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Counting manatee aggregations
using deep neural networks
and Anisotropic Gaussian Kernel
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Manatees are aquatic mammals with voracious appetites. They rely on sea grass as the main

food source, and often spend up to eight hours a day grazing. They move slow and frequently

stay in groups (i.e. aggregations) in shallow water to search for food, making them vulnerable to
environment change and other risks. Accurate counting manatee aggregations within a region is not
only biologically meaningful in observing their habit, but also crucial for designing safety rules for
boaters, divers, etc., as well as scheduling nursing, intervention, and other plans. In this paper, we
propose a deep learning based crowd counting approach to automatically count number of manatees
within a region, by using low quality images as input. Because manatees have unique shape and

they often stay in shallow water in groups, water surface reflection, occlusion, camouflage etc.
making it difficult to accurately count manatee numbers. To address the challenges, we propose to
use Anisotropic Gaussian Kernel (AGK), with tunable rotation and variances, to ensure that density
functions can maximally capture shapes of individual manatees in different aggregations. After

that, we apply AGK kernel to different types of deep neural networks primarily designed for crowd
counting, including VGG, SANet, Congested Scene Recognition network (CSRNet), MARUNet etc. to
learn manatee densities and calculate number of manatees in the scene. By using generic low quality
images extracted from surveillance videos, our experiment results and comparison show that AGK
kernel based manatee counting achieves minimum Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE). The proposed method works particularly well for counting manatee aggregations in
environments with complex background.

Recent advancements in Artificial Intelligence (AI) have allowed it to be used in a wide spectrum of fields'.
Especially, AI applications in ecology to save species have gained more importance in the last decade with the
increasing number of endangered animals. There are many ways to use computational methods to help save
endangered species, such as detecting the presence of the species® and counting species to collect information
about numbers and density etc. In this paper, we are proposing a deep neural network based method to help
save manatees, an endangered species.

Human activities impact environment in numerous ways including deforestation, overpopulation, poaching,
over-fishing, and climate change. These negative impacts directly affect the physical environment, posing risks
and generating opportunities for wildlife. Sometime, this dispersion benefits species, mostly invasive species.
In most cases, however, human-assisted dispersion adversely affects the natural world. As a result, wildlife
populations are declining at an alarming rate, and the extinction rates are now up to 100 times higher than the
normal extinction rate?.

Manatees are one of the wildlife species being affected by human-related threats®. There are four species of
manatees in the world: Trichechus inunguis (Amazonian manatee), Trichechus pygmaeus (dwarf manatee),
Trichechus senegalensis (West African manatee) and Trichechus manatus (West Indian manatee)®. Amazonian
manatees and dwarf manatees populate in freshwater habitats. The dwarf manatees are contentious species only
found in the river Aripuana in Brasil and closely linked to the Amazonian manatee”®. The West African manatees
are distributed from Angola to Senegal®. The West Indian manatee prefers shallow coastal habitats such as rivers
and estuaries. They can be found from Brazil to Florida and all the way around the Caribbean islands. The West
Indian Manatee has two subspecies; Florida Manatee and Antillean Manatee, and both of them are considered
endangered by IUCN (International Union for Conservation of Nature)’.
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While some manatee species, such as the Florida Manatee, have a relatively limited geographical distribu-
tion, some manatee types inhabit a wide geographical range. As a result of this wide range, individual manatee
migrations occur'?. For example, during the 2021 winter, a manatee migration from Florida to the Mexican coast
was observed!!. Furthermore, some types of manatees, such as Antillean manatees, can live in a diverse range of
ecosystems. In some cases, they inhabit clear saltwater in Belize and Mexico, visit rivers, reefs, and freshwater
lagoons, whereas they live in salt or fresh water in Chiapas and Tabasco states with insufficient visibility'>'®. Such
diverse living habits and behaviors make it inherently difficult to track them.

Over the last decades, manatee populations have been continuously decreasing. Manatees tend to live as a
group or individuals. Most of their populations exists as small isolates and are also low in density**. Furthermore,
they are frequently scattered throughout huge bodies of water and display evasive behavior due to hunting pres-
sure, making detection and counting challenging with existing approaches. Knowing the number of manatees
and their gathering pattern in real-time is vital for understanding their population dynamics. The timeliness
and accuracy of the count data upon which choices are made frequently determine the efficacy of management
decision-making. In other words, improvements in counting techniques may portend better ecological results
from management decisions. Meanwhile, manatees rely on sea grass as their primary food source. Because sea
grass requires sunlight and shallow water to grow, manatees tend to stay in shallow water to search for food, mak-
ing them vulnerable to the environment, e.g. they have very little room/time to move away from (avoid) oncom-
ing boats, resulting in deadly collisions if the boat drivers are not aware that they are approaching manatees.

Using aerial survey data, counting estimates for manatees in southern Florida, USA, was developed, and
environmental and temporal factors were discovered to impact distributions'>'6. However, aerial surveys are
time-consuming and costly, and the accuracy depends on factors such as observer bias, weather, and time of the
day. Consequently, less time-consuming and less costly counting methods gain more importance in detecting
the number of manatees. Furthermore, it is also crucial to have a method to provide a real-time count to allow
ecologists to be aware of the threat early and act proactively to protect manatees.

Although many methods exist for counting'’, most of the existing counting methods are applied to
crowds to count the number of people, due to their relevance to important applications such as urban planning
and public safety. Fortunately, such advanced techniques in crowd counting can also be generalized to other fields
such as wildlife counting, by taking specific characteristics of the objects into consideration.

In this paper, we propose to use crowd counting methods to count manatee aggregations. Our goal is to
accurately estimate number of manatees in a specific region, using low quality images as input. Due to numerous
factors, as we have elaborated above, manatee counting is a challenging task.

18,19, 20

® Occlusion: Because manatees tend to live in herd, they frequently block each others when viewing from the
surface. As a result, small manatees are likely to be partially or completely blocked from the view.

e Distributions and Distortion: Due to diverse living habits and behaviors, manatees often present in different
population density, perspective distortions, and lightning conditions. Without sufficient training data for
each type of scene, it is difficult for a model to obtain accurate results for counting.

e Reflections and Camouflage: Furthermore, water reflections tend to make manatees invisible in reflec-
tion areas, counting manatees from images captured from surface mounted camera is difficult.

® Background: Finally, the high similarity of appearance between manatees and some elements in the back-
ground, such as fishes, rocks, imposes additional challenge to manatee counting.

In order to address the above challenges and accurately estimate the density of the manatee, we propose a deep
neural network based crowd counting method, which learn to estimate manatee density within an input image.
Our method considers distortions caused by the perspective between the water space and the image plane. Fur-
thermore, since the shape of the manatee is closer to an ellipse than a circle, we propose a method that uses an
Anisotropic Gaussian kernel (AGK) to best represent the manatee contour, and estimate manatee density in the
scene. By formatting manatee counting as a deep neural network density estimation learning task, our approach
balances the labeling costs vs. counting efficiency. As a result, our method delivers a simple and high throughput
solution for manatee counting requiring very little labeling efforts.

Contribution
Our research brings the following three unique contributions to enrich our data and algorithm design for domain
specific tasks:

® Deep Learning for Counting Manatees: We are among the first to introduce deep learning method to auto-
matically count manatee through low-resolution images captured from surface mounted camera. This pio-
neering study not only addresses the technical challenges of counting in complex outdoor environments but
also offers potential ways to aid endangered species.

® Anisotropic Gaussian Kernel with Line Label Annotation: We introduce Anisotropic Gaussian Kernel com-
bined with line label annotations to generate density map. This novel method can represent the unique shapes
of manatees and deliver more precise counting results.

e Manatee Counting Dataset: To validate our method and facilitate further research in this domain, we have
developed a comprehensive manatee counting dataset, published through GitHub for public access (https://
github.com/yeyimilk/deep-learning-for-manatee-counting).
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Related work
Our research is closely related to two research tasks: (1) learning to count number of objects within a scene; and
(2) obtaining labels to support counting.

Counting methods

Given the above-mentioned specific significance of counting, an increasing number of scholars have attempted
to address the counting issue. Existing methods in the field mainly fall into three groups: detection-based?' %,
regression-based, and density estimation based approaches including Convolutional Neural Network (CNN)
based density estimation techniques®. It is worth noting that with the superb performance of deep learning
methods, models based on CNN have largely dominated a variety of counting tasks.

Previous counting methods mainly focused on counting people, although some methods focused on cars,
animals, cells etc. Early works?>** 2 focused on counting people, using detection-based approach. Detection-
based methods usually detect a head or person by using a sliding-window-like detector to count the number of
people?. Recently many object detection tools (YOLO?, R-CNN? etc.) are developed for object detection in
sparse scenes. Nevertheless, these approaches do not show good performance in congested scenes because they
require extraction of low-level characteristics.

Crowd counting, especially in real complex environments, has received increasing attention in various
domains. A recent survey” indicates that majority count-related studies predominantly center around yield
estimation, phenotyping, livestock monitoring, and insect monitoring, which together constitute approximately
97% of the applications®.

A modified version of the Inception-ResNet architecture was employed to count tomatoes and simulated syn-
thetic images were also used to enhance accuracy, although the system struggles to count green fruits*. A novel
rice plant counting network, termed RPNet*!, has four modules: feature encoder, attention block, initial density
map generator, and attention map generator. Results indicate that RPNet outperforms MCNN, CSRNet, SANet,
TasselNetV2, and FIDTM on certain high-resolution image datasets. Many detection-based and segmentation-
based network have been proposed for counting fruits or plants, including those specific to blueberries, wheat
spikes, panicles, pistachios and grapes clusters®.

The application of deep learning models, particularly CNN combined with aerial imagery captured through
UAV (Unmanned Aerial Vehicle)* has shown significant promise in detection and counting. Models such as
NasNet, Xception, YOLOv4, and YOLOv5 have demonstrated high accuracy, even under challenging conditions.
While these models succeed in detecting cattle in various conditions, challenges like occlusion and diverse cattle
breeds remain areas for improvement®~%,

Our method addresses the unique challenges posed by counting submerged animals in outdoor open water
environment, especially when dealing with long-shape entities such as manatees, from overhead webcam low
quality images.

Annotation and labeling for counting

Labeling is a critical step to support learning. In order to learn to estimate number of objects in a scene, it is
necessary to provide supervision (i.e. label information) for the learning algorithms. Such label information
varies from labeling the whole image to each single object in the image.

Total count annotation

Using total count as a label in counting tasks can reduce annotation costs. This type of annotation is often referred
to as Weakly-Supervised. Earlier counting frameworks®*>*” mostly used this approach. Borstel et al.*® proposed
a weakly-supervised solution based on the Gaussian process for density estimation. The training samples are
divided into multiple subregions in their work, but each region is still annotated with only count labels. Modern
counting methods try to dig for more information. Yang et al.*® used a soft-label sorting network to sort multiple
images in the presence of only numerical labels. Then they used a regression network with a shared backbone to
obtain the final number of people. MATT*’ and Sam et al.*! introduced a small number of point-level annotations
and trained mainly using total count annotations. Their work shows that only a small number of point annotation
samples can improve counting accuracy. JCTNet*? and TransCrowd* use performant Transformer structures to
regress the overall number directly. Further, CrowdMLP* uses a more concise multilayer perceptron (MLP) as
the overall architecture and introduces a self-supervised agent task to impose spatial cues implicitly. Although
the total count annotation-based approach has the lowest annotation cost, due to the lack of spatial information,
the average counting performance is lower than that of the density map-based approach.

Bounding box annotation

In order to provide accurate information of the object in the scene, bounding box annotations draw a minimum
outer rectangle for each object appearing in the image. This allows underlying learning algorithms to learn
properties of the objects. Nevertheless, drawing precise rectangles is difficult and labor-intensive, especially for
images with a high density of objects. In addition, bounding Box-based annotation methods cannot provide
accurate predictions in extreme situations, such as low resolution or severe occlusion.

Dot annotation
Dot annotation, one of the most commonly used techniques in recent years, marks each counted object as a
dot, where the dot is usually located at the center of the object, e.g. the center of a person’s head. As a result, dot
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annotation creates a locality point map where the sum of the point map equals to the total number of objects,
and the learning can be carried out using information from the dots.

Dot annotation tremendously reduces the labeling efforts, compared to others like bounding box annotation,
and is also able to handle extreme cases like object occlusions. In reality, it is, however, difficult to train a neural
network (NN) using only sparse points. Therefore, point annotations are usually transformed into density maps,
using transformation process defined as follows.

1= Ko@) )

xeLel

where K () is a kernel function (e.g. a Gaussian kernel) and &; is the density map of image I (generated using
kernel functions). L is the set of labeled dot/point locations in the input image I, and o is the scale parameter of
the 2-D Gaussian kernel. When integrated, the density map contains per-pixel density information of the scene,
which results in the count of object in the image.

Intuitively, the transformation in Eq. (1) blurs each point annotation according to the scale parameter o, and
settings of o represent different types of density mapping. The most basic way is to keep o as a fixed value, and
an existing work® has studied commonly used o parameters.

One limitation of using a fixed o value is that it prevents the density map from capturing perspective informa-
tion of the counted objects. When the scales of the objects varies significantly in the image, a fixed o value results
in low accuracy. Alternatively, an adaptive kernel' uses adaptive o values by taking average distance obtained
from k-nearest neighbor algorithm into consideration. Intuitively, it produces a severely blurred density map
in a highly dispersed regions of the target to accommodate the scale variation due to perspective. However,
this approach relies on the uniform distribution of the counted objects. When discrete targets are present, the
k-nearest algorithm becomes unreliable.

Modern approaches try to introduce additional information to produce more reliable adaptive kernels. Liu
etal.*, Shi et al., Yan et al.*}, and Zhang et al."” use a perspective map to smooth the final density map so that
larger counting targets close to the camera have larger and smoother Gaussian regions in an attempt to elimi-
nate the error due to perspective distortion. However, perspective mapping is unavailable in manatee counting
because the water is not on the same plane. Some work* uses depth camera to obtain relative depth of the target
to the camera to estimate the size of the target. However, depth acquisition of underwater objects is still an open
problem, and is uncommon (due to cost) in general surveillance/tracking systems.

Figure 1 shows an example of different labeling/annotation approaches on an image with 21 manatees in the
scene. From left to right, the labeling costs and difficulty increase. The left most image is labelled with a number
21, which is the number of manatees in the scene (the label does not provide any additional information about
manatees, such as locations, orientation etc.). Dot annotation marks each manatee with a circular point, while
bounding-box annotation outlines each manatee with a rectangular box. For comparison, our proposed method
employs line-segment annotation, using a single line-segment to label each manatee.

Proposed method

Recently, density maps have been commonly used for presenting crowd counting because they can represent the
distribution of the crowd. In our research, we propose to use Anisographic Gaussian Kernel (AGK) based crowd
counting approach for manatee counting. In the following, we will first introduce kernel density based counting,
and then propose manatee customized crowd counting framework.

Base network

Following recent approaches, we perform counting based on the density estimation framework. The input of
the framework is an image I € R"*/, represented as a w x h matrix where w and h denote image width and
height respectively. The ground-truth density map % € R¥*"is used to train deep neural networks (DNNs) by
imposing normalized 2-D Gaussian at manatee locations provided by the annotations. The deep neural network
is trained to predict the density map 27 € R"*" for an image I, such that the network predicted density map
output Z; is sufficiently close to the ground-truth 2.

Kernel function
A kernel, commonly used in machine learning to perform classification and clustering, is a non-linear mapping
of two vectors in a feature space, through the dot product of two vectors. Given two d—dimensional vectors

21 This work

= Difficult

Count in image Dots on manatees Lines on manatees Bounding box

Figure 1. Comparison of different types of labels with their difficulties for the labeling work.
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Xj, Xj € R4, and a transformation function ¢(x) defined for each vector, a kernel mapping between x; and xjisa
function defined as dot product ¢ (x;) and ¢ (x;) as follows:

K(xi, %) = ¢(x) 9 (x)) )

For example, for 2—dimensional vectors x;, x; € R2, withx; = [xi,15 xi2]and x; = [x;1, xj2] 2 simple polynomial
kernel is defined as

K(x;,x) = (14 x;'x))>
= (1 + x;,1%,1 + xi2%52)°
=1+ x)1%) + X%, (3)
+ 2xi,1,1 + 2xi2%),2 + 23,11 2X,1%),2
= 9(x) " 9(x))

where ¢(x;) = [1, xiz’l R x%z, ﬁxi,l, ﬁxi,z, \/Ex,-,lx,')z], and ¢(x;) is defined similarly.

The kernel function should satisfy the following three properties: symmetrical, non-negative, and the area
under the curve of the function must be equal to 1.

There are some well-known examples of kernels satisfying specific properties, such as Gaussian kernel, mul-
tivariate Student kernel, and Laplacian kernel. The Gaussian kernel can be expressed as

Ly i — I
Ks (xi, %)) = N expl — (4)

Similar to polynomial kernel, Gaussian kernel function in Eq. (4) can be transformed as dot product between two
vectors, ¢ (x;) and ¢(x;), by using Taylor series to expand the kernel function into an infinite series of products.

The original Gaussian kernel has the same spread (o) for all feature dimensions. As a result, it is difficult
to represent a high dimensional space and differentiate features more important to capture the decisions (or
classifications)>’.

Kernel density map generation

Given an image I € R"*" represented as aw x harray, and a set of 7 labelled points p1, . . ., p, in the image (e.g.
using dot annotation), the kernel density map intends to generate a density map Z; € R"*" of I, with respect
to the labelled points L (so the density map is primarily focused on labelled points).

The kernel density estimator (KDE) is a non-parametric estimator used to estimate the univariate or multi-
variate densities based on kernels as weights®'. One direct way to create a kernel density map % is to compare
each pixel in I to each labeled point p; € R?, using 2-D location to represent pixels and points.

Denote x;j € R? the 2-D location of a pixel of image I located at [i, j], kernel density map % can be calculated
using kernel transformation below

R B
@mﬂ=;§:m@@mx (5)
k=1
wherei=1,...,w;j=1,...,hare indices of image width and height, and K, is a kernel function with band-
width o.

Density map to counting
After obtaining the density map of an image, the number of manatees can be calculated by using element-wise
summation of all points’ density value as follows

=)

i=1 j

h
Z1i, ] (6)
=1
where Cr denotes ground-truth manatee numbers in the image I. For each labeled image, the annotations have
ground-truth Cj value, so density map needs to be normalized accordingly to ensure that the sum of element-
wise density map equals to its Cj value.
Figure 2 shows an example of an input image I with dot annotations (left panel), and its density map Z;
based on labeled points (right panel). The ground-truth C is 21, because there are 21 manatees within the image.
After obtaining the density map &1, we will train neural network using input image I, and using density map
91 as expected output of the network. A sufficiently trained neural network is therefore capable of learn to detect
an input image’s manatee locations as a density map. By calculating element-wise sum of the predicted density
map, using Eq. (6), we can calculate number of manatees in the scene (detailed in the latter section).

Manatee customized crowd counting

Line-label for manatee counting

Although point label are commonly used for generating density map in crowd counting, a manatee’s body is
oval-shaped, meaning that point annotations cannot effectively capture orientation and shape of manatees for
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(Left) Manatees with point labels (Right) Density map with Guassian kernel by point labels

Figure 2. Left panel: an image with dot labels of manatees, and Right panel: density map of the image generated
by applying Gaussian distributions to labeled points.

accurate counting. An alternative solutions is to use line-segment labels, e.g., a straight line segment, to mark
each manatee.

A challenge of using a line-segment to annotate each manatee is that a line consists of an infinite number of
points, making it difficult to obtain a density map of the input image. In this paper, we propose to use a limited
number of points to represent the segment, and then use Gaussian kernel to denote each point for density map
generation.

More specifically, given two endpoints, X, = [Xa,x, Xa,y] and xp, = [xpx, Xpy], of a line-segment, we generate
[xpx — Xax| + 1]number of Gaussian kernels using position evenly distributed on the line (where[-]denotes a
ceiling function). In addition, to better capture manatee shapes, we generate an oval shaped Gaussian kernel for
each dot, using o value, which is adjusted according to the position of current point x; = [x;, X; ;] comparing
to the two endpoints of the line segment, as defined in Eq. (7), where a is a constant value (i.e. a parameter).

0 = Opasic + @ - min(||x; — Xql|, [IX; — xp1]) ?)

After obtaining o value, we can use point x;’s current location as mean (u) and generate a Gaussian distribution
corresponding to point x;. Repeating this process, one can generate many Gaussian kernels for each line-segment.
The total number of Gaussian kernels for each input image (which often contains many line segments) are used
to normalize Gaussian kernels such that the density map of the whole image follows a distribution.

To illustrate the density map generation using line-segment, Fig. 3 shows examples of using single point and
a line-segment to generate manatee customized density map. From left to right, Fig. 3(I) denotes a single point
at (14, 14), while the subfigure (II) is the density map generated by given head coordination of the Gaussian
kernel with o = 4. Figure 3(III) is a line-segment from point (5, 5) to point (25, 25) which includes 21 points
in total, and Fig. 3(IV) denotes the density map generated by the given points in Fig. 3(III) where the result has
been normalized. In this subfigure, the smallest 0, o445ic = 3, is 3 at the two endpoints, while the largest o value
is 5 corresponding to the Gaussian kernel at the center point of the line-segment at (15, 15).

The results in Fig. 3 show that using a line-segment, combined with Gaussian kernels, can provide a custom-
ized density map resembling a manatee’s oval-shape for counting estimation.

Anisotropic Gaussian Kernel for manatee counting
While the oval-shaped density map in Fig. 3(IV) resembles to manatees’ shape and orientation, it does not effec-
tively capture the width of manatees’ body, where the length of a manatee is much longer than its width. AGK
kernel is a modification of the Gaussian kernel (4). Instead of using a single kernel parameter for all features,
AGK kernel uses different kernel parameters to differentiate Gaussian distributions along each feature dimen-
sion. The AGK kernel function can be defined as

10
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20 20

25 25

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15

I m v

20 25

Figure 3. (I) A single point at (14, 14); (IT) Gaussian with o = 4; (III) line-segment from point (5, 5) to
(25, 25); (IV) Gaussian with 03,5 = 3 and a = 0.2; (V) Anisotropic Gaussian with oy, = 8.24, 0y, = 2.06 for
line-segment in (III).
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wherek = 1,...,d denotes the feature indices. Because manatees’ density maps are 2-D images, we have d = 2
for manatee counting. To generate a density map that most closely resembles each individual manatee, parameter
o is dynamically adjusted using Eq. (9).

II%a —xp I FWHM
o] = 3 X = )
— a0
2= R

in Eq. (9),11x; — x| denotes the length of the underlying line-segment. FWHM denotes Full Width at Half Maxi-
mum of the Gaussian distribution defined by the line-segment. It is used to adjust the o to make the distribution
more centralized. Intuitively, given a Gaussian distribution with o standard deviation value, FWHM and o satisfy
following relationship: FWHM = 2+/2In 20 ~ 2.3550. To allow flexibility, we use a parameter « to penalize the
FWHM, and control Gaussian distribution spread.

Overall, o is adjusted based on the length of the line-segment and the FWHM. For o3, it is also adjusted
based on the o value and the empirical Aspect Ratio (AR), i.e. length divided by width, of the underlying object.
In our experiments, we empirically set a fixed AR value for all experiments.

Figure 3(V) shows an example of the density map generated for a line-segment between (5, 5) and (25, 25)
by setting the AGK parameters with o7 = 8.24 and o3 = 2.06. Comparing Fig. 2(IV) and (V), i.e. density maps
generated using simple Gaussian kernel vs. Anisotropic Gaussian kernel (AGK) respectively, the results show that
AGK based density map is more resemblance to the manatee shape, and therefore will result in more accurate
counting for manatees.

In Fig. 4, we report a manatee aggregation with line-segment labels (left panel), the density map generated
from Gaussian kernels (middle), and the density map generated from AGK kernels, by adding oval shaped Gauss-
ian distributions over the lines. Comparing two density maps, we can find that density map from AGK kernels
provide more accurate density estimation with respect to individual manatee’s shape and position. For example,
the two manatees to the upper-right scene are represented as two circular-shaped areas, whereas AGK kernel’s
density shows clear oval-shapes with accurate orientation and aspect ratios.

CSRNet learning to predict density map

After obtaining density maps for each labeled images, our next step is to use original images to train a deep neural
network. Once the network is sufficiently trained, for each input image, the network will output a density map
maximally approximating to the ground-truth density map of the input image.

More specifically, given a labelled training deadset .# with|.# |images where each image I is labeled and has a
ground-truth density map &;. Denote fg () a deep neural network regulated by a number of tunable parameters
©, and for each labeled input image I; € .# and its density map &5, € &, the network will output a predicted
density map 2y, the neural network aims to learn optimal parameters ©*, such that total loss £() with respect to
the predicted density map is minimized.

©* = argmin Z Lfe ), 21,)
®

10
lIiesg ( )

To learn to predict density map, we employ Congested Scene Recognition network (CSRNet) as our basic model.
CSRNet is designed to understand highly congested scenes and perform accurate count estimation as well as
produce high-quality density maps*. The CSRNet consists of two major components, including a CNN (con-
volutional neural network) as the front-end for 2-D feature extraction and a dilated CNN for the back-end to
replace pooling operations. In our design, we use VGG16°%, a pretrained CNN network, as the front-end of
CSRNet because it has strong transfer learning ability and flexibility to concatenate the back-end for density
map generation. The fully-connected layers of VGG-16 is removed in the CSRNet.
For the back-end, a 2-D dilated convolution can be defined as

800 1000 1200

200 400 600 800 1000 1200
(Left) Manatees with line-segment labels (Middle) Density map by Guassian kernel (Right) Density map by Anisotropic Gaussian Kernel

200 400 600 800 1000 1200

Figure 4. Left: an image with line labels of manatees, Middle: density map of the image generated by using
generic Gaussian kernels (line-segment labels), and Right: density map generated by using AGK kernels (line-
segment labels).
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y(m,n)=ZZx(m+rxi,n+r><j)w(i,j) (11)

i=1 j=1

where y(m, n) is the output, x(m + r x i,n + r x j) is the input, w(i, j) is the filter with M length and N width
respectively, and r is the dilation rate. When r = 1, the dilation convolution layer is the same as a normal con-
volution layer.

In the dilated convolution layer, a kxk kernel filter will be enlarged to
(k+ (k—1)(r — 1)) x (k+ (k — 1)(r — 1)) with dilated stride r. Because of the application of the dilated con-
volution, the CSRNet can maintain the resolution of feature map. Most importantly, the output from dilated
convolution contains more detailed information.

Overall framework

Algorithm 1 outlines major steps of the proposed framework for manatee counting using DNN and AGK ker-
nels. In addition, Fig. 5 also shows conceptual flow of the framework with respect to input images, annotations,
density maps, and DNN network training.

The general workflow can be splitted into two phrases, annotation and training phrase, and prediction phrase.
During annotation and training phrase, all training images are labelled, and each original image and its labels
are used to generate AGK density map (detailed in Algorithm 3). After this step, all training images and their
density maps are used to train a deep neural network, by using Eq. (13) to calculate the loss between the DNN
output and each training image ground-truth density map. The loss is used to update weights of the DNN until
the network converges. After that, in the prediction phase, the trained neural network can be utilized to predict
number of manatees in a test image.

Density map generation

One of the main steps in Algorithm 1 is to generate AGK density map (Algorithm 3) for each image I (this step
can also be replaced by Algorithm 2 to generate normal Gaussian Kernel Density Map). For Gaussian distribu-
tions, the probability density values are continuous infinitely with respect to the input space. In reality, the distri-
butions are restricted to a 2-D window, limited by the image size. From distribution perspective, for a generated
Gaussian distribution, the sum all values within the 2-D array should be equal to 1. Therefore, we truncate each
single Gaussian distribution to a specific region, and all distributions’ output, and further normalize the values
to ensure that they follow a distribution. In the following, we explain steps to generate three types of density
map, dot-label, line-label, and line-label Anisotropic Gaussian, respectively.

Dot-label Gaussian density map. To obtain a dot-label Gaussian density map, #n Gaussian distributions are gen-
erated based on the number of dots (i.e. labels) within the image. Then these n 2D arrays are added to their cor-
responding point positions in the map, which is an image-sized initialized 2D array without the color dimension.

Line-label Gaussian density map. To get a line-label Gaussian density map, its general algorithm is shown as
Algorithm 2. Firstly, a w by h shape 2D array, 0, is initialized with 0 where w and h are the width and height
of the Image I, respectively. Then get each 1 from labels, L, where the label contains two points, start point and
end point of the line. A series of points is generated pixel by pixel from start point to end point. For each of the
point, a o value is created according to the Eq. (7) followed by creating its corresponding window size. After that,
a Gaussian distribution array can be generated and added to a temporary density map o at its position. Once
Gaussian distributions are generated for all of points of the line-segment, the o is normalized because one line
label is only regarded as one count. Finally, the o is added back to the output .

Line-label anisotropic Gaussian density map. ~Algorithm 3 lists steps to generate a line-label anisotropic Gauss-
ian density map. An array of ( is initialized with 0 which is the same as it in generating a line-label Gaussian
density map. For each of the label, 1, in labels, L, first, the length, len, of the line-segment is calculated. With the
length of the segment, o7 is calculated according to Eq. (9) followed by 0. Then, generating anisotropic Gaussian
distribution based on o and o, within a 2-D array, 4" (i, o), with the shape of len by len. After that, it rotates the
generated distribution respecting to the slope of the label. Before adding .#"°(u, o) back to the output ¢ at the
position of the center of the line-segment, ./"°(u, o) is normalized. Once all the distributions have been created
for the labels, anisotropic Gaussian density map is presented for the image I.

Manual label ~ Density map D, 20 Output D,

Figure 5. A conceptual view of the deep neural network based manatee counting workflow. From left to
middle: An input image (I), the line-segment labels of the image, the density map Z; of the image. From right to
middle: An image I is applied to a neural network (NN) to predict its density map Zr. The loss function in the
middle is used to regulate and train the NN to ensure that Z; maximally approximates to the ground-truth Zr.
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Data: (1) .#: training image set;
(2) 7 test image set;

1 Define: (1) Z: density map set;

2 (2) fo(): aDNN, e.g. a CSRNet or other DNNs;

3 (3) a(I): label an image / and return annotations;

4 === Annotation and training phase ===

s 9+ {}

6

7

8

9

for I € .7 do
L<«a(l); // obtaining training image I annotations
D < AGKDensity(I,L) ; // obtaining I’s AGK density map
P+ 2UD
10 end
11 fo-() < argmin £(fo(.#),2) ; // training DNN network using Eq. (10)
[C]
12
13 === Prediction phase ===
14 for T € 7 do
15 T+ fo (T) ; // predicting density map

CT + Calculate manatee numbers in 7' using Eq. (6)
17 end

Algorithm 1. DNN's for Manatee counting using AGK

Limitations

The proposed anisotropic Gaussian kernel relies Gaussian distributions to generate a density map to approximate
manatee shapes. By doing so, it relies on assumption that manatee shapes are largely visible and are close to
the AGK kernel shape. As a result, several potential limitations may hinder this approach from obtaining high
accuracy counting results:

® Close-up Views: When manatees are situated too close to the camera, they may appear disproportionately
large, with only parts of their bodies being captured. In such cases, line-labels fail to accurately mirror the
shape of the manatee. The resultant density graph might not correspond well to the actual manatee shape,
and result in poor counting performance.

e Distant Views: On the opposite end, manatees that are extremely further away from the camera appear
diminutive, resembling dots. Under these conditions, the differentiation between line-label and dot-label
becomes negligible, resulting in comparable accuracy for both annotation methods.

These real-world scenarios outline the importance of understanding the inherent constraints of different labeling/
annotation approaches for real-world applications. Our experiments and comparisons demonstrate the strength
and niche of AGK kernels in counting manatee under different environment conditions.

Experiments

Benchmark data

In order to validate the performance of proposed framework using low resolution images, manatee surveil-
lance video clips from “Save the manatee Club” (https://www.savethemanatee.org/manatees/manatee-webca
ms/), which are captured from webcams placed at Blue Spring State Park, are collected to create our benchmark
dataset. After using FFmpeg to generate images from the video clips and removing similar images, we obtain
784 images, consisting of different number of manatees, as our testbed.

Deduplication

Because manatee images are collected from video clips and manatees rarely show rapid movement, some of the
images are similar to each other. To avoid data duplication, duplicate images are dropped by using VGG-16 to
extract layer-wise features for each image and then a method is employed to calculate the difference between
two images, I, and Ip, with the formula being defined as follows:

1

Disance(I,, Ip) = Z CHW:
j Wi

jeF

|19 (Ta) — v (I)| 13 (12)

F is the outputs from the last activation layer in each group of VGG-16’s 5 groups, namely
F={yjlj =1,2,3,4,5} = {layers, layery, layer;, layeryo, layer;3). C;j, Hj, Wjare the three dimensions of the image,
channel, height, and width, respectively. 1;(iy) denotes the jth group ReLu output of the image i,. The smaller
value of Distance(I,, I), the more similarity of the two images is considered. When the value of Distance(, Ij,)
is less than 2, the two images are considered highly similar, then one of the two images is dropped.

After comparing similarities of the images, 415 of 784 images are discarded and only 369 images are kept as
dataset.
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Data: (1) I: an input image;
(2) L: line labels of image 7
1 Define: (1) I; and I;: two endpoints of line segment 1

2 (2) A (u,0): a multidimensional Gaussian distribution with 4 mean and ¢ spreads

3 Input: (1) a: expanding factor;

4 (2) Opgsic: basic value for generating o;

5 Output: & density map of image /

6 [w,h] < Width and height of image I &' € R0 // create an empty density map
7 forle Ldo

8 [Xa,Xp] < [I5,1¢] 5 // two ends of a line-segment
9 P < Evenly select [|Xq.x — Xp| + 1] points from line-segment 1

10 oceRW*h // temporary density map
11 for p € P do

12 W< p// Gaussian distribution mean

13 G ¢ Opysic +a-min(||p —xq|[, lp—xp1]) 5 // Gaussian distribution spread Eq. (7)
14 A (1,0) + Generate 2D Gaussian Distribution

15 oo+ A (u,0); // add current Gaussian distribution to the temporary density map
16 end

17 Normalize temporary density map o

18 O+ O+o

19 end

20 return O

Algorithm 2. LineDensity()—Gaussian Kernel density map generation via line labels

Data: (1) I: an input image;
(2) L: line labels of image /
1 Define: (1) I, and I;: two endpoints of line segment 1

2 (2) A (1, 0): amultidimensional Gaussian distribution with ¢t mean and ¢ spreads

3 Output: & density map of image /. [w,h] <— Width and height of image /

4 OcR M0, // create an empty density map
5 forle Ldo

6 [Xa,Xp] < [I5,1¢] 5 // two ends of a line-segment
7 W= [, ]+ 2 // calculate AGK mean
8 6 =[01,02] + Eq.(9); // calculate AGK spreads
9 A (1, 0) < Generate 2-D Gaussian Distribution

10 o +— Calculate slope between x, and x;,

1 A °(u,0) + Align 2-D Gaussian Distribution .#" (i, &) based on the line-segment slope

12 Normalize .4°(u, o)

13 O+« O+ ./4°(u,0)// add current Gaussian distribution to the density map
14 end

15 return O

Algorithm 3. AGKDensity()—AGK density map generation via line labels

Dataset characteristics
All 369 benchmark images have the same size. According to the number of manatees in each image, we separate
each image into three density levels: low, medium, and high. We define that, if an image has less than 5 manatees,
then it is of low density level. Continue with medium level if it has more or equal to 5 but less than 20 manatees.
If an image with more than 19 manatees, it is of high density level.

Figure 6 reports the manatee density distributions in the benchmark images at three levels. Images with low
density level have the highest quantity (181), which is almost equal to the total amount of medium and high level
which have 84 and 104 images, respectively.

Experimental settings

Manatee annotations

To validate the performance of using Anisotropic Gaussian Kernel (AGK) for manatee counting, we use dot and
line labels to annotate images for performance comparison. In order to reduce duplicate manual label work, we
draw a line over each manatee (from tail to head) and make sure the line crosses over the center point of the
manatee (the number of labelled line segments within an image is the number of manatees in the image). Con-
sequently, two endpoints of a line for each manatee are obtained and saved into a JSON file for further usage.
Assuming x, = [x, 5 xa,yJ z}llgb)y(b = [Xpx> Xp,y] are the two endpoints of a labelled line segment obtained from

]

. X, X . .
previous stage, [ =57k, is used as point label for the same manatee.

Parameter settings
We validate the performance of multiple baseline methods on our manatee dataset over three labels. Compared
to traditional point labeling methods*, our line labeling adds only a small amount of additional time and obtains

Scientific Reports |  (2023) 13:19793 | https://doi.org/10.1038/s41598-023-45507-3 nature portfolio



www.nature.com/scientificreports/

175 A

150

1254

100 -

754

50 4

251

Low Med High

Figure 6. Distribution of benchmark images w.r.t. different manatee density levels. The x-axis denotes manatee
density levels and the y-axis denotes number of images.

an overall better performance. In this section, we report the evaluation metrics and perform an ablation study
on the three labeled datasets to study their performance.

We evaluate the object counting task on an NVIDIA V100 GPU card. The watermark on the surveillance
video images at the lower right corner is filled with solid black to avoid additional interference. During training,
the initial learning rate is le-4, and the Adam optimizer is used. For better training and to prevent overfitting,
random flips were used for augmentation. For all networks, the batch size is set to 4.

The network directly converts the input image into a density map in training. During the density map genera-
tion, some hyperparameters are used in Algorithms 2 and 3 . They are the expanding factor, a = 0.2, the base value
of 0, opasic = 15, the empirical Aspect Ratio, R = 4, full width at half maximum FWHM = 2.355% 24/21n2
and the FWHM penalizer « in Eq. (9) is set aso = 4. Intuitively, the FWHM and o parameters in Eq. (9) are
determined such that the o value is roughly 1 7 of the length of the underlying line-segment||x, — xp]|.

Same as in previous studies*’, we chose the MSE loss to measure pixel difference between ground truth and
predicted density maps, with loss value being calculated as follows:

|7
0 = 7 Z |71, — D1,113 (13)

where .7 denotes the test set and |7 | denotes number of images in the test set. For each test image T;, 27, and
9 1, denote ground-truth and predicted density maps, respectively. || - ||2 represents the Euclidean distance.

Performance metrics
We use mean absolute error (MAE) and root mean square error (RMSE) in the experiments to evaluate algorithm
performance.

|7
MAE = —Cr,| (14)
17|
RMSE = Z(CT, Cr,)? (15)

where Cr, and Cr, are the ground-truth number and predicted number of manatees in image T}, respectively,
calculated using Eq. (6).

Baselines

MCNN', SANet>?, VGG*, and CSRNet* are some of the commonly used networks for counting problem. Mean-
while, attention mechanisms were also adopted for counting task recently, such as MARUNet*. Those models
are implemented and trained for comparisons to demonstrate the effectiveness of our proposed method. In the
following, we use X-dot, X-line, and X-anisotropy to denote that X neural network is trained by using three dif-
ferent types of density maps, which are generated by point label with Gaussian kernel, line label with Gaussian
kernel, and line label with anisotropy kernel, respectively.

e MCNN': MCNN employs a multi-column CNN structure that is adaptive to detect heads of varying sizes,
addressing scale variations inherent in crowd images and generating density maps for crowd estimation.
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® SANet**: The Scale Aggregation Network employs a feature map encoder to aggregate multi-scale features
from original images. Then it uses a density map estimator to fuse these features before generating high-
resolution density maps. This architecture ensures robust crowd counting across varied crowd densities.

® VGG®% The VGG network, characterized by its depth and 3x3 convolutions, is known for its robust feature
extraction capabilities and has been a foundational architecture in various visual tasks, including crowd
counting.

® CSRNet*: CSRNet uses the simplified VGG-16 as front-end structure for feature extraction and a dilated
convolution network as back-end, which can handle the scale variations in crowd counting tasks effectively.

e MARUNet**: MARUNet, Multi-level Attention Refined UNet, integrates a density map estimator and a crowd
region recognizer, facilitating the network’s focus on crowd regions and providing a strong baseline in crowd
density map generation.

Experimental results

Figure 7 reports two examples for each level of the three density levels, low, medium and high with three different
density maps. The first row are the original images that each image has 2, 4, 7, 11, 27 and 42 manatees separately.
The second row is their Gaussian kernel density maps generated from point labels and the fourth row is their
Gaussian kernel density maps generated by line labels while the sixth row is their anisotropic Gaussian kernel
density maps. And third, fifth and seventh row are their corresponding estimated results from trained models.
The number at the bottom right corner of each density map reports the ground-truth or estimated count of
manatees in the image.

When comparing density maps from the training results with their original counterparts, as shown in Fig. 7,
it shows that as the number of manatees in the image increases, AGK density maps can represent their original
maps more closely compared to the other two density maps. The reason is that in high-density maps, manatees
appear relatively smaller and possess similar sizes. As a result, the AGK-generated density provides a more
accurate representation of their shapes with the given experimental hyper-parameters. In contrast, the density
maps generated from GK-point and GK-line tend to distribute more widely rather than concentrating in specific
manatees’ areas.

*GT 11.0

.
Est4.4 Est 12.6 Est 23.8 Est 35.1
<
5
GT 4.0 GT7.0
» -
. : -
: X 3
Est4.3 Est 8.9 Est 11.6 Est 21.4 Est 36.5
=
\ !
GT 4.0 GT 7.0 \ GT 11.0
Est 3.4 Est 8.4 Est 12.2 Est 24.9 Est 40.2

Figure 7. Examples of algorithm performance with respect to different manatee densities in the scene. The first
row shows original images with increasing manatee density from left to right. The second and third rows show
ground-truth density map (2nd row) and predicted density map (3rd row) using dot labels. The fourth and

fifth rows show ground-truth density map (4th row) and predicted density map (5th row) using line labels and
generic Gaussian kernels. The sixth and seventh rows show ground-truth density map (6th row) and predicted
density map (7th row) using line labels and anisotropic Gaussian kernels.
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For low and medium density maps, manatees tend to appear larger within the images. In extreme cases, a
single manatee might occupy more than one-third of the entire image with only part of its body appearing in
the image. Under such conditions, all three types of density maps: AGK, GK-dot, and GK-line, struggle to rep-
resent the manatees accurately, resulting in deteriorated performance. Interestingly, in these specific scenarios,
GK-dot and GK-line potentially outperform AGK. This is because of their inherent capability to represent larger
objects more effectively. For AGK, constrained by preset hyper-parameters, it is more adept at depicting crowded
manatees, which are often of smaller sizes.

The results in Table 1 show that the anisotropy method has the lowest MAE and RMSE values across the
VGG, MARUNet, and CSRNet models for the overall dataset. This shows the efficacy of our proposed line-label
anisotropic Gaussian density map. Although this method does not surpass the other two when applied to the
MCNN model, the performance metrics are remarkably close among all three methods. For the SANet model,
the line Gaussian method yielded the most favorable results.

Among all five DNNs, SANet and CSRNet have better performance than others especially in high density
maps, where MCNNs and MARUNets have extremely high MAE and RMSE values. The performance of SANet
and CSRNet are very similar. In low-density scenarios, CSRNet shows slight advantages, but in medium to high-
density scenarios, SANet performs better. Overall, SANet has a lower MAE while CSRNet has better stability.
Interestingly, among the four compared networks, SANet is the only one that performed best under the line-
label. This may be attributed to its unique scale aggregation architecture. This empirical success proves that our
proposed line-label is indeed effective for crowd manatee counting task.

CSRNet-dot has the best MAE and RMSE values in low density cases while it is outperformed by CSRNet-
anisotropy in high density and overall cases. Specifically, in the low density map, where manatee localizations
are more distinct, CSRNet-dot registers the lowest MAE and RMSE values of 1.344 and 1.925, respectively.
When the density increases, the proposed CSRNet-anisotropy shows superior MAE values in medium to high
density scenarios compared to both CSRNet-dot and CSRNet-line. The superior performance of CSRNet-dot
in low densities can be attributed to the clearer object locations enabled by dot annotations, given that CSRNet
can effectively separate localization from counting tasks.

In terms of overall performance in CSRNet, which tested over the all data, our proposed CSRNet-anisotropy
method outperforms the other two methods both in the MAE metric and in the RMSE metric, with a MAE
value of 3.011 and a RMSE value of 3.962. The MAE overall performance of our proposed method is 2.99%
better than the CSRNet-dot method and 21.29% better than the CSRNet-line method. And the RMSE overall
performance of our proposed method is 3.63% better than the CSRNet-dot method and 23.04% better than the
CSRNet-line method.

In some cases, the proposed anisotropy kernel does not consistently outperform other models, especially
when combined with DNN networks like MCNN and SANet. MCNN struggles to identify the optimal method
across the three different density levels. In contrast, SANet produces its best performance with the line kernel.
Such discrepancies could stem from the intrinsic model structures associated with image scaling in MCNN and
SANet. It becomes apparent that our method may not be universally effective for all DNN models.

Another noteworthy observation is the subpar performance of our method in low-density map levels across
four out of five tested models. This might be attributed to the fact that, in low-density images, manatees often
appear larger or may only partially be in the frame. Such scenarios might not be ideally represented by the
density maps generated through the anisotropy kernel especially with the given experimental hyperparameters

Low Medium High Overall
Method MAE | RMSE | MAE |RMSE | MAE RMSE | MAE RMSE
MCNN-dot 3.640 | 3.812 3.511 [4.924 26.982 | 28.352 | 11.377 | 12.363
MCNN-line 3.603 |3.753 3.556 |4.912 26.998 |28.375 |11.386 |12.346
MCNN-anisotropy 2.471 |2.859 4.170 | 5.562 28.080 |29.408 |11.573 |12.610
SANet-dot 2.048 |3.032 2.833 | 3.909 4.993 7.510 3.291 4.817
SANet-line 1.512 | 2.645 2.268 |3.418 |4.197 6.882 2.659 4.315
SANet-anisotropy 1.847 |2.619 3.876 |5.047 6.042 8.586 3.921 5.417
VGG-dot 3921 |4.721 2.702 | 3.522 15.601 | 17.199 |7.408 8.481
VGG-line 3.723 | 4.540 2.678 | 3.535 16.217 | 17.748 | 7.539 8.608
VGG-anisotropy 3.405 |4.125 2.550 |3.488 15.311 | 16.888 |7.088 8.167
MARUNet-dot 2.312 | 2.738 4292 | 5.685 28.150 |29.447 |10.045 |15.982
MARUNet-line 2.653 | 3.578 4.347 | 5.797 27.046 | 28.498 |9.913 15.583
MARUNet-anisotropy 3325 |4.122 3.830 |5.030 25.063 |26.677 |9.567 14.651
CSRNet-dot 1.344 | 1.925 2.981 |3.825 4.978 6.569 3.101 4.106
CSRNet-line 2.256 | 3.341 3.669 | 4.67 5.03 6.614 3.652 4.875
CSRNet-anisotropy 1.588 |2.19 2.94 3.84 4.506 5.856 3.011 3.962

Table 1. Manatee counting performance using different DNNs over different density levels and label types.
For each method, the best result with respect to each type of labeling approach (dot, line, anisotropy) and
different levels of manatee densities (low, medium, high), is bold-faced.
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which used for all images. In these instances, Gaussian kernels with dot or line annotations might provide a
better fitting representation.

In the subsequent section, to further substantiate the efficacy of our method, we apply the proposed method
to wheat head counting, where objects have regular consistent shapes.

Additional results: wheat head counting

In the previous section, we validated our proposed method in the newly created manatee counting dataset. Given
the intricate backgrounds and the variability in manatee shapes, often resulting from varying camera distances,
the label can not present the manatee over different density levels as shown and analyzed in prior sections.

To further validate the ability and adaptability of our method, we have opted to test it on the “Global Wheat
Head Dataset 20217%°. Unlike manatees, most wheat heads in these images possess consistent, elongated rectan-
gle-like shapes. We posit that our proposed line annotation with AGK could intuitively represent such forms
more effectively.

Figure 8 shows an example of original wheat head images and three corresponding density maps that are
generated by a dot-based Gaussian Kernel(GK), a line-based GK and a line-based anisotropic GK. It is obvious
that line-based AGK density map has a better representation of the wheat heads in terms of position, shape,
and direction.

As illustrated in Table 2, Yolo-v5(GWC-2021)% has the poorest performance in terms of RMSE. All three
models based on CSRNet outperform Yolo-v5, with CSRNet-anisotropy has outstanding MAE of 15.7 and RMSE
0f 20.2. Yolo-v5 is detection based algorithm that while it has good bounding box accuracy, it misses numerous
wheat heads, especially those that are smaller in size. The average size of those missed wheat heads is about 35%
smaller than the average size of all wheat heads.

For our density estimation-based method, instead of seeking the precise location and boundary of each wheat
head directly, it determines the total number of wheat heads by estimating the density of wheat heads within
a particular region. This method is particularly good at detecting smaller and densely distributed wheat heads
since it emphasizes the overall quantity estimation rather than pinpointing individual targets.

When the MAE and RMSE values are close, it often indicates there are not significant outliers. Such consist-
ency can suggest that the model’s predictions are relatively accurate, with minimal discrepancies. As shown in
Table 2, the proximity of the MAE and RMSE values reinforces this notion of accuracy in the CSRNet’s predic-
tions, especially CSRNet-anisotropy which proves the effectiveness of our method.

Throughout the training process, we noticed that the model effectively capture the macro structure of the
wheat. For point label, the model had to work hard to fit the density map precisely to a circular region. To address
this challenge, we introduced AGK to generate density map by using line labels, which differ significantly from
the traditional circular Gaussian region. This label utilizes an elliptical anisotropic Gaussian distribution to
present the wheat’s location and shape. In this distribution, the core line represents the exact location of the
wheat head, while the surrounding decay area outlines the potential uncertainty of the position. Compared to
the conventional circular Gaussian region, this method endows the model with enhanced adaptability in wheat
head counting.

Figure 8. The original wheat image and its three types of corresponding density maps (left to right): dot based
GK, line based GK, and line based AGK.

Method MAE | RMSE
Yolo-v5(GWC-2021)* | NA 67.0
CSRNet-dot 30.1 37.6
CSRNet-line 203 | 281
CSRNet-anisotropy 15.7 20.2

Table 2. Wheat head counting performance in CSRNet over different label types.
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Conclusion

In this paper, we proposed a deep neural network (DNN) based crowd counting approach to count manatee
aggregations. This method capitalizes on low-quality images to count manatees in a designated region. Although
crowd counting has been used in many other applications (e.g. counting cars or audiences), we argued that
manatee counting has unique challenges, including surface reflection, occlusions, camouflage. To reduce label-
ling costs, we employed line-label based annotation, with a single straight line being used to mark each manatee.
To take unique shapes of manatees into consideration, we proposed to use Anisotropic Gaussian Kernel (AGK)
transform input images into manatee customized density maps, and then train deep neural networks to learn to
count manatee numbers automatically using a predicted density map. Experiments and comparisons, using low
resolution real-world manatee images, show that AGK based counting outperforms other baselines, including
traditional Gaussian kernel based approach. The proposed approach works particularly well when the image has
a high density of manatees in complicated background.

Our findings demonstrate a promising trajectory for broader applications. By transitioning from dot to line
labeling, we not only enhanced the accuracy in counting manatees but also successfully improved wheat head
counting. The proposed methodology holds potential for various applications, especially for entities with convex-
shaped objects, including diverse animals such as livestock like sheep and cattle, and crops such as wheat head,
corn, eggplant, etc.

In this study, we are primarily focused on images captured from the water surface. Counting manatees in
complex underwater backgrounds remains an open problem®. Future study may take manatees’ movement
into consideration to improve counting accuracy, as static objects like branches and rocks remain relatively
unchanged over short duration.

Data availability
Source code and datasets generated and/or analysed in this study are available in the following GitHub reposi-
tory: https://github.com/yeyimilk/deep-learning-for-manatee-counting.
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