iterations, rather than discarding sampled
control sequences after an iteration is complete.

As with FlowMPPI, to incorporate g (U|C) into iCEM, we
do not perform iCEM exclusively in the latent space Z (for the

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 03,2024 at 19:11:29 UTC from IEEE Xplore. Restrictions apply.

POWER AND BERENSON: LEARNING A GENERALIZABLE TRAJECTORY SAMPLING DISTRIBUTION FOR MODEL PREDICTIVE CONTROL

2117

Algorithm 1: Single step of FlowMPPI, this will run every
timestep.

Algorithm 2: Single step of FlowiCEM, this will run every
timestep.

Inputs: Cost function .J, previous nominal trajectory U,
Context vector C' = g,,(zo, 2g, p, h), control sequence
posterior flow f., MPPI hyperparameters (1, 3), Horizon
T, Samples K

1: functionFlowMPPIStep

2 >Perform shift operation on nominal U

3 forte {1,...,7— 1} do

4: Uiy < Uy

S Ur—1~N(0,%)

6: >Generate samples by perturbing nominal U

7. forke {1,...,5}do

8

: €y ~ N(O, E)

9: U+~ U+epy
10: T ~ p(T|U%) > Sample trajectory
11: Sy J(1) + AULE ey > Compute cost
12: >Generate samples from control sequence posterior
13: forke {§ +1,....K}do
14: €z ~ N(O, I)
15: U;C<—f((€Z,C)
16: T ~ p(T|Uk) > Sample trajectory
17: Sk J(7k) + Snominal > Compute cost
18: >Compute new nominal U

19: 8+ ming Sk

200 =3, exp(—1(Sk—)
21: fork e {1,...,K}do

22: Wy, 4— %}exp(f%(sk - 5))
23: U «+ Zszl wkUk

24 return U

Inputs: Cost function .J, previous mean control sequence
, Context vector C' = g,, (g, ¢, p, h), control sequence
posterior flow f, iCEM hyperparameters
(a,y,0%, M, N), Horizon T, Samples K

1: functionFlowiCEMStep

2 >Perform shift operation on nominal mean

3 1 <— shifted p

4 if Ukeptfelites 7é {} then

5: Ukept—elites < shifted Ukept—elites

6

7

8

o pro1 ~N(0,X)
: >Generate initial elites from flow
: €z ~ N(O, I)
9: Uflow — f§<€Z7C)
10: fori € {1,...,iters}do
11: >>Generate samples from colored noise
12: U < SAMPLECOLOREDNOISE (1, o2)
13: >>Add samples from flow to population
14: ifi == Othen
15: U+~Uu Uflow
16: >Add kept-elites to population
17: U+~UU Ukept—elites
18: T~ p(7|U) > Sample trajectories
19: costs <— J(7) > Evaluate costs
20: Ueclites < Neiites lowest-cost trajectories
21: w4 (1 —m)mean(Ugites) + mi
22: o < (1 —m)std(Ugtites) + mo
23: Ukeptfelites — BGStNkeptfelites elites

24: return lowest-cost elite from Ugept—eciites

reasons discussed in Section V-D1). Similar to MPPI, we found
that iCEM is very good at locally optimizing a control sequence,
and that performing iCEM in Z results in a failure to improve
further on the initial samples. We take a similar approach as with
FlowMPPI, proposing an algorithm, FlowiCEM, that uses some
samples from g, (U|C') while still allowing further improvement.

In FlowiCEM, we add samples from the control sequence
posterior by adding to the initial population at the beginning of
every time-step. These samples can be thought of as an initial
set of “elites,” i.e., low-cost control sequences. Further iterations
proceed as normal with iCEM.

A single step of the FlowiCEM algorithm is shown in Algo-
rithm 2. For a single step of FlowiCEM, we first shift the control
sequence mean, replacing the final mean Gaussian with noise. If
this is not the first step, we also perform the shift operation on the
elites kept from the previous step. We sample a set of elites from
the control-sequence posterior in lines 8—9. We then proceed for
several iterations of the sample-based optimization. First, we
sample control sequences from a colored noise distribution. If
this is the first iteration, we introduce the elites sampled from
the flow into the population. For all iterations, we introduce
the elites kept from previous iterations into the population.
We then compute the costs, and use the best Ngjies elites to
update the parameters of the Gaussian used to sample control

sequences. We then select the best Niept—clites < Velites €lites to
be maintained for the next iteration and proceed with the next
iterations. Once we have finished all iterations we return the
lowest cost elite.

E. Generalizing to OOD Environments

A novel environment can be OOD for the control sequence
posterior and result in poor performance. We present an ap-
proach where we project the OOD environment embedding &
in-distribution in order to produce low-cost trajectories when
it is used as part of the input to f¢. The intuition behind this
approach is that our goal is to sample low-cost trajectories in the
current environment. Given that f¢ will have been trained over
a diverse set of environments, if we can find an in-distribution
environment that would elicit similar low-cost trajectories, then
we can use this environment as a proxy for the actual environ-
ment when sampling from the flow. Thus, we avoid the problem
of samples from the control sequence posterior being unreliable
when the input is OOD.

In order to do this projection, we first need to quantify how far
OOD a given environment is. Once we have such an OOD score,
we will find a proxy environment embedding h by optimizing the
score, while also regularizing to encourage low-cost trajectories.
For the OOD score, we use the VAE we have discussed in

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 03,2024 at 19:11:29 UTC from IEEE Xplore. Restrictions apply.

2118

Section V-B. VAEs and other deep latent variable models have
been used to detect OOD data in prior work [45], [46], [47];
however, these methods are typically based on evaluating the
likelihood of an input, in our case p(FE). For VAEs this requires
reconstruction. We would like to avoid using reconstruction
in our OOD score for two reasons. First, reconstruction, par-
ticularly of a 3-D SDF, adds additional computation cost and
we would like to evaluate the OOD score in an online control
loop. Second, optimizing an OOD score based on reconstruction
would drive us to find an environment embedding proxy, which
is able to approximately reconstruct the entire environment. This
makes the problem more difficult than is necessary, as we do not
need h to accurately represent the entire environment, only to
elicit low-cost trajectories from the control sequence posterior.

To determine how close h is to being in-distribution, we use
the OOD score

EOOD(h) = 710gp¢(h) (15)

where p (h) is the learned flow prior for the VAE. The intuition
for using this as an OOD score is that this term is minimized
for the dataset in Lyag, so we should expect it to be lower for
in-distribution data. Previous work on OOD detection using
normalizing flows [48] found that using the likelihood of a
normalizing flow as an OOD score is more effective for image
data when using a feature representation of the input which
contains higher level semantic information compared with using
the raw pixel values. The authors hypothesize that the failure to
successfully distinguish between in-distribution and OOD data
when using raw pixel values is the overreliance on local pixel
correlations. We train the environment embedding / end-to-end
both for reconstruction and to be used for generating collision-
free control sequences. For this reason we hypothesize that our
latent embedding h contains higher level information on the
structure of the environment, and hence the learned flow prior
likelihood is a more effective OOD score. Further motivating our
approach, using a learned prior was shown to improve density
estimation over a Gaussian prior [43]. Likewise, we found the
learned prior yielded much better OOD detection than using a
Gaussian prior, which is the standard VAE prior (see Fig. 4).
We can perform gradient descent on Logp to find }Al thus pro-
Jjecting the environment to be in-distribution. Note that without
regularization this process will converge to a nearby maximum
likelihood solution, which may lose key features of the current
environment. Since our aim is to sample low-cost trajectories
from the control sequence posterior, we use Lgow as a regularizer
for this gradient descent. Our intuition here is that in order
to generate low-cost trajectories in the true environment, the
projected environment embedding should preserve important
features of the environment relevant for that particular planning
query. The new environment embedding is then given by

h = arg mhin bLoop + Liiow (16)
for scalar b > 0. We project h to h by minimizing the (16) gra-
dient descent. This step is incorporated into our proposed MPC
methods and we call the resulting methods FlowMPPIProject
and FlowiCEMProject. This version of our method will perform

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Sphere environments B Narrow Passages environments

@, ®
50 50
40 40
30 30
20 20
10 10
oLt oLan "
-1.50 -1.45 -1.40 -1.35 -1.30 -1.25 -1.20 0.2 0.3 0.4 0.5 0.6 0.7 0.8
log ps(h) log ps(h)
© (d)
80 60
70
50
60
50 40
40 30
30
20
20
10 10
0 -0.936 —-0.935 -0.934 -0.933 -0.932 0 17 18 19 2.0 21 22 23
logpy(h) logpy(h)
Fig. 4. Comparison of our OOD scores with using a VAE with a standard

Gaussian prior for in-distribution (red) and OOD (gray) simulated environ-
ments. (a) Planar navigation using a Gaussian prior. (b) Planar navigation
using a Normalizing flow prior. (¢) 12-DoF quadrotor using a Gaussian prior.
(d) 12-DoF quadrotor using a Normalizing flow prior, These scores are computed
by sampling h from gg (h|E) and evaluating log pg(h). The score is normal-
ized by the dimensionality of h. We see that our method, shown in (b) and
(d), achieves a clear separation between in-distribution and OOD environments
in both cases.

Algorithm 3: Projection.

Inputs: N iterations, K samples, 6, ¢, w, (parameters,
control perturbation covariance ., learning rate 7, loss
hyperparameters («, (3, b)

1: h'< qo(h|E)

2: forne{l,...,N}do

3: Compute log py(h™) via (7)

4: C + g,(xo,xc,h™)

5: {Uk, qc(Ux|C)}E_, < SAMPLEPERTU(C, &, K)
6: L+ —py(h™)

7. forke {1,...,K}do

8: wy, < from ({U;,log q¢(U;|C)}E |, o, B}) via

(11)
9: Leﬁ—wkdogqc(UﬂC)
10: At -2t

M steps of gradient descent on the above-mentioned combined
loss at initialization, followed by a single step at each iteration of
the MPC. The algorithm for projection is shown in Algorithm 3.
The algorithm SAMPLEPERTU is shown in the appendix.

VI. EVALUATION

In this section, we will evaluate our proposed approaches
FlowMPPI and FlowiCEM with and without projection on three
simulated systems; a 2-D point robot, a 3-D 12-DoF quadrotor,
and a seven-DoF manipulator. For each system, we will train
the flow on a dataset of starts, goals, and environments and
evaluate the performance on environments drawn from the same
distribution. In addition, for each system we will test on novel
environments that are radically different from those used for
training and evaluate the generalization of our approach and the
ability of our projection approach to adapt to these OOD envi-
ronments. For the 12-DoF quadrotor system and the seven-DoF

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 03,2024 at 19:11:29 UTC from IEEE Xplore. Restrictions apply.

POWER AND BERENSON: LEARNING A GENERALIZABLE TRAJECTORY SAMPLING DISTRIBUTION FOR MODEL PREDICTIVE CONTROL

manipulator, we additionally evaluate our method in simulation
on environments generated from real-world data. Our goal is to
evaluate if the control sequence posterior, trained on simulated
environments, can adapt to real-world environments.

For our novel environments, we select environments which
are difficult for sampling-based MPC techniques. We will use
the terms “in-distribution” and “OOD” for environments for the
rest of this section, but note that these terms are relative to the
set of environments, which we use to train our method. Being
OOD has no bearing on the nonlearning-based baselines. The
performance of nonlearning sampling-based MPC algorithms
depends only on the given environment, not its relation to other
environments.

We evaluate our proposed algorithms on the resulting attained
costs, success rates, and, for the 12-DoF quadrotor and two-
DoF double integrator, smoothness of the resulting controls. To
compute smoothness we use

Lamoon(U) =Y ||tz — uy 1|, (17)
t=1

A. Systems and Environments

In this section, we will introduce the systems and the
environments we use for evaluation. For all systems and
environments, a task is considered a failure if there is a
collision or if the system does not reach the goal region
within a timeout of 100 timesteps. The cost function for all
systems is given by J(7) = 100de(zr) + 31—, 10de () +
S, 10000D () + po|ve]|3, where T is the MPC horizon,
dq is a distance to goal function, and D is an indicator function
which is 1 if x; is in collision and O otherwise, and v is the
velocity. The exception is that the seven-DoF manipulator
does not have a velocity so that term is omitted. For all of our
experiments, the control horizon T" = 40.

We use a Gaussian prior over controls, assuming each con-
trol dimension is independent from one another. To encourage
smoothness, we make control dimensions correlated across time,
by computing the covariance for the ith control dimension u' as
Zi,t, = 0% exp —w. Here, o controls the magnitude of
the controls and [controls the smoothness. The prior is then
given by p(U) = N(0, X). Combining the cost and the control
prior yields the total cost .J (1) = J(7) 4 log p(U), with control
cost becoming the weighted 12-norm of the controls weighted
by X. For all of our experiments, the dynamics are deterministic.
The parameterization of the total cost function is p = [p,, o2, I].
Further details of the generation of training data can be found in
Appendix B.

1) Planar Navigation: The robot in the planar navigation
task is a point robot with double-integrator dynamics. The goal
is to perform navigation in an environment cluttered with obsta-
cles. The state and control dimensionality are 4 and 2, respec-
tively. The environment is represented as a 64 x 64 SDF. Exam-
ples of the training and evaluation environments are shown in
Fig. 5(a) and (b). The training environments consist disc-shaped
obstacles, where the size, location, and number of obstacles is
randomized. The OOD environment consists of four rooms, with

2119

(a) . (c)
D@ \ -

Fig. 5. Examples of our “in-distribution” environments (top) and “OOD”
environments (bottom). (a) Sphere environment for the planar navigation task,
showing sampled trajectories from the flow. (b) Narrow passages environment
for planar navigation, we see that the samples from the flow are goal orientated
and generally toward the passages, but most are generally not collision free.
(c) Sphere environment for the 12-DoF quadrotor. (d) Narrow passages environ-
ment for the 12-DoF quadrotor.

narrow passages randomly generated between them. The loca-
tion of the passages is randomized for each OOD environment.
The distance-to-goal function is dg (z) = ||z — zg||2. The goal
region for this task is given by Xg = {z : ||z — z¢||2 < 0.1}.
We consider cost parameters in the range p, € [0.01,1], 02 €
[1,10], and [€ [0.02, 2]. During evaluation, we evaluate with
three different settings of p. The first is [0.1,4,0.2] which
moderately penalizes the velocity, control magnitude, and con-
troller smoothness. The nextis [0.01, 8, 0.02], which represents a
more aggressive cost that has lower penalty on velocity, control
magnitude, and smoothness. The next is a more conservative
cost function defined by p = [1,1,2], with a stronger penalty
on velocity, control magnitude and smoothness. For each cost
function we fix a single OOD environment and perform 100
control trials. For FlowMPPI, we use SU . . to compute the
cost to the nominal trajectory, avoiding an additional query to the
control sequence posterior flow. The dynamics for this system
are shown in Appendix B2.

2) 3-D 12-DoF Quadrotor: This system is a 3-D 12-DoF
underactuated quadrotor with the shape of a short cylinder. It
has state and control dimensionality of 12 and 4, respectively.
As with the planar navigation task, the goal is to perform
navigation in a cluttered environment. Examples of the training
and evaluation environments are shown in Fig. 5(c) and (d). The
training environment consists of spherical obstacles of random
size, location, and number, and the OOD environment of four
rooms separated by randomly generated narrow passages. The
environment is represented as a 64 x 64 x 64 SDF. The goal
region is specified as a 3-D position pg. The distance-to-goal
functionis dg(z) = ||Az — pg||2 + po||Bx||2 where A selects
the position components from the state z, and B selects the
angular velocity components. The goal region is Xg = {x :
dg(x) < 0.3}, During training, we consider cost parameters in
the range p, € [0.01,1], 0% € [4,40], and [€ [0.02,2]. During

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 03,2024 at 19:11:29 UTC from IEEE Xplore. Restrictions apply.

2120

Initial SDF t=0

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

/%%%

Fig. 6.

Projection process visualized for the planar navigation task. We visualize the projected environment embedding using the VAE decoder on the bottom

row. Note that decoding h is only used for training the VAE and visualization, it is not necessary for projection. The top shows the environment and sampled
trajectories from g¢ (U|C'). The bottom shows the same samples overlaid on a reconstruction of projected environment embedding h. On the left, the initial SDF
is very poor, and sampled control sequences result in trajectories passing directly through the obstacle. As the task progresses, the iterative projection results in
an SDF that resembles the training environment more. The environment embedding encodes obstacles that result in a trajectory that traverses the narrow passage.
Notice however, that regions that are not relevant for this planning task, such as the lower wall, do not need to accurately represent the environment.

(@) (b) ©
(d) (e)

Fig. 7. We evaluate our approach on control of a kinematic seven-DoF
manipulator on four environments in simulation (a)—(d). Tasks consist of:
(a) navigating around spherical obstacles; (b) reaching into a shelf; (c) going
from one side of a wall to another; (d) reaching inside a fridge; (e) real world
setup for the reaching into a fridge task. The voxel grid in (d) was generated
from the fridge in (e) using multiple views of a Kinect v2.

evaluation, we evaluate on three different settings of p. The first
is [0.1, 25, 0.02]. The next is [0.1,25,0.02], which encourages
smooth behavior without strongly penalizing the magnitude of
the controls. The next is a more conservative cost function de-
fined by p = [1, 12, 0.2], which penalizes velocities and control
magnitude more strongly. For each cost function, we fix a single
OOD environment and perform 50 control trials. We also tested
in two simulation environments generated from real-world data
(shownin 1). For FlowMPPI, we use S . to compute the cost
to the nominal trajectory, avoiding an additional query to the
control sequence posterior flow. The dynamics for this system
are shown in Appendix B3.

3) Seven-DoF Manipulator: This system is a kinematic
seven-DoF manipulator shown in different environments in
Fig. 7. The state and control dimensions are both 7. The goal is to
reach a target end-effector position in the presence of obstacles.

The training environment consists of spherical obstacles, shown
in Fig. 7(a). The number and size of the spherical obstacles is
randomized during training. The simulated novel environments
are shown in Fig. 7(b)-(d). We additionally evaluate on one
environment generated from real-world data, shown in Fig. 7(d)
and (e). The environment is represented as a 64 x 64 x 64 SDF.
The goal region is specified as a 3-D position p¢. To generate the
SDF we generated pointclouds from several different views with
a KinectV2. We used motion capture to determine the camera
frame and aggregated the point clouds together. The distance-to-
goal function is dg(z) = |ForwardKinematics(x) — pgl|2-
The goal region is X¢ = {z : dg(z) < 0.1}. For this task we
keep the cost parameters p constant with o2 = 4. We do not
include the smooth prior, effectively taking [— oo. Since the
seven-DoF manipulator task is quasistatic, we do not include
the velocity penalty for this system. To perform fast batched
collision checking on the GPU using the environment SDF
we approximate the robot geometry as a set of spheres. For
FlowMPPI, we use SZ . . to compute the cost to the nominal
trajectory, as this task is kinematic, computation time is less
important.

B. OOD Score and Projection

To confirm the efficacy of our OOD score, we computed
this score for the training and OOD environments for each
system previously. Fig. 4 shows that this score is clearly able to
distinguish in-distribution environment embeddings from OOD
ones.

C. Network Architectures

For both the control sequence posterior flow f: and the VAE
prior p,(h) we use an architecture based on Real-NVP [39],

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 03,2024 at 19:11:29 UTC from IEEE Xplore. Restrictions apply.

POWER AND BERENSON: LEARNING A GENERALIZABLE TRAJECTORY SAMPLING DISTRIBUTION FOR MODEL PREDICTIVE CONTROL

2121

Fig. 8.

(a) and (b) iCEM baseline performing a task where the goal is to navigate to to the inside of the fridge. The baseline fails to successfully navigate to the

goal. (c) and (d) One of our proposed methods, FlowiCEMProject, successfully navigating to the inside of the fridge.

Spheres Environment p=[0.1,4,0.2] Spheres Environment p=[0.1,4,0.2]

+|--l-

MPPI SVMPC

4000

2500

3500
2000 3000

2500
1500

2000

T
o -
- ‘

1000

Cost.
Cost

MPPI SVMPC ICEM FlowMPPI FlowMPPI FlowiCEM FlowiCEM ICEM FlowMPPI FlowMPPI FlowiCEM FlowiCEM
Project Project Project Project

Spheres Environment p=[0.01, 8, 0.02] Spheres Environment p=[(1,1,2]

4000

3500 |
|
- I

I . 1500
oo — L

Looae

MPPI SVMPC ICEM FlowMPPI FlowMPPI FIOWICEM FIoWiCEM
Project Project

Cost
Cost

1500 ——

1000
MPPI SVMPC ICEM FlowMPPI FlowMPPI FIwiCEM FIOWICEM
Project Project

Fig.9. Box plot of the costs for the double integrator experiments. We evaluate
on 100 trials for the training environment consisting of randomly generated
disc obstacles. In addition we evaluate for 100 trials with three different cost
parameterizations in three different environments consisting of four walls with
narrow passages between them.

shown in Fig. 11. For the VAE prior py(h) we use a flow depth
of 4, while for the control sampling flow f we use a flow depth of
12 for the 12-DoF quadrotor and two-DoF double integrator, and
20 for the seven-DoF manipulator. For the control sampling flow
we use the conditional coupling layers from [41]. For the VAE
encoder we use four CNN layers with a kernel of 3 and a stride
of 2, followed by a fully connected layer. For the VAE decoder
we used a fully connected layer followed by four transposed
CNN layers. For the 3-D case we use 3-D convolutions. The
dimensionality of both h and C' was 256 for all tasks. g, was
defined as an MLP with a single hidden layer of size 256. For
nonlinear activations, we used ReLU throughout. We implement
all networks using PyTorch [49].

D. Training and Data

For training, we use 10000 randomly generated environments
for planar navigation task, and 20000 for the 3-D 12-DoF
quadrotor and seven-DoF manipulator tasks. At each epoch,
for each environment, we randomly select one of 100 start
and goal pairs, and also randomly sample cost parameters
p. We train the control sequence posterior flow f¢, the VAE
parameters (0, ¢,1), and the context MLP g, end-to-end
using Adam. After 100 epochs, we freeze the VAE and do not
continue training with Lyag. This is primarily because the VAE
converges quickly and training proceeds more quickly without
reconstruction. When training the VAE we divide the loss by the
total dimensionality of the SDF and use a = 5. For the double
integrator and quadrotor tasks, we train the control sequence
posterior without perturbing the samples with noise. These are
second-order systems and thus it is important to minimize the
controller jerk. For the seven-DoF manipulator planning, we
train with the noise. We found that without using the noise
for the seven-DoF manipulator the resulting control sequence
posterior was not able to generate diverse enough samples for
successful use as an MPC sampling distribution.

A full list of training hyperparameters can be found in Ap-
pendix A.

E. Baselines

For our baselines, we use several state-of-the-art sampling-
based MPC methods: MPPI [1], Stein variational MPC
(SVMPC) [11] and iCEM [15]. MPPI uses a Gaussian distri-
bution as the sampling distribution, iCEM uses colored noise,
and SVMPC uses a mixture of Gaussians. For each baseline, we
tune the hyperparameters to get the best performance based on
the training environments, and maintain these hyperparameters
when switching to the OOD environments. We evaluate each

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 03,2024 at 19:11:29 UTC from IEEE Xplore. Restrictions apply.

2122

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

TABLE I
COMPARISON OF METHODS FOR THE PLANAR NAVIGATION TASKS. WE EVALUATE ON BOTH IN-DISTRIBUTION ENVIRONMENTS AND OOD ENVIRONMENTS
ACROSS DIFFERENT COST FUNCTION PARAMETERS p

In-distribution environment OOD environment
p=10.1,25,0.2]" p=10.1,25,0.2]" p=1[0.1,252]" p=1[1,12,0.2]"
Controller Success | Cost smooth Success | Cost smooth Success | Cost | Lgmooth Success | Cost smooth
MPPI 0.82 1829 15.4 0.24 2791 16.7 0.16 2842 18.2 0.15 3103 7.86
SVMPC 0.82 1824 6.60 0.08 3014 6.36 0.08 2991 7.62 0.09 3058 2.55
iCEM 0.87 1427 1.20 0.37 2175 0.873 0.41 2150 1.13 0.42 2142 0.662
FlowMPPI 0.97 1084 17.0 0.85 1529 20.8 0.92 1399 27.8 0.75 1867 7.24
FlowMPPIProject 0.96 1097 16.7 0.95 1328 224 0.95 1274 26.8 0.8 1783 7.34
FlowiCEM 0.97 1038 4.26 0.77 1678 3.64 0.77 1647 6.10 0.72 1801 1.27
FlowiCEMProject 0.98 1008 4.22 0.77 1633 3.71 0.77 1583 7.49 0.74 1777 1.59
The bold numbers indicate the highest performance across the different controllers.
TABLE II

COMPARISON OF METHODS FOR THE 12-DOF QUADROTOR TASK. WE EVALUATE ON BOTH IN-DISTRIBUTION ENVIRONMENTS AND OOD ENVIRONMENTS ACROSS
DIFFERENT COST FUNCTION PARAMETERS p

In-distribution environment OOD environment
p=1[0.1,25,0.2]T p=1[0.1,25,0.2]T p=1[0.1,252]T p=1[1,12,0.2]7
Controller Success | Cost smooth Success | Cost smooth Success | Cost smooth Success | Cost smooth
MPPI 0.50 2999 14.2 0.06 4307 53.0 0.08 4079 46.3 0.0 4047 72.0
SVMPC 0.32 3580 89.0 0.00 4768 17.7 0.00 4671 16.7 0.00 4400 16.9
iCEM 0.60 2775 1.55 0.14 4069 1.64 0.24 3784 1.66 0.00 4397 1.25
FlowMPPI 0.85 2138 67.3 0.36 3077 60.8 0.80 2876 52.3 0.78 2504 58.2
FlowMPPIProject 0.96 1933 67.7 0.9 2569 58.2 0.98 2560 49.5 0.84 2385 54.0
FlowiCEM 0.68 2556 106 0.62 3474 67.4 0.62 3470 45.0 0.38 3026 68.8
FlowiCEMProject 0.98 2225 108 0.72 3272 101.7 0.86 3047 67.7 0.68 2654 84.4
The bold numbers indicate the highest performance across the different controllers.
TABLE III

COMPARISON OF METHODS FOR THE 3-D 12-DOF QUADROTOR NAVIGATION TASK WITH TWO ENVIRONMENTS GENERATED FROM REAL-WORLD DATA. THE
ROOMS ENVIRONMENT IS SHOWN IN FIG. 5(B) AND THE STAIRWAY ENVIRONMENT IS SHOWN IN FIG. 5(A). WE EVALUATE ON 100 RANDOMLY SAMPLED STARTS
AND GOALS IN EACH ENVIRONMENT

Rooms environment Stairway environment
p=1[0.1,25,0.2]T p=1[0.1,25,0.2]T
Method Cost | Success smooth Cost | Success smooth
MPPI 0.34 2576 12.8 0.1 3194 13.6
SVMPC 0.00 3621 14.8 0.02 4255 12.8
iCEM 0.24 2749 1.30 0.12 2577 1.32
FlowMPPI 0.94 1643 69.6 0.44 2260 70.3
FlowMPPIProject 0.94 1589 67.2 0.58 2045 73.4
FlowiCEM 0.66 2386 102 0.38 2646 87.5
FlowiCEMProject | 0.68 2068 100 0.54 2435 105.7
The bold numbers indicate the highest performance across the different controllers.
TABLE IV
COMPUTATIONAL TIMES
System MPPI SVMPC | iCEM | FlowMPPI | FlowMPPIProject | FlowiCEM | FlowiCEMProject
Planar navigation 0.0078 0.052 0.032 0.029 0.075 0.059 0.116
12-DoF quadrotor | 0.084 0.124 0.087 0.076 0.136 0.134 0.195

method with a sampling budget of 512. This means that for
methods that require multiple iterations per timestep, the sam-
pling budget is distributed across the iterations. A more detailed
list of the hyperparameters for each controller can be found in
Appendix 4.

F. Results

The results comparing our MPC methods to baselines are
shown in Tables I, IT III, and V. In addition, box plots showing
the distribution of costs are shown in Figs. 9 and 10, and the
computational times for all methods are shown in Table IV.
For the planar navigation case, we see that all our proposed
methods perform similarly for the in-distribution environment,

as expected. All methods based on iCEM perform well for this
task, with iCEM achieving the lowest cost of all baselines. In
addition, iCEM reliably achieves the smoothest controls. For
the OOD environments, all of our proposed flow variants reach
the goal significantly more often. For example, the success rate
for FlowMPPIProject is 0.95 for p = [0.1,25,0.2] compared
with the next closest baseline, iCEM, which attains a success
rate of 0.85. While all of our proposed methods demonstrate
strong performance in cost and success rate, they achieve lower
control smoothness than their corresponding baseline method.
For example, for the in-distribution environment, FlowiCEM
results in a smoothness of 4.26 versus 1.20 for iCEM while
improving the cost from 1427 to 1008. The flow-based methods

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 03,2024 at 19:11:29 UTC from IEEE Xplore. Restrictions apply.

POWER AND BERENSON: LEARNING A GENERALIZABLE TRAJECTORY SAMPLING DISTRIBUTION FOR MODEL PREDICTIVE CONTROL

2123

TABLE V
RESULTS FOR ATTEMPTING TASK 100 TIMES FOR EACH ENVIRONMENT IN SIMULATION. THE ENVIRONMENTS ARE SHOWN IN FIG. 7. THE FRIDGE ENVIRONMENT
IS GENERATED FROM REAL-WORLD DATA FROM THE FRIDGE SHOWN IN FIG. 7(E)

In-distribution OOD
Spheres environment Shelf environment | Wall environment | Fridge environment
Method Success Cost Success Cost Success Cost Success Cost
MPPI 0.83 836 0.24 1900 0.12 1938 0.16 1944
SVMPC 0.82 737 0.08 2132 0.42 1628 0.44 1946
iCEM 0.85 694 0.66 1302 0.36 1768 0.89 898
FlowMPPI 0.85 698 0.65 1355 0.62 1280 0.74 1080
FlowiCEM 0.86 628 0.62 1339 0.44 1573 0.94 850
FlowMPPIProject 0.87 582 0.75 1127 0.64 1178 0.83 819
FlowiCEMProject 0.86 612 0.66 1268 0.7 1109 0.97 798
The bold numbers indicate the highest performance across the different controllers.

Spheres Environment p =[0.1, 25, 0.02] Narrow Passages Environment p =[0.1, 25, 0.02] C C
e T o
"1 -l LT /)

e, - ‘= 0§
. m . - o .5 o0
= ‘ , £l |% £
W Swc con Pyt e P oncen W swec con st e e omc Y _ E‘ L ‘é > §. Y

Narrow Passages Environment p =[1,12,0.2] Narrow Passages Environment p=[0.1, 25, 2] 8 a 8
5000 - i a
e = w0 | T
« Il . “m \ i e

| [| | ‘
‘ 1

MPPI SVMPC ICEM FlowMPPI FlowMPPI FlowiCEM FlowiCEM MPPI SYMPC ICEM FlowMPPI FlowMPPI FlowiCEM FIoWiCEM
Project Project Project Project

Stairway Environment p=[0.1,25,0.02] Rooms Environment p =[0.1,25,0.02]

7000

6000

000
5000
2 4000 3
8 8 3000

m . .
2000 . . = F I _
— o 1000 o
Fig. 10. Box plot of the costs for the 12-DoF quadrotor experiments. We

evaluate on 50 trials for the training environment consisting of randomly
generated disc obstacles. In addition, we evaluate 50 trials with three different
cost parameterizations in three different environments consisting of four walls
with narrow passages between them.

show stronger control action, trading off smoothness for rapidly
moving to the goal. Since the overall cost for these methods
is lower, this suggests that this tradeoff is desirable according
to our given cost functions. The projection process for the
planar navigation is shown in Fig. 6. We observed during this
experiment that when iCEM is able to generate a trajectory that
reaches the goal region, they are able to locally optimize this
trajectory better than FlowMPPI variants, while FlowMPPI is
better able to generate suboptimal trajectories to the goal region.

For the quadrotor system, FlowMPPIProject outperforms all
other methods in both cost and success rate across all environ-
ments and cost parameterizations bar the training environment.
and sampling budgets. For the cost parameterization p =
[0.1,25,0.2] evaluated on the narrow passages environment,
FlowMPPIProject attains a 90% success rate compared to 14%
by iCEM and 6% by MPPI for OOD environments. When we
increase the smoothness parameter, FlowMPPI attains 98% ver-
sus 24% for iCEM and 8% for MPPI. Increasing the smoothness
parameter in the cost does lead to a corresponding improvement

Fig. 11. Architecture for both the prior flow and the control sequence posterior
flow, based on [39] and [41], showing a mapping from arbitrary Y to Y’. Each
flow consists of L chained transformation blocks. A transformation block con-
sists of a coupling layer and a random permutation. There is a final conditional
coupling layer on the output. For the VAE prior, there is no context thus we use
standard coupling layers and not conditional coupling layers.

in the Lgnoom for all the methods other than iCEM. When
evaluating on the more conservative cost p = [0.1,25,0.2], all
baselines fail with 0% success rate, while FlowMPPIProject
attains 68%. The dynamics of the quadrotor task make it much
more difficult, particularly because stabilizing around the goal
is nontrivial. We found that the baselines struggled to find
trajectories that both reached and stabilized to the goal and thus
were more susceptible to becoming stuck in local minima.

Table III shows the results when evaluating our method in
simulation in two environments generated from real-world data.
FlowMPPIProject outperforms all other methods in cost and
success rate, despite only being trained on simulated environ-
ments consisting of large spherical obstacles. For the chal-
lenging stairway environment, FlowMPPIProject achieves 58 %
success, while the next closest baseline, iCEM, has 44% success.
FlowMPPI and FlowiCEM achieve only 44% and 54% success
rate, respectively, for this task, rising to 78% and 53% when
performing online projection, highlighting the importance of
projection for real-world environments.

The results for the seven-DoF manipulator experiment are
shown in Table V. For this experiment, we use a fixed sampling
budget of 512 samples for all methods. On the in-distribution
environment methods perform similarly, with FlowMPPI and
FlowiCEM marginally improving on MPPI and iCEM, respec-
tively, and projection resulting in further improvement. For the
OOD environments, either FlowMPPIProject or FlowiCEMPro-
ject perform best in both success rate and average cost. For the
fridge environment, which was generated from real world data,

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 03,2024 at 19:11:29 UTC from IEEE Xplore. Restrictions apply.

2124

TABLE VI
TRAINING AND ARCHITECTURE HYPERPARAMETERS
. Planar 3-D 12-DoF Seven-DoF
Variable P .
navigation quadrotor manipulator
epoch
control X N/A N/A 0.5(1 —)
#epochs
_3 _3 # epochs
a 2.5 x 10 2.5 x 10
500epoch
P # epochs # epochs |
400epoch 400epoch
epochs 1000 2000 1000
Init. learn rate 1x107% 1x107% 1x 1073
Training envs. 10000 20000 20000
(o0, 2G) 100 100 100
per training env.
h dim 256 256 256
a 5 5 5
b 5 5 1
16 1024 1024
VAE train epochs 100 100 200
pg(h) depth 4 4 4
f¢ depth 12 12 20

FlowiCEMProject achieved 97% success rate compared with
89% for iCEM and 44% for SVMPC. Fig. 8 shows FlowiCEM-
Project running on a seven-DoF manipulator in real hardware.
These results suggest that our learned flow-based posterior does
indeed improve the performance of sampling-based MPC meth-
ods for a variety of tasks. It is especially encouraging that our
methods succeed despite the testing environments being very
different (i.e., OOD) with respect to the training environments,
which demonstrates the generalization afforded by our OOD-
projection approach.

VII. DISCUSSION

While our results demonstrate the efficacy of using a
flow-based posterior and OOD-project for MPC problems, our
approach has several limitations. First, our experiments only
consider navigation tasks where the objective is to reach a
configuration while avoiding collision. This means that the cost
functions are relatively easily parameterized with a start, goal,
and SDF of the environment. In order to generalize our method
to a wider range of tasks, such as robotic manipulation, we must
be able to design a flexible task parameterization that we can
use as input to the control sequence posterior. This is a topic we
intend to explore in future work.

Second, while our experiments demonstrate that our OOD-
projection approach enables our method to generalize to novel
environments, the limits to this generalization are unknown.
Given a novel environment, we do not have a way of predict-
ing how well our projection method is likely to work without
attempting the task in that environment. Our overall projection
seeks to find an environment embedding that has a high likeli-
hood according to the training distribution while minimizing the
cost of sampled trajectories. This inevitably leads to some loss
of information. In particular, the regularization term minimizing
the cost of sampled trajectories can only encourage the preser-
vation of environment details local to the sampled trajectories,
so we can only expect a local approximation of the environment.
In addition, finding an environment embedding with a high
likelihood under the training distribution means we are unable to

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

represent environment geometries that differ significantly from
those seen during training.

Third, we have only considered the case where the envi-
ronment is static. A simple method of applying to a dynamic
environment could be incorporated by updating the SDF online
and planning as if the scene was static. However, our projection
method currently updates the environment embedding with a
single gradient step per timestep to reduce the computation time,
using the previous environment embedding as the initialization.
If the environment SDF is reset every time-step then one gradient
step may no longer be sufficient to adapt to novel environments.
One interesting potential avenue for future work is to incorporate
knowledge of the environment dynamics during planning, by
predicting the future environment SDFs as in [50]. By projecting
these future environment SDFs in-distribution, we may avoid
the issue of having the environment representation reset, as we
can warm-start from the projected future SDF. However, in our
current approach the SDF is encoded once at the beginning of
the task, this method would require encoding both current and
predicted SDFs at every time-step, which would increase the
computational cost.

Fourth, we note from Table IV that incorporating projection
requires significant computation time, and thus the current im-
plementation cannot be used for real-time control. For both the
12-DoF quadrotor and the two-DoF double integrator, the total
computational time is larger than the simulation time-step for
both FlowiCEMProject and FlowMPPIProject. Also note that
the computation time is likewise longer than the simulation
time-step for several of the baseline methods, including all
methods for the 12-DoF quadrotor. Our method and all baselines
were implemented in Python, and implementing these methods
in C++ may enable real-time performance on these systems in
future work. The learned components of our system could be
deployed in C++ using LibTorch [49].

Fifth, training an effective control-sequence posterior requires
tuning system-dependent hyper-parameters. While some hyper-
parameters can be automatically selected (see Appendix Al
for details), tuning parameters « and [is necessary when
considering a new system. These parameters control the tradeoff
between diversity and low-cost control-sequence samples, and
this tradeoff is sensitive to the scale of the objective, which is
often system-dependent.

Finally, we assume that an accurate model of the dynamics
is known. Since we are using the learned control-sequence
posterior in the context of model-based control, we believe
assuming access to a dynamics model is reasonable. However, if
the dynamics model is inaccurate, the control sequence posterior
will have been learned using data from an inaccurate model.
MPC is often robust to model errors, but it is unclear how the
performance will be affected by using the inaccurate learned
control sequence posterior.

VIII. CONCLUSION

In this article, we have presented a framework for using a
CNF to learn a control sequence sampling distribution for MPC
based on the formulation of MPC as VI. The control sequence

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 03,2024 at 19:11:29 UTC from IEEE Xplore. Restrictions apply.

POWER AND BERENSON: LEARNING A GENERALIZABLE TRAJECTORY SAMPLING DISTRIBUTION FOR MODEL PREDICTIVE CONTROL

posterior samples control sequences which result in low-cost
trajectories that avoid collision. We have shown how this control
sequence posterior can be used in two different sampling-based
MPC methods, FlowMPPI and FlowiCEM. We have also pro-
posed a method for adapting this control sequence posterior
to OOD environments by projecting the representation of the
environment to be in-distribution, essentially “hallucinating” an
in-distribution environment, which elicits low-cost trajectories
from the control sequence posterior. We have demonstrated
that incorporating our learned sampling distribution into MPC
algorithms offers large improvements over baselines in difficult
environments and that by performing the environment projection
we can successfully transfer a control sequence posterior learned
with simulated environments to environments generated from
real-world data.

ACKNOWLEDGMENT

The authors would like to thank the other members of the
Autonomous Robotic Manipulation Lab at the University of
Michigan for their insightful discussions and feedback.

APPENDIX A
TRAINING AND ARCHITECTURE DETAILS

1) Hyperparameter Tuning

There are several hyperparameters to tune in our approach.
The scalar a in (13) was tuned so that aLvyag and Ly, Were
of approximately similar magnitude. The scalar b in (16) was
selected to be equal to the dimensionality of the SDF observation
divided by the dimensionality of the latent environment embed-
ding. This value was chosen initially to make the projection
loss similar across the quadcopter and the double integrator,
and we found this automatic tuning worked well in practice.
Hyperparameters «, 3 together control the tradeoff between
entropy and optimality, and we tuned these via a grid search
and selected the values that resulted in the best performance in
the training environment when used with FlowMPPI.

APPENDIX B
ENVIRONMENT DETAILS

The environments are 4m x 4 m for the planar navigation
task, 4m x4m x4m for the 12-DoF quadrotor, and
1.5m x 1.5m x 1.5m for the seven-DoF manipulator. The
environments are generated as occupancy grids, from which we
compute the SDF. For each training environment, we randomly
sample 100 collision free start and goal pairs. We sample start
velocities from a normal distribution, and set the goal velocity
to be zero. During evaluation, for both the in-distribution and
OOD environments, we sample 100 start, goal, and environment
tuples and evaluate all methods on these tuples. The exception
to this is the real-world environments, where we keep the
environments fixed and sample 100 start and goal pairs per
real-world environment and evaluate all methods on these pairs.

2125

TABLE VII
CONTROLLER AGNOSTIC PARAMETERS USED FOR THE EVALUATIONS
. Planar 12DoF Seven-DoF
Variable S .

navigation | quadrotor | manipulator

Control horizon H 40 40 40

Trial length T° 100 100 100

Dynamics At 0.05 0.025 0.025

To ensure the navigation problem is nontrivial, we sample starts
and goals that are at least 4 m away.

1) Real-World Environments

The two real-world environments are taken from area 3 from
the 2-D—3-D-S dataset [5]. To generate the two environments,
we used the 3-D mesh from the dataset and defined a subset of the
area to be the environment. We then generated an occupancy grid
by densely sampling the mesh, which we then used to compute
the SDF.

2) Planar Navigation

The dynamics for the planar navigation system are

z 10 At 07z 0 0
y 01 0 At|ly 0 0
= —+ u
i 00 09 0 || At 0
J 00 0 095 [y 0 At

t+1

3) 12-DoF Quadrotor

The dynamics for the 12-DoF quadrotor are from [51] and are
given by

+ At

(I,—I.)¢r+Kuy

Iy
(I.—1s)pr+Kus
I

e TS P« PR S RN P S T S O <
IR~ Pl < PR S TR - PR V< S « TR S NG 3
]
+
=

y
Ja—1y)pg+Kus
L 1.

t+1 - 1,
(19)
where ¢(p), s(p),t(p) are cos, sin, tan functions, respectively.
We use aparametersm = 1,1, = 0.5,1, = 0.1,1, = 0.3, K =
5, g = —9.81. The quadrotor geometry is modeled as a cylinder
with radius 0.1 m and height 0.05 m.

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 03,2024 at 19:11:29 UTC from IEEE Xplore. Restrictions apply.

2126

4) Seven-DoF Manipulator

TABLE VIII
CONTROLLER HYPERPARAMETERS USED FOR THE EXPERIMENTS FOR BOTH OUR PROPOSED METHOD AND THE BASELINES

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Controller Variable Planar navigation | 12-DoF quadrotor |[Seven-DoF manipulator

A 1 1 1

MPPI x 1 0.25 0.25
iterations 1 4 4
p 0.5 0.5 1

particles 4 4 4
SVMPC Learning rate 0.1 0.1 1
iterations 4 4 4

warm-up iterations 25 25 25

P 0.75 0.5 0.5

noise parameter 2.5 3 3

. % elites 0.1 0.1 0.1
ICEM % kept elites 0.3 0.5 0.5
iterations 4 4 4

momentum m 0.1 0.1 0.1
A 1 1 1

FlowMPPI = 1 0.5 0.25
iterations 1 2 4

p 0.75 0.5 0.5

noise parameter 2.5 3 3

. % elites 0.1 0.1 0.1
FlowiCEM % kept elites 05 0.3 05
iterations 4 4 4

momentum m 0.1 0.1 0.1

Projection M 10 10 10

) Proj. learn. rate 2 x 103 2%x10-3 1x10~2

Algorithm 6: Flow Training.

We use a kinematic model of the seven-DoF manipulator

q=q+uAt (20)

where ¢ is the robot joint configuration and u are the controls.

APPENDIX C ALGORITHMS

Algorithm 4: Sample from ¢(U|C).

1:

2
3:
4.
5
6

functionSampleUC, K
fori € {k,...,K}do
Zy, ~ N(0,1)
Uk. «— fg(Zk, C)
qg(Uk|C> — fromZ;wia(?)
return {Uy, q¢(Ux|C) Y,

10:

12:

R A A i

Inputs: N iterations, K samples,
0! = {0, 9!, ¢!, w!, ¢!} initial parameters, control
perturbation covariance X, learning rate 7, loss
hyperparameters (a, 3)
forn € {1,...,N}do
h < go(h|E)
B« py(Elh)
Compute log py () via (7)
Compute Ly g
C <+ gw(an zra, p, h)
{Uk, qc (U |C)}E_| + SAMPLEPERTU(C, &, K)
L+ Lyvag
fork € {1,...,K}do
wy, < from ({U;,log qc (Us|C) HE 1, v, BY) via
(1)
L+ L—wy- lo%qg(UHC)

ot on —nsk

Algorithm 5: Sample from ¢(U|C) with Perturbation.

1:
2
3
4
5:
6.
7
8
9

10:

functionSamplePertUC, X, K
fori € {k,..., K}do
if 2. = Othen
return SAMPLEU
Zy, ~ N(0,1)
€L ~ N(O, 25)
T{k < f(:(Zk,O) + €r
Zy fgl(Uk,C)
qc(UR|C) « fromZyvia(7)
return {Uy, q:(Ux|C) HE |

(1]

(21

(3]

(4]
(51
(6]

REFERENCES

G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Information-theoretic model predictive control: Theory and applications
to autonomous driving,” IEEE Trans. Robot.,vol. 34,no. 6, pp. 1603-1622,
Dec. 2018.

C. Brasseur, A. Sherikov, C. Collette, D. Dimitrov, and P.-B. Wieber, “A
robust linear MPC approach to online generation of 3D biped walking
motion,” in Proc. IEEE-RAS 15th Int. Conf. Humanoid Robots, 2015,
pp- 595-601.

T. Power and D. Berenson, “Keep it simple: Data-efficient learning for
controlling complex systems with simple models,” IEEE Robot. Automat.
Lett., vol. 6, no. 2, pp. 1184-1191, Apr. 2021.

M. Kobilarov, “Cross-entropy motion planning,” Int. J. Robot. Res., vol. 31,
no. 7, pp. 855-871, 2012.

1. Armeni, S. Sax, A. R. Zamir, and S. Savarese, “Joint 2D-3D-semantic
data for indoor scene understanding,” 2017, arXiv:1702.01105.

E. Todorov, “General duality between optimal control and estimation,” in
Proc. IEEE Conf. Decis. Control, 2008, pp. 4286—4292.

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 03,2024 at 19:11:29 UTC from IEEE Xplore. Restrictions apply.

POWER AND BERENSON: LEARNING A GENERALIZABLE TRAJECTORY SAMPLING DISTRIBUTION FOR MODEL PREDICTIVE CONTROL

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

E. A. Theodorou and E. Todorov, “Relative entropy and free energy
dualities: Connections to path integral and KL control,” in Proc. IEEE
51st Conf. Decis. Control, 2012, pp. 1466—1473.

H. Attias, “Planning by probabilistic inference,” in Proc. 9th Int. Workshop
Artif. Intell. Statist., 2003, pp. 9-16.

M. Toussaint and A. Storkey, “Probabilistic inference for solving discrete
and continuous state Markov decision processes,” in Proc. Int. Conf. Mach.
Learn., 2006, pp. 945-952.

K. Rawlik, M. Toussaint, and S. Vijayakumar, “On stochastic optimal
control and reinforcement learning by approximate inference,” in Proc.
Conf. Robot.: Sci. Syst., 2013.

A.Lambert, A. Fishman, D. Fox, B. Boots, and F. Ramos, “Stein variational
model predictive control,” in Proc. Conf. Robot Learn., 2020, pp. 1278—
1297.

Z. Wang et al., “Variational inference MPC using Tsallis divergence,” in
Proc. Conf. Robot.: Sci. Syst., 2021.

M. Okada and T. Taniguchi, “Variational inference MPC for Bayesian
model-based reinforcement learning,” in Proc. Conf. Robot Learn., 2020,
pp. 258-272.

L. Barcelos, A. Lambert, R. Oliveira, P. Borges, B. Boots, and F. Ramos,
“Dual online Stein variational inference for control and dynamics,” in Proc.
Conf. Robot.: Sci. Syst., 2021.

C. Pinneri et al., “Sample-efficient cross-entropy method for real-time
planning,” in Proc. Conf. Robot Learn., 2021, vol. 155, pp. 1049-1065.
T. Power and D. Berenson, “Variational inference MPC using normalizing
flows and out-of-distribution projection,” in Proc. Conf. Robot.: Sci. Syst.,
2022.

R. E. Kalman, “A new approach to linear filtering and prediction prob-
lems,” J. Basic Eng., vol. 82, no. 1, pp. 3545, 1960.

J. Watson, H. Abdulsamad, and J. Peters, “Stochastic optimal control as
approximate input inference,” in Proc. Conf. Robot Learn., 2020, vol. 100,
pp. 697-716.

K. C. Rawlik, “On probabilistic inference approaches to stochastic optimal
control,” Ph.D. dissertation, The Univ. of Edinburgh, Edinburgh, U.K.,
2013.

W.H.Fleming and S. K. Mitter, “Optimal control and nonlinear filtering for
nondegenerate diffusion processes,” Stochastics, vol. 8, no. 1, pp. 63-77,
1982.

H. J. Kappen, “Linear theory for control of nonlinear stochastic systems,”
Phys. Rev. Lett., vol. 95, Nov. 2005, Art. no. 200201.

E. Todorov, “Linearly-solvable Markov decision problems,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2006, vol. 19, pp. 1369-1376.

H. J. Kappen, V. Gémez, and M. Opper, “Optimal control as a graphical
model inference problem,” Mach. Learn., vol. 87, no. 2, pp. 159-182,
May 2012.

E. A. Theodorou, J. Buchli, and S. Schaal, “Path integral-based stochastic
optimal control for rigid body dynamics,” in Proc. IEEE Symp. Adaptive
Dyn. Program. Reinforcement Learn., 2009, pp. 219-225.

J. Watson and J. Peters, “Inferring smooth control: Monte Carlo posterior
policy iteration with gaussian processes,” in Proc. 6th Conf. Robot Learn.,
2023, vol. 205, pp. 67-79.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference:
A review for statisticians,” J. Amer. Statist. Assoc., vol. 112, no. 518,
pp. 859-877, 2017.

Q. Liuand D. Wang, “Stein variational gradient descent: A general purpose
Bayesian inference algorithm,” in Proc. Int. Conf. Neural Inf. Process.
Syst., 2016, pp. 2378-2386.

C.Zhang,J. Huh, and D. D. Lee, “Learning implicit sampling distributions
for motion planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2018, pp. 3654-3661.

B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions for
robot motion planning,” in Proc. IEEE Int. Conf. Robot. Automat., 2018,
pp. 7087-7094.

A. H. Qureshi and M. C. Yip, “Deeply informed neural sampling for robot
motion planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2018,
pp. 6582-6588.

L. Li, Y. Miao, A. H. Qureshi, and M. C. Yip, “MPC-MPNet: Model-
predictive motion planning networks for fast, near-optimal planning un-
der kinodynamic constraints,” /EEE Robot. Autom. Lett., vol. 6, no. 3,
pp. 44964503, 2021, doi: 10.1109/LRA.2021.3067847.

T. Lai, W. Zhi, T. Hermans, and F. Ramos, “Parallelised diffeomorphic
sampling-based motion planning,” in Proc. Conf. Robot. Learn., 2021,
pp- 81-90.

T. Loew, T. Bandyopadhyay, J. Williams, and P. Borges, “PROMPT:
Probabilistic motion primitives based trajectory planning,” in Proc. Conf.
Robot.: Sci. Syst., 2021.

[34]

[35]

[36]

[37]
(38]
[39]

[40]

[41]
[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

2127

H. Kappen and H.-C. Euler, “Adaptive importance sampling for control
and inference,” J. Statist. Phys., vol. 162, pp. 1244—1266, 2016.

J. Carius, R. Ranftl, F. Farshidian, and M. Hutter, “Constrained stochastic
optimal control with learned importance sampling: A path integral ap-
proach,” Int. J. Robot. Res., vol. 41, no. 2, pp. 189-209, 2022.

J. Sacks and B. Boots, “Learning sampling distributions for model predic-
tive control,” in Proc. 6th Conf. Robot. Learn., vol. 205, 2023, pp. 1733—
1742.

M. Toussaint, “Robot trajectory optimization using approximate infer-
ence,” in Proc. Int. Conf. Mach. Learn., 2009, pp. 1049-1056.

D. J. Rezende and S. Mohamed, “Variational inference with normalizing
flows,” in Proc. Int. Conf. Mach. Learn., 2015, pp. 1530-1538.

L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using real
NVP,” in Proc. Int. Conf. Learn. Representations, 2017.

D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible
1x1 convolutions,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2018,
pp. 10215-10224.

C. Winkler, D. Worrall, E. Hoogeboom, and M. Welling, “Learning like-
lihoods with conditional normalizing flows,” 2019, arXiv:1912.00042.
D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” in Proc.
Int. Conf. Learn. Representations, 2014.

X. Chen et al., “Variational lossy autoencoder,” in Proc. Int. Conf. Learn.
Representations, 2017.

N. Wagener, C. Cheng, J. Sacks, and B. Boots, “An online learning
approach to model predictive control,” in Proc. Conf. Robot.: Sci. Syst.,
2019.

Y. Feng, D. J. X. Ng, and A. Easwaran, “Improving variational autoen-
coder based out-of-distribution detection for embedded real-time applica-
tions,” ACM Trans. Embedded Comput. Syst., vol. 20, no. 5s, Sep. 2021,
Art. no. 95.

Z. Xiao, Q. Yan, and Y. Amit, “Likelihood regret: An out-of-distribution
detection score for variational auto-encoder,” in Proc. Int. Conf. Adv.
Neural Inf. Process. Syst., 2020, pp. 20685-20696.

E. Nalisnick, A. Matsukawa, Y. W. Teh, and B. Lakshminarayanan,
“Detecting out-of-distribution inputs to deep generative models using
typicality,” 2019, arXiv:1906.02994.

P. Kirichenko, P. Izmailov, and A. G. Wilson, “Why normalizing flows fail
to detect out-of-distribution data,” in Proc. Int. Conf. Neural Inf. Process.
Syst., 2020, pp. 20578-20589.

A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2019,
pp- 8026-8037.

M. N. Finean, W. Merkt, and I. Havoutis, “Predicted composite signed-
distance fields for real-time motion planning in dynamic environments,” in
Proc. Int. Conf. Automated Plan. Scheduling, 2021, vol. 31, pp. 616—624.
F. Sabatino, “Quadrotor control: Modeling, nonlinear control design,
and simulation,” M.S. thesis, KTH Royal Inst. of Technol., Stockholm,
Sweden, 2015.

Thomas Power received the M.Eng. degree in me-
chanical engineering from Imperial College Lon-
don, London, U.K., in 2016, and the M.S. degree
in robotics from the University of Michigan, Ann
Arbor, MI, USA, in 2020. He is currently working
toward the Ph.D. degree in robotics with the Au-
tonomous Robotic Manipulation Laboratory, Depart-
ment of Robotics, University of Michigan.

His research interests include trajectory optimiza-
tion and machine learning applied to robotic manip-
ulation.

Dmitry Berenson received the B.S. degree in electri-
cal engineering from Cornell University, Ithaca, NY,
USA, in 2005, and the Ph.D. degree in robotics from
the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, USA, in 2011.

Since 2016, he has been an Associate Professor
with Robotics Department, University of Michigan,
Ann Arbor, MI, USA. From 2011 to 2012, he was
a Postdoc with UC Berkeley, Berkeley, CA, USA.
From 2012 to 2016, he was an Assistant Professor
with WPL. His research interests include robotic ma-

nipulation, robot learning, and motion planning.
Dr. Berenson was the recipient of the IEEE RAS Early Career Award and the
NSF CAREER award.

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 03,2024 at 19:11:29 UTC from IEEE Xplore. Restrictions apply.

