
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19793  | https://doi.org/10.1038/s41598-023-45507-3

www.nature.com/scientificreports

Counting manatee aggregations 
using deep neural networks 
and Anisotropic Gaussian Kernel
Zhiqiang Wang , Yiran Pang , Cihan Ulus  & Xingquan Zhu *

Manatees are aquatic mammals with voracious appetites. They rely on sea grass as the main 
food source, and often spend up to eight hours a day grazing. They move slow and frequently 
stay in groups (i.e. aggregations) in shallow water to search for food, making them vulnerable to 
environment change and other risks. Accurate counting manatee aggregations within a region is not 
only biologically meaningful in observing their habit, but also crucial for designing safety rules for 
boaters, divers, etc., as well as scheduling nursing, intervention, and other plans. In this paper, we 
propose a deep learning based crowd counting approach to automatically count number of manatees 
within a region, by using low quality images as input. Because manatees have unique shape and 
they often stay in shallow water in groups, water surface reflection, occlusion, camouflage etc. 
making it difficult to accurately count manatee numbers. To address the challenges, we propose to 
use Anisotropic Gaussian Kernel (AGK), with tunable rotation and variances, to ensure that density 
functions can maximally capture shapes of individual manatees in different aggregations. After 
that, we apply AGK kernel to different types of deep neural networks primarily designed for crowd 
counting, including VGG, SANet, Congested Scene Recognition network (CSRNet), MARUNet etc. to 
learn manatee densities and calculate number of manatees in the scene. By using generic low quality 
images extracted from surveillance videos, our experiment results and comparison show that AGK 
kernel based manatee counting achieves minimum Mean Absolute Error (MAE) and Root Mean Square 
Error (RMSE). The proposed method works particularly well for counting manatee aggregations in 
environments with complex background.

Recent advancements in Artificial Intelligence (AI) have allowed it to be used in a wide spectrum of fields1. 
Especially, AI applications in ecology to save species have gained more importance in the last decade with the 
increasing number of endangered animals. There are many ways to use computational methods to help save 
endangered species, such as detecting the presence of the species2 and counting species to collect information 
about numbers and density etc. In this paper, we are proposing a deep neural network based method to help 
save manatees, an endangered species.

Human activities impact environment in numerous ways including deforestation, overpopulation, poaching, 
over-fishing, and climate change. These negative impacts directly affect the physical environment, posing risks 
and generating opportunities for wildlife. Sometime, this dispersion benefits species, mostly invasive species3. 
In most cases, however, human-assisted dispersion adversely affects the natural world. As a result, wildlife 
populations are declining at an alarming rate, and the extinction rates are now up to 100 times higher than the 
normal extinction rate4.

Manatees are one of the wildlife species being affected by human-related threats5. There are four species of 
manatees in the world: Trichechus inunguis (Amazonian manatee), Trichechus pygmaeus (dwarf manatee), 
Trichechus senegalensis (West African manatee) and Trichechus manatus (West Indian manatee)6. Amazonian 
manatees and dwarf manatees populate in freshwater habitats. The dwarf manatees are contentious species only 
found in the river Aripuaña in Brasil and closely linked to the Amazonian manatee7,8. The West African manatees 
are distributed from Angola to Senegal8. The West Indian manatee prefers shallow coastal habitats such as rivers 
and estuaries. They can be found from Brazil to Florida and all the way around the Caribbean islands. The West 
Indian Manatee has two subspecies; Florida Manatee and Antillean Manatee, and both of them are considered 
endangered by IUCN (International Union for Conservation of Nature)9.
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While some manatee species, such as the Florida Manatee, have a relatively limited geographical distribu-
tion, some manatee types inhabit a wide geographical range. As a result of this wide range, individual manatee 
migrations occur10. For example, during the 2021 winter, a manatee migration from Florida to the Mexican coast 
was observed11. Furthermore, some types of manatees, such as Antillean manatees, can live in a diverse range of 
ecosystems. In some cases, they inhabit clear saltwater in Belize and Mexico, visit rivers, reefs, and freshwater 
lagoons, whereas they live in salt or fresh water in Chiapas and Tabasco states with insufficient visibility12,13. Such 
diverse living habits and behaviors make it inherently difficult to track them.

Over the last decades, manatee populations have been continuously decreasing. Manatees tend to live as a 
group or individuals. Most of their populations exists as small isolates and are also low in density14. Furthermore, 
they are frequently scattered throughout huge bodies of water and display evasive behavior due to hunting pres-
sure, making detection and counting challenging with existing approaches. Knowing the number of manatees 
and their gathering pattern in real-time is vital for understanding their population dynamics. The timeliness 
and accuracy of the count data upon which choices are made frequently determine the efficacy of management 
decision-making. In other words, improvements in counting techniques may portend better ecological results 
from management decisions. Meanwhile, manatees rely on sea grass as their primary food source. Because sea 
grass requires sunlight and shallow water to grow, manatees tend to stay in shallow water to search for food, mak-
ing them vulnerable to the environment, e.g. they have very little room/time to move away from (avoid) oncom-
ing boats, resulting in deadly collisions if the boat drivers are not aware that they are approaching manatees.

Using aerial survey data, counting estimates for manatees in southern Florida, USA, was developed, and 
environmental and temporal factors were discovered to impact distributions15,16. However, aerial surveys are 
time-consuming and costly, and the accuracy depends on factors such as observer bias, weather, and time of the 
day. Consequently, less time-consuming and less costly counting methods gain more importance in detecting 
the number of manatees. Furthermore, it is also crucial to have a method to provide a real-time count to allow 
ecologists to be aware of the threat early and act proactively to protect manatees.

Although many methods exist for counting17, most of the existing counting methods18,19, 20 are applied to 
crowds to count the number of people, due to their relevance to important applications such as urban planning 
and public safety. Fortunately, such advanced techniques in crowd counting can also be generalized to other fields 
such as wildlife counting, by taking specific characteristics of the objects into consideration.

In this paper, we propose to use crowd counting methods to count manatee aggregations. Our goal is to 
accurately estimate number of manatees in a specific region, using low quality images as input. Due to numerous 
factors, as we have elaborated above, manatee counting is a challenging task.

•	 Occlusion: Because manatees tend to live in herd, they frequently block each others when viewing from the 
surface. As a result, small manatees are likely to be partially or completely blocked from the view.

•	 Distributions and Distortion: Due to diverse living habits and behaviors, manatees often present in different 
population density, perspective distortions, and lightning conditions. Without sufficient training data for 
each type of scene, it is difficult for a model to obtain accurate results for counting.

•	 Reflections and Camouflage: Furthermore, water reflections tend to make manatees invisible in reflec-
tion areas, counting manatees from images captured from surface mounted camera is difficult.

•	 Background: Finally, the high similarity of appearance between manatees and some elements in the back-
ground, such as fishes, rocks, imposes additional challenge to manatee counting.

In order to address the above challenges and accurately estimate the density of the manatee, we propose a deep 
neural network based crowd counting method, which learn to estimate manatee density within an input image. 
Our method considers distortions caused by the perspective between the water space and the image plane. Fur-
thermore, since the shape of the manatee is closer to an ellipse than a circle, we propose a method that uses an 
Anisotropic Gaussian kernel (AGK) to best represent the manatee contour, and estimate manatee density in the 
scene. By formatting manatee counting as a deep neural network density estimation learning task, our approach 
balances the labeling costs vs. counting efficiency. As a result, our method delivers a simple and high throughput 
solution for manatee counting requiring very little labeling efforts.

Contribution
Our research brings the following three unique contributions to enrich our data and algorithm design for domain 
specific tasks:

•	 Deep Learning for Counting Manatees: We are among the first to introduce deep learning method to auto-
matically count manatee through low-resolution images captured from surface mounted camera. This pio-
neering study not only addresses the technical challenges of counting in complex outdoor environments but 
also offers potential ways to aid endangered species.

•	 Anisotropic Gaussian Kernel with Line Label Annotation: We introduce Anisotropic Gaussian Kernel com-
bined with line label annotations to generate density map. This novel method can represent the unique shapes 
of manatees and deliver more precise counting results.

•	 Manatee Counting Dataset: To validate our method and facilitate further research in this domain, we have 
developed a comprehensive manatee counting dataset, published through GitHub for public access (https://​
github.​com/​yeyim​ilk/​deep-​learn​ing-​for-​manat​ee-​count​ing).

https://github.com/yeyimilk/deep-learning-for-manatee-counting
https://github.com/yeyimilk/deep-learning-for-manatee-counting
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Related work
Our research is closely related to two research tasks: (1) learning to count number of objects within a scene; and 
(2) obtaining labels to support counting.

Counting methods
Given the above-mentioned specific significance of counting, an increasing number of scholars have attempted 
to address the counting issue. Existing methods in the field mainly fall into three groups: detection-based21–23, 
regression-based, and density estimation based approaches including Convolutional Neural Network (CNN) 
based density estimation techniques24. It is worth noting that with the superb performance of deep learning 
methods, models based on CNN have largely dominated a variety of counting tasks.

Previous counting methods mainly focused on counting people, although some methods focused on cars, 
animals, cells etc. Early works22,23, 25 focused on counting people, using detection-based approach. Detection-
based methods usually detect a head or person by using a sliding-window-like detector to count the number of 
people26. Recently many object detection tools (YOLO27, R-CNN28 etc.) are developed for object detection in 
sparse scenes. Nevertheless, these approaches do not show good performance in congested scenes because they 
require extraction of low-level characteristics.

Crowd counting, especially in real complex environments, has received increasing attention in various 
domains. A recent survey29 indicates that majority count-related studies predominantly center around yield 
estimation, phenotyping, livestock monitoring, and insect monitoring, which together constitute approximately 
97% of the applications29.

A modified version of the Inception-ResNet architecture was employed to count tomatoes and simulated syn-
thetic images were also used to enhance accuracy, although the system struggles to count green fruits30. A novel 
rice plant counting network, termed RPNet31, has four modules: feature encoder, attention block, initial density 
map generator, and attention map generator. Results indicate that RPNet outperforms MCNN, CSRNet, SANet, 
TasselNetV2, and FIDTM on certain high-resolution image datasets. Many detection-based and segmentation-
based network have been proposed for counting fruits or plants, including those specific to blueberries, wheat 
spikes, panicles, pistachios and grapes clusters29.

The application of deep learning models, particularly CNN combined with aerial imagery captured through 
UAV (Unmanned Aerial Vehicle)32 has shown significant promise in detection and counting. Models such as 
NasNet, Xception, YOLOv4, and YOLOv5 have demonstrated high accuracy, even under challenging conditions. 
While these models succeed in detecting cattle in various conditions, challenges like occlusion and diverse cattle 
breeds remain areas for improvement33–35.

Our method addresses the unique challenges posed by counting submerged animals in outdoor open water 
environment, especially when dealing with long-shape entities such as manatees, from overhead webcam low 
quality images.

Annotation and labeling for counting
Labeling is a critical step to support learning. In order to learn to estimate number of objects in a scene, it is 
necessary to provide supervision (i.e. label information) for the learning algorithms. Such label information 
varies from labeling the whole image to each single object in the image.

Total count annotation
Using total count as a label in counting tasks can reduce annotation costs. This type of annotation is often referred 
to as Weakly-Supervised. Earlier counting frameworks36,37 mostly used this approach. Borstel et al.38 proposed 
a weakly-supervised solution based on the Gaussian process for density estimation. The training samples are 
divided into multiple subregions in their work, but each region is still annotated with only count labels. Modern 
counting methods try to dig for more information. Yang et al.39 used a soft-label sorting network to sort multiple 
images in the presence of only numerical labels. Then they used a regression network with a shared backbone to 
obtain the final number of people. MATT​40 and Sam et al.41 introduced a small number of point-level annotations 
and trained mainly using total count annotations. Their work shows that only a small number of point annotation 
samples can improve counting accuracy. JCTNet42 and TransCrowd43 use performant Transformer structures to 
regress the overall number directly. Further, CrowdMLP44 uses a more concise multilayer perceptron (MLP) as 
the overall architecture and introduces a self-supervised agent task to impose spatial cues implicitly. Although 
the total count annotation-based approach has the lowest annotation cost, due to the lack of spatial information, 
the average counting performance is lower than that of the density map-based approach.

Bounding box annotation
In order to provide accurate information of the object in the scene, bounding box annotations draw a minimum 
outer rectangle for each object appearing in the image. This allows underlying learning algorithms to learn 
properties of the objects. Nevertheless, drawing precise rectangles is difficult and labor-intensive, especially for 
images with a high density of objects. In addition, bounding Box-based annotation methods cannot provide 
accurate predictions in extreme situations, such as low resolution or severe occlusion.

Dot annotation
Dot annotation, one of the most commonly used techniques in recent years, marks each counted object as a 
dot, where the dot is usually located at the center of the object, e.g. the center of a person’s head. As a result, dot 
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annotation creates a locality point map where the sum of the point map equals to the total number of objects, 
and the learning can be carried out using information from the dots.

Dot annotation tremendously reduces the labeling efforts, compared to others like bounding box annotation, 
and is also able to handle extreme cases like object occlusions. In reality, it is, however, difficult to train a neural 
network (NN) using only sparse points. Therefore, point annotations are usually transformed into density maps, 
using transformation process defined as follows.

where Kσ (·) is a kernel function (e.g. a Gaussian kernel) and DI is the density map of image I (generated using 
kernel functions). L is the set of labeled dot/point locations in the input image I, and σ is the scale parameter of 
the 2-D Gaussian kernel. When integrated, the density map contains per-pixel density information of the scene, 
which results in the count of object in the image.

Intuitively, the transformation in Eq. (1) blurs each point annotation according to the scale parameter σ , and 
settings of σ represent different types of density mapping. The most basic way is to keep σ as a fixed value, and 
an existing work45 has studied commonly used σ parameters.

One limitation of using a fixed σ value is that it prevents the density map from capturing perspective informa-
tion of the counted objects. When the scales of the objects varies significantly in the image, a fixed σ value results 
in low accuracy. Alternatively, an adaptive kernel19 uses adaptive σ values by taking average distance obtained 
from k-nearest neighbor algorithm into consideration. Intuitively, it produces a severely blurred density map 
in a highly dispersed regions of the target to accommodate the scale variation due to perspective. However, 
this approach relies on the uniform distribution of the counted objects. When discrete targets are present, the 
k-nearest algorithm becomes unreliable.

Modern approaches try to introduce additional information to produce more reliable adaptive kernels. Liu 
et al.46, Shi et al.47, Yan et al.48, and Zhang et al.19 use a perspective map to smooth the final density map so that 
larger counting targets close to the camera have larger and smoother Gaussian regions in an attempt to elimi-
nate the error due to perspective distortion. However, perspective mapping is unavailable in manatee counting 
because the water is not on the same plane. Some work49 uses depth camera to obtain relative depth of the target 
to the camera to estimate the size of the target. However, depth acquisition of underwater objects is still an open 
problem, and is uncommon (due to cost) in general surveillance/tracking systems.

Figure 1 shows an example of different labeling/annotation approaches on an image with 21 manatees in the 
scene. From left to right, the labeling costs and difficulty increase. The left most image is labelled with a number 
21, which is the number of manatees in the scene (the label does not provide any additional information about 
manatees, such as locations, orientation etc.). Dot annotation marks each manatee with a circular point, while 
bounding-box annotation outlines each manatee with a rectangular box. For comparison, our proposed method 
employs line-segment annotation, using a single line-segment to label each manatee.

Proposed method
Recently, density maps have been commonly used for presenting crowd counting because they can represent the 
distribution of the crowd. In our research, we propose to use Anisographic Gaussian Kernel (AGK) based crowd 
counting approach for manatee counting. In the following, we will first introduce kernel density based counting, 
and then propose manatee customized crowd counting framework.

Base network
Following recent approaches, we perform counting based on the density estimation framework. The input of 
the framework is an image I ∈ R

w×h , represented as a w × h matrix where w and h denote image width and 
height respectively. The ground-truth density map DI ∈ R

w×h is used to train deep neural networks (DNNs) by 
imposing normalized 2-D Gaussian at manatee locations provided by the annotations. The deep neural network 
is trained to predict the density map D̂I ∈ R

w×h for an image I, such that the network predicted density map 
output D̂I is sufficiently close to the ground-truth DI.

Kernel function
A kernel, commonly used in machine learning to perform classification and clustering, is a non-linear mapping 
of two vectors in a feature space, through the dot product of two vectors. Given two d−dimensional vectors 

(1)DI =
∑

x∈L∈I
Kσ (x)

Figure 1.   Comparison of different types of labels with their difficulties for the labeling work.
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xi , xj ∈ R
d , and a transformation function ϕ(x) defined for each vector, a kernel mapping between xi and xj is a 

function defined as dot product ϕ(xi) and ϕ(xj) as follows:

For example, for 2−dimensional vectors xi , xj ∈ R
2 , with xi = [xi,1, xi,2] and xj = [xj,1, xj,2] a simple polynomial 

kernel is defined as

where ϕ(xi) = [1, x2i,1, x2i,2,
√
2xi,1,

√
2xi,2,

√
2xi,1xi,2] , and ϕ(xj) is defined similarly.

The kernel function should satisfy the following three properties: symmetrical, non-negative, and the area 
under the curve of the function must be equal to 1.

There are some well-known examples of kernels satisfying specific properties, such as Gaussian kernel, mul-
tivariate Student kernel, and Laplacian kernel. The Gaussian kernel can be expressed as

Similar to polynomial kernel, Gaussian kernel function in Eq. (4) can be transformed as dot product between two 
vectors, ϕ(xi) and ϕ(xj) , by using Taylor series to expand the kernel function into an infinite series of products.

The original Gaussian kernel has the same spread ( σ ) for all feature dimensions. As a result, it is difficult 
to represent a high dimensional space and differentiate features more important to capture the decisions (or 
classifications)50.

Kernel density map generation
Given an image I ∈ R

w×h represented as a w × h array, and a set of n labelled points p1, . . . , pn in the image (e.g. 
using dot annotation), the kernel density map intends to generate a density map DI ∈ R

w×h of I, with respect 
to the labelled points L (so the density map is primarily focused on labelled points).

The kernel density estimator (KDE) is a non-parametric estimator used to estimate the univariate or multi-
variate densities based on kernels as weights51. One direct way to create a kernel density map DI is to compare 
each pixel in I to each labeled point pi ∈ R2 , using 2-D location to represent pixels and points.

Denote xi,j ∈ R
2 the 2-D location of a pixel of image I located at [i, j], kernel density map DI can be calculated 

using kernel transformation below

where i = 1, . . . ,w; j = 1, . . . , h are indices of image width and height, and Kσ is a kernel function with band-
width σ.

Density map to counting
After obtaining the density map of an image, the number of manatees can be calculated by using element-wise 
summation of all points’ density value as follows

where CI denotes ground-truth manatee numbers in the image I. For each labeled image, the annotations have 
ground-truth CI value, so density map needs to be normalized accordingly to ensure that the sum of element-
wise density map equals to its CI value.

Figure  2 shows an example of an input image I with dot annotations (left panel), and its density map DI 
based on labeled points (right panel). The ground-truth CI is 21, because there are 21 manatees within the image.

After obtaining the density map DI , we will train neural network using input image I, and using density map 
DI as expected output of the network. A sufficiently trained neural network is therefore capable of learn to detect 
an input image’s manatee locations as a density map. By calculating element-wise sum of the predicted density 
map, using Eq. (6), we can calculate number of manatees in the scene (detailed in the latter section).

Manatee customized crowd counting
Line‑label for manatee counting
Although point label are commonly used for generating density map in crowd counting, a manatee’s body is 
oval-shaped, meaning that point annotations cannot effectively capture orientation and shape of manatees for 

(2)K(xi , xj) = ϕ(xi)
Tϕ(xj)

(3)

K(xi , xj) = (1+ xi
Txj)

2

= (1+ xi,1xj,1 + xi,2xj,2)
2

= 1+ x2i,1x
2
j,1 + x2i,2x

2
j,2

+ 2xi,1xj,1 + 2xi,2xj,2 + 2xi,1xi,2xj,1xj,2

= ϕ(xi)
Tϕ(xj)

(4)Kσ (xi , xj) =
(

1√
2πσ

)d

exp

(

−
∥

∥xi − xj
∥

∥

2

2σ 2

)

(5)DI [i, j] =
1

n

n
∑

k=1

Kσ (xi,j , pk);

(6)CI =
w
∑

i=1

h
∑

j=1

DI [i, j]
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accurate counting. An alternative solutions is to use line-segment labels, e.g., a straight line segment, to mark 
each manatee.

A challenge of using a line-segment to annotate each manatee is that a line consists of an infinite number of 
points, making it difficult to obtain a density map of the input image. In this paper, we propose to use a limited 
number of points to represent the segment, and then use Gaussian kernel to denote each point for density map 
generation.

More specifically, given two endpoints, xa = [xa,x , xa,y] and xb = [xb,x , xb,y] , of a line-segment, we generate 
⌈|xb,x − xa,x| + 1⌉ number of Gaussian kernels using position evenly distributed on the line (where ⌈·⌉ denotes a 
ceiling function). In addition, to better capture manatee shapes, we generate an oval shaped Gaussian kernel for 
each dot, using σ value, which is adjusted according to the position of current point xi = [xi,x , xi,y] comparing 
to the two endpoints of the line segment, as defined in Eq. (7), where a is a constant value (i.e. a parameter).

After obtaining σ value, we can use point xi ’s current location as mean ( µ ) and generate a Gaussian distribution 
corresponding to point xi . Repeating this process, one can generate many Gaussian kernels for each line-segment. 
The total number of Gaussian kernels for each input image (which often contains many line segments) are used 
to normalize Gaussian kernels such that the density map of the whole image follows a distribution.

To illustrate the density map generation using line-segment, Fig. 3 shows examples of using single point and 
a line-segment to generate manatee customized density map. From left to right, Fig. 3(I) denotes a single point 
at (14, 14), while the subfigure (II) is the density map generated by given head coordination of the Gaussian 
kernel with σ = 4 . Figure 3(III) is a line-segment from point (5, 5) to point (25, 25) which includes 21 points 
in total, and Fig. 3(IV) denotes the density map generated by the given points in Fig. 3(III) where the result has 
been normalized. In this subfigure, the smallest σ , σbasic = 3 , is 3 at the two endpoints, while the largest σ value 
is 5 corresponding to the Gaussian kernel at the center point of the line-segment at (15, 15).

The results in Fig. 3 show that using a line-segment, combined with Gaussian kernels, can provide a custom-
ized density map resembling a manatee’s oval-shape for counting estimation.

Anisotropic Gaussian Kernel for manatee counting
While the oval-shaped density map in Fig. 3(IV) resembles to manatees’ shape and orientation, it does not effec-
tively capture the width of manatees’ body, where the length of a manatee is much longer than its width. AGK 
kernel is a modification of the Gaussian kernel (4). Instead of using a single kernel parameter for all features, 
AGK kernel uses different kernel parameters to differentiate Gaussian distributions along each feature dimen-
sion. The AGK kernel function can be defined as

(7)σ = σbasic + a ·min(�xi − xa�, �xi − xb�)

Figure 2.   Left panel: an image with dot labels of manatees, and Right panel: density map of the image generated 
by applying Gaussian distributions to labeled points.

Figure 3.   (I) A single point at (14, 14); (II) Gaussian with σ = 4 ; (III) line-segment from point (5, 5) to 
(25, 25); (IV) Gaussian with σbasic = 3 and a = 0.2 ; (V) Anisotropic Gaussian with σx1 = 8.24, σx2 = 2.06 for 
line-segment in (III).
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where k = 1, . . . , d denotes the feature indices. Because manatees’ density maps are 2-D images, we have d = 2 
for manatee counting. To generate a density map that most closely resembles each individual manatee, parameter 
σk is dynamically adjusted using Eq. (9).

in Eq. (9), �xa − xb� denotes the length of the underlying line-segment. FWHM denotes Full Width at Half Maxi-
mum of the Gaussian distribution defined by the line-segment. It is used to adjust the σ to make the distribution 
more centralized. Intuitively, given a Gaussian distribution with σ standard deviation value, FWHM and σ satisfy 
following relationship: FWHM = 2

√
2 ln 2σ ≈ 2.355σ . To allow flexibility, we use a parameter α to penalize the 

FWHM , and control Gaussian distribution spread.
Overall, σ1 is adjusted based on the length of the line-segment and the FWHM . For σ2 , it is also adjusted 

based on the σ1 value and the empirical Aspect Ratio ( AR ), i.e. length divided by width, of the underlying object. 
In our experiments, we empirically set a fixed AR value for all experiments.

Figure 3(V) shows an example of the density map generated for a line-segment between (5, 5) and (25, 25) 
by setting the AGK parameters with σ1 = 8.24 and σ2 = 2.06 . Comparing Fig. 2(IV) and (V), i.e. density maps 
generated using simple Gaussian kernel vs. Anisotropic Gaussian kernel (AGK) respectively, the results show that 
AGK based density map is more resemblance to the manatee shape, and therefore will result in more accurate 
counting for manatees.

In Fig. 4, we report a manatee aggregation with line-segment labels (left panel), the density map generated 
from Gaussian kernels (middle), and the density map generated from AGK kernels, by adding oval shaped Gauss-
ian distributions over the lines. Comparing two density maps, we can find that density map from AGK kernels 
provide more accurate density estimation with respect to individual manatee’s shape and position. For example, 
the two manatees to the upper-right scene are represented as two circular-shaped areas, whereas AGK kernel’s 
density shows clear oval-shapes with accurate orientation and aspect ratios.

CSRNet learning to predict density map
After obtaining density maps for each labeled images, our next step is to use original images to train a deep neural 
network. Once the network is sufficiently trained, for each input image, the network will output a density map 
maximally approximating to the ground-truth density map of the input image.

More specifically, given a labelled training deadset I with |I | images where each image I is labeled and has a 
ground-truth density map DI . Denote f�() a deep neural network regulated by a number of tunable parameters 
� , and for each labeled input image Ii ∈ I and its density map DIi ∈ D , the network will output a predicted 
density map D̂Ii , the neural network aims to learn optimal parameters �∗ , such that total loss ℓ() with respect to 
the predicted density map is minimized.

To learn to predict density map, we employ Congested Scene Recognition network (CSRNet) as our basic model. 
CSRNet is designed to understand highly congested scenes and perform accurate count estimation as well as 
produce high-quality density maps45. The CSRNet consists of two major components, including a CNN (con-
volutional neural network) as the front-end for 2-D feature extraction and a dilated CNN for the back-end to 
replace pooling operations. In our design, we use VGG1652, a pretrained CNN network, as the front-end of 
CSRNet because it has strong transfer learning ability and flexibility to concatenate the back-end for density 
map generation. The fully-connected layers of VGG-16 is removed in the CSRNet.

For the back-end, a 2-D dilated convolution can be defined as

(8)Kσ (xi , xj) = exp

(

−
d

∑

k=1

∥

∥xi,k − xj,k
∥

∥

2

2σ 2
k

)

(9)
{

σ1 = �xa−xb�
2 × FWHM

α
σ2 = σ1

AR

(10)�∗ = argmin
�

∑

Ii∈I
ℓ(f�(I),DIi )

Figure 4.   Left: an image with line labels of manatees, Middle: density map of the image generated by using 
generic Gaussian kernels (line-segment labels), and Right: density map generated by using AGK kernels (line-
segment labels).
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where y(m, n) is the output, x(m+ r × i, n+ r × j) is the input, w(i, j) is the filter with M length and N width 
respectively, and r is the dilation rate. When r = 1 , the dilation convolution layer is the same as a normal con-
volution layer.

In  t he  d i l ate d  c onvolut i on  l aye r,  a  k × k  ke r ne l  f i l t e r  w i l l  b e  e n l arge d  to 
(k + (k − 1)(r − 1))× (k + (k − 1)(r − 1)) with dilated stride r. Because of the application of the dilated con-
volution, the CSRNet can maintain the resolution of feature map. Most importantly, the output from dilated 
convolution contains more detailed information.

Overall framework
Algorithm 1 outlines major steps of the proposed framework for manatee counting using DNN and AGK ker-
nels. In addition, Fig. 5 also shows conceptual flow of the framework with respect to input images, annotations, 
density maps, and DNN network training.

The general workflow can be splitted into two phrases, annotation and training phrase, and prediction phrase. 
During annotation and training phrase, all training images are labelled, and each original image and its labels 
are used to generate AGK density map (detailed in Algorithm 3). After this step, all training images and their 
density maps are used to train a deep neural network, by using Eq. (13) to calculate the loss between the DNN 
output and each training image ground-truth density map. The loss is used to update weights of the DNN until 
the network converges. After that, in the prediction phase, the trained neural network can be utilized to predict 
number of manatees in a test image.

Density map generation
One of the main steps in Algorithm 1 is to generate AGK density map (Algorithm 3) for each image I (this step 
can also be replaced by Algorithm 2 to generate normal Gaussian Kernel Density Map). For Gaussian distribu-
tions, the probability density values are continuous infinitely with respect to the input space. In reality, the distri-
butions are restricted to a 2-D window, limited by the image size. From distribution perspective, for a generated 
Gaussian distribution, the sum all values within the 2-D array should be equal to 1. Therefore, we truncate each 
single Gaussian distribution to a specific region, and all distributions’ output, and further normalize the values 
to ensure that they follow a distribution. In the following, we explain steps to generate three types of density 
map, dot-label, line-label, and line-label Anisotropic Gaussian, respectively.

Dot‑label Gaussian density map.  To obtain a dot-label Gaussian density map, n Gaussian distributions are gen-
erated based on the number of dots (i.e. labels) within the image. Then these n 2D arrays are added to their cor-
responding point positions in the map, which is an image-sized initialized 2D array without the color dimension.

Line‑label Gaussian density map.  To get a line-label Gaussian density map, its general algorithm is shown as 
Algorithm 2. Firstly, a w by h shape 2D array, O , is initialized with 0 where w and h are the width and height 
of the Image I, respectively. Then get each l from labels, L, where the label contains two points, start point and 
end point of the line. A series of points is generated pixel by pixel from start point to end point. For each of the 
point, a σ value is created according to the Eq. (7) followed by creating its corresponding window size. After that, 
a Gaussian distribution array can be generated and added to a temporary density map o at its position. Once 
Gaussian distributions are generated for all of points of the line-segment, the o is normalized because one line 
label is only regarded as one count. Finally, the o is added back to the output O.

Line‑label anisotropic Gaussian density map.  Algorithm 3 lists steps to generate a line-label anisotropic Gauss-
ian density map. An array of O is initialized with 0 which is the same as it in generating a line-label Gaussian 
density map. For each of the label, l , in labels, L, first, the length, len, of the line-segment is calculated. With the 
length of the segment, σ1 is calculated according to Eq. (9) followed by σ2 . Then, generating anisotropic Gaussian 
distribution based on σ1 and σ2 within a 2-D array, N(µ, σ) , with the shape of len by len. After that, it rotates the 
generated distribution respecting to the slope of the label. Before adding N◦(µ, σ) back to the output O at the 
position of the center of the line-segment, N◦(µ, σ) is normalized. Once all the distributions have been created 
for the labels, anisotropic Gaussian density map is presented for the image I.

(11)y(m, n) =
M
∑

i=1

N
∑

j=1

x(m+ r × i, n+ r × j)w(i, j)

Figure 5.   A conceptual view of the deep neural network based manatee counting workflow. From left to 
middle: An input image (I), the line-segment labels of the image, the density map DI of the image. From right to 
middle: An image I is applied to a neural network (NN) to predict its density map D̂I . The loss function in the 
middle is used to regulate and train the NN to ensure that D̂I maximally approximates to the ground-truth DI.
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Limitations
The proposed anisotropic Gaussian kernel relies Gaussian distributions to generate a density map to approximate 
manatee shapes. By doing so, it relies on assumption that manatee shapes are largely visible and are close to 
the AGK kernel shape. As a result, several potential limitations may hinder this approach from obtaining high 
accuracy counting results:

•	 Close-up Views: When manatees are situated too close to the camera, they may appear disproportionately 
large, with only parts of their bodies being captured. In such cases, line-labels fail to accurately mirror the 
shape of the manatee. The resultant density graph might not correspond well to the actual manatee shape, 
and result in poor counting performance.

•	 Distant Views: On the opposite end, manatees that are extremely further away from the camera appear 
diminutive, resembling dots. Under these conditions, the differentiation between line-label and dot-label 
becomes negligible, resulting in comparable accuracy for both annotation methods.

These real-world scenarios outline the importance of understanding the inherent constraints of different labeling/
annotation approaches for real-world applications. Our experiments and comparisons demonstrate the strength 
and niche of AGK kernels in counting manatee under different environment conditions.

Experiments
Benchmark data
In order to validate the performance of proposed framework using low resolution images, manatee surveil-
lance video clips from “Save the manatee Club” (https://​www.​savet​heman​atee.​org/​manat​ees/​manat​ee-​webca​
ms/), which are captured from webcams placed at Blue Spring State Park, are collected to create our benchmark 
dataset. After using FFmpeg to generate images from the video clips and removing similar images, we obtain 
784 images, consisting of different number of manatees, as our testbed.

Deduplication
Because manatee images are collected from video clips and manatees rarely show rapid movement, some of the 
images are similar to each other. To avoid data duplication, duplicate images are dropped by using VGG-16 to 
extract layer-wise features for each image and then a method is employed to calculate the difference between 
two images, Ia and Ib , with the formula being defined as follows:

F is the outputs from the last activation layer in each group of VGG-16’s 5 groups, namely 
F = {ψj|j = 1, 2, 3, 4, 5} = {layer2, layer4, layer7, layer10, layer13} . Cj ,Hj ,Wj are the three dimensions of the image, 
channel, height, and width, respectively. ψj(ix) denotes the jth group ReLu output of the image ix . The smaller 
value of Distance(Ia, Ib) , the more similarity of the two images is considered. When the value of Distance(Ia, Ib) 
is less than 2, the two images are considered highly similar, then one of the two images is dropped.

After comparing similarities of the images, 415 of 784 images are discarded and only 369 images are kept as 
dataset.

(12)Disance(Ia, Ib) =
∑

j∈F

1

CjHjWj

∣

∣|ψj(Ia)− ψj(Ib)
∣

∣|22

Algorithm 1.   DNNs for Manatee counting using AGK

https://www.savethemanatee.org/manatees/manatee-webcams/
https://www.savethemanatee.org/manatees/manatee-webcams/
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Dataset characteristics
All 369 benchmark images have the same size. According to the number of manatees in each image, we separate 
each image into three density levels: low, medium, and high. We define that, if an image has less than 5 manatees, 
then it is of low density level. Continue with medium level if it has more or equal to 5 but less than 20 manatees. 
If an image with more than 19 manatees, it is of high density level.

Figure 6 reports the manatee density distributions in the benchmark images at three levels. Images with low 
density level have the highest quantity (181), which is almost equal to the total amount of medium and high level 
which have 84 and 104 images, respectively.

Experimental settings
Manatee annotations
To validate the performance of using Anisotropic Gaussian Kernel (AGK) for manatee counting, we use dot and 
line labels to annotate images for performance comparison. In order to reduce duplicate manual label work, we 
draw a line over each manatee (from tail to head) and make sure the line crosses over the center point of the 
manatee (the number of labelled line segments within an image is the number of manatees in the image). Con-
sequently, two endpoints of a line for each manatee are obtained and saved into a JSON file for further usage. 
Assuming xa = [xa,x , xa,y] and xb = [xb,x , xb,y] are the two endpoints of a labelled line segment obtained from 
previous stage, [ xa,x+xb,x

2 ,
xa,y+xb,y

2 ] is used as point label for the same manatee.

Parameter settings
We validate the performance of multiple baseline methods on our manatee dataset over three labels. Compared 
to traditional point labeling methods45, our line labeling adds only a small amount of additional time and obtains 

Algorithm 2.   LineDensity()—Gaussian Kernel density map generation via line labels

Algorithm 3.   AGKDensity()—AGK density map generation via line labels
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an overall better performance. In this section, we report the evaluation metrics and perform an ablation study 
on the three labeled datasets to study their performance.

We evaluate the object counting task on an NVIDIA V100 GPU card. The watermark on the surveillance 
video images at the lower right corner is filled with solid black to avoid additional interference. During training, 
the initial learning rate is 1e-4, and the Adam optimizer is used. For better training and to prevent overfitting, 
random flips were used for augmentation. For all networks, the batch size is set to 4.

The network directly converts the input image into a density map in training. During the density map genera-
tion, some hyperparameters are used in Algorithms 2 and 3 . They are the expanding factor, a = 0.2 , the base value 
of σ , σbasic = 15 , the empirical Aspect Ratio, AR = 4 , full width at half maximum FWHM = 2.355≈ 2

√
2 ln 2 , 

and the FWHM penalizer α in Eq. (9) is set as α = 4 . Intuitively, the FWHM and α parameters in Eq. (9) are 
determined such that the σ1 value is roughly 14 of the length of the underlying line-segment ||xa − xb||.

Same as in previous studies45, we chose the MSE loss to measure pixel difference between ground truth and 
predicted density maps, with loss value being calculated as follows:

where T denotes the test set and |T | denotes number of images in the test set. For each test image Ti , DTi and 
D̂Ti denote ground-truth and predicted density maps, respectively. || · ||22 represents the Euclidean distance.

Performance metrics
We use mean absolute error (MAE) and root mean square error (RMSE) in the experiments to evaluate algorithm 
performance.

where CTi and ĈTi are the ground-truth number and predicted number of manatees in image Ti , respectively, 
calculated using Eq. (6).

Baselines
MCNN18, SANet53, VGG52, and CSRNet45 are some of the commonly used networks for counting problem. Mean-
while, attention mechanisms were also adopted for counting task recently, such as MARUNet54. Those models 
are implemented and trained for comparisons to demonstrate the effectiveness of our proposed method. In the 
following, we use X-dot, X-line, and X-anisotropy to denote that X neural network is trained by using three dif-
ferent types of density maps, which are generated by point label with Gaussian kernel, line label with Gaussian 
kernel, and line label with anisotropy kernel, respectively.

•	 MCNN18: MCNN employs a multi-column CNN structure that is adaptive to detect heads of varying sizes, 
addressing scale variations inherent in crowd images and generating density maps for crowd estimation.

(13)ℓ() = 1

|T |

|T |
∑

i=1

||DTi − D̂Ti ||22

(14)MAE = 1

|T |

|T |
∑

i=1

|CTi − ĈTi |

(15)RMSE =

√

√

√

√

1

|T |

|T |
∑

i=1

(CTi − ĈTi )
2

Figure 6.   Distribution of benchmark images w.r.t. different manatee density levels. The x-axis denotes manatee 
density levels and the y-axis denotes number of images.
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•	 SANet53: The Scale Aggregation Network employs a feature map encoder to aggregate multi-scale features 
from original images. Then it uses a density map estimator to fuse these features before generating high-
resolution density maps. This architecture ensures robust crowd counting across varied crowd densities.

•	 VGG52: The VGG network, characterized by its depth and 3x3 convolutions, is known for its robust feature 
extraction capabilities and has been a foundational architecture in various visual tasks, including crowd 
counting.

•	 CSRNet45: CSRNet uses the simplified VGG-16 as front-end structure for feature extraction and a dilated 
convolution network as back-end, which can handle the scale variations in crowd counting tasks effectively.

•	 MARUNet54: MARUNet, Multi-level Attention Refined UNet, integrates a density map estimator and a crowd 
region recognizer, facilitating the network’s focus on crowd regions and providing a strong baseline in crowd 
density map generation.

Experimental results
Figure 7 reports two examples for each level of the three density levels, low, medium and high with three different 
density maps. The first row are the original images that each image has 2, 4, 7, 11, 27 and 42 manatees separately. 
The second row is their Gaussian kernel density maps generated from point labels and the fourth row is their 
Gaussian kernel density maps generated by line labels while the sixth row is their anisotropic Gaussian kernel 
density maps. And third, fifth and seventh row are their corresponding estimated results from trained models. 
The number at the bottom right corner of each density map reports the ground-truth or estimated count of 
manatees in the image.

When comparing density maps from the training results with their original counterparts, as shown in Fig. 7, 
it shows that as the number of manatees in the image increases, AGK density maps can represent their original 
maps more closely compared to the other two density maps. The reason is that in high-density maps, manatees 
appear relatively smaller and possess similar sizes. As a result, the AGK-generated density provides a more 
accurate representation of their shapes with the given experimental hyper-parameters. In contrast, the density 
maps generated from GK-point and GK-line tend to distribute more widely rather than concentrating in specific 
manatees’ areas.

Figure 7.   Examples of algorithm performance with respect to different manatee densities in the scene. The first 
row shows original images with increasing manatee density from left to right. The second and third rows show 
ground-truth density map (2nd row) and predicted density map (3rd row) using dot labels. The fourth and 
fifth rows show ground-truth density map (4th row) and predicted density map (5th row) using line labels and 
generic Gaussian kernels. The sixth and seventh rows show ground-truth density map (6th row) and predicted 
density map (7th row) using line labels and anisotropic Gaussian kernels.
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For low and medium density maps, manatees tend to appear larger within the images. In extreme cases, a 
single manatee might occupy more than one-third of the entire image with only part of its body appearing in 
the image. Under such conditions, all three types of density maps: AGK, GK-dot, and GK-line, struggle to rep-
resent the manatees accurately, resulting in deteriorated performance. Interestingly, in these specific scenarios, 
GK-dot and GK-line potentially outperform AGK. This is because of their inherent capability to represent larger 
objects more effectively. For AGK, constrained by preset hyper-parameters, it is more adept at depicting crowded 
manatees, which are often of smaller sizes.

The results in Table 1 show that the anisotropy method has the lowest MAE and RMSE values across the 
VGG, MARUNet, and CSRNet models for the overall dataset. This shows the efficacy of our proposed line-label 
anisotropic Gaussian density map. Although this method does not surpass the other two when applied to the 
MCNN model, the performance metrics are remarkably close among all three methods. For the SANet model, 
the line Gaussian method yielded the most favorable results.

Among all five DNNs, SANet and CSRNet have better performance than others especially in high density 
maps, where MCNNs and MARUNets have extremely high MAE and RMSE values. The performance of SANet 
and CSRNet are very similar. In low-density scenarios, CSRNet shows slight advantages, but in medium to high-
density scenarios, SANet performs better. Overall, SANet has a lower MAE while CSRNet has better stability. 
Interestingly, among the four compared networks, SANet is the only one that performed best under the line-
label. This may be attributed to its unique scale aggregation architecture. This empirical success proves that our 
proposed line-label is indeed effective for crowd manatee counting task.

CSRNet-dot has the best MAE and RMSE values in low density cases while it is outperformed by CSRNet-
anisotropy in high density and overall cases. Specifically, in the low density map, where manatee localizations 
are more distinct, CSRNet-dot registers the lowest MAE and RMSE values of 1.344 and 1.925, respectively. 
When the density increases, the proposed CSRNet-anisotropy shows superior MAE values in medium to high 
density scenarios compared to both CSRNet-dot and CSRNet-line. The superior performance of CSRNet-dot 
in low densities can be attributed to the clearer object locations enabled by dot annotations, given that CSRNet 
can effectively separate localization from counting tasks.

In terms of overall performance in CSRNet, which tested over the all data, our proposed CSRNet-anisotropy 
method outperforms the other two methods both in the MAE metric and in the RMSE metric, with a MAE 
value of 3.011 and a RMSE value of 3.962. The MAE overall performance of our proposed method is 2.99% 
better than the CSRNet-dot method and 21.29% better than the CSRNet-line method. And the RMSE overall 
performance of our proposed method is 3.63% better than the CSRNet-dot method and 23.04% better than the 
CSRNet-line method.

In some cases, the proposed anisotropy kernel does not consistently outperform other models, especially 
when combined with DNN networks like MCNN and SANet. MCNN struggles to identify the optimal method 
across the three different density levels. In contrast, SANet produces its best performance with the line kernel. 
Such discrepancies could stem from the intrinsic model structures associated with image scaling in MCNN and 
SANet. It becomes apparent that our method may not be universally effective for all DNN models.

Another noteworthy observation is the subpar performance of our method in low-density map levels across 
four out of five tested models. This might be attributed to the fact that, in low-density images, manatees often 
appear larger or may only partially be in the frame. Such scenarios might not be ideally represented by the 
density maps generated through the anisotropy kernel especially with the given experimental hyperparameters 

Table 1.   Manatee counting performance using different DNNs over different density levels and label types. 
For each method, the best result with respect to each type of labeling approach (dot, line, anisotropy) and 
different levels of manatee densities (low, medium, high), is bold-faced. 

Method

Low Medium High Overall

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

MCNN-dot 3.640 3.812 3.511 4.924 26.982 28.352 11.377 12.363

MCNN-line 3.603 3.753 3.556 4.912 26.998 28.375 11.386 12.346

MCNN-anisotropy 2.471 2.859 4.170 5.562 28.080 29.408 11.573 12.610

SANet-dot 2.048 3.032 2.833 3.909 4.993 7.510 3.291 4.817

SANet-line 1.512 2.645 2.268 3.418 4.197 6.882 2.659 4.315

SANet-anisotropy 1.847 2.619 3.876 5.047 6.042 8.586 3.921 5.417

VGG-dot 3.921 4.721 2.702 3.522 15.601 17.199 7.408 8.481

VGG-line 3.723 4.540 2.678 3.535 16.217 17.748 7.539 8.608

VGG-anisotropy 3.405 4.125 2.550 3.488 15.311 16.888 7.088 8.167

MARUNet-dot 2.312 2.738 4.292 5.685 28.150 29.447 10.045 15.982

MARUNet-line 2.653 3.578 4.347 5.797 27.046 28.498 9.913 15.583

MARUNet-anisotropy 3.325 4.122 3.830 5.030 25.063 26.677 9.567 14.651

CSRNet-dot 1.344 1.925 2.981 3.825 4.978 6.569 3.101 4.106

CSRNet-line 2.256 3.341 3.669 4.67 5.03 6.614 3.652 4.875

CSRNet-anisotropy 1.588 2.19 2.94 3.84 4.506 5.856 3.011 3.962
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which used for all images. In these instances, Gaussian kernels with dot or line annotations might provide a 
better fitting representation.

In the subsequent section, to further substantiate the efficacy of our method, we apply the proposed method 
to wheat head counting, where objects have regular consistent shapes.

Additional results: wheat head counting
In the previous section, we validated our proposed method in the newly created manatee counting dataset. Given 
the intricate backgrounds and the variability in manatee shapes, often resulting from varying camera distances, 
the label can not present the manatee over different density levels as shown and analyzed in prior sections.

To further validate the ability and adaptability of our method, we have opted to test it on the “Global Wheat 
Head Dataset 2021”55. Unlike manatees, most wheat heads in these images possess consistent, elongated rectan-
gle-like shapes. We posit that our proposed line annotation with AGK could intuitively represent such forms 
more effectively.

Figure 8 shows an example of original wheat head images and three corresponding density maps that are 
generated by a dot-based Gaussian Kernel(GK), a line-based GK and a line-based anisotropic GK. It is obvious 
that line-based AGK density map has a better representation of the wheat heads in terms of position, shape, 
and direction.

As illustrated in Table 2, Yolo-v5(GWC-2021)56 has the poorest performance in terms of RMSE. All three 
models based on CSRNet outperform Yolo-v5, with CSRNet-anisotropy has outstanding MAE of 15.7 and RMSE 
of 20.2. Yolo-v5 is detection based algorithm that while it has good bounding box accuracy, it misses numerous 
wheat heads, especially those that are smaller in size. The average size of those missed wheat heads is about 35% 
smaller than the average size of all wheat heads.

For our density estimation-based method, instead of seeking the precise location and boundary of each wheat 
head directly, it determines the total number of wheat heads by estimating the density of wheat heads within 
a particular region. This method is particularly good at detecting smaller and densely distributed wheat heads 
since it emphasizes the overall quantity estimation rather than pinpointing individual targets.

When the MAE and RMSE values are close, it often indicates there are not significant outliers. Such consist-
ency can suggest that the model’s predictions are relatively accurate, with minimal discrepancies. As shown in 
Table 2, the proximity of the MAE and RMSE values reinforces this notion of accuracy in the CSRNet’s predic-
tions, especially CSRNet-anisotropy which proves the effectiveness of our method.

Throughout the training process, we noticed that the model effectively capture the macro structure of the 
wheat. For point label, the model had to work hard to fit the density map precisely to a circular region. To address 
this challenge, we introduced AGK to generate density map by using line labels, which differ significantly from 
the traditional circular Gaussian region. This label utilizes an elliptical anisotropic Gaussian distribution to 
present the wheat’s location and shape. In this distribution, the core line represents the exact location of the 
wheat head, while the surrounding decay area outlines the potential uncertainty of the position. Compared to 
the conventional circular Gaussian region, this method endows the model with enhanced adaptability in wheat 
head counting.

Figure 8.   The original wheat image and its three types of corresponding density maps (left to right): dot based 
GK, line based GK, and line based AGK.

Table 2.   Wheat head counting performance in CSRNet over different label types.

Method MAE RMSE

Yolo-v5(GWC-2021)56 NA 67.0

CSRNet-dot 30.1 37.6

CSRNet-line 20.3 28.1

CSRNet-anisotropy 15.7 20.2
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Conclusion
In this paper, we proposed a deep neural network (DNN) based crowd counting approach to count manatee 
aggregations. This method capitalizes on low-quality images to count manatees in a designated region. Although 
crowd counting has been used in many other applications (e.g. counting cars or audiences), we argued that 
manatee counting has unique challenges, including surface reflection, occlusions, camouflage. To reduce label-
ling costs, we employed line-label based annotation, with a single straight line being used to mark each manatee. 
To take unique shapes of manatees into consideration, we proposed to use Anisotropic Gaussian Kernel (AGK) 
transform input images into manatee customized density maps, and then train deep neural networks to learn to 
count manatee numbers automatically using a predicted density map. Experiments and comparisons, using low 
resolution real-world manatee images, show that AGK based counting outperforms other baselines, including 
traditional Gaussian kernel based approach. The proposed approach works particularly well when the image has 
a high density of manatees in complicated background.

Our findings demonstrate a promising trajectory for broader applications. By transitioning from dot to line 
labeling, we not only enhanced the accuracy in counting manatees but also successfully improved wheat head 
counting. The proposed methodology holds potential for various applications, especially for entities with convex-
shaped objects, including diverse animals such as livestock like sheep and cattle, and crops such as wheat head, 
corn, eggplant, etc.

In this study, we are primarily focused on images captured from the water surface. Counting manatees in 
complex underwater backgrounds remains an open problem57. Future study may take manatees’ movement 
into consideration to improve counting accuracy, as static objects like branches and rocks remain relatively 
unchanged over short duration.

Data availability
Source code and datasets generated and/or analysed in this study are available in the following GitHub reposi-
tory: https://​github.​com/​yeyim​ilk/​deep-​learn​ing-​for-​manat​ee-​count​ing.
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