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Abstract. We study how long-lived, rational agents learn in a social network. In

every period, after observing the past actions of his neighbors, each agent receives a

private signal, and chooses an action whose payoff depends only on the state. Since

equilibrium actions depend on higher order beliefs, it is difficult to characterize behavior.

Nevertheless, we show that regardless of the size and shape of the network, the utility

function, and the patience of the agents, the speed of learning in any equilibrium is

bounded from above by a constant that only depends on the private signal distribution.

1. Introduction

We study social learning by long-lived agents who observe each others’ actions on a

social network. We show that information aggregation fails: the speed of learning stays

bounded even in large networks, where efficient aggregation of all private information

would lead to arbitrarily fast learning. Methodologically, we introduce new techniques

that allow us to relax commonly made assumptions and study general networks, with

forward-looking, Bayesian agents who interact repeatedly. Repeated interactions can,

for example, describe the exchange of opinions and information among friends on social

media or firms that learn from each others actions. Arguably, social learning driven

by such interactions can be an important determinant in many choice domains, such as

investments, health insurance, schools, technology adoption, or where to live and work.

More formally, we consider a group of agents who repeatedly interact with their neigh-

bors on a network. There is a fixed but unknown state of the world, taking values from

a finite set. In every period, each agent receives a private signal about the state and

observes all past actions of his neighbors. Based on this information, each agent updates

his beliefs, chooses one of finitely many possible actions, and receives a flow payoff that

depends on his action and the state (but not on the actions of others). We consider

both myopic agents who maximize their instantaneous payoff, as well as strategic agents

who are forward-looking, and exponentially discount the future. Since strategic agents
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care about their future utilities, they may sacrifice their present flow utilities and choose

actions that induce others to behave in a way which reveals more information in the

future.

The constant influx of private information in our model allows every agent to eventually

learn the truth and choose the optimal action. Thus, we focus on how fast agents learn.

If the number of agents doubles, the number of private signals available to society also

doubles. Hence, if information were aggregated efficiently, the time that it would take for

agents to choose correctly (say, with a given high probability) would decrease by a factor

of two. In other words, when information aggregation is efficient, the speed of learning

increases linearly with the number of agents. The question we ask is: what is the speed

of learning in equilibrium, and how does it depend on the number of agents, the structure

of the network, the agents’ utilities, the signals, and the discount factor?

We focus on strongly connected networks, where there is an observational path between

every pair of agents, since otherwise efficient aggregation of information is excluded by

the lack of informational channels. This is a mild assumption, and follows, for example,

from the “six degrees of separation rule”, that stipulates that there is a path of length

at most six between every two members of a social network.1 Our main result (Theorem

1) shows that the speed of learning does not increase linearly with the number of agents,

and is, in fact, bounded from above by a constant that only depends on the private

signal distribution, and is independent of the structure of the network and the remaining

parameters of the model.

For example, consider agents who, in each period, observe an independent binary signal

that is equal to a binary state with probability 0.9. Then, regardless of the number of

agents and network structure, the speed of learning never exceeds ten times the speed at

which an agent learns on his own. This is despite the fact that if n agents shared their

signals publicly, they would learn n times as fast. Thus, a society of 1,000 agents who

observe their neighbors’ past actions does not learn faster than a society of ten agents in

which information is efficiently aggregated. This means that in a society of 1,000 agents,

at least 99% of the information generated by the private signals is lost for any structure

of the observational network (and any equilibrium played by the agents with any utility).

As another illustration of this result, consider the finite two dimensional grid graph:

The set of agents is {1, . . . , n}2, and i observes j if and only if |i − j| = 1. Regardless

of the size of the graph, in the early periods each agent is exposed to little information,

since (at most) four other agents are observed each period. Theorem 1 shows that even

later in the process the size of the graph does not matter substantially, as the speed of

learning is bounded.

1The science fiction writer Frigyes Karinthy proposed this rule in his 1929 short story “Láncszemek” (in
English, “Chains”). The rule was confirmed empirically on a number of online social network data sets
(Watts and Strogatz, 1998; Leskovec and Horvitz, 2008).
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The mechanism behind this bounded speed of learning is as follows: First, in a strongly

connected network all agents learn at the same rate, as each agent could guarantee himself

the same learning rate as any of his neighbors. We establish the bound on the learning

rate by contradiction. Suppose that agents learn at a rate that is higher than the rate that

their individual private signals can support. This implies that social information, which

consists of agents’ actions, will become much more precise than each agent’s private

information. As a result, agents will ignore their private signals and only rely on the

social information they observe from their neighbors. This implies that agents’ actions

no longer reveal any information about the state, so social information cannot grow too

precise over time. This contradicts our previous hypothesis, and we conclude that agents

cannot learn too fast.

The failure of information aggregation suggested by Theorem 1 is an asymptotic result

that describes how fast learning is in late periods. We complement this result with a

numerical calculation for the first ten periods on a simple graph: the line graph with

bidirectional observations. Assuming myopic agents, and binary state, actions and sig-

nals, we find that our asymptotic lower bound on mistake probabilities holds also in the

early periods. Quantitatively, in each of the first 10 periods agents choose correctly with

a probability that is smaller than that of a group of five agents who share their private

signals. This holds independently of the number of agents in the network.

We contribute to the social learning literature in three aspects. First, instead of focus-

ing on short-lived agents who act only once, we consider a more realistic model in which

agents are long-lived and repeatedly interact with each other. Second, we extend existing

models of social learning from myopic agents to strategic agents who discount their future

utilities at a common rate. Analyzing strategic agents is complicated since these agents

may have an incentive to choose a sub-optimal action today to learn more information

from the actions of others in the future, whereas such an incentive is completely shut

down for myopic agents. Third, we generalize previous work on the speed of learning on

the complete network where all agents observe each other (Harel et al., 2021) to general

social networks where agents only observe their neighbors.

Related Literature. There are few papers addressing repeated interaction between

rational agents and its role in information aggregation. This is because it is challenging

to analyze the evolution of beliefs of long-lived agents, particularly when these beliefs are

influenced by the interactions between them. Most of the literature has focused on either

short-lived agents who only act once (Banerjee, 1992; Bikhchandani et al., 1992; Smith

and Sørensen, 2000; Acemoglu et al., 2011) or non-fully-rational agents (Bala and Goyal,

1998; Molavi et al., 2018) and heuristic learning rules (DeGroot, 1974; Golub and Jackson,

2010; Dasaratha et al., 2022). Nevertheless, as many real-life situations involve repeated

interactions, it is natural to study models that allow these interactions. It is likewise

interesting to understand rational (and potentially forward-looking) agents as this is an
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important benchmark case to assess whether or to what extent failures of information

aggregation are driven by a lack of patience or lack of rationality of the agents.

Among models which consider repeated interactions, the bandit literature studies en-

dogenous information acquisition and the resulting free rider problem when multiple

agents try to learn the state from each other’s public signals (Bolton and Harris, 1999;

Keller et al., 2005; Keller and Rady, 2010; Heidhues et al., 2015). Bala and Goyal (1998)

extend this to a social network setting for non-fully-rational agents who do aggregate the

results of their neighbors’ experiments but disregard the information contained in their

choices. They examine how the geometry of the social network affects learning outcomes.

Focusing on a repeated interaction setting in which agents and have no experimentation

motives, Mossel et al. (2014) consider rational but myopic agents who observe each other’s

actions. They give conditions for learning to occur on infinite undirected graphs. Mossel

et al. (2015) further generalize their setting to allow for forward-looking agents.2 Unlike

our model, agents in these models only receive one signal at the beginning of time. They

do not study the speed of learning, and instead focus on identifying the types of social

networks in which learning always occurs.

Complementing the previous literature, we take the next natural step: we ask how fast

learning occurs and study its relationship with the size of the network. Furthermore, we

consider agents with any discount factor with myopic agents as a special case. To our

best knowledge, this is the first paper to consider social learning in a network setting

with fully-rational agents who interact repeatedly.

A recent paper that considers rational agents in a repeated setting is by Harel, Mossel,

Strack, and Tamuz (2021), who study the speed of learning when all agents are myopic and

observe each other. They show that similar to our main result, for any number of agents,

the speed of learning from actions is bounded above by a constant. Their proofs rely

crucially on the symmetry inherent in the complete network in which all agents observe

each other and actions are common knowledge. Their analysis relies on a phenomenon

called “groupthink”: a feedback loop that develops when all players take the wrong action,

observe that everyone else also took the same action, become more confident in their

wrong beliefs, and then again take the wrong action. In incomplete networks, actions are

no longer common knowledge, making the techniques used in the aforementioned paper

inapplicable in our setting. The techniques we introduce furthermore allow us to consider

non-myopic agents and multiple states of the world.

Our main insight is that learning cannot be too fast since fast individual learning

would cause agents to ignore their private signals. This is reminiscent of the information

cascades that drive the failure of information aggregation in the classical herding literature

(Bikhchandani et al., 1992; Banerjee, 1992; Smith and Sørensen, 2000). However, the

2In a similar setting, Migrow (2022) shows that for two forward looking agents who observe each other
there does not exist an equilibrium where agents behave myopically, under some assumptions on the
signal structure.
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force in our model affects the speed of learning rather than determining whether or

not information aggregates, and because of the repeated interactions between agents, it

requires a very different analysis. A similar insight also appears in the earlier literature on

rational expectations in financial markets, where it implies the breakdown of the efficient

market hypothesis (Grossman and Stiglitz, 1980): prices cannot fully reflect all available

information, precisely because if they did, it would eliminate the agents’ incentive to

respond to their private information, contradicting the assumption that prices contain all

information. This is known as the Grossman-Stiglitz paradox.

Following the herding literature, our paper studies the friction that arises for informa-

tion aggregation when actions are coarse and thus do not fully reveal beliefs. Another

strand of the literature shows that information aggregation may still be slow, even with

a continuous action space. For example, Vives (1993) considers a Cournot competition

model with a common unknown production cost among a continuum of firms. He shows

that noisy observations of past actions (through market prices) slow down the speed of

learning. Although his environment is different from ours,3 the force behind his slow

speed of learning is related to ours: By examining the asymptotic behavior of public

information’s informativeness (reflected in prices) and agents’ responsiveness to their pri-

vate information, he found that as public information becomes more informative, agents

respond less to their private information, leading to a slower increase in how informative

the public information can be. Put in his words, “... information revelation through

the price system can be slow precisely because it is successful.” We contribute to this

literature by showing that this intuition in these specific cases generalizes extensively,

especially in a general network setting with forward-looking agents.

With a rich-enough action space that fully reveals agents’ beliefs, Dasaratha and He

(2019) study how different generational networks affect the learning rate with Gaussian

signals and continuous actions. They find that learning is slow for large symmetric over-

lapping generations networks with a uniform bound on the number of signals aggregated

per generation. The main mechanism behind the inefficiency is a confounding effect: As

earlier generations observe common predecessors, their actions are correlated, reducing

the amount of information transmitted to the next generation. This effect is inherent in

their overlapping generations network structure, in which information travels unidirec-

tionally. Since information travels bidirectionally in our model, higher-order beliefs pose

an obstacle that is not present in Vives (1993) and Dasaratha and He (2019).

2. Model

Let N = {1, 2, . . . , n} be a finite set of agents. Time is discrete and the horizon is

infinite, i.e. t ∈ {1, 2, . . .}. In every time period t, each agent i has to choose an action ait

3More specifically, his setting differs from ours along a number of dimensions: Firms learn from public
prices, which are noisy observations of the average actions of others. Furthermore, there is no network
and since there is a continuum of agents, any strategic incentive is also abstracted away.
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from a finite set A. There is an unknown state of the world ω, taking values in a finite

set Ω, that is chosen at period 0 and does not change over time. Each state occurs with

strictly positive probability. We denote by g, f generic elements of Ω.

2.1. Utility and Optimal Actions. The flow utility for choosing an action a ∈ A when

the state is g ∈ Ω is u(a, g) for some u : A×Ω → R. We assume that for each state g ∈ Ω

there is a unique action ag ∈ A, which maximizes u(·, g), the utility in that state:

{ag} = argmax
a∈A

u(a, g).

We also assume that these optimal actions are distinct, i.e. if g ̸= f then ag ̸= af. These

assumptions facilitate learning from actions in the sense that observing the optimal action

of an agent who knows the state allows other agents to infer the state. Note that these

assumptions hold for any generic utility u, as long as the set A has at least as many

elements as Ω. When there are two states then this assumption is necessary to make the

model non-trivial, since otherwise there is a dominant action which will always be played

in every equilibrium.4

An important example which the reader may wish to keep in mind is the case of binary

states and actions, and where the agent aims to match the state: Ω = {g, f}, A = {ag, af}
with u(ag, g) = u(af, f) = 1 and u(ag, f) = u(af, g) = 0. This setting already features all

the forces and tensions of the general case, and likewise offers the same conclusions.

2.2. Agents’ Information. In each period t, agent i receives a private signal sit drawn

from a finite set Si
t . Conditional on the state ω, signals sit are independent across agents

and time, with distribution µi,ω
t ∈ ∆(Si

t). For distinct f, g ∈ Ω, the distributions µi,g
t and

µi,f
t are distinct and mutually absolutely continuous, so that no signal excludes any state

or perfectly reveals the state. Thus, the log-likelihood ratio of any signal s

ℓi,g,ft (s) = log
µi,g
t (s)

µi,f
t (s)

is well defined.

We focus on bounded signals in the sense that the private belief induced by any signal

cannot be arbitrarily strong. More specifically, we assume that there exists a constant

M > 0 that bounds the absolute value of the likelihood induced by any signal:

M = 2 sup
f,g,i,t,s

⃓⃓⃓
ℓi,g,ft (s)

⃓⃓⃓
. (1)

We make this assumption for tractability and discuss its relaxation in the conclusion.

We allow signals to depend on calendar time and the agents’ identities to highlight the

robustness of our results. However, to understand our main economic insight, it suffices

4For three states or more this assumption is more restrictive. Indeed, our Lemma 1, which shows that
agents eventually choose myopic actions, may not hold without it. This is because even when beliefs
concentrate around a state, multiple actions can be optimal for particular likelihood ratios about the
other states, and so non-myopic behavior can persist.
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to think of the setting where all signals are i.i.d. across agents and time, as is typically

assumed in the literature.

For each agent i there is a subset of agents Ni ⊆ N who are his social network neighbors,

and whose actions he observes. We include i ∈ Ni since agent i observes his own actions.

The information available to agent i at time t, before taking his action ait, thus consists

of a sequence of private signals (si1, · · · , sit) and the history of actions observed by i,

H i
t = {ajs : s < t, j ∈ Ni} .

Let I i
t = Si

1 × · · · × Si
t × A|Ni|×(t−1) so that the private history I it = (si1, · · · , sit, H i

t) is an

element of I i
t .

We assume that the social network is strongly connected: there is an observational

path between every pair of agents (we relax this assumption in §6).5,6 This assumption

avoids situations in which efficient aggregation of information is precluded because there

is no channel for information to travel from i to j. Furthermore, we assume that agents

observe their neighbors in every period. This assumption is purely to simplify notation;

we discuss the case where an agent observes their neighbors only at intermittent and

potentially random times in Appendix B.

2.3. Strategies and Payoffs. A pure strategy of agent i at time t is a function σi
t :

I i
t → A. A pure strategy of agent i is a sequence of functions σi = (σi

1, σ
i
2, · · · ) and

a pure strategy profile is a collection of pure strategies of all agents, σ = (σi)i∈N . We

write σ = (σi, σ−i) for any agent i ∈ N , where σ−i denotes the pure strategies of all

agents other than i. Given a pure strategy profile σ, the action of agent i at time t is

ait(σ) = σi
t(I

i
t). The flow utility of agent i at time t is

u(ait(σ), ω).

Agents do not observe their flow utilities. Nevertheless, one can incorporate observations

of utilities into the private signals that agents receive. A special case of our model is one

in which the agent receives an observed payoff v(ait, s
i
t) that depends on the action and

the signal realization. In this case, the flow utility corresponds to the expected observed

payoff u(a, ω) =
∑︁

s µ
ω(s) · v(a, s). The agent always observes their payoff as it is only

a function of their signal; yet, from an ex-ante perspective, the situation is identical to

that of our setting. The assumption of unobserved flow utilities is commonly made in the

literature to model learning without an experimentation motive. Indeed, any learning

situation without an experimentation motive can be reduced to such a situation (see,

e.g., the discussion in Rosenberg et al., 2009, §2.1, p. 981).

5Formally, for each i, j ∈ N there is a sequence i = i1, i2, . . . , ik = j such that i2 ∈ Ni1 , i3 ∈ Ni2 , . . . ik ∈
Nik−1

.
6In a directed Erdős–Rényi graph with n agents, when the expected number of neighbors is lnn+ c for
large c, then with high probability the graph will be strongly connected, and so our assumption will be
satisfied with high probability (see Theorem 5 in Graham and Pike, 2008).
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We assume that agents discount their future utilities at a common rate δ ∈ [0, 1). The

expected utility of agent i under strategy profile σ is thus

ui(σ) = (1− δ)
∞∑︂
t=1

δt−1E[u(ait(σ), ω)].

We call agents with δ = 0 myopic and agents with δ > 0 strategic. Myopic agents fully

discount future payoffs and choose their actions in each period to maximize expected flow

utilities.

Regardless of whether agents are strategic or myopic, the sole benefit of observing

others’ past actions is to learn about the state. That is, others’ actions reflect the

signals they receive, and thus observing others’ actions can help agents make better

inferences about the state. This pure informational motive is an important feature of the

model: each agent’s flow utility depends only on his own actions and the state, and it is

independent of the actions of the others.

2.4. Equilibrium. This is a game of incomplete information, in which agents may have

different information regarding the underlying unknown state and the actions of others.

We use Nash equilibrium as our equilibrium concept and refer to it as equilibrium there-

after.7 The existence of a (mixed) equilibrium is guaranteed in this game by standard

arguments, since, in the product topology on strategies, the space of strategies is compact

and utilities are continuous. We note here that every mixed equilibrium can be mapped

to a behaviorally equivalent pure equilibrium by adding to each agent’s private signal an

additional component that is independent of the state and all other signals, and assuming

that the agent uses this signal to randomly choose between actions.8 As our results will

only depend on the information about the state contained in the signal, it thus suffices

to establish them for pure strategy equilibria, to show that they hold for all (pure and

mixed) equilibria.

As usual, a pure strategy profile σ is an equilibrium if no agent can obtain a strictly

higher expected utility by unilaterally deviating from σ. That is, a pure strategy profile

σ is an equilibrium if for all agents i, and all strategies τ i

ui(σi, σ−i) ≥ ui(τ i, σ−i) .

2.5. Speed of Learning. We say that agent i chooses correctly at time t if ait = aω,

i.e., if the agent chose the action that is optimal given the state. We measure the speed

7Our results, which apply to all Nash equilibria, thus also apply to any refinement of Nash equilibrium
such as sequential equilibrium.
8Formally, for any signal space Si

t we can consider S̃
i

t = Si
t×A|Ii

t | with the signal distributions µ̃i,g
t equal

to the product measure of µi,g
t and |Ii

t | independent random variables each taking each value a ∈ A with
probability P[ait = a|Iit ]. As this transformation does not affect the informational content of the signals
it leaves the constant M unchanged. Furthermore, we can replicate any behaviorally mixed strategy by
the pure strategy that takes the action a if and only if the entry of the second component corresponding
to the private history Iit equals a.
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of learning of agent i by the asymptotic rate at which he converges to the correct action

(see, e.g., Vives, 1993; Molavi et al., 2018; Hann-Caruthers et al., 2018; Rosenberg and

Vieille, 2019; Harel et al., 2021). Formally, the speed of learning of agent i is

lim inf
t→∞

−1

t
logP[ait ̸= aω]. (2)

If this limit exists and is equal to r, then the probability of mistake at large times t is

approximately e−rt. As we explain below in §3, this is the case for the benchmark case

of a single agent who receives conditionally i.i.d. private signals at each period.

3. The Public Signals Benchmark

As a benchmark, we briefly discuss the case of public signals for a single or multiple

agents. We also assume that signals are i.i.d. across time and agents, with µg = µi,g
t

for all g ∈ Ω. In the single-agent case, a classical large deviations argument shows that

the limit ra = limt→∞ −1
t
logP[ait ̸= aω] exists and is positive.9 Note that the fact that

the limit is positive implies that the agents learn the state; the probability of choosing

incorrectly tends to zero. This is a consequence of the assumption that the measures µg

are distinct which ensures that signals are informative.

Next, consider the case where each of n agents observes all n independent public signals

in each period, as well as their neighbors’ past actions. As actions contain no additional

information about the state relative to the signals, this situation is identical to the single-

agent case, except that now each agent receives n independent signals at each period.

An agent in period t will thus have observed exactly as many signals as a single agent in

autarky in period n · t. It thus follows from the single-agent case that when signals are

public, the speed of learning for n agents is n · ra.
These results for the case of public signals immediately bound the speed of learning

in the private signals case: In any social network, observed actions contain weakly less

information than the private signals. Thus, n · ra is an upper bound to the speed of

learning for any network with n agents and private signals.

4. Results

We now state our main result. It turns out that in a strongly connected network, all

agents learn at the same speed (by Lemma 2 in §5), and we call this common speed of

learning the equilibrium speed of learning. In contrast to the public signal case, our main

result shows that regardless of the size of the network, the equilibrium speed of learning

is bounded above by a constant. Recall that in (1) we defined M/2 to be the maximal

log-likelihood ratio induced by any signal.

9For textbook treatments see, e.g., pp. 380-384 in Cover and Thomas (2006) for the binary state case or,
for the general finite state case, Theorem 2.2.30 in Dembo and Zeituni (2009). See Moscarini and Smith
(2002) for an application in economics to single agent decision problems, and Frick et al. (2023) for an
application to a multi-agent setting.
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Theorem 1. The equilibrium speed of learning is at most M , in any equilibrium, on any

social network of any size, for any discount factor δ ∈ [0, 1), and any utility u.

Perhaps surprisingly, Theorem 1 shows that adding more agents (thus more informa-

tion) to the network and expanding the network cannot improve the speed of learning

beyond some bound, which is twice the strength of the strongest possible signal, as mea-

sured in log-likelihood ratios. Indeed, this upper bound on the learning speed implies

that more and more information is lost as the size of the network increases.

For example, for a binary state, binary actions and independent binary signals that

are equal to the state with probability 0.9, the speed of learning in a social network of

any size is bounded by that of ten agents who observe each other’s signals directly.10

Consequently, in any social network, even if there are 1,000 agents who observe their

neighbors’ past actions, they cannot learn faster than a group of ten agents who share

their private signals. Equivalently, their speed of learning cannot be more than ten times

that of a single agent. Thus almost all of the private information in large networks is

lost, resulting in inefficient information aggregation.

The idea behind our proof of Theorem 1 is as follows. Intuitively, one might think

that larger networks would boost the speed of learning as agents acquire more and more

information from their neighbors, as well as indirectly from their neighbors’ neighbors

etc. However, we argue that the social information gathered from observing neighbors’

past actions cannot be too precise. Indeed, if that were the case, agents would base their

decisions only on the social information. As a result, their actions would no longer reveal

any information about their private signals so that information aggregation would cease.

Thus, social information cannot grow to be much more precise than private information.

But if agents learn quickly, then their actions provide very precise social information.

Hence, we conclude that agents cannot learn too quickly.

In sum, regardless of the size of the network, private information must continue to

influence agents’ decision-making, which can only happen if the social information is not

too precise, which in turn can only happen if agents do not learn quickly. Moreover, as

we state in the next section, M is an upper bound to how fast the precision of private

information increases with time (see Lemma 4 in §5), and this bound, too, is independent

of the network size. Combining these insights, we conclude that the speed of learning in

a social network of any size is bounded by M .

4.1. Numerical Calculation on the Line Graph. While Theorem 1 shows that in-

formation aggregation fails in the long run, it leaves open the question of what happens

in early periods. Clearly, if many agents all observe each other, much information could

10To see this, given the signal distribution, we calculate the speed of learning in the single-agent case,
which is approximately equal to 0.51 (see Harel et al. (2021) for exact expressions for the speed of
learning in the binary state case). As discussed in §3, the learning speed in a network of ten agents with
public signals is ten times that of the single-agent case. From Theorem 1, the upper bound M to the
equilibrium speed of learning is approximately 4.4, which is less than ten times 0.51.
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be aggregated already in the first period, as the first period actions can reveal many

independent pieces of information. The answer to this question becomes less clear in a

setting where the number of neighbors is bounded, even if there are many agents in total.

To supplement the asymptotic result of Theorem 1 we consider agents who observe

both of their adjacent neighbors on a line, i.e., Ni = {i − 1, i, i + 1} ∩ N . We study

a binary state and binary action setting with a uniform prior and assume that in each

period, each agent gets a conditionally independent and identically distributed symmetric

binary signal that is equal to the state with probability q. We consider myopic agents,

i.e., δ = 0, and the tie-breaking rule under which agents follow their first signal when

they are indifferent.

Under these assumptions we calculate the exact probabilities of mistakes in the first 10

periods. A naive calculation would require considering some 1030 possible signal realiza-

tions, which is not feasible.11 To approach the computational problem, we use the “dy-

namic cavity algorithm” proposed by Kanoria and Tamuz (2013) for calculating Bayesian

beliefs in social learning environments on tree graphs, which exploits the fact that con-

ditioning on the state and a given agent’s actions makes the actions of his left-hand

neighbor independent of the actions of his right-hand neighbor. As such a decoupling

argument is not available for graphs with cycles, it seems computationally infeasible to

perform a similar calculation for, e.g., the two dimensional grid.

We focus on the agents who are not close to the ends of the graph: All agents i ∈
{11, 12, . . . , n−12, n−11} face the same decision problem in the first ten periods, and we

calculate their probabilities of choosing the wrong action. Note that these probabilities

are independent of the number of agents n. Equivalently, these are the error probabilities

of any agent on a bi-infinite line graph.

The results are depicted in Figure 1. On the top left, we plot the evolution of error

probabilities on a log-scale for different precision of the signals q. Since the ordinate

uses a logarithmic scale, an exponential decay of error probabilities would manifest as a

downward sloping straight line. Indeed, the graph shows that this decay is approximately

exponential from the very early periods. This suggests that at least for myopic agents

(the limiting case of very impatient agents), our asymptotic results bounding the speed

of learning may begin to apply early on, even before these agents have learned the state

very precisely.

On the bottom left we plot, for different signal precisions, the maximum of the empirical

learning speed maxt∈{2,...,10}− log 1
t
P[ait ̸= aω] starting from the second period as well as

our asymptotic bound of M . As one can see the asymptotic bound we obtained in

Theorem 1 holds for different precision of the signal starting from the second period.

11On a bidirectional line the number of signals that could (potentially indirectly) influence an agent’s
period t action is the sum of her total number of private signals up to time t and the total number of
signals observed by his t− 1 neighbors in each direction, i.e. t+

∑︁
s≤t−1(2s) = t+ t(t− 1) = t2. When

t = 10, this would yield 2100 ≈ 1.3× 1030 signal realizations.
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Figure 1. On the top left: The log of the inverse of probability of error
− logP[ait ̸= aω] as a function of the period for agents on the bidirectional
line graph (away from its ends) for different probabilities q of the signal
matching the state. The top right picture compares the error probabilities
when the agent observes their 2 neighbors’ actions and 4 other agents’
signals for q = 0.65. On the bottom: The maximal empirical learning
speed maxt∈{2,...,10}− log 1

t
P[ait ̸= aω] for different precisions of the signal

on the x-axis.

Thus, in this example, the conclusion of Theorem 1 do not only hold asymptotically, but

already in early periods. For comparison, we also plot the maximum of the rate of mistake

for the case where five agents share their private signals on the top right, for q = 0.65.

The figure shows that in the first ten periods agents do worse on the bidirectional line

than they would if they directly observed the private signals of their two neighbors on

the right and two neighbors on the left.12

5. Analysis

In this section we provide a detailed analysis of the agents’ beliefs and behavior,leading

to a proof sketch for Theorem 1.

5.1. Agents’ Beliefs. Let pi,gt denote the posterior belief of agent i assigned to event

ω = g after observing I it , i.e. pi,gt = P[ω = g|I it ]. The log-likelihood ratio of agent i’s

12While not depicted in the figure, this still holds for any precision of the signal q ∈ {0.6, 0.7, 0.8, 0.9}.
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posterior beliefs of the state being g over the state being f at time t is

Li,g,f
t = log

pi,gt

pi,ft
= log

P[ω = g|si1, . . . , sit, H i
t ]

P[ω = f|si1, . . . , sit, H i
t ]
. (3)

Then, it follows from Bayes’ rule that this log-likelihood ratio of agent i’s posterior beliefs

at time t is equal to

Li,g,f
t = log

P[ω = g]

P[ω = f]
+ log

P[H i
t |ω = g]

P[H i
t |ω = f]

+ log
P[si1, . . . , sit|H i

t , ω = g]

P[si1, · · · , sit|H i
t , ω = f]

.

We call

Qi,g,f
t = log

P[ω = g]

P[ω = f]
+ log

P[H i
t |ω = g]

P[H i
t |ω = f]

,

the social likelihood of agent i at time t. This is the log-likelihood ratio of the social in-

formation observed by agent i. Intuitively, Qi
t measures the inference an outside observer

would draw from the observations of the actions of i and his neighbors, without observing

i’s private signals. Similarly, we call

P i,g,f
t = log

P[si1, . . . , sit|H i
t , ω = g]

P[si1, · · · , sit|H i
t , ω = f]

,

the private likelihood agent i at time t. Thus, we can write the log-likelihood ratio of

agent i’s posterior beliefs at time t as

Li,g,f
t = Si,g,f

t + P i,g,f
t , (4)

which is the sum of his social likelihood and his private likelihood. We call Li,g,f
t the

posterior likelihood of agent i at time t.

5.2. Agents’ Behavior. In the context of a strategy profile σ, the myopic action of

agent i at time t is

mi
t ∈ argmax

a∈A
E[u(a, ω)|I it ].

This is the action that maximizes the expected flow utility given the information available

at that time, and hence it is the action that a myopic agent would take.13

In contrast to a myopic agent, a strategic agent may not always choose the myopic

action in equilibrium. Indeed, since a strategic agent is forward-looking, in each period

he faces a trade-off between choosing the myopic action and strategically experimenting

by choosing a non-myopic action. On the one hand, he needs to bear the immediate cost

associated with a non-myopic action. On the other hand, choosing a non-myopic action

may allow him to elicit more information from his neighbors’ future actions, which he

could then use to make better choices in the future. Hence, when the informational gain

13We assume some deterministic tie-breaking rule when the agent is indifferent. Our results do not
depend on this choice and would follow for any tie breaking rule that is common knowledge.
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from experimenting exceeds the current loss caused by a non-myopic action, a strategic

agent has an incentive to experiment.

Nevertheless, we show that when an agent’s belief of any state is close enough to zero

or one, he chooses the unique optimal action at that state which is also the myopic action

in equilibrium. This holds despite the fact that the agent is forward-looking. Intuitively,

if a strategic agent is very confident about the state, he is expected to pay a high cost if

he chooses a non-myopic action and experiments. Consequently, as his expected future

gain will not exceed the expected current loss from experimenting, he has no incentive to

experiment.

Lemma 1 (Myopic and Strategic Behavior).

(i) There is a constant c > 0, independent of δ such that, in any equilibrium, if it holds

for g ∈ Ω that pi,gt > c
c+1−δ

, then ait = mi
t = ag.

(ii) There exists a random time T < ∞ such that in equilibrium, all agents behave

myopically after T , i.e. t ≥ T ⇒ ait = mi
t for all i almost surely.

The first part of Lemma 1 applies to a fixed discount factor δ, rather than asymptot-

ically to δ tending to one. So, agents need not have learned the state very precisely at

the point in which they become myopic. However, it does imply that as agents become

more patient, i.e., δ increases, the posterior belief threshold c
c+1−δ

for choosing the myopic

action becomes closer to certainty. Indeed, as δ approaches 1, agents value their future

utilities more and the incentive of experimenting becomes stronger. For these agents to

forgo their potential expected future informational gains and choose the myopic action,

they must be fairly confident about the state. The second part of Lemma 1 states that

in finite time the belief of all agents will be sufficiently precise such that they all behave

myopically in all future periods.

The next lemma shows that in equilibrium, each agent learns weakly faster than any

of his neighbors. Denote the equilibrium speed of learning of agent i by ri.

Lemma 2 (All agents learn at the same speed).

(i) If agent i can observe agent j, i.e. j ∈ Ni, then in equilibrium i learns weakly faster

than j, i.e. ri ≥ rj.

(ii) All agents learn at the same speed, i.e. ri = rj for all i, j, in any strongly connected

network.

We will henceforth call the common speed of learning in a strongly connected network

the equilibrium speed of learning. The proof of this lemma relies on an extension of

the imitation principle from myopic agents to strategic agents. For myopic agents, the

imitation principle states that if i observes j, then i’s actions are not worse than j’s:

E[u(ait, ω)] ≥ E[u(ajt−1, ω)],
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since i can always imitate j (similar arguments are used in Sørensen, 1996; Smith and

Sørensen, 2000; Gale and Kariv, 2003; Golub and Sadler, 2017). We show that for strate-

gic agents, in equilibrium, i’s actions are never much worse than j’s, even though i may

choose myopically sub-optimal actions. To formalize this we denote by ū = E[u(aω, ω)]
the expected utility of a decision maker that knows the state. For any i and t it holds that

E[u(ait, ω)] ≤ ū. We can think of ū−E[u(ait, ω)] as the loss in flow utility as compared to

the first-best. The imitation principle for strategic agents takes the following form:

ū− E[u(ait, ω)] ≤
1

1− δ
(ū− E[u(ajt−1, ω)]).

It is obtained by upper-bounding the agent’s loss by the loss he would obtain if guessing

correctly in every future period and observing that this loss must be less than the loss

obtained by taking the action agent j took last period in every future period. By Claim 3

in the Appendix, this upper bound on the loss implies that there is some constant c > 0

such that the probability of choosing incorrectly is bounded:

P[ait ̸= aω] ≤ c

1− δ
P[ajt−1 ̸= aω].

One can easily see that when δ = 0, the above equation coincides with the imitation

principle for myopic agents.

5.3. Social and Private Beliefs. We analyze the agents’ beliefs by decomposing their

likelihoods into the private and social parts. Recall that by (4), the posterior likelihood

of agent i’s at time t, Li,g,f
t , is equal to Qi,g,f

t +P i,g,f
t , the sum of the social and the private

likelihoods. We are interested in the sign of Li,g,f
t as it determines the corresponding

myopic action: mi
t equals g if Li,g,f

t ≥ 0, and f otherwise. Let us first focus on the first

component of Li,g,f
t : agent i’s social likelihood Qi,g,f

t . In the following lemma, we establish

a relationship between the equilibrium speed of learning and the precision of the social

likelihood, which is crucial in proving our main theorem.

Lemma 3. Suppose that the equilibrium speed of learning is at least r. Then, conditioned

on ω = g, it holds for any f ̸= g

lim inf
t→∞

1

t
Qi,g,f

t ≥ r almost surely.

This lemma states that a high learning speed implies that the social information in-

ferred from a given agent i and his neighbors’ actions must become precise at a high

speed. Intuitively, if agents learn quickly, then their actions provide very precise social

information.

The proof of Lemma 3 uses the idea of a fictitious outside observer who observes the

same social information as agent i and nothing else. Since he observes i’s actions, he can

achieve the same learning speed as i. This implies that his posterior likelihood increases

fast. Hence, as this outside observer’s posterior likelihood coincides with agent i’s social

likelihood, the precision of i’s social information increases at a speed of at least r.
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Next, we focus on the second component of Li,g,f
t : agent i’s private likelihood, P i,g,f

t .

As agents receive more independent private signals over time, their private information

about the state becomes more precise. However, the precision of their private information

cannot increase without bound, as shown in the following lemma.

Lemma 4. For any agent i at time t and any distinct g, f ∈ Ω, the absolute value of the

private likelihood is at most t ·M , i.e.

1

t
|P i,g,f

t | ≤ M almost surely.

This lemma states that that at any given time t, there is an upper bound to the precision

of agents’ private information, which only depends on the private signals distribution and

is independent of the structure of the network and the history of observed actions. Notice

that since P i,g,f
t = Li,g,f

t − Si,g,f
t by (4), it captures the difference between what i knows

about the state and what an outside observer who observes i’s actions and his neighbors’

actions would know about the state. Thus, the bound Mt assigned to i’s private signals

also applies to the difference between the posterior likelihood Li
t and the social likelihood

Si
t .

5.4. Proof sketch for Theorem 1. We end this section by providing a sketch of the

proof of Theorem 1 using our earlier results. Suppose to the contrary that in equilibrium,

agents learn at a speed that is strictly higher than M , where M is twice the log-likelihood

ratio of the strongest signal. Then, by Lemma 3, the social information would become

precise at a speed that is also strictly higher than M . Meanwhile, at any given time t, the

precision of the private information is at most Mt, as shown in Lemma 4. Hence, by (4)

the sign of Li
t would be determined purely by the social information after some (random)

time. By Lemma 1, there exists a time T such that from T onward, in equilibrium,

all agents act only based on the social information, and furthermore they would choose

the myopic action even though they are forward-looking. Consequently, their actions

would no longer reveal any information about their private signals and information would

cease to be aggregated. This contradicts our hypothesis that the precision of the social

information grows at such a high speed. Therefore, we conclude that the equilibrium

speed of learning in networks does not increase beyond M .

6. Networks which are not Strongly Connected

So far, we have focused on strongly connected networks where there is an observational

path between every pair of agents. While on a strongly connected network all agents learn

at the same speed, this is not true for general networks. For example, consider a simple

star network where there is a single agent at the center who observes everyone, and where

the remaining peripheral agents observe no one. Here, the peripheral agents’ actions are

independent conditional on the state. These actions supply the central agent with n− 1

additional independent signals, and he thus learns at a speed that increases linearly with
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the number of agents.14 In contrast, all peripheral agents learn at a constant speed ra, as

in the single-agent case. Hence, for general networks, depending on the structure of the

network, some agents can learn faster than others.

More importantly, this star network example implies that the bound obtained in The-

orem 1 does not hold for all agents in a non-strongly connected network. The intuitive

reason is that when the network is not strongly connected, some agents might remain

unobservable to others, e.g., the central agent in the star network. These agents can

thus learn very fast from observing others since their own past actions do not affect the

actions of others, rendering others’ past actions more informative. This cannot happen

in a strongly connected network where every agent (potentially indirectly) learns about

the actions of every other agent.

Nevertheless, even though it is not necessarily true that all agents learn slowly, our next

result establishes that it is still true that some agents will learn slowly in any network.

Proposition 1. Consider an arbitrary (finite) network and let ri be the speed of learning

of agent i. We have that mini ri ≤ M .

The proof of Proposition 1 relies on the idea that within any general network, there is

always a strongly connected sub-network, say E, in which no agent observes any agent

outside of this sub-network. Thus, the learning process at E is independent of the agents

outside of E. Since E is strongly connected, Theorem 1 implies that the speed of learning

on E is bounded by M .

6.1. Learning on a Line. In this section we discuss the commonly studied case of an

infinite group of agents who learn by observing (a subset) of their predecessors. A promi-

nent feature of the line network is that information is transmitted unidirectionally. This

simplified observational structure has thus received particular attention in the herding

literature where agents act only once. Here, we extend it to our setting where agents act

repeatedly. As we will see below, the arguments we use on line networks are reminiscent

of the sequential social learning literature, except that we focus on the speed of learning

rather than whether learning occurs or not.

We first consider the case where agents observe a general subset of their predecessors,

which in the herding literature was considered in Acemoglu et al. (2011).15

Proposition 2. Suppose that N = {1, 2, . . .} and Ni ⊆ {1, . . . , i}. Then there is some

constant K such that the speed of learning ri ≤ K for infinitely many agents i.

That is, under these assumptions, it is impossible that the speed of learning ri tends to

infinity with i. Thus, even though there are infinitely many agents, many agents will have

14See Theorem 5 in Harel et al. (2021).
15Their conclusion is qualitatively different: For some network structures asymptotic learning obtains,
and for some it does not. Of course, their notion of learning (namely that agent i takes the correct action
with probability that tends to 1 as i tends to infinity) is very different than ours.
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a low speed of learning. This result thus shows that in the line networks, the conclusion

of Proposition 1 that the speed of learning of some agent must be bounded generalizes

to the conclusion that the speed of an infinite number of agents must be bounded.

The proof of this proposition uses ideas that are similar to those of the proof of The-

orem 1. Since observations are unidirectional, agents behave myopically even for δ > 0.

To show the result, suppose towards a contradiction, that there is no such K. Then, in

particular, there are only finitely many agents whose speed of learning is less than M .

Each of the remaining agents eventually stops using their private signals, because the

fact that they learn so quickly means that they observe very strong social information.

It follows that the only information that is aggregated asymptotically is that of the finite

group of agents who learn slowly. Thus, it is impossible that any agent has a high speed

of learning, which is a contradiction.

We now consider the special case of Ni = {i− 1, i}, i.e., each agent observes only their

direct predecessor.

Proposition 3. When Ni = {i− 1, i}, ri ≤ M for all agents i.

Thus, the conclusion of Theorem 1 applies also to this case of a non-strongly connected

network. Again, we prove Proposition 3 by using the ideas behind Theorem 1. Notice first

that the imitation principle for myopic agents implies that the speed of learning is weakly

increasing in the index of the agent. Now, suppose to the contrary that there exists some

agent k who learns at a speed that is strictly greater than M . Then all agents j > k

would also learn at a high speed. Eventually, all these high-speed learning agents would

stop using their private signals because the fact that they learn so fast means that they

observe very precise social information. Consequently, information aggregation stagnates

and thus learning cannot be too fast.

7. Conclusion

In this paper, we show that information aggregation is highly inefficient for large groups

of agents who learn from private signals and by observing their social network neighbors.

To overcome the difficulty of constructing equilibria explicitly, we focus on the asymptotic

speed of learning, allowing us to prove results that apply to all equilibria. We show that

regardless of the size of the network, the speed of learning is bounded above by a constant,

which only depends on the private signal distribution (and not on the discount factor,

the observational graph, the agents’ utilities, or prior belief).

An important limitation of our results is that they only apply asymptotically. As

our numerical results show, these asymptotic results can apply already from the early

periods, for myopic agents on particular networks. However, for patient agents, it is

unclear whether it takes a long time for the asymptotic results to apply. Calculating

welfare for patient agents seems beyond what is currently tractable, as it would require a

detailed analysis of the equilibria of this game. In fact, even for two myopic agents who
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observe each other, it seems intractable to calculate welfare, and moreover, it remains

unknown whether the asymptotic speed of learning is strictly greater than that of one

agent who learns on his own. Nevertheless, even in the most general settings of patient

agents on complex networks, it seems reasonable to conjecture that the main economic

force driving our result—that learning cannot be too fast because it would lead agents

to disregard their own signals—is significant even in the early periods. We leave this for

future research.

Another promising direction for future research is the calculation of lower bounds for

the speed of learning. Currently, we cannot show that equilibrium speed of learning on

any connected network is faster than that of a single agent. Even without imposing

equilibrium, this question remains open: What learning speed can be achieved when a

social planner is allowed to choose the agents’ strategies? For the complete network, it

is still unknown how a social planner could achieve any speed of learning that is better

than the speed achieved by a single agent. The challenge for the social planner lies in

the trade-off between using the actions to communicate between the agents and choosing

the correct actions with very high probability at the same time. One conjecture from

Harel et al. (2021) is that a better speed can be achieved by having the social planner

instruct the agents to behave as if they are myopic and over-weight their own signals,

causing their actions to reveal more information. In simpler, sequential settings, this type

of mechanism was shown to indeed improve learning outcomes (Arieli et al., 2023).

It is possible to extend our model in a number of directions. In Appendix B we show

that our main result continues to hold if agents do not observe each other every period,

but only in some (potentially random) periods. A natural extension, which we leave for

future work, is to allow the network to be random and its realization to be only partially

observed by the agents. An interesting technical question is that of the robustness of

our results to the assumption of bounded private signals. We conjecture that a result

similar to our main theorem should hold even if signals are unbounded, with the Kullback-

Leibler divergence between the conditional signal distributions playing the bounding role

currently played by the maximum log-likelihood ratio. This is indeed the case for myopic

agents on the complete network (Harel et al., 2021). A substantive extension is to allow

the underlying state to change over time (see Moscarini et al., 1998; Frongillo et al., 2011;

Dasaratha et al., 2022). For example, the underlying unknown state could capture the

quality of a local restaurant or school, which might fluctuate gradually. In such a setting,

one could replace the speed of learning metric with the long-run probability of making

the correct choice and study whether information gets aggregated in this case and, if so,

whether the information aggregation process is efficient.
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Appendix A. Proofs

Proof of Lemma 1. (i) First notice that we can write the agent’s expected utility con-

ditioned on his information I it at time t as the sum U<t + δtU≥t, where

U<t = (1− δ)
t−1∑︂
k=1

δk−1E[u(aik, ω)|I it ]

is the sum of the expected flow utilities until time t, and U≥t is the expected continuation

utility at time t given by

U≥t = (1− δ)
∞∑︂
k=0

δkE[u(ait+k, ω)|I it ]

= (1− δ)E[u(ait, ω)|I it ] + δ(1− δ)
∞∑︂
k=0

δkE[u(ait+k+1, ω)|I it ].

Fix some state g ∈ Ω. Since ag is the unique optimal action in state g, by applying

an affine transformation to the flow utility function u : A × Ω → R we can assume that

u(ag, g) = 1, that u(a, g) ≤ 0 for all a ̸= ag. Let cg = maxa,f |u(a, f)|. Recall that

pi,gt = P[ω = g|I it ] is the agent’s posterior at time t. Thus, for any action a ̸= ag, since

u(a, g) ≤ 0, the expected flow utility E[u(a, ω)|I it ] =
∑︁

f∈Ω u(a, f)·pi,ft is at most cg(1−pi,gt ).

Likewise, E[u(ait, ω)|I it ] is at most pi,gt + cg(1− pi,gt ) since u(ag, g) = 1.

Now, suppose that ait = a ̸= ag. Then the expected continuation utility is

U≥t = (1− δ)E[u(a, ω)|I it ] + δ(1− δ)
∞∑︂
k=0

δkE[u(ait+k+1, ω)|I it ]

≤ (1− δ)cg(1− pi,gt ) + δ(pi,gt + cg(1− pi,gt ))

= δpi,gt + cg(1− pi,gt ).

On the other hand, the strategy that chooses ag from period t onward has an expected

continuation utility at least pi,gt − cg(1− pi,gt ). Thus, when

pi,gt − cg(1− pi,gt ) > δpi,gt + cg(1− pi,gt ) (5)

the agent cannot choose ait = a ̸= ag in period t. Rearranging, this happens when

pi,gt >
2cg

2cg + 1− δ
.

Thus, under the above condition, agents choose ait = ag in equilibrium. Clearly, the

myopic action is then also equal to ag, as this corresponds to the case δ = 0. Part (i) of

the lemma now follows by setting c = maxg 2c
g.

For part (ii), fix a discount factor δ ∈ [0, 1) and let σ be an equilibrium. Let ait be the

action taken by i at time t under σ. Since the entire sequence of private signals reveals

the state, conditional on ω = g, limt p
i,g
t = 1 almost surely. Hence, by part (i) the agent

will choose the unique optimal action that is also myopically optimal in equilibrium from
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some (random) time on. Since there are finitely many agents, this will hold for all i for

all t larger than some (random) T . This means that from T onward, in equilibrium all

agents will behave myopically. □

The following is a simple consequence of Lemma 1.

Corollary 2. There is a constant C > 0 such that, in any equilibrium, if it holds for

g ∈ Ω and all f ̸= g that Li,g,f
t > C, then ait = mi

t = ag.

Proof. Fix a state g ∈ Ω. Suppose that Li,g,f
t > C for some C > 0 to be chosen later.

Then pi,gt > eCpi,ft . If this holds for all f ̸= g then

pi,gt >
1

|Ω| − 1
eC

∑︂
f̸=g

pi,ft =
1

|Ω| − 1
eC(1− pi,g).

Thus for any each c > 0, u and δ ∈ [0, 1), for C large enough it holds that

pi,gt >
c

c+ 1− δ
,

and the result follows by part (i) of Lemma 1. □

The following lemma will be useful in the proofs below. Recall that we denote ū =

E[u(aω, ω)].

Claim 3. There exist c, c > 0 such that

c · P[ait ̸= aω] ≤ ū− E[u(ait, ω)] ≤ c · P[ait ̸= aω]

Recall that we can think of the difference ū − E[u(ait, ω)] as the expected loss in flow

utility as compared to the first-best. The lemma above states that this quantity is the

same—up to constants—as the probability of choosing the correct action. An immediate

consequence of this lemma is that we can express the speed of learning in terms of this

loss:

ri = lim inf
t

−1

t
logP[ait ̸= aω] = lim inf

t
−1

t
log(ū− E[w(ait, aω)]). (6)

Proof of Claim 3. Denote by c the minimum loss of utility from choosing incorrectly:

c = min
g∈Ω,a ̸=ag

u(ag, g)− u(a, g).

Since there is a unique optimal action in each state we have that c > 0. Analogously,

denote by c > 0 the maximum such loss:

c = max
g∈Ω,a ̸=ag

u(ag, g)− u(a, g).

Then

ū− E[u(ait, ω)] = E[u(aω, ω)− u(ait, ω)] ≤ E[c · 1ait ̸=aω ] = c · P[ait ̸= aω].
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Likewise,

ū− E[u(ait, ω)] = E[u(aω, ω)− u(ait, ω)] ≥ E[c · 1ait ̸=aω ] = c · P[ait ̸= aω].

□

Proof of Lemma 2. Suppose i observes j. Let σ be an equilibrium and let ait be the

action taken by i at time t under σ. We claim that for t > 1,

(1− δ)(ū− E[u(ait, ω)]) ≤ ū− E[u(ajt−1, ω)]. (7)

To see that this equation must hold observe that the left-hand side equals the expected

continuation loss the agent would have from time t on if he chooses the action ait at

time t and suffered no loss in future periods. Hence this is smaller than the expected

continuation loss under the strategy profile σ. In equilibrium, this must be smaller than

the loss from any deviation, and the right-hand-side equals the loss the agent suffers when

imitating j’s action ajt−1 from time t onward. Thus the above inequality must hold.

As a consequence,

lim inf
t→∞

−1

t
log(ū− E[u(ait, ω)]) ≥ lim inf

t→∞
−1

t
log

(︃
1

1− δ
(ū− E[u(ajt−1, ω)])

)︃
= lim inf

t→∞
−1

t
log(ū− E[u(ajt−1, ω)])

= lim inf
t→∞

−1

t
log(ū− E[u(ajt , ω)]).

Thus part (i) follows from (6). Part (ii) follows as in any strongly connected network, there

is an observational path from each agent i to each other agent j and the monotonicity of

learning speed shown in (i) applied along this path, implies that ri ≥ rj. The opposite

inequality holds by the same argument. □

The next simple claim will be helpful in the Proof of Lemma 3.

Claim 4. Suppose that Xt is a sequence of random variables taking values in [0, 1] such

that limt−1
t
logE[Xt|Σt] ≥ r almost surely, for some sequence of sigma-algebras Σt.Then

lim inft −1
t
logXt ≥ r, almost surely.

Proof of Claim 4. By the claim hypothesis there exists a random F : N → R, such that

limt F (t)/t = 0 almost surely and such that

E[Xt|Σt] ≤ e−rt+F (t).

We can furthermore assume that F (t) ≤ rt, since Xt ≤ 1. Taking expectations of both

sides yields

E[Xt] ≤ e−rt · E[eF (t)].

Hence, if we denote f(t) = logE[eF (t)],

E[Xt] ≤ e−rt+f(t).
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Furthermore,

lim
t

1

t
f(t) = lim

t

1

t
logE[eF (t)] = lim

t
logE[eF (t)/t] = 0

where the last equality is a consequence of the facts that F (t)/t ≤ r and F (t)/t converges

almost surely to zero. Hence, by Markov’s inequality, for any ct > 0,

P[Xt ≥ ct] ≤ E[Xt]/ct ≤ e−rt+f(t)/ct .

Choosing ct = e−rt+f(t) · t2, we get that

P[Xt ≥ e−rt+f(t)+2 log t] ≤ 1

t2
.

Hence, by Borel-Cantelli, almost surely Xt ≤ e−rt+f(t)+2 log t for all t large enough, and in

particular, lim inft−1
t
logXt ≥ r. □

Proof of Lemma 3. In this proof we use Landau notation, so that o(t) stands for some

function f : N → R such that limt f(t)/t = 0.

By assumption and the definition of speed of learning in (2), P[ait ̸= aω] ≤ e−rt+o(t).

Let

px,ft = P[ω = f|ait]

be the probability assigned to ω = f by an outside observer x that sees only agent i’s

action at time t.

By Bayes’ Law,

P[ω = f|ait = ag] =
P[ait = ag, ω = f]

P[ait = ag]
.

Since P[ait ̸= aω] ≤ e−rt+o(t), we can bound the denominator by

P[ait = ag] ≥ P[ω = g, ait = aω] ≥ P[ω = g]− P[ait ̸= aω] ≥ P[ω = g]− e−rt+o(t).

If g ̸= f then the numerator is at most P[ait ̸= aω] since the event that the agent takes

the wrong action contains the event that the agent takes action ag in state f. Hence

P[ω = f|ait = ag] ≤ e−rt+o(t)

P[ω = g]− e−rt+o(t)
.

Now, because P[ait ̸= aω] ≤ e−rt+o(t), by Borel-Cantelli, almost surely ait = ag for all t large

enough, conditioned on ω = g. It follows that for all t large enough—again conditioned

on ω = g—the belief px,ft will equal P[ω = f|ait = ag]. Hence, by the displayed equation

above, lim inft −1
t
log px,ft ≥ r. Since this holds for all f ̸= g, we get that limt p

x,g
t = 1.

Now, let

py,ft = P[ω = f|H i
t ]

be the probability assigned to ω = f by an outside observer y that sees only agent i’s

public history H i
t .

23



Then

log
py,gt

py,ft

= log
P[H i

t |ω = g]

P[H i
t |ω = f]

+ log
P[ω = g]

P[ω = f]
= Qi,g,f

t .

Since H i
t includes a

i
t−1, the law of total expectations yields that

px,ft−1 = E[py,ft |ait−1].

It now follows from Claim 4 that identical asymptotics apply to py,ft : lim inft−1
t
log py,ft ≥ r

and limt p
y,g
t = 1. Thus, conditioned on ω = g,

lim inf
t→∞

1

t
Qi,g,f

t = lim inf
t→∞

1

t
log

py,gt

py,ft

≥ r almost surely.

□

Proof of Lemma 4. Recall that at time t, H i
t = {ajs : s < t, j ∈ Ni} is the history

of actions observed by i and si1, . . . , s
i
t is the sequence of private signals received by i.

Given a pure strategy profile σ, agent i chooses a unique action ait ∈ A at time t: ait =

σ(si1, · · · , sit, H i
t). It follows that for each history H i

t there is a set Si(H i
t) ⊆ Si

1×· · ·×Si
t−1

of possible private signal realizations si1, . . . , s
i
t−1 that are consistent with H i

t :

Si(H i
t) =

{︁
si1, . . . , s

i
t−1 ∈ Si

1 × · · · × Si
t−1 : P[si1 = si1, . . . , s

i
t−1 = sit−1|H i

t ] > 0
}︁
.

In other words, if we imagine an outside observer who sees only H i
t—i.e. sees i’s ac-

tions and his neighbors’ actions—then Si(H i
t) is the set of private signal realizations

(si1, . . . , s
i
t−1) to which this observer assigns positive probability.

Consider the numerator P[si1, . . . , sit|H i
t , ω = g] of the private log-likelihood ratio P i,g,f

t .

Using the definition of Si(H i
t), we can write

P[si1, . . . , sit|H i
t , ω = g] = P[si1, . . . , sit|(si1, . . . , sit−1) ∈ Si(H i

t), ω = g] almost surely.

The above equality holds as conditional on ω = g the signals of different agents are

independent and hence the only relevant information about agent i’s signals si1, . . . , s
i
t

contained in the history H i
t is the restriction the history imposes on the realization of

these signals.

Let µi,g
1...t be the measure over signal realizations si1, . . . , s

i
t when ω = g. Then

P[si1, . . . , sit|(si1, . . . , sit−1) ∈ Si(H i
t), ω = g] =

µi,g
1...t(s

i
1, . . . , s

i
t)

µi,g
1...t−1(S

i(H i
t))

.

We thus have that

P i,g,f
t = log

µi,g
1...t(s

i
1, . . . , s

i
t)

µi,f
1...t(s

i
1, . . . , s

i
t)

+ log
µi,f
1...t−1(S

i(H i
t))

µi,g
1...t−1(S

i(H i
t))

. (8)

Since the signals are independent over time the first term of (8) is equal to

t∑︂
τ=1

log
µi,g
τ (siτ )

µi,f
τ (siτ )

,
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which is at most 1
2
Mt. The second term of (8), which is equal to

log

∑︁
(si1,··· ,sit−1)∈Si(Hi

t)

∏︁t−1
τ=1 µ

i,f
τ (s

i
τ )∑︁

(si1,··· ,sit−1)∈Si(Hi
t)

∏︁t−1
τ=1 µ

i,g
τ (siτ )

is also at most 1
2
M(t− 1).16 Thus, it follows that P i,g,f

t is at most Mt. By an analogous

argument P i,f,g
t = −P i,g,f

t is at least Mt, and so |P i,g,f
t | is at most Mt. □

Proof of Theorem 1. Fix a discount factor δ ∈ [0, 1). Let σ be an equilibrium and

ait be the action taken by i at time t under σ. Now consider an outside observer x

who observes everybody’s actions so that the information available to him at time t is

Ht = {ais, i ∈ N, s ≤ t} and at time infinity is H∞ = ∪tHt. Thus at any time t, this

observer can calculate the social likelihood Qi
t for all i.

Suppose that the social likelihood is high, and in particular Qi,g,f
t > Mt+ C at some t

for some constant C, some state g and all f ̸= g. Since the private likelihood P i,g,f
t cannot

be less than −Mt (Lemma 4), the posterior likelihood Li,g,f
t = Qi,g,f

t + P i,g,f
t > C. In this

case, supposing C is high enough, by Corollary 2, the agent will choose the myopic action

ait = mi
t = ag. Thus, under this condition on Qi

t the outside observer will know which

action the agent will choose in equilibrium, and will not learn anything (in particular,

about the agent’s signals or the state) from observing this action.

Suppose towards a contradiction that the equilibrium speed of learning r is strictly

higher than M , i.e. r = M + ε for some ε > 0. Then it follows from Lemma 3 that for

any C > 0, Qi,g,f
t ≥ (M + ε)t > Mt + C for all t large enough and all f ̸= g. Since there

are finitely many agents, this will hold for all i, for all t larger than some (random) T .

Hence the outside observer x learns nothing more from the agents’ actions after time T .

Let axt be the action that x would choose to maximize the probability of matching the

state at time t. Since no new information is gained after time T , the outside observer

stops updating their action and so axT = ax∞. Hence P[ax∞ ̸= aω] > 0.

Since x observes everyone’s actions, by the imitation principle

P[ait ̸= aω] ≥ P[ax∞ ̸= aω] > 0 (9)

for all agents i and all times t. But since the equilibrium speed of learning is M + ε > 0,

by the definition of speed of learning in (2), P[ait ̸= aω] converges to zero, in contradiction

with (9).

□

Proof of Proposition 1. Recall that E ⊆ N is a strongly connected component if there

is an indirect observation path from each agent in E to each other agent in E. By a

16This follows from the fact that for any two sequences of positive numbers (a1, . . . , an) and (b1, . . . , bn)
it holds that ∑︁

k ak∑︁
k bk

=

∑︁
k bk(ak/bk)∑︁

k bk
∈
[︃
min
k

(ak/bk),max
k

(ak/bk)

]︃
.
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standard argument17, there exists a strongly connected component E in which no agent

observes agents outside of E. Hence we can analyze the speed of learning of agents in E

in isolation and apply Theorem 1 to conclude that ri ≤ M for all i ∈ E. □

Proof of Proposition 2. Suppose towards a contradiction that there does not exist a

constant K where ri ≤ K for infinitely many agents, i.e., that limi ri = ∞. This implies

that there exists a finite k such that the agents with ri ≤ M constitute a subset of

{1, . . . , k}. Thus, for all agents i > k, ri > M . Fix an agent n > k.

Consider an outside observer x who observes agents {1, . . . , n}. Since ri > M for all

i ∈ {k + 1, . . . , n}, it follows from Lemma 3 that conditioned on ω = g, Qi,g,f
t > M · t

for all i ∈ {k + 1, . . . , n}, for all f ̸= g and for all t large enough. Since the absolute

value of the private likelihood P i,g,f
t is always less than or equal to Mt at any given time

t (Lemma 4), all agents k + 1, . . . , n will eventually ignore their private information and

act based on their social information. I.e., for all i ∈ {k + 1, . . . , n}, ait is determined by

Qi
t for all t large enough. Since there are finitely many agents observed by x, there exists

a (random) T so that from T onward, x, who knows Qi
t, learns nothing more from the

actions of agents {k+1, . . . , n}. Thus, x will learn as fast as he would if he only observed

agents {1, . . . , k}. It follows that the speed of learning of this outsider observer x is at

most kra, which is k times the speed of learning of a single agent, or, equivalently, the

speed of learning from directly observing k signals every period. Following the argument

in the proof of Theorem 1, since x observes i, x learns at least as fast as i, and so

ri ≤ kM . Since this holds for all i, we have reached a contradiction to the assumption

that limi ri = ∞. □

Proof of Proposition 3. By the imitation principle for myopic agents,

ri+1 ≥ ri

for all i = 1, 2, . . . and r1 = ra < M as agent 1 sees only their private signals. Suppose

towards a contradiction that there exits an agent k ≥ 2 agent who learns at a speed that

is strictly higher than M , i.e., rk = M + 2ε for some ε > 0 and let k > 1 be the smallest

such integer. By Lemma 3 there exists a (random) T such that for all t larger than T , in

state g the public log-likelihood is greater that the largest likelihood than can be induced

by any private signal

Qk,g,f
t > M · t. (10)

Consider an outside observer x who observes Hk
t : the actions of agents k − 1 and k.

Hence x knows Qk,g,f
t for all t > T , and by the same argument of the proof of Theorem 1,

does not learn anything from k’s action after time T . Hence x’s speed of learning is rk−1.

As the outside observer x can observe k, by the imitation principle, x’s speed of learning

17Define a preorder on the set of agents N by i ⪰ j if there is an indirect observation path from i to j.
The ⪰-equivalence classes are the strongly connected components. The set E is any equivalence class of
⪰-minimal elements.
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is at least that of agent k. This together implies that rk−1 > M , which is a contradiction

to the original assumption on k. □

Appendix B. Intermittent and Random Observation Times

In this section we extend our model to allow for some intermittent and random obser-

vation times. This extension allows us to consider, for example, a situation in which one

pair of agents meet every day, another pair meets every Sunday, and yet another pair

meets on a random day of the week. Our main result still applies in this setting, and

moreover the same proofs apply, with some additional details that need to be verified, as

we explain.

Formally, for each pair of agents i, j such that j ∈ Ni let Oi,j be the set of time periods

in which i observes j. These sets can be random, but we assume that they are independent

of each other, the state and the signals. We also assume that there is some number D > 0

such that, with probability 1, for every i, j such that j ∈ Ni and every t ∈ {0, 1, 2, . . .},
the intersection {t+ 1, . . . , t+D} ∩Oi,j is not empty. That is, if j ∈ Ni then i observes

j at least once every D periods. Hence, the difference between consecutive t1, t2 ∈ Oi,j is

at most D.

The history of actions observed by agent i at time t is

H i
t = {ajs : s < t, s ∈ Oi,j, j ∈ Ni}.

As before, the private history of agent i at time t is I it = (si1, . . . , s
i
t, H

i
t), and a pure

strategy at time t is a map that assigns an action to each possible realization of I it . The

structure of agents’ private signals and utilities remain the same. The speed of learning

is likewise defined as before.

We now explain why, in this extended model, Theorem 1 still holds as stated. The

proof of Lemma 1 applies verbatim, as only one agent is considered, and the observation

structure plays no role. Lemma 2 likewise still applies, but an adjustment needs to be

made: The imitation principle (7) again compares the loss the agent suffers in period t,

assuming he suffers no loss in the future (on the left-hand-side), to the loss from always

taking the action agent j took the last time t − D he was observed by agent i (on the

right-hand-side)

(1− δ)(ū− E[u(ait, ω)]) ≤ ū− E
[︂
u(ajτ(t), ω)

]︂
≤ max

t′∈{t−D−1,...,t−1}
ū− E

[︁
u(ajt′ , ω)

]︁
,

where τ(t) = maxOi,j ∩ {0, . . . , t− 1} is the last time (before t) that i observed j. Now

continuing as in the proof of Lemma 2

lim inf
t→∞

−1

t
log(ū− E[u(ait, ω)]) ≥ lim inf

t→∞
−1

t
log(ū− E[u(ajt , ω)])

which implies the result of Lemma 2. Here we crucially use the fact that there are at

most D periods between observations.
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The proof of Lemma 3 remains valid, since the observation structure plays no role. The

same holds for Lemma 4: The same proof applies to the modified version of the observed

history H i
t . Finally, the proof of Theorem 1 again applies verbatim.
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