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ABSTRACT: In this work, we present an exploration of deep learning models for predicting defect properties in cubic phase
semiconductors. The nature of impurity energy levels strongly influences the performance of semiconductors in a wide range of
applications, such as solar cells, field effect transistors, and qubits for quantum computing. In this work, we employ two types of deep
learning models, a crystal defect graph neural network and a chemical environment-encoded artificial neural network, to predict
defect properties. The models are trained on a data set of charge-dependent defect formation energies obtained from density
functional theory computations and descriptors based on elemental properties, defect local environment, and relevant semiconductor
properties. We assess the models’ performance and showcase their capability in optimizing semiconductor devices, particularly when
used in tandem with compositionally constrained thermodynamics and technology computer-aided design models.

B INTRODUCTION many different elements, the computational cost associated
with studying defects can be extremely high.

In recent years, machine learning (ML) methods have
emerged as promising tools for rapidly predicting material
properties with comparable accuracy to DFT. Substantial
progress has been made in developing ML models for property
predictions in both molecules and crystals. Among these
models, graph neural networks (GNNs) have shown superior
performance due to their ability to capture structural
information from crystals or molecules, implicitly incorporat-
ing many—body interactions."”” This approach has also been
applied to predict defect properties in metal oxides and 2D
materials.”” However, when it comes to the prediction of
defect properties in bulk materials, the performance of GNN

Point defects play a crucial role in semiconductor devices as
they can significantly affect device performance by facilitating
atomistic diffusion’ or creating trapping centers.” These
defects can be categorized into two types on the basis of
their transition levels relative to the valence band maximum
(VBM) and conduction band minimum (CBM): shallow
defects and deep level defects. Low concentrations of shallow
level defects generally have minimal impact on device
performance, whereas extrinsic concentrations of shallow
defects are desirable dopants as they can be effectively ionized
to control p-type or n-type doping. On the other hand, deep
level defects can introduce trapping centers, thereby limiting
carrier lifetime through Shockley—Read—Hall (SRH) recombi-
nation. Consequently, a comprehensive understanding of the

electronic properties of defects is critical for semiconductor Received:  February 21, 2024

device research. Density functional theory (DFT) calculations Revised: ~ May 3, 2024

have emerged as a valuable tool for characterizing defect Accepted:  May 8, 2024
properties and uncovering the doping mechanisms in semi- Published: May 16, 2024 ‘ "

conductor devices.” Nevertheless, due to the necessity of
extensive structural relaxation and the possible presence of
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models is still inferior compared to models specifically
designed for bulk materials. This discrepancy hinders their
wider application in this domain. This is primarily due to the
substantial deviation of relaxed defect structures from the ideal
crystal lattice, posing challenges in accurate predictions.'”""

In our previous work,'* we introduced a ML framework for
predicting defect formation energies and charge transition
levels in a diverse range of cubic phase semiconductors. We
evaluated the performance of various ML models and
identified the best-performing model, which enabled efficient
screening of deep level defects potentially induced by extrinsic
dopants. Our screening accuracy exceeded 95%; however, the
limitations of the ML framework prevent quantitative studies
due to errors that are much larger than the thermal energy at
relevant temperatures. This results in carrier density prediction
errors exceeding 10° in some cases, rendering it unsuitable for
an accurate high-throughput prediction model. For rigorous
quantitative analysis, we must constrain the error to less than 1
order of magnitude, necessitating a prediction error within
around 0.2 eV."

In this current work, we aim to enhance our model using
deep learning techniques. First, we incorporate the chemical
environment of defects using the smooth overlap of atomic
positions (SOAP) representation14 into our existing artificial
neural network (ANN) model. We compare this model with a
fine-tuned crystal graph convolutional neural network
(CGCNN) model* for defect predictions. Our findings reveal
that both models significantly improve the prediction accuracy
of formation energies by around 50%. Among them, the
chemical environment-encoded ANN model outperforms both
formation energy and transition level predictions. Specifically,
the prediction errors for II-IV semiconductors are all lower
than 0.21 eV, making it suitable for quantitative high-
throughput screening.

Moreover, we seamlessly integrate our deep learning model
with CCT' and TCAD technology'® to investigate potential
dopants for enhancing semiconductor device performance.
This collaborative approach harnesses the predictive capa-
bilities of our model and TCAD to identify optimal dopants,
thereby optimizing device functionality and enhancing overall
performance. To validate the efficacy of this design framework,
we conduct tests on CdTe solar cell devices and compare to
experimental data. Within this framework, we predict four
dominant figures of merit: efficiency (1), open-circuit voltage
(V,.), short-circuit current (J,.), and fill factor (FF) for solar
cells with various potential dopants in the chemical space.
These predictions enable us to determine the most promising
dopants that have the potential to significantly impact solar cell
performance.

B METHODS

Training Data Set. Our data set encompassed 1640 doped
semiconductors, incorporating AB-type compounds where “A”
denotes the cation and “B” signifies the anion, across groups
II-VI, III-V, and IV—-IV. This categorization yielded 8 II-VI
compounds (such as CdO, CdS, CdSe, CdTe, ZnO, ZnS,
ZnSe, and ZnTe), 16 III-V compounds (including BN, BP,
BAs, BSb, AIN, AIP, AlAs, AISb, GaN, GaP, GaAs, GaSb, InN,
InP, InAs, and InSb), and 10 group IV compounds (such as C,
Si, Ge, and Sn and binary combinations like SiC, GeC, SnC,
SiGe, SiSn, and GeSn). These compounds, totaling 34, were
modeled adopting the cubic zinc blende structure, charac-
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terized by A atoms forming a face-centered cubic (FCC) lattice
and B atoms occupying tetrahedral sites.

Within any given AB compound crystallized in the zinc
blende structure, potential defects could emerge at the A-site,
B-site, or multiple, symmetrically distinct interstitial positions.
The present investigation examines five defect locations: A-site,
B-site, A-site tetrahedral interstitial (surrounded by four A
atoms), B-site tetrahedral interstitial (surrounded by four B
atoms), and the neutral site hexagonal interstitial (equidistant
from three A and three B atoms). For the binary compounds,
all the five defect sites are considered, whereas for the four
elemental systems (C, Si, Ge, and Sn), three defect sites are
analyzed (A-site, A-site interstitial, and neutral site interstitial).

In terms of the doping elements, we take into account a wide
spectrum from periods I to VI, along with all lanthanides,
culminating in 77 unique species. As a result, the overall count
of potential impurities within this chemical structure is 12,474.
Of these, around 10% have been calculated via DFT to obtain
neutral state formation energies under both A-rich and B-rich
conditions and six charge transition levels [¢(—1/0), e(—=2/—
1), e(-=3/-2), €(+1/0), e(+2/+1), and e(+3/+2)]. Following
the application of PCA for the removal of outliers, our training
data set includes formation energies for 1476 compounds and
transition levels across 1076 configurations. The data for this
study are obtained from our previous research.'”

Throughout the research process, the physical and chemical
descriptors gathered and encoded from our previous work'”
were added to the training data set to be used by the neural
networks. Such descriptors were based on intrinsic properties
from a variety of atomic impurities across the periodic table;
inherent properties of cubic-structured binary IV-1V, III-V,
and II-VI semiconductors; and the Coulomb matrix which
mimics the electrostatic interaction around defect sites.

Furthermore, we collected six inner averages of SOAP power
spectrum descriptors'® with a single radial basis function,
degree 1 spherical harmonics, and a cutoff distance of 6 A.
These descriptors accurately describe the invariant atomic
positions within each semiconductor system by considering the
permutations of gathering atomic pairs from the atomic species
that compose the defect supercell structure. The input defect
structures for ML models are pristine semiconductor supercells
with introduced defects, but without any structural relaxation.
We experimented with increasing the number of radial basis
functions and degrees of spherical harmonics in SOAP, but we
observed minimal improvement in neural network models,
prompting us to stick with the mentioned configuration.

Chemical Environment-Encoded ANN. We constructed
our chemical environment-encoded ANN once all categorical
and continuous features from the training data set were
normalized and applied with one-hot encoding. The algorithm
was trained on the descriptors mentioned previously to learn
and optimize the features to predict defect formation energies
and transition levels. Each NN architecture contains two to
three dense neuron layers, through which the input is
concatenated before returning the output through the final
layer.

To determine the regression network’s effectiveness in
predicting each of the eight outputs (two types of formation
energies and six different transition levels), we utilized a S-fold
stratified K-fold cross-validation sampling on the population of
semiconductors in the input data set based on the type of
semiconductor and defect atom type. Such sampling and
validation ensure that the predictive results from the network
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Figure 1. Parity plots for the ANN.
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are limited in bias and variance, reducing overfitting.
Hyperparameter optimization was performed via Bayesian
optimization to minimize the cross-validation error for the
average of each of the five splits; such parameters include
learning rate, learning rate decay for the Adam optimizer, the
standard deviation for the Gaussian noise distribution, and the
kernel regularizer.

From each of the five splits from the stratified K-fold cross-
validation, our baseline measurement used and calculated to
determine the network’s performance was the root-mean-
square error (RMSE) compared to the predictions and actual
DFT values. All training and testing RMSEs for each fold were
then averaged. This procedure was repeated for another five
runs or trials, in which each run’s uncertainties were averaged
together.

This procedure gives us a practical testing error obtained for
every input data point, providing us with the accurate
predictive of the network on each of the eight output values.
The optimal set of hyperparameters is chosen to minimize the
cross-validation error; we ultimately report training and test
errors for every model, but optimization is based on the
validation error, such that the actual test set in each iteration
remains unseen by the model during the training process.

To better emphasize our testing RMSEs in principle, we
crafted parity plots (shown in Figure 1) that compare the
benchmark DFT-computed properties to the predicted values
from the neural network. As such, we present and visualize the
testing results on the A-rich and B-rich formation energies and
the six charge transition levels, labeled with the reported
average testing RMSEs in eV from Table 1 and their standard
deviations, for each binary semiconductor type. For each
semiconductor group, labeled with different colors for
emphasis, all testing data points were cataloged from every
individual five stratified K-fold method splits across all the five
runs.
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Table 1. ANN Model Performance

II-VI m-v
training testing error error vV-1v

predictors  error (eV) error (eV) (eV) (eV) error (eV)
AH 0.032 0.31 0.21 0.44 0.46

(A-rich)
AH 0.036 0.36 0.24 0.56 0.51

(B-rich)
e(—1/0) 0.018 0.16 0.11 0.18 0.22
e(—=2/-1) 0.024 0.18 0.10 0.18 0.30
e(=3/-2) 0.042 0.24 0.10 0.16 0.47
e(+1/0) 0.012 0.16 0.12 0.20 0.21
e(+2/+1) 0.010 0.15 0.12 0.20 0.20
e(+3/+2) 0.010 0.14 0.13 0.17 0.15

It can be observed that the integration of descriptors and
SOAP power spectrum features significantly enhanced the
predictive performance. This improvement is quantified
through the average RMSEs obtained from five independent
runs, which are systematically tabulated for various output
categories as delineated in Table 1. Notably, the RMSEs for
formation energies exhibited over 60% enhancement, while the
improvements for charge transition levels, specifically ¢(—1/0),
e(=2/-1), e(+1/0), e(+2/+1), and €(+3/+2), approached
nearly 50% relative to the precedent model benchmarks
presented in Table SII. The performance metrics for e(—3/—
2) exhibited only marginal advancements. These outcomes
substantiate the significant impact of the SOAP features in
refining the model’s accuracy.

In the “training error” column of Table 1, we recorded low
RMSE values for all output properties across various
semiconductor groups, suggesting that the model effectively
assimilates the descriptor data from the input and reliably
predicts these outputs. Nevertheless, a notable discrepancy
between training and testing predictions raises the concern of
potential overfitting. To assess the robustness of our models,

https://doi.org/10.1021/acs.jpcc.4c01124
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we determined the standard deviation through a 5-fold cross-
validation process. As depicted in Figure 1, the standard
deviation hovers at approximately half the magnitude of the
prediction error, a variance deemed acceptable by prevailing
reports in the literature.”'” Although a larger regularization
term might bridge the test-train performance gap, such a
modification was deemed unnecessary. The regularization
parameter has been finely tuned via Bayesian optimization, and
further increases might introduce undue bias. Moreover, the
model’s predictions align closely with experimental data in
subsequent evaluations of dopant efficacy in devices,
reinforcing our confidence in its exceptional performance.

In terms of the network’s performance on different outputs,
it displays a minor improvement in predicting the formation
energies of doped semiconductor systems that are A-rich
compared to the B-rich ones. In addition, it is also shown that
group II—VI binary group semiconductors have the lowest
RMSEs and have most of their data points in line with the
diagonal of the parity plot for both formation energy types
compared with the III-V and IV—IV groups.

For each binary semiconductor type in each column of
Table 1, the RMSE values relatively change regardless of the
charge transition level type being measured (with the notable
exception of &(—1/—2) and &(—2/-3) for IV-IV binary
group semiconductors). For instance, the RMSEs for II—VI
semiconductors in each individual transition level remain
roughly between 0.10 and 0.13 eV, while for III-V
semiconductors, the errors remain between 0.16 and 0.20
eV. Additionally, it is noted that for the binary group II-VI
semiconductors, the network again predicts their transition
levels effectively compared to their counterparts, as observed
from the low error values and having the majority of their data
points remain close to the diagonal, which show reduced
variance from the actual DFT values.

Crystal Defect Graph Neural Network. Our CDGNN
follows closely with the original crystal graph neural network
(CGCNN) framework of ref 4. We create a surrogate model,
Fepgnn parametrized by weight W, which has the form

}21 = FCDGNN(Gd’ Welems Wstruc W) (1)
where Gy refers to the graph of unrelaxed defect structures,
U, denotes the elemental properties of atoms comprising the
defect structures, and ug,, refers to compound properties (e.g.,
band gap, compound formation enthalpy, and compound
lattice constant) as well as defect structure properties (e.g.,
Coulomb matrix, SOAP descriptors). The function Fepgany
parametrized by weights W, effectively maps a defected crystal
G4 along with its corresponding features to the target property
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)7d. In this study, 321 are defect formation energy and transition

levels.

As depicted in Figure 2, the defect elemental properties and
bonding information are initially embedded in the feature
vector v;. The convolutional layers then iteratively update v; by
incorporating information from surrounding atoms and bonds,
employing a nonlinear graph convolution function (eq 2).
After T convolutions, the CDGNN learns a comprehensive
feature vector v, that represents the unrelaxed defect crystal
structure through pooling all nodes in the structure (eq 3).

Next, the CDGNN incorporates the compound and defect
structure features, such as supercell lattice parameter, bandgap,
and SOAP features, by concatenating them with the graph-
embedded nodes (eq 4). As shown in Table 2, we observe an

Table 2. CDGNN Model Performance

predictors training error (eV) testing error (eV)
AH (A-rich) w/o SOAP 0.103 0.589
AH (A-rich) 0.117 0.537
e(—1/0) 0.176 0.463
e(—=2/-1) 0.420 0.488
e(=3/-2) 0299 0.391
€(+1/0) 0.148 0.391
e(+2/+1) 0.169 0.406
e(+3/+2) 0.146 0.350

improvement of around 10% in the RMSEs after encoding the
structure features. This improvement is achieved through
several hidden layers, leading to the final output. Upon
implementing the graph of defects and their corresponding
features into the model, we observed a significant improvement
in RMSEs of formation energy predictions compared to our
previous models in Table SII, achieving an RMSE of
approximately 0.5 eV (Table 2) using the same train-test
splitting method from the ANN model. However, it is worth
noting that no substantial improvement was observed in the
transition level predictions. This may be due to the CDGNN
model including a large number of features, such as bonding
and element properties of all atoms, which requires a sufficient
amount of data for training. To improve the CDGNN model’s
performance, future work will focus on either incorporating a
feature pruning method or increasing the amount of training
data

vit! = conv(vj, v/, ) uG,, € G )
vy = Pool(vE)T), VgT) ........ Vg)) (3)
V;l =V @ Ustruc (4)
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Figure 3. Schematic of ML-assisted device design framework. DFT is employed to build a comprehensive defect property database including defect
formation energy and thermodynamic transition levels. A surrogate neural network model is trained using this data set to predict defect properties
for dopants across the entire chemical space. Next, CCT is used to filter and select dopants with desired properties. Then, the defect information on
these potential dopants is incorporated into the TCAD model of the specific device of interest, allowing us to gather figures of merit. In the end, we
identify promising potential dopants that demonstrate potential for enhancing device performance. Experimental testing and validation are

conducted to assess the suitability and efficacy of the selected dopants.

ML-Assisted Device Design Framework. Most state-of-
the-art ML models for defects focus on predicting the
electronic properties of individual defects. However, in
complex real-world systems, such as transistors and solar
cells, multiple defects associated with a dopant coexist and
collectively influence device performance. Consequently, a
comprehensive evaluation framework for dopants is essential to
effectively screen and identify optimal dopants. In response to
this need, we propose a novel ML-assisted device design
framework (Figure 3) that facilitates quantitative and efficient
screening and exploration of dopants in semiconductor
devices. This innovative framework streamlines the process
of material discovery and device design, accelerating the
exploration of new dopants for advanced semiconductor
devices.

In this framework, the ML-assisted device design framework
operates as follows: first, we employ DFT to construct a
comprehensive defect property database, encompassing defect
formation energy and thermodynamic transition levels.
Subsequently, this data set is used to train a surrogate neural
network model capable of predicting defect properties for
dopants throughout the entire chemical space. Next, we agpply
compositionally constrained thermodynamics (CCT)'® to
filter and select dopants with desired properties. The defect
information from these potential dopants is then incorporated
into the TCAD model specific to the device of interest,
facilitating the assessment of essential figures of merit. By
leveraging this framework, we are able to identify promising
potential dopants with the capacity to enhance device
performance. To validate the predictions, experimental testing
and validation are needed to ensure the suitability and efficacy
of the selected dopants for practical device applications.

CCT is a canonical approach to calculate the defect
concentrations. Under a dilute approximation, defect concen-
trations are given by

- h ~AH] /kyT

xkﬂi - total € ”

N )

where 0y, is the degeneracy factor that counts the number of
equivalent defect configurations, AHQq is the formation energy

of defect k at charge g, and N*®! is the total number of lattice
sites in a perfect material. One can obtain deviations of atomic
fractions f, from perfect stoichiometry £, under given defect
concentrations in the material using the following relation

fg - Zk’qu,qnlf

DY (6)

f, =

where nf is the number of atoms of type a added or removed
from the system when one defect k exists. o} , = 2, 1 is the

atom amount differences in a system with and without the
defect k. If atomic fractions and standard reference chemical
potentials are provided, one can determine the defect
concentration, chemical potentials for each element, and the
Fermi level by solving the set of equations defined by (6). We
refer to this method as CCT."®

In this study, the atomic fractions of the semiconductor
compound and its impurities are unknown. Instead, we can use
the chemical potentials of each element in the semiconductor
compound and its potential dopants to determine the defect
concentration and Fermi level. If the formation energies H,(Jg
are known for given reference values 4% and EY, then H,, for
any values of y, and Eg can be expressed using the following
equations

AH (4, Ep) = AH,E"; + Z n(u, — ﬂ(y))
a

+ q(Eg — EY) )
Using egs S and 7, we can represent the total defect density
for any defect using the density of a single neutral defect

—AH,ET; - AH,E%«#q(EF—El(:'))

9k "
X = X0 z —9 A e kpT
g ko0 (8)

From S and 8, we can easily obtain

a a, (r xk;OXN
an'ua = anﬂ(s) - kBTlnT

a a k,0

)
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Table 3. ML-Assisted Dopant Screening for Device Design (Example of CdTe Solar Cells)

carrier

dominant deep Fermi level density @ 300 K carrier density in
dopant  condition defect level? type (eV) (em™) experiment (cm™>) device performance
Voe Jre
n (%) (V) (mA) FF
Terich  Vgg Tegq yes p-type 0.34 7.53 x 10 10" to 101810343 1659 086  22.56  85.69
F Terich  F_int A no p-type 0.12 1.98 x 10" 10 to 10'7* 2094 107 2231  88.06
N Cdrich  N_Te no p-type 0.25 1.16 X 10" 10" to 10'7° 1845 085 2256 8742
P Terich  P_Te no p-type 0.20 9.70 X 10" 10" to 10'7*%¥7 19.55 090 2253  87.61
As Terich  As_Te no p-type 0.24 1.61 X 10" 10" to 10'777% 18.54 094 2256  87.17
As Cdrich  As Te no p-type 0.23 222 X 10 10" to 107377 1855 095 2259  87.44
Cu  Terich Cu Cd no p-type 0.14 8.37 X 10'° 10" to 1016240 2053 1.05 2229  88.10

By applying eq 9 and the charge neutrality eq 10, we can
determine the equilibrium defect distribution and the Fermi
level for any given set of chemical potentials and temperature.

n+ Z Z lqlx, , = p + Z Z 9% q
k g<o0 k g>0 (10)
Taking CdTe as an example, a commonly used semi-
conductor material in thin-film solar cells,'” we employ the
above approach to screen dopants’ potential impact on device
performance. First, we utilize defect formation energies
calculated via DFT for intrinsic defects and employ the
ANN model to predict formation energies and transition levels
for extrinsic defects. With this information, we determine the
equilibrium defect concentrations for different charge states at
a given temperature via CCT. Considering the typical
manufacturing process of CdTe solar cells, which involves
high-temperature vapor deposition followed by cooling and
annealing at room temperature,20 we select a temperature of
893 K for the equilibrium defect concentration calculations,
followed by a quench to room temperature. We assume a
“frozen-in” approximation,21 where the total defect concen-
trations are held constant from the prior equilibrium
calculation. Defects are then redistributed among available
charge states based on the new Fermi level and temperature.
Once we obtain the defect distribution, we incorporate these
defects into a well-constructed CdTe TCAD device model.
Here, defects are categorized as either shallow or deep levels.
For deep levels (Voy and Tecy”” ), we take Shockley—
Read—Hall (SRH) recombination into account, while for
extrinsic defects, we exclude SRH recombination due to low
capture rates. The capture rates of deep levels are computed
using the NONRAD method.””*® Further details about the
device model are provided in the Supporting Information
(Table SI). In the end, we generate a dopant screening table, as
shown in Tables 3 and SIIIL For each dopant, we explore two
conditions in CdTe: Cd-rich and Te-rich. And the chemical
potential for each dopant is the maximum limit of their lowest
formation energy binary or ternary compounds formed with
Cd or Te. This provides an optimistic or pessimistic estimation
based on the dopants’ solubility in CdTe. The table includes
key characteristics of the defects, such as dominant defects,
whether they introduce deep levels (with energy levels within
the band gap +0.2 eV), the material type after doping, Fermi
level relative to the VBM at 300 K, and the majority carrier
density predicted by the ML framework (negative values
indicating electron density and positive values indicating hole
density). Experimental reports of majority carrier density at
300 K are also included for comparison. Additionally, the
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TCAD model provides four key performance metrics for solar
cell devices: efficiency (1), open-circuit voltage (V,.), short-
circuit current (J,.), and fill factor (FF). These metrics offer a
clear indication of the dopants’ potential to enhance device
performance.

Using these features, we efficiently screen potential dopants
to enhance device performance. Table 3 presents a selection of
promising dopants for CdTe solar cells, which do not
introduce deep-level defects and significantly increase carrier
density compared to intrinsic CdTe, suggesting that the
formation energies of dominant extrinsic defects of these
dopants are more favorable compared to the intrinsic defects
under specified conditions. In the first row, intrinsic CdTe is
included as a reference. We list several dopants which are able
to raise carrier density several orders compared to intrinsic
CdTe. Remarkably, this framework exhibits excellent perform-
ance, selecting some of the most commonly used dopants such
as group V elements (As and P) and Cu. The carrier densities
closely align with experimental results, as indicated in Table 3.
It is noteworthy that, based on predicted carrier density, Cu
appears to be a more effective dopant. However, experimental
data suggests that Cu doping is less effective when compared
to group V species. This phenomenon may be attributed to the
instability of copper dopants and the presence of compensating
defects.”” Additionally, it is important to acknowledge that the
“frozen-in” approximation might not hold in certain cases,
particularly when the interactions between different defects are
significant, like vacancy-interstitial pair annihilation and
exchange reactions.”’ Also, the strong Coulomb interaction
between defects with opposite charges can give rise to defect
complexes,”" a consideration not addressed within the current
framework.

Additionally, we have also identified experimental evidence
supporting the efficacy of fluorine doping in CdTe, which
aligns with our results and suggests fluorine as a promisin%
dopant, increasing carrier density to around 10" cm™.’
Furthermore, as research groups show growing interest in n-
type CdTe solar cells,”” we have also identified potential
dopants in Table SIII. Group VII elements are predicted to be
effective for rendering CdTe n-type, potentially achieving
carrier densities exceeding 10" cm™. However, the possibility
of introducing deep-level traps by these species may impact
device performance.

B RESULTS AND DISCUSSION

Based on the parity plots of Figure 1 and the columns of
Tables 1 and 2 that describe the testing prowess of the models
in predicting the two types of formation energies and six types
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of transition levels, it is observed that the output RMSE
performance errors for all types of transition levels are lower
than the formation energies. A well-known principle that can
explain why predicting transition levels, such as reaction
barriers or activation energies, is often easier than predicting
formation energies is that they depend on the relative energies
of the given states of the local, isolated process within the
system rather than considering the total energies of all particles
that composed the entire system.

From the formula describing the calculations for the
transition levels within the semiconductor (see experimental
procedures'”), such levels can be represented as the energy
differences between two charge states. Because these differ-
ences depend on the relative positions of the two states in
energy space, they can be more accurately predicted than the
formation energies, which depend on each particle that makes
up the entire structure. Furthermore, it can be shown from the
derivation of the transition levels that the chemical potential
variable is independent when calculating any defined level
compared to the formation energies. This suggests that
predicting the formation energies to get the same errors as
the transition level requires more features to better incorporate
the chemical potential into the network.

Compared to its binary group counterparts, the ANN
demonstrates superior prediction accuracy for all output DFT-
computed properties in binary group II-VI semiconductors,
with smaller errors observed. This enhanced performance can
be attributed, first, to the larger portion of II-IV semi-
conductor data points available for training. However, it is
important to consider that the network’s underperformance for
the IV=IV group can be attributed to the fact that certain
crystal compounds within this group may not be stable in their
cubic phases (e.g., SiGe). Consequently, this instability leads to
unrealistic defect formation energy calculations, expanding the
formation energy range and rendering prediction more
challenging. As II—VI binary group semiconductors are the
most common types of semiconductor system utilized in thin-
film solar energy technologies, these low error thresholds
suggest that the network is a great tool in predicting the
development of new dopants in newer semiconductors for such
applications.

The improvements in the performance of ANN and
CDGNN models due to the utilization of the SOAP
descriptors can be attributed to the fact that such features
assist in adding additional information regarding the local
defect environment, which describes the region where
electrons or holes are exchanged from the atomic impurity
to the conduction or valence band, therefore can assist in
predicting the electronic properties of defects within the
system. Using the Gaussian-smeared atomic density around
each atom, the descriptors help catalog the overlaps of electron
clouds and the interactive effects of chemical bonding. At the
same time, these descriptors are invariant to the permutations
of atomic indices, meaning that one can fine-tune the model to
help consider such invariance from the material structure
without the input of a significant amount of training data to
learn such cases, allowing for faster computational times and
reducing cost for our neural network framework.

The relatively low error of ANN for II-IV group compound
prediction makes quantitative screen and prediction possible.
The ML-assisted framework for device design presented in this
work is a powerful tool that leverages ML techniques to
identify potential dopants to optimize semiconductor device
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performance. The framework begins with a comprehensive
database of defect properties, including defect formation
energies and thermodynamic transition levels, generated
using DFT and ANN predictions. However, several challenges
and limitations must be considered. Notably, while the ML
model is capable of predicting a wide range of properties and
can optimize device design, it faces challenges when estimating
the deep-level capture rate for defects. Accurate predictions for
deep-level defects necessitate theoretical calculations and
experimental evidence,*” which the ML model cannot provide
at current stage. Additionally, the model’s consideration is
primarily focused on substitutional defects and interstitials,
overlooking other critical point defect types, such as defect
complexes,”** which can significantly impact semiconductor
devices. To enhance the framework, a more comprehensive
defect data set is required. The other limitation is that the data
set does not include hexagonal phase semiconductors, such as
CdSe and GaN. The framework’s performance and applic-
ability are limited to the semiconductor materials present in
the available data. Expanding the data set to include hexagonal
phase semiconductors could enhance the framework’s
versatility.

B CONCLUSIONS

The ML-assisted device design framework presents a powerful
approach to streamline the dopant screening process, resulting
in significant time and cost savings. Instead of relying solely on
exhaustive experimental trials, the framework utilizes ML to
predict defect properties for various dopants across the
chemical space. This predictive capability enables researchers
to identify promising potential dopants more -efficiently,
reducing the need for extensive and resource-intensive
experimentation.

By employing the comprehensive defect property database
generated through DFT, the framework significantly narrows
down the pool of potential dopants with desired properties.
This targeted selection process minimizes the need to perform
numerous experiments, saving both time and labor.

Moreover, the integration of TCAD simulation further
refines the search for dopants, focusing on those that have the
most favorable characteristics for device optimization. By
combining ML predictions with physical models in TCAD
simulations, researchers can efficiently gather figures of merit
and assess the potential impact of selected dopants on device
performance.

The ML-assisted device design framework represents a
significant departure from traditional dopant screening
methods, providing an innovative, data-driven approach that
streamlines the search for superior dopants in semiconductor
devices. This transformative framework optimizes resources
and expedites the discovery process. Nevertheless, some
challenges remain, particularly in accurately predicting deep
level capture rates and addressing the absence of defect
complexes and hexagonal phase semiconductor data. Fur-
thermore, there is room for improvement in achieving
quantitative analysis for III-V and IV-IV types, which
might require additional data or more refined descriptors.
Future research efforts should be directed toward overcoming
these limitations while further advancing the application of this
framework in semiconductor device design.
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semiconductors/.

© Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c01124.

Additional simulation details and ML-assisted dopant
screening in CdTe (PDF)

B AUTHOR INFORMATION

Corresponding Authors

Xiaofeng Xiang — Molecular Engineering & Sciences Institute,
University of Washington, Seattle, Washington 98195, United
States; ® orcid.org/0000-0001-7865-1741;
Email: xiaofx2@uw.edu

Scott Dunham — Department of Electrical and Computer
Engineering, University of Washington, Seattle, Washington
981985, United States; Email: dunham@uw.edu

Author
Dylan Soh — Department of Physics, University of Washington,
Seattle, Washington 98198, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpcc.4c01124

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy’s
Office of Energy Efficiency and Renewable Energy (EERE)
under the Solar Energy Technology Office Award Number
DE-EE0008556 and by the National Science Foundation
(NSF) MRSEC DMR-1719797 and NSF MRSEC DMR-
2308979. We would like to acknowledge the utilization of the
Hyak supercomputer system at the University of Washington,
supported through CEI, MEM-C, and the Student Technology
Fund, which facilitated our research efforts. Furthermore, we
extend our gratitude to Professor Arun Mannodi-Kanakkithodi
at Purdue University for providing the DFT chemical potential
data set and engaging in valuable discussions regarding ML
models.

B REFERENCES

(1) Sommer, D. E.; Dunham, S. T. Atomistic models of Cu diffusion
in CulnSe2 under variations in composition. J. Appl. Phys. 2018, 123,
115116.

(2) Xiang, X.; Sommer, D. E.; Gehrke, A.; Dunham, S. T. Coupled
process and device modeling of Cu (In, Ga) Se 2 solar cells. 2021
IEEE 48th Photovoltaic Specialists Conference (PVSC), 2021; pp 1707—
1711.

(3) Lany, S.; Zunger, A. Accurate prediction of defect properties in
density functional supercell calculations. Modell. Simul. Mater. Sci. Eng.
2009, 17, 084002.

(4) Xie, T.; Grossman, J. C. Crystal graph convolutional neural
networks for an accurate and interpretable prediction of material
properties. Phys. Rev. Lett. 2018, 120, 145301.

8828

(5) Park, C. W.; Wolverton, C. Developing an improved crystal
graph convolutional neural network framework for accelerated
materials discovery. Phys. Rev. Mater. 2020, 4, 063801.

(6) Choudhary, K.; DeCost, B. Atomistic line graph neural network
for improved materials property predictions. npj Comput. Mater. 2021,
7, 188S.

(7) Chen, C.; Ye, W.; Zuo, Y.; Zheng, C.; Ong, S. P. Graph networks
as a universal machine learning framework for molecules and crystals.
Chem. Mater. 2019, 31, 3564—3572.

(8) Choudhary, K.; Sumpter, B. G. Can a deep-learning model make
fast predictions of vacancy formation in diverse materials? AIP Adv.
2023, 13, 095109.

(9) Witman, M. D.; Goyal, A; Ogitsu, T.; McDaniel, A. H.; Lany, S.
Defect graph neural networks for materials discovery in high-
temperature clean-energy applications. Nat. Comput. Sci. 2023, 3,
675—686.

(10) Yang, J.-H.; Yin, W.-J; Park, J.-S.; Ma, J.; Wei, S.-H. Review on
first-principles study of defect properties of CdTe as a solar cell
absorber. Semicond. Sci. Technol. 2016, 31, 083002.

(11) Mosquera-Lois, I; Kavanagh, S. R.;; Walsh, A.; Scanlon, D. O.
Identifying the ground state structures of point defects in solids. npj
Comput. Mater. 2023, 9, 25.

(12) Mannodi-Kanakkithodi, A.; Xiang, X.; Jacoby, L.; Biegaj, R;
Dunham, S. T.; Gamelin, D. R.; Chan, M. K. Y. Universal machine
learning framework for defect predictions in zinc blende semi-
conductors. Patterns 2022, 3, 100450.

(13) Freysoldt, C.; Grabowski, B.; Hickel, T.; Neugebauer, J;
Kresse, G.; Janotti, A,; Van de Walle, C. G. First-principles
calculations for point defects in solids. Rev. Mod. Phys. 2014, 86,
253-308.

(14) Barték, A. P.; Kondor, R.; Csdnyi, G. On representing chemical
environments. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87,
184118.

(15) Synopsys Inc.. Sentaurus Device User Guide Version K-2023.12;
Synopsys, Inc.: Mountain View, CA, 2023.

(16) Himanen, L.; Jager, M. O.; Morooka, E. V.; Federici Canova,
F.; Ranawat, Y. S.; Gao, D. Z.; Rinke, P.; Foster, A. S. DScribe:
Library of descriptors for machine learning in materials science.
Comput. Phys. Commun. 2020, 247, 106949.

(17) Polak, M. P.; Jacobs, R.; Mannodi-Kanakkithodi, A.; Chan, M.
K. Y; Morgan, D. Machine learning for impurity charge-state
transition levels in semiconductors from elemental properties using
multi-fidelity datasets. J. Chem. Phys. 2022, 156, 114110.

(18) Mutter, D.; Dunham, S. T. Calculation of defect concentrations
and phase stability in Cu,ZnSnS, and Cu,ZnSnSe, from stoichiom-
etry. IEEE ]. Photovolt 2015, 5, 1188—1196.

(19) Britt, J.; Ferekides, C. Thin-film CdS/CdTe solar cell with
15.8% efficiency. Appl. Phys. Lett. 1993, 62, 2851—2852.

(20) Reich, C. Investigations to Improve CdTe-Based Solar Cell
Open Circuit Voltage and Efficiency Using a Passivation and
Selectivity Theoretical Framework, Ph.D. Thesis, Colorado State
University, 2022.

(21) Krasikov, D.; Knizhnik, A; Potapkin, B, Selezneva, S.;
Sommerer, T. First-principles-based analysis of the influence of Cu
on CdTe electronic properties. Thin Solid Films 2013, 535, 322—325.

(22) Yang, J.-H.; Park, J.-S.; Kang, J.; Metzger, W.; Barnes, T.; Wei,
S.-H. Tuning the Fermi level beyond the equilibrium doping limit
through quenching: The case of CdTe. Phys. Rev. B: Condens. Matter
Mater. Phys. 2014, 90, 245202.

(23) Kavanagh, S. R; Walsh, A, Scanlon, D. O. Rapid
recombination by cadmium vacancies in CdTe. ACS Energy Lett.
2021, 6, 1392—1398.

(24) Yang, J-H; Shi, L; Wang, L-W.; Wei, S.-H. Non-radiative
carrier recombination enhanced by two-level process: a first-principles
study. Sci. Rep. 2016, 6, 21712.

(25) Krasikov, D. N.; Scherbinin, A. V.; Knizhnik, A. A.; Vasiliev, A.
N.; Potapkin, B. V.; Sommerer, T. J. Theoretical analysis of non-
radiative multiphonon recombination activity of intrinsic defects in

CdTe. J. Appl. Phys. 2016, 119, 085706.

https://doi.org/10.1021/acs.jpcc.4c01124
J. Phys. Chem. C 2024, 128, 8821-8829


https://github.com/dms46/nn_semiconductors/
https://github.com/dms46/nn_semiconductors/
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c01124?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.4c01124/suppl_file/jp4c01124_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiaofeng+Xiang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7865-1741
mailto:xiaofx2@uw.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Scott+Dunham"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:dunham@uw.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dylan+Soh"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c01124?ref=pdf
https://doi.org/10.1063/1.5017475
https://doi.org/10.1063/1.5017475
https://doi.org/10.1088/0965-0393/17/8/084002
https://doi.org/10.1088/0965-0393/17/8/084002
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1103/PhysRevMaterials.4.063801
https://doi.org/10.1103/PhysRevMaterials.4.063801
https://doi.org/10.1103/PhysRevMaterials.4.063801
https://doi.org/10.1038/s41524-021-00650-1
https://doi.org/10.1038/s41524-021-00650-1
https://doi.org/10.1021/acs.chemmater.9b01294?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.9b01294?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0135382
https://doi.org/10.1063/5.0135382
https://doi.org/10.1038/s43588-023-00495-2
https://doi.org/10.1038/s43588-023-00495-2
https://doi.org/10.1088/0268-1242/31/8/083002
https://doi.org/10.1088/0268-1242/31/8/083002
https://doi.org/10.1088/0268-1242/31/8/083002
https://doi.org/10.1038/s41524-023-00973-1
https://doi.org/10.1016/j.patter.2022.100450
https://doi.org/10.1016/j.patter.2022.100450
https://doi.org/10.1016/j.patter.2022.100450
https://doi.org/10.1103/RevModPhys.86.253
https://doi.org/10.1103/RevModPhys.86.253
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1016/j.cpc.2019.106949
https://doi.org/10.1016/j.cpc.2019.106949
https://doi.org/10.1063/5.0083877
https://doi.org/10.1063/5.0083877
https://doi.org/10.1063/5.0083877
https://doi.org/10.1109/JPHOTOV.2015.2430015
https://doi.org/10.1109/JPHOTOV.2015.2430015
https://doi.org/10.1109/JPHOTOV.2015.2430015
https://doi.org/10.1063/1.109629
https://doi.org/10.1063/1.109629
https://doi.org/10.1016/j.tsf.2012.10.027
https://doi.org/10.1016/j.tsf.2012.10.027
https://doi.org/10.1103/PhysRevB.90.245202
https://doi.org/10.1103/PhysRevB.90.245202
https://doi.org/10.1021/acsenergylett.1c00380?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsenergylett.1c00380?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/srep21712
https://doi.org/10.1038/srep21712
https://doi.org/10.1038/srep21712
https://doi.org/10.1063/1.4942529
https://doi.org/10.1063/1.4942529
https://doi.org/10.1063/1.4942529
pubs.acs.org/JPCC?ref=pdf
https://doi.org/10.1021/acs.jpcc.4c01124?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The Journal of Physical Chemistry C

pubs.acs.org/JPCC

(26) Xiang, X.; Tong, Y.; Gehrke, A.; Dunham, S. Point defects in
CdTe and CdTeSe alloy: a first principles investigation with DFT+U.
arXiv 2024, arXiv:2404.07796v2.

(27) Alkauskas, A,; Yan, Q; Van de Walle, C. G. First-principles
theory of nonradiative carrier capture via multiphonon emission. Phys.
Rev. B: Condens. Matter Mater. Phys. 2014, 90, 075202.

(28) Turiansky, M. E.; Alkauskas, A; Engel, M.; Kresse, G;
Wickramaratne, D.; Shen, J.-X,; Dreyer, C. E.; Van de Walle, C. G.
Nonrad: Computing nonradiative capture coefficients from first
principles. Comput. Phys. Commun. 2021, 267, 108056.

(29) Perrenoud, J.; Kranz, L.; Gretener, C.; Pianezzi, F.; Nishiwaki,
S.; Buecheler, S.; Tiwari, A. N. A comprehensive picture of Cu doping
in CdTe solar cells. J. Appl. Phys. 2013, 114, 174505.

(30) Fahey, P. M.; Griffin, P.; Plummer, J. Point defects and dopant
diffusion in silicon. Rev. Mod. Phys. 1989, 61, 289—384.

(31) Xiang, X.; Sommer, D. E.; Gehrke, A.; Dunham, S. T. Coupled
Process/Device Modeling and Point Defect Engineering of Cu-
(In,Ga)Se2 Solar Cells. IEEE ]. Photovolt 2024, 14, 422—432.

(32) Ojo, A,; Dharmadasa, 1. The effect of fluorine doping on the
characteristic behaviour of CdTe. J. Electron. Mater. 2016, 45, 5728—
5738.

(33) Palekis, V.; Wang, W.; Elahi, S. T.; Zahangir Alom, M,;
Ferekides, C. Thin Film Solar Cells with n-type CdTe Absorber and
p-type ZnTe Window Layers. 2021 IEEE 48th Photovoltaic Specialists
Conference (PVSC), 2021; pp 1293—1297.

(34) McCandless, B.; Metzger, W. K.; Buchanan, W.; Sriramagiri, G.;
Thompson, C.; Duenow, J.; Albin, D.; Jensen, S. A.; Moseley, J.; Al-
Jassim, M. Enhanced p-type doping in polycrystalline CdTe films:
deposition and activation. IEEE ]. Photovolt 2019, 9, 912—917.

(35) Zhao, Y.; Boccard, M.; Liu, S.; Becker, J.; Zhao, X.-H.;
Campbell, C. M.; Suarez, E.; Lassise, M. B.; Holman, Z.; Zhang, Y.-H.
Monocrystalline CdTe solar cells with open-circuit voltage over 1 V
and efficiency of 17%. Nat. Energy 2016, 1, 16067.

(36) Oehling, S.; Lugauer, H.; Schmitt, M.; Heinke, H.; Zehnder, U,;
Waag, A.; Becker, C.; Landwehr, G. p-type doping of CdTe with a
nitrogen plasma source. J. Appl. Phys. 1996, 79, 2343—2346.

(37) Nagaoka, A.; Nishioka, K; Yoshino, K.; Katsube, R.; Nose, Y.;
Masuda, T.; Scarpulla, M. A. Comparison of Sb, As, and P doping in
Cd-rich CdTe single crystals: Doping properties, persistent photo-
conductivity, and long-term stability. Appl. Phys. Lett. 2020, 116,
132102.

(38) Nagaoka, A,; Kuciauskas, D.; Scarpulla, M. A. Doping
properties of cadmium-rich arsenic-doped CdTe single crystals:
Evidence of metastable AX behavior. Appl. Phys. Lett. 2017, 111,
232103.

(39) Ablekim, T.; Swain, S. K.; Yin, W.-].; Zaunbrecher, K.; Burst, J.;
Barnes, T. M.; Kuciauskas, D.; Wei, S.-H.; Lynn, K. G. Self-
compensation in arsenic doping of CdTe. Sci. Rep. 2017, 7, 4563.

(40) Khan, L. S;; Evani, V. K; Palekis, V.; Ferekides, C. Effect of
stoichiometry on the lifetime and doping concentration of polycrystal-
line CdTe. IEEE ]. Photovolt 2017, 7, 1450—145S.

(41) Li, D.-B.; Bista, S. S.; Song, Z.; Awni, R. A;; Subedi, K. K;
Shrestha, N.; Pradhan, P.; Chen, L.; Bastola, E.; Grice, C. R;; et al.
Maximize CdTe solar cell performance through copper activation
engineering. Nano Energy 2020, 73, 10483S.

(42) Zhao, J. H.; Schlesinger, T.; Milnes, A. Determination of carrier
capture cross sections of traps by deep level transient spectroscopy of
semiconductors. J. Appl. Phys. 1987, 62, 2865—2870.

(43) Stokes, A.; Al-Jassim, M.; Diercks, D. R.; Egaas, B.; Gorman, B.
3-D point defect density distributions in thin film Cu (In, Ga) Se2
measured by atom probe tomography. Acta Mater. 2016, 102, 32—37.

(44) Xiang, X,; Gehrke, A; Dunham, S. Understanding the
Dopability of As in Selenium-Alloyed Cadmium Telluride Solar
Cells. 2023 IEEE SOth Photovoltaic Specialists Conference (PVSC),
2023; pp 1-3.

8829

https://doi.org/10.1021/acs.jpcc.4c01124
J. Phys. Chem. C 2024, 128, 8821-8829


https://doi.org/10.48550/arXiv.2404.07796
https://doi.org/10.48550/arXiv.2404.07796
https://doi.org/10.1103/PhysRevB.90.075202
https://doi.org/10.1103/PhysRevB.90.075202
https://doi.org/10.1016/j.cpc.2021.108056
https://doi.org/10.1016/j.cpc.2021.108056
https://doi.org/10.1063/1.4828484
https://doi.org/10.1063/1.4828484
https://doi.org/10.1103/RevModPhys.61.289
https://doi.org/10.1103/RevModPhys.61.289
https://doi.org/10.1109/jphotov.2024.3366652
https://doi.org/10.1109/jphotov.2024.3366652
https://doi.org/10.1109/jphotov.2024.3366652
https://doi.org/10.1007/s11664-016-4786-9
https://doi.org/10.1007/s11664-016-4786-9
https://doi.org/10.1109/JPHOTOV.2019.2902356
https://doi.org/10.1109/JPHOTOV.2019.2902356
https://doi.org/10.1038/nenergy.2016.67
https://doi.org/10.1038/nenergy.2016.67
https://doi.org/10.1063/1.361160
https://doi.org/10.1063/1.361160
https://doi.org/10.1063/5.0004883
https://doi.org/10.1063/5.0004883
https://doi.org/10.1063/5.0004883
https://doi.org/10.1063/1.4999011
https://doi.org/10.1063/1.4999011
https://doi.org/10.1063/1.4999011
https://doi.org/10.1038/s41598-017-04719-0
https://doi.org/10.1038/s41598-017-04719-0
https://doi.org/10.1109/JPHOTOV.2017.2730865
https://doi.org/10.1109/JPHOTOV.2017.2730865
https://doi.org/10.1109/JPHOTOV.2017.2730865
https://doi.org/10.1016/j.nanoen.2020.104835
https://doi.org/10.1016/j.nanoen.2020.104835
https://doi.org/10.1063/1.339395
https://doi.org/10.1063/1.339395
https://doi.org/10.1063/1.339395
https://doi.org/10.1016/j.actamat.2015.09.035
https://doi.org/10.1016/j.actamat.2015.09.035
pubs.acs.org/JPCC?ref=pdf
https://doi.org/10.1021/acs.jpcc.4c01124?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

