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Healy Lake Village Council, Supplementary Text) from the Swan 
Point archaeological site located in the Shaw Creek basin of the 
Tanana River valley in interior Alaska. �is tusk is one of only two 
largely complete adult tusks from archaeological contexts in Alaska 
(table S1). �e tusk was found in and dated to the same time as the 
initial human appearance in Swan Point’s Cultural Zone 4b (CZ4b) 
[14,177 to 13,900 calibrated years before present (ya)], the old-
est known archaeological component in Alaska (33). CZ4b also 
contained a suite of other mammoth remains, some clearly from 
contemporaneous individuals, including a juvenile and neonate 
(Supplementary Text). Additional mammoth remains have also 
been found in a cluster of three other early archaeological sites (the 
Broken Mammoth, Holzman, and Mead sites) within ~10 km of the 
Swan Point site in the Shaw Creek basin (�g. S1 and Supplementary 
Text). �e Swan Point adult mammoth tusk was previously inter-
preted as having been scavenged in a subfossilized state based on its 
slightly older age relative to other dated samples from the cultural 
occupation (25). However, a new radiocarbon date for this tusk pro-
duced a younger calibrated date between 13,810 and 14,068 ya (33), 
which overlaps with multiple hearth features, artifacts, and other 
mammoth remains in the same cultural zone (CZ4b) and indicates 
they were contemporaneous.

�e Swan Point CZ4b component is interpreted as a seasonal 
workshop and hunting camp containing numerous organic and 
stone tools, including the tusk analyzed in this study (25). �e tusk 
likely served multiple functions, both as an anvil and as a source of 
ivory fragments for later modi�cation. �e occupation of CZ4b 
coincides with the beginning of a rapid regional transition from 
herb-  to shrub- dominated tundra (34). Graminoids and forbs, the 
preferred forage for mammoths, were still an important component 
of the local vegetation, but they were increasingly supplanted by 
birch and willow shrubs during this interval (34). Growing season 
temperatures were relatively stable at this time (35), suggesting a 
general increase in moisture as the main cause for this vegetation 
change. We studied the strontium (87Sr/86Sr), oxygen (δ18O), and 
sulfur (δ34S) isotope ratios of the complete adult tusk from Swan 
Point CZ4b to model the lifetime movement of the mammoth. To 
determine the sex and relatedness of the mammoths from Swan 
Point and other local archaeological sites, we extracted and analyzed 
ancient DNA (aDNA).

RESULTS

�e DNA of the Swan Point tusk showed that this mammoth was 
female and closely related to the other mammoth individuals we 
analyzed from Swan Point (Fig.  1 and Supplementary Text) and 
more distantly related to the tusk from the nearby Holzman site 
(Supplementary Text). �ese specimens included the remains of a 
male neonate and male juvenile mammoth from Swan Point CZ4b. 
Mammoth remains at Swan Point number in the hundreds (see the 
Supplemental Materials), most being fragments of ivory from tusk 
reduction. At least three full tusks are present, including the adult 
and juvenile tusks sampled in this paper. More than a hundred 
cheek teeth fragments were documented, which together account 
for at least two cheek teeth from a juvenile or juveniles. At least 
twelve rib fragments are present and account for a minimum of 
eight elements, the sizes of which are consistent with having been 
obtained from a single neonate mammoth. If mammoths behaved in 
similar ways to elephants, the neonate and juvenile would have 

needed to travel with a matriarchal herd until their maturity 
(36). The mitochondrial genomes reconstructed from eight of 
the mammoths showed that, although mainly contemporaneous, 
the mammoths at these archaeological sites consisted primarily 
of members from at least two, closely related (ancestor and descen-
dant) but distinct herds (Fig. 1 and Supplementary Text).

Microscopic examination of growth layers exposed on the inte-
rior surface of the bisected Swan Point adult tusk indicated approx-
imately 20 years represented in the tusk (Supplementary Text). 
�is growth layer examination provides a minimum age for the 
mammoth, given the likely loss of a record from the animal’s 
early years due to potential tusk tip wear during the animal’s life. 
High- resolution 87Sr/86Sr (~47,000 individual 87Sr/86Sr ratio mea-
surements) and lower- resolution δ34S and δ18O variations (97 and 
293 sequential measurements, respectively) were used to model 
the geographic range and movements of the mammoth (Fig. 2 and 
Supplementary Text). We compared these measurements to a set of 
predictive isotope maps for eastern Beringia (Supplementary Text). 
An isotope- guided Markov chain Monte Carlo random walk ap-
proach (30) identi�ed the most probable routes and most frequent-
ly visited areas to reveal the individual’s lifetime movement history 
(Supplementary Text) (Fig.  3). �e female mammoth from the 
Swan Point site underwent relatively little movement during the 
beginning of her life, which she most likely spent in southeastern 
Beringia near the Cordilleran ice sheet (Fig. 3), as re�ected by the 
minimal changes in the 87Sr/86Sr, δ18O, and δ34S values (Fig. 3). In 
the middle of her ~20- year life, the mammoth underwent a rela-
tively large (~1000 km) movement over the span of approximately 
2.5 years, as evidenced by large, simultaneous changes in 87Sr/86Sr, 
δ

18O, and δ
34S, with the model indicating likely northwestward 

movement through the White Mountains and as far as the southern 
extent of the Brooks Range (Figs. 2 and 3) (Supplementary Text). 
Last, the mammoth moved to and stayed in interior Alaska for ~3 
years until the end of her life (Fig. 3).

DISCUSSION

�e lower 87Sr/86Sr variability in the female mammoth from Swan 
Point, relative to a male woolly mammoth from Alaska that lived 
closer to the time of the LGM (30), suggests much less lifetime 
movement. Most of her time was spent in interior Alaska and 
western Yukon (Fig. 3). However, despite the ~3000- year di�erence 
in age, the lifetime ranges of both the male and female mammoths 
overlapped in a frequently used area in interior Alaska (Fig. 3), im-
plying potential long- term habitat �delity. �e relatively restricted 
movement of the female also suggests di�erent behavioral patterns 
for the two sexes in mammoths, as observed in modern elephants. 
Modern elephant behavior is sexually dimorphic, with females and 
juveniles living in close- knit matriarchal herds and mature males 
traveling alone or in looser male groups, o�en with larger home 
ranges than their female counterparts (36). However, the male also 
appears to have had a more limited home range as a juvenile when 
he would have still been a part of a maternal herd (30). �is juvenile 
portion of the male’s life would have followed the herd, and during 
this time, both mammoths’ ranges overlapped in frequently used 
areas (Fig. 3). �e male also returned to this area as an adult, indi-
cating some degree of regional �delity.

Unlike the male, the Swan Point female appears to have pre-
ferred the use of highlands and avoided lowlands throughout her 
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lifetime (Fig.  3 and fig.  S5). This preference for highlands is 
shown in the best random walk results (driven by 87Sr/86Sr, δ34S, 
and δ

18O values; Supplementary Text). Further evidence for a 
highlands preference is her elevated δ15N values relative to other 
contemporaneous herbivores (37) and relative to the male mam-
moth (30). Elevated δ15N values can indicate feeding on plants 
from more arid habitats (38, 39). Modern plants at higher eleva-
tions also tend to have higher δ15N values than those at lower 
elevations (40), as do herbs and grasses compared to trees and 
shrubs (41). The male lived ~3000 years earlier, when climate 
conditions were similar to the drier LGM. In the intervening 
millennia, Alaska’s climate grew warmer and wetter, eventually 
stimulating a “birch rise” in interior Alaska (34). The invasion of 
woody shrubs into the lowlands and river valleys would have begun 
to fragment the formerly massive pan- Beringian mammoth steppe 
habitat (6), thereby limiting the available range of the Swan Point 

mammoth, forcing her and other mammoths upland and creat-
ing a smaller and more easily exploited prey patch for potential 
human hunters.

�e δ15N values from along the Swan Point tusk are driven by 
the movement of the female woolly mammoth across the landscape 
(Supplementary Text). Compound speci�c stable nitrogen isotope 
analyses of phenylalanine, an amino acid indicative of habitat base-
line δ15N values, along the Swan Point tusk showed marked changes 
that correlated with the bulk δ

15N values (Supplementary Text). 
�is indicates that the incremental variation in the δ

15N values 
along the tusk was caused by movement to di�erent regions with 
di�erent δ

15N baselines during the mammoth’s life rather than 
physiological mechanisms or nutritional stress (30, 42). �is δ15N 
pattern contrasts with some of the interpretation of δ

15N values 
from the male woolly mammoth from 17 ka, which indicated star-
vation at the end of his life (30).

Fig. 1. Bayesian maximum clade credibility tree of dated Mammuthus spp. mitochondrial sequences. (A) Heatmap comparison of nucleotide di�erences between 

haplogroup C mammoths from Eastern Beringia, (B) map of sample origins, (C) mapDamage nucleotide misincorporation plots showing terminal base modi�cations 

typical of aDNA, and (D) fragment length distributions from the eight reassembled mitochondrial genomes. Tip dates are estimated as calendar/calibrated years before 

present using a strict clock with the bModel test to average over substitution models, a Bayesian skyline tree prior, and 100 million iterations. Node labels indicate poste-

rior support, and the blue bars show the 95% highest posterior distribution (HPD) for clade divergence age. Map of sample locations color- coded based on clade branches 

in the tree and geographic region. Sea level in the map set 126 m lower than present to approximate the land extent during the LGM.
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A common feature of both mammoths is the overlap between 
one of their most frequently used areas and early human occupa-
tions in interior Alaska (Fig. 3). Both mammoths also have frequent-
ly used areas further east in Yukon, Canada, close to or overlapping 
with two more early human occupations (Fig. 3) (43, 44). �e fre-
quent use of particular areas by mammoths could have made those 

areas attractive locations for seasonal hunting camps and/or ivory 
workshops.

�e claim that humans hunted adult mammoths has been con-
servatively assessed in Alaska in the past due to an absence of direct 
evidence of mammoth hunting, such as mammoth kill sites (25, 45). 
By contrast, there is unambiguous evidence of adult mammoth 

Fig. 2. Sequential isotopic analyses along an entire ~60- cm- long transect of a female mammoth tusk from the Swan Point archaeological site, interior Alaska. 

(A) strontium, (B) oxygen, (C) nitrogen, (D) sulfur, and (E) inorganic carbon isotope values. Vertical lines represent annual markers (peak winter) (Supplementary Text). 

VPDB, Vienna Pee Dee belemnite.
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hunting in Eurasia (46), Siberia (47, 48), and in the continental 
Americas (22), suggesting that coeval people in Alaska were like-
wise capable of hunting adult mammoths. Moreover, the weapon 
technology, seen in the stone tool kit at Swan Point, is essentially 
identical to the microblade technology and composite projectile 
points known from Upper Paleolithic Siberia (17), where mammoth 
hunting is documented (47).

Despite the Swan Point mammoth remains being found in an 
archaeological context, we have no direct evidence, such as embed-
ded or closely associated weaponry, hunting lesions, or a clear pri-
mary kill site setting to verify that the human occupants of Swan 
Point—or any site in Alaska—actively hunted mammoths (25, 26, 
45). Some mammoth individuals at Swan Point are represented only 
by cranial elements, which would be consistent with a scavenging 
scenario (25, 49, 50). We can evaluate competing hypotheses (hunt-
ing, scavenging, or both) for the processes that resulted in the remains 
of three mammoth individuals being present in the archaeological 
context at Swan Point. �e remains were contemporary with hearth 

charcoal dates and directly associated with lithic weapon technology 
(microblades likely set into composite projectile points) and evi-
dence for onsite consumption of megafauna and smaller taxa (horse, 
caribou, lagomorphs, waterfowl, and gamefowl) (25, 49). �e adult 
mammoth individual is represented only by tusk remains and is 
thus consistent with scavenging for raw materials. However, exclu-
sive scavenging for ivory is inconsistent with the presence of post-
cranial elements, namely, neonate ribs, which form part of a larger 
anatomical package (thoracic cavity) with high nutritional value 
and, unlike ivory, little or no raw material value. �is suggests that at 
least young mammoths were probably hunted by the residents of 
Swan Point (25). Selective predation of young age classes among 
mammoth populations has been documented in Upper Paleolithic 
contexts in Eurasia (50). �e ribs lack clear cut marks, but potential 
cut marks have likely been erased by postdepositional processes, as 
is the case for the rest of the faunal assemblage. When butchering 
elephants, ribs may be cut unintentionally during primary butch-
ering, but cut marks are rare, in part to prevent dulling cutting 

Fig. 3. Summary life history of this study’s woolly mammoth within the geographic, climatic, altitude, and early archaeology in Alaska. The core movement areas 

correspond to those visited most frequently (purple polygons) (Supplementary Text). The black dashed lines between the most frequently used areas represent the route 

produced by the spatial modeling (representing the mean of the top 10 walks; Supplementary Text). The light gray polygon represents 1 SD around the mean of the top 

10 walks. The orange polygons represent two frequently used areas of a male woolly mammoth from ~17 ka (30) that overlap with the mammoth in this study. The white 

mammoth symbol indicates the area where the female specimen was found (i.e., death location). Also shown are the locations of early archaeological sites in Alaska and 

Yukon, including Swan Point, Holzman, Mead, Broken Mammoth, Little John, and Britannia Creek (see also Supplementary Text). The small inset map of Beringia shows the 

study region (redrawn from US National Park Service map).
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implements (51). Because ribs may bear heavy traces of damage 
through carnivore feeding on carcasses, including those of elephants, 
these ribs may also indicate early access to the ribs before carni-
vore feeding (52), further suggesting a hunting scenario. Redating 
of the Swan Point mammoth tusk (33) showed that she was contem-
porary with the earliest human occupation of Swan Point, CZ4b. 
She was also around 20 years old at the time of death, which is in the 
prime of early adulthood, with no evidence of nutritional stress in 
the δ15N values (Supplementary Text). We estimate that the season 
of mortality was late summer/early autumn, based on the mainte-
nance of relatively higher δ

18O values for a period immediately 
before her death (Supplementary Text). �is timing is consistent 
with the seasonal timing of occupation of CZ4b at Swan Point by 
humans, based on the presence of migratory waterfowl (25). She was 
also closely related, although not directly, to the juvenile and neo-
nate mammoth remains found at the same site and in the same 
cultural layer, con�rmed using the aDNA results (Supplementary 
Text). A plausible scenario is that useful ivory was transported back 
to the Swan Point camp, along with a juvenile mandible (possibly 
with the tongue), neonate ribs and associated meat.

Early North Americans, with a deep understanding of the life-
ways of mammoths and the knowledge and technology to hunt 
them, were attracted to the habitats favored by mammoths (45), as 
late Pleistocene peoples were in Eurasia (48, 50). �e highest density 
of documented early archaeological sites in Alaska falls within one 
of two areas frequently used by the Swan Point female mammoth 
and her genetic relatives (Fig.  3). �e other frequently used area, 
earlier in her life, is close to two more early archaeological sites in 
Yukon, Canada (Fig. 3) (43, 44). �e cooccurrence of both human 
and mammoth hotspot areas on the Beringian landscape is probably 
not coincidental. Instead, it more likely demonstrates people’s pur-
poseful and strategic intent to map their behavior onto that of a 
mobile but highly visible and predictable megafaunal resource (29). 
At the Holzman site, close to Swan Point, mammoth ivory is present 
in multiple late Pleistocene cultural layers (Supplementary Text) 
(26). Mammoth remains were assuredly a source of valued raw ma-
terial for tools, whether acquired through hunting, scavenging, or 
both (25, 26, 53). In addition to direct e�ects on mammoth popula-
tions from hunting, human activity on the landscape and especially 
human settlements (accompanied by their sounds, smells, �res and 
smoke, etc.) may also have indirectly a�ected mammoth popula-
tions by constraining their movements and access to preferred habi-
tats (6). �ese novel human factors would have occurred against a 
backdrop of a changing landscape with increasingly reduced and 
fragmented grazing habitat.

MATERIALS AND METHODS

We conducted aDNA analyses of mammoth remains from 12 speci-
mens found at the Swan Point [minimum number of individuals 
(MNI) = 3], Mead (MNI = 1), Broken Mammoth (MNI = 2), and 
Holzman (MNI = 1) archaeological sites in interior Alaska (Fig. 1 
and table S1) to determine the sex and mitochondrial clade of 
the specimens (Supplementary Text). We split a complete adult 
tusk from Swan Point CZ4b lengthwise (Supplementary Text) and 
examined the central axis (~60 cm long from the tip of the pulp 
cavity to the tip of the tusk) of the cut surface for growth layers, 
con�rming the presence of daily and weekly growth bands (Supple-
mentary Text). �is 60- cm- long central axis served as the focus for 

our isotopic analyses, which involved sequential sampling along the 
entire tusk following previously published protocols (Supplemen-
tary Text) (30). We measured high- resolution 87Sr/86Sr isotope 
ratios using a Laser Ablation Multi- Collector Inductively Coupled 
Plasma Mass Spectrometer (Supplementary Text). We used continu-
ous �ow stable isotope ratio mass spectrometry to generate stable 
oxygen, carbon, sulfur, and nitrogen isotope data along the tusk 
(Supplementary Text). We combined the 87Sr/86Sr, δ34S, and δ18O 
values in a tri- isotope spatial model (Supplementary Text) to compare 
with a bioavailable 87Sr/86Sr map of Beringia (54), a δ18O isoscape 
calibrated to the late Pleistocene (55, 56) and our new δ34S isoscape 
for Alaska (Supplementary Text). We used an isotopically guided 
random walk approach to probabilistically assess this mammoth’s 
geographic range, mobility, and the most frequently used areas over 
her entire life (Supplementary Text) (30, 57). �e code and data have 
been made available at https://doi.org/10.5281/zenodo.8408732.

Supplementary Materials
This PDF �le includes:

Supplementary Text

Figs. S1 to S12

Tables S1 to S6
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