Pluggable Type Inference for Free

Martin Kellogg Daniel Daskiewicz

Newark, NJ, USA

{martin.kellogg,dd482,In3,ma234} @njit.edu

Abstract—A pluggable type system extends a host programming
language with type qualifiers. It lets programmers write types like
unsigned int, secret string, and nonnull object. Typechecking
with pluggable types detects and prevents more errors than
the host type system. However, programmers must write type
qualifiers; this is the biggest obstacle to use of pluggable types
in practice. Type inference can solve this problem. Traditional
approaches to type inference are type-system-specific: for each
new pluggable type system, the type inference algorithm must
be extended to build and then solve a system of constraints
corresponding to the rules of the underlying type system.

We propose a novel type inference algorithm that can infer
type qualifiers for any pluggable type system with little to no new
type-system-specific code—that is, “for free”. The key insight is
that extant practical pluggable type systems are flow-sensitive
and therefore already implement local type inference. Using this
insight, we can derive a global inference algorithm by re-using
existing implementations of local inference. Our algorithm runs
iteratively in rounds. Each round uses the results of local type
inference to produce summaries (specifications) for procedures
and fields. These summaries enable improved inference throughout
the program in subsequent rounds. The algorithm terminates
when the inferred summaries reach a fixed point.

In practice, many pluggable type systems are built on frame-
works. By implementing our algorithm once, at the framework
level, it can be reused by any typechecker built using that frame-
work. Using that insight, we have implemented our algorithm
for the open-source Checker Framework project, which is widely
used in industry and on which dozens of specialized pluggable
typecheckers have been built. In experiments with 11 distinct
pluggable type systems and 12 projects, our algorithm reduced,
by 45% on average, the number of warnings that developers
must resolve by writing annotations.

Index Terms—Pluggable type systems, type qualifiers, type-
checking, type inference, static analysis

I. INTRODUCTION

A pluggable type system [1] augments a host type system
with type qualifiers that refine it. A qualified type is more
fine-grained than an unqualified one and therefore gives more
precise information about what values are possible at run
time. It lets programmers write types like unsigned int, secret
string, and nonnull object. Pluggable type systems can prevent
null-pointer dereferences [2, 3, 4, 5, 6, 7], out-of-bounds array
accesses [8, 9], violations of locking discipline [10, 11, 12,
13, 14], mutations of immutable data [15, 16, 17, 18, 19, 20],
units of measurement errors [21, 22], and more. A successful
typechecking run proves that these undesirable behaviors will
never occur at run time. Pluggable type systems are a standard
practice in industry; for example, they are used at Amazon
[23, 24, 25], Google [26], Meta [27], and Uber [5].

Loi Ngo Duc Nguyen Muyeed Ahmed
New Jersey Institute of Technology

Michael D. Ernst
University of Washington
Seattle, WA, USA
mernst@cs.washington.edu

Pluggable types are an attractive verification and bug-finding
strategy because programmers are familiar with type systems
and are used to writing types. Another benefit is that the type
qualifiers serve as concise, machine-checked documentation.
However, writing type qualifiers in a legacy codebase is
intimidating and time-consuming for developers. This has
hindered more widespread adoption of pluggable types. An
alternative is type inference, which computes a set of type
qualifiers that are consistent with the program.

Here is a typical usage scenario to verify a legacy codebase
using a type inference tool. Before starting, the user (a
programmer) runs the inference tool on the whole program (a
slow process), which saves inference results to a side file and
outputs typechecking warnings. The number of warnings is
usually smaller than the user would see if they typechecked
the program without inference. For each warning, the user
fixes a bug in the code; writes annotations in the source code
to override undesirable inference results; or suppresses the
warning if it is a false positive that cannot be resolved by
writing annotations. The programmer re-runs the inference
tool on only the changed code, code that depends on it, and
code that depends on any changed inferences. Eventually, the
codebase contains a few human-written annotations and has
been verified to be free of certain errors. The annotations in
the side file may be optionally inserted into the codebase.
Further development uses the typechecker (which is fast) on
each compilation to keep the codebase verified.

The traditional approach to type inference is constraint-based.
First, generate a set of constraints induced by the source code
via a syntax-directed analysis, similarly to how typechecking
rules apply to code. Unlike typechecking, which is a modular
analysis, this approach to type inference is inherently whole-
program: constraints might be generated from type uses that
are far from the corresponding declarations. The step after
generating the constraints is to solve them, which requires
iterating over them. For example, languages like ML and
Haskell use Hindley-Milner type inference based on algorithm
W [28] (but it is a good practice to write explicit types as
documentation [29, 30, 31, 32]). The constraint-based approach
is challenging for object-oriented programming languages such
as Java and Python, because subtyping significantly complicates
unification of types; combining subtyping and ML-style type
inference remains an open research problem [33, 34].

The traditional approach requires writing a type constraint
generator for every (pluggable) type system—essentially, to

re-implement the typechecker—which is a heavy burden. One
complication is that non-trivial typecheckers contain procedural
code that may be difficult to translate into a declarative form.
We desire an inference algorithm that is generic over the
pluggable type system to which it is applied. The pluggable
type system designer should not need to modify their pluggable
typechecker’s implementation in order to access the benefits
of type inference: that is, type inference should be available
to any pluggable type system “for free”.

We propose iterated local type inference, a general type infer-
ence algorithm that is applicable to any flow-sensitive pluggable
type system. Our key insight is that frameworks for building
pluggable type systems already provide local type inference in
the form of flow-sensitivity within the body of methods. This
local type inference is effectively an intra-procedural dataflow
analysis; iterated local type inference lifts the local dataflow
analysis that each checker already possesses to the whole
program, similar to a global dataflow analysis [35, 36]. Our
approach requires modifying the framework (once, ever) so that
it records inferred method, class, and field summaries based on
the results of flow-sensitive local typechecking. Iterated local
type inference works by iteratively typechecking the program,
using and improving the summaries, until reaching a fixed
point. That fixed point is a candidate set of type qualifiers that
are consistent with the program. This can be viewed as an
adaptation of interprocedural dataflow analysis to pluggable
type-checking. This idea, though simple to explain, is complex
to formalize (section III) and many complications arise in
applying it to real type systems (section IV).

We implemented iterated local type inference for the Checker
Framework [6], a pluggable type system framework for Java. In
our system, which we call Whole Program Inference (WPI), the
user (a programmer) can decide whether to insert the inferred
type qualifiers in the source code or to store them in a side file.
We used WPI to run 11 different pluggable type systems on
88,680 lines of code in 12 projects. In these experiments, our
inference approach exactly matched 39% of the ground-truth
type qualifiers previously written by programmers and reduced
by 45% the number of remaining warnings that a human would
need to resolve by writing an annotation.

Our contributions are:

« iterated local type inference, a novel type inference algo-

rithm for flow-sensitive pluggable typecheckers inspired
by global dataflow analyses (section III);

o enhancements to the algorithm that make it practical
(section 1V);

« an implementation of our new type inference algorithm
within the Checker Framework, a framework for building
pluggable typecheckers (section V); and

« an evaluation of our implementation on 12 projects totaling
88,680 lines of non-comment, non-blank Java code, across
11 different pluggable type systems (section VI).

II. BACKGROUND

A type is a set of run-time values. A type qualifier [1] is
a restriction on a type that limits which run-time values the

qualified type can represent. For example, positive int is a
qualified type: positive is the type qualifier, and int is the
base type. A pluggable type system defines a hierarchy of
type qualifiers. Each pluggable typechecker is effectively an
abstract interpretation [37], with the abstract interpretation’s
lattice being equivalent to the type qualifier hierarchy.

Practical pluggable type systems are intra-procedurally flow-
sensitive. That is, an expression can have different types on
different lines of the program, subject to its declared type
as an upper bound. For example, after an assignment x.f =
somePositive or a test x.f > 0, the type of x.f changes from
int to positive int until a possible side effect or a control
flow join. This is called flow-sensitive type refinement [7]
or local type inference. This nearly eliminates the need
for programmer-written annotations (and, by enabling re-
assignment, certain temporary variables) within method bodies.
As a result, programmers typically do not need to write type
qualifiers within method bodies, only on APIs: class, method,
and field declarations.

The need to write annotations only on APIs is a welcome
labor savings in pluggable type systems. Recent developments
echo it in mainstream languages like Java (which has the var
keyword) and Kotlin (where local variable types are optional).
However, our goal is to lift even this burden.

A pluggable typechecker permits programmers to leave base
types unqualified. On APIs, the typechecker uses defaulting
rules to assign a qualifier to each unqualified base type. For
example, although a programmer might write the type object,
the type-checker interprets it as nonnull object or nullable
object, depending on the defaulting rules. Within a code block,
the typechecker infers type qualifiers.

For example, consider a pluggable type system designed
to prevent negative array accesses. It would require that the
type of any index used to access an array is non-negative. The
following code does not typecheck as written:

// Returns the value in a at the index. For this procedure,
// the first element of the array is at index 1.
string getOneIndexed(string[] a, int index) {
return a[index - 1];
}

Because index’s type int is unqualified (i.e., a base type), a
pluggable typechecker would default it, most likely to a worst-
case assumption that index could be any integer (the “top
qualifier” or T). With this type, every call to getOneIndexed
would typecheck, but its body would not.

To make the code typecheck (equivalently, to verify that its
array accesses are not at negative indices) a programmer would
write the formal parameter as positive int index.

Like its host type system, a pluggable type system is modular:
it can be run incrementally on a procedure or a file at a
time. It uses only the specifications (i.e., the types) of called
procedures: it never has to reason about the implementations
of other procedures, only their specifications or summaries.
Within the procedure body, the typechecker relies on the fact
that index has type positive int. At call sites, the typechecker
guarantees that only positive integers are passed as arguments.

This rely—guarantee approach is globally sound so long as
every procedure is checked.

The annotation burden scales linearly with the size of the
code base, which may be large for legacy code. Furthermore,
many pluggable type systems require significant numbers
of annotations. For example, a pluggable type system for
preventing out-of-bounds array accesses required one type
qualifier for every 32 lines of non-comment, non-blank code [9].

Our goal in this work is to avoid the burden of writing these
type qualifiers. Our approach is to automatically convert a
flow-sensitive pluggable typechecker (like the ones that exist in
practice) into one that performs inter-procedural type inference.

III. ITERATED LOCAL TYPE INFERENCE

This section presents iterated local type inference, our type
inference algorithm. Instead of designing a specialized type
inference algorithm for each type system, our approach is to
modify the underlying framework on which the pluggable type-
checkers are built. Iterated local type inference is independent
of the underlying pluggable typechecker: adapting an existing
pluggable typechecker is automatic.

Our key observation is that practical pluggable typecheckers
already use intra-procedural, flow-sensitive type refinement.
That is, they infer type qualifiers within method bodies (i.e.,
locally) based on dataflow facts, in a similar manner to an
abstract interpretation [38]. This local dataflow analysis can
be lifted into a global dataflow analysis, just as one would lift
an intra-procedural dataflow analysis or abstract interpretation
to an inter-procedural analysis.

The first idea behind iterated local type inference is to
expose the results of local type refinement—that is, what
facts about non-local locations are inferred as a by-product
of local inference. The second idea is to iteratively call a
typechecker, reusing these results to obtain type qualifiers for
the whole program. In other words, iterated local type inference
propagates the results of local, flow-sensitive refinement inter-
procedurally until a global fixpoint is reached. Applying these
two ideas inside a pluggable typechecking framework converts
any typechecker built on that framework into an inferring
typechecker that can perform iterated local type inference (in
addition to typechecking).

More formally, a typechecker 7' : P — FE takes a program P
and outputs a (possibly empty) set of type errors. An inferring
typechecker Ty : (P, A) — (E, A’) takes a program along with
a set of additional type qualifiers A. It outputs errors F and
inferences A’, which is a new set of type qualifiers. The errors
E are exactly those T" would output, if the type qualifiers in A
had been written on P by a programmer. The original program
P may or may not contain programmer-written type qualifiers.

This paper describes the two parts of iterated local type infer-
ence separately. First, section III-A explains the modifications
to the pluggable typechecking framework that enable iterated
local type inference for a pluggable typechecker 7' (i.e., that
convert it to an inferring typechecker 77). The modified type
rules in section III-A expose the results of local refinement.
Section III-B gives the “outer-loop” fixpoint algorithm that

propagates inferred types throughout the program and iteratively
improves them.

A. Inferring Typecheckers: The Inner Loop

This section describes how our modified typechecking
framework automatically converts a pluggable typechecker
T into an inferring typechecker 77.

Our key insight is to modify the typechecking framework’s
rules once, to support inference. A pluggable typechecking
framework provides the basic typechecking rules that are
common to all pluggable typecheckers, support for flow-
sensitive type refinement, and other conveniences. Once the
pluggable typechecking framework is modified, inference is
enabled for every typechecker built on it, regardless of the
particular qualifiers the typechecker happens to support.

Our modifications can be conceptualized at the type-qualifier-
theory level: that is, we modify the rules for typechecking used
by all pluggable type systems so that inference is supported.
The modified type rules appear in fig. 1.

In fig. 1, m(fo, ..., fn) refers to a method declaration: m
is a method name, and each f; is a formal parameter declaration.
The syntax m(fo, ..., fn) : qr Tr means that m’s (qualified)
return type is qg 7r. The syntax f; : g 7 means that the
declared type of the formal parameter f; (of m) is gp 7p.

The typing environment I' is standard and maps expressions
and declarations to qualified types. Because of defaulting,
there are no unqualified types in I'. The inference environment
= maps declarations to the results of inference, which are
possibly-qualified types (that is, either qualified or unqualified
types). = only maps declarations; I' already maps expressions
to flow-sensitively refined types. Initially, = maps explicitly-
annotated type declarations to their qualifier, and all other
declarations to “not present”. Once every statement in the
program has been typechecked, the current round of inference
terminates. Its result is all mappings to qualified types in
Z. Any type that remains unqualified throughout inference
does not appear in the output, because no information about
it was learned. Keeping types with no information available
unqualified is important to prevent spurious output. No matter
what qualifier was used for such types (L, T, the default, ...),
it could be inconsistent with, and thereby contaminate, inferred
information. The “not present” abstract value is also necessary
to prove theorem 1 (section III-C3), which is our termination
theorem, to preserve monotonic movement through the type
hierarchy between inference rounds.

The function LUBg (g1, g2) is a variant of the type system’s
existing least upper bound function that accounts for possibly-
qualified types. q; and ¢y are each either a type qualifier
or “not present”’. If both arguments are qualifiers, then the
result of LUBg is their least upper bound. If only one
qualifier is present, then LUB(’s result is that qualifier; if
both qualifiers are not present, LUBg’s result is “not present”,
resulting in an unqualified result. Effectively, our approach
“lifts” the type hierarchy by adding a new “bottom” type (“not
present”). LUBg computes the least upper bound over this
lifted hierarchy.

UEm(fo: qry TRy fn s @R, TF,) QR TR
I'EVieo,..., n. e; T, I'EVieo,..., n.qga. 74. = qp T =FVieo,..., n. fi © qr. TF,
: w qa; Ta, - ‘QAL A, E q{% TF, sees e fiotoqr TR INVOKE
I' = m(eg,..., €n) 4R TR EFVie0,...,n. fi : LUBg(qa,, a1;,) TF;
L'new T(f1: qm TRy - fn: qr, TR,) QR TR
IEYiel,....on e qa, Ta, I'EYiel,..., n.qa, TA, = qr, Tr EFViel,...on. fi © q TR NEW
[' F new T(m €n) QR TR =EFVYiel,...,n. f; LUBQ((]A” qu.) TF;
'+ f TF I'ke : T 'k T4 T Tr =k T
I oiaqr TE e qa Ta L ga 74 Cqr TF fraTr FORMAL-ASSIGN
I'Ef = ¢ EbFf : LUBg(qa,q1) TF
Thaof igerr The:gata Thgara Carre EFCf:qr
J g TR : | qa Ta _ ‘QA A Logr TR [arr FIELD-ASSIGN
F'Fa.f = e EFC.f : LUBg(qa,q1) TF
return e € m CEm(fo: gry Trys---s fot qry, TFy) 4R TR
I'ke : T, '+ T4 C TR =Fm : TFyy ey fn: T T
qa T4 : ga 74 E QE R '(fo qF, TFy, fn: qr, TE,) a1 TR RETURN
[+ return e EFm(fo,..., fn) © LUBg(qa,q1) ™r
I'Emp(fo, @ 4By TBys---» fns 4B, TB,) : QRg TR,
UEmp(fop: apy TRy, - - fop T qr, TP,) T QRp TRy
't qrg TRy T qRp TR, '=vieo,..., np. 4B, TB, = qp, TP,
Fng = np EFmp(fos : 4ByTBy»-++»Jnp * UB.TB,) : 4Rs-I TRg
EEmp(fop: qryTPys -5 Jnp © AP.TP,) © GRp-T TRp
=Z=FVie0,...,np. B, I TB, =FViel,...,np. qp..1 TP,
A . B fBL (ZB,. I TB; . . A) P fP, qP;-1 TP; . OVERRIDE
I'Emp(fo, @By TBy»---s fnp 4B, TB,) is a valid override of mp(fo, : qpy TPy, ---» fuprt qp, TP,

EF 7np(f()P C 4Py TPy e s fnp : anTPn)

Fig. 1. The rules of inferring typechecking, which is the inner loop of iterated

LUBQ((]RB,DQRPJ) TRp

LUBq(qB;-1, qp,-1) TP,

local type inference. Applying these type rules once to every statement in a

program constitutes the “inner loop” of the inference algorithm. Gray indicates standard type rules for an object-oriented language with Java-like syntax.
Black indicates additions to support pluggable typechecking [1]. Red indicates additions to support inference, i.e., our contribution in this paper. I" is the type
environment and = is the inference environment. Throughout, “R” subscripts refer to return types; “F” to formal parameters; “A” to actual arguments; and “I”
to inference results. For simplicity, these rules assume that any type qualifier may be “unqualified” (though actually only types in = may be unqualified,
because all types in I' are defaulted). In a (pseudo-)assignment x=y, x is the “formal” and y is the “actual”. In the INVOKE rule, the Oth parameter is the
receiver parameter, which only exists if m is an instance method. In the OVERRIDE rule, the subscripts “B” and “P” are mnemonics for “suBtype” and
“suPertype”, referring to the overriding method and the overridden method, respectively. In, “Qp,.;” the “-I” suffix refers to inference results. Type rules that

do not require modification to support inference are elided for space.

For example, consider the RETURN rule. This rule checks
that the type of the expression in a return statement (7,) is
a subtype (C) of the method’s declared return type (75). The
basic rule for a language without qualified types is presented
in gray. A standard pluggable typechecker (whose rules are
presented in black) extends this rule by requiring that the
qualified type of the returned expression (g4 7.) is a subtype
of the qualified declared return type (qr 71). Note that the
typing environment (I') contains qualified types, as is standard
for pluggable typechecking; every entry in I" has some qualified
type, because either there is a programmer-written type or the
typechecker computes a default (by applying its defaulting
rules and local type inference). Inferring typechecking makes
two modifications to this rule (in red): one new precedent and
one new consequent. The new precedent looks up the current
estimate of the inferred return type (q; 7r) in the inference
environment (=), which may be “not present” if nothing
has yet been inferred for that location. The new consequent

updates the inference environment to take into account the
qualified type of the return expression (g4 7.): it takes the
least upper bound (using the LUBq function described above)
of the (locally-inferred) actual expression qualifier ¢4 and
the (globally-inferred, by our algorithm) qualifier from the
inference environment ¢;.

I 4

B. Fixpoint Algorithm: The Outer Loop

Figure 2 gives the outer loop of the iterated local type
inference algorithm. It iteratively analyzes the target program
P with an inferring version of a pluggable typechecker until
either there are no remaining typechecking errors (E = () or
the type qualifiers reach a fixed point (prevA = A). The helper
function ENABLEINFERENCE is defined by the modifications
to the type-checking framework described in section III-A.

This algorithm is stated as a set of rules for a single round
of inference and an iterative fixpoint algorithm. It produces
the same result as a traditional whole-program type inference

input :program P and pluggable typechecker T’
output : set of errors E and set of type qualifiers A
def infer(P, T):
A+
Tt <+ ENABLEINFERENCE(T)
repeat
prevA < A
E, A<« Ti(P, prevA)
until £ =0V prevAd = A
return £, A

Fig. 2. The iterated local type inference algorithm.

implemented with a single worklist. However, it has the major
advantage of being practical. It reuses the existing typecheckers
and therefore does not require re-implementation for each new
type system. This is its key advantage over other approaches.

C. Properties of the Algorithm

1) Soundness: Any infer-then-check approach is sound (in
the sense of never certifying an incorrect program) so long
as the “check” step is sound. Even if the inference algorithm
were to produce incorrect type qualifiers, the checker would
reject them: 7 performs the requisite checking.

In the context of type inference, “sound” is usually used to
mean “never infers an annotation that cannot be verified.” In
this sense, our approach is sound if the inferring typechecker
is run on the whole program: on every call site, on every
assignment, etc. (The proof is standard: by induction on the
rules in fig. 1.) In practice, however, this is rarely the case
due to separate compilation of libraries and client code; see
section IV-H.

2) Completeness: This inference system is not complete: it
does not and cannot infer all possibly-true type qualifiers for a
given type system. To see why not, recall that type qualifiers
on formal parameters are inferred from the actual types of the
arguments at call sites. If there are no call sites for a method in
a given program, then the INVOKE rule will never be fired. No
information will be inferred for those formal parameters, and
they will remain unqualified (assuming FORMAL-ASSIGN
is never used, either, because they are not re-assigned).

The lack of completeness is by design. Our goal is not
a set of type qualifiers that perfectly captures every fact
that is true about the program we are presented with, but
rather a set of type qualifiers that is useful in practice for
typechecking the program (say, for guaranteeing that it never
suffers a NullPointerException). Returning to the example of
a method with no call sites, a complete algorithm must infer
the bottom type for that method’s parameters. When applying
type inference to real programs (which may be libraries that
are intended to be linked with clients later, due to separate
compilation), it is desirable to trust that the defaulting scheme of
the typechecker is sensible rather than infer an overly restrictive
type qualifier based on no actual information.

Further, most true type qualifiers do not actually prevent a
typechecking error, and are therefore unnecessary. And, each

Integer getN() {
if (*) return getNull();
else return getZero();

}
Integer getNull() { return null; }

Integer getZero() { return 0; }

Fig. 3. A program that induces both upward and downward movement in a
typechecker’s lattice, when analyzed by WPL “*” is non-deterministic choice.

additional qualifier added to the program adds a maintenance
burden: that qualifier must be read every time the code is read,
etc. A complete type inference algorithm adds to this burden.
Another benefit of completeness being a non-goal is that our
inference system is permitted to heuristically not infer a type
qualifier when doing so might lead to sub-optimal results,
which simplifies the implementation when handling complex
language features (e.g., reflection).

3) Termination: A termination argument is typically based
on some monotonically-changing finite abstraction; for example,
abstract interpretations terminate because their lattices have
finite height, and the abstract values at each program point
monotonically move up the lattice. In our proof of theorem
1 (below), the “not present” value is key. Ignoring the “not
present” value, the main loop in fig. 2 might seem to produce
a stronger or weaker estimate for a particular declaration’s
(qualified) type in subsequent iterations, due to its interaction
with defaulting.

For example, consider the program in fig. 3 and two
pluggable typecheckers: one for nullness, with nonnull and
nullable type qualifiers; and one for integers, with T for “any
integer” and nonnegative for non-negative integers [9]. Our
algorithm’s estimates for the return type of getN() for these
two typecheckers seem to move in opposite directions:

e For nullness, in the first round, the estimate for getN()’s
return type is the default: nonnull, the bottom type. WPI
discovers that getNull() is nullable in the first round. In
the second round the inferred type of getN() becomes
nullable. getN()’s return type seemingly moves upward.

« For integers, in the first round, the estimate for getN()’s
return type is the default (T), because nothing is (yet)
known about the methods it calls. In the first round, both
method’s types are found to be nonnegative (since null
literals usually have the bottom type in non-nullness type
systems, and O is non-negative). In the second round,
getN()’s return type is inferred to be nonnegative: it seems
to move downward from the first to the second round.

This example demonstrates the importance of the “not
present” abstract value in the theory presented in section III-A:
in the first round, in both of these type systems, no information
is inferred about the return type of getN(). Without the “not
present” abstract value, the defaults that the type system would
assign create the appearance of non-monotonicity.

With the “not present” abstract value, however, the reason
that our algorithm terminates becomes clear: at each step, each
location to which inference applies is either “not present” or has

public int f(int x) {
if (x >= 0 & x < 100) {
return g(x + 1);
} else {
return 0;
}
}
public int g(int y) {
if (y >=0 & y < 100) {
return f(y + 1);
} else {
return 0;
}
}

Fig. 4. An example of a program that WPI analyzes in a finite but large (and
program-dependent) number of rounds.

an abstract value from the typecheckers’ type hierarchy. From
“not present”, it can take on any value in the type hierarchy, but
once it leaves “not present”, it always is monotonically refined
upwards. This allows us to state and prove our termination
theorem:

Theorem 1: Figure 2 terminates on all programs.

Proof sketch. The proof is a standard analysis termination
proof based on monotonically moving up the type hierarchy,
with a special case for the “not present” abstract value. [

While theorem 1 guarantees that inference will terminate
after a finite number of rounds, that number need not be
small. For example, consider the program in fig. 4 and a
pluggable typechecker implementing a range analysis, whose
type qualifiers constrain an integer to a particular range; e.g.,
range(from=0, to=10) means an integer between 0 and 10, inclu-
sive. In this program, functions f and g are mutually recursive.
Over 100 rounds, WPI will infer larger and larger ranges for
their parameters x and y: in the first round, range (from=0, to=0);
in the second round, range(from=0, to=1); etc., all the way up
to the 100th round, when the analysis settles on range(from=0,
to=100), which is correct.! In cases like this, the time the
analysis takes is controlled by the program: for this example,
we chose the constant 100 arbitrarily, but if 100 were replaced
by any other positive integer k, then WPI would require &
rounds to terminate. We have not yet observed this behavior in
practice, but it suggests the need for some notion of widening in
the outer loop, mirroring what is provided by the typecheckers
themselves in the inner loop.

IV. PRACTICAL CONSIDERATIONS

This section describes some non-obvious challenges in
building a system that applies to every pluggable typechecker
and is effective at inferring type qualifiers for real programs.

A. Programmer-written Types

WPI never refines nor generalizes programmer-written type
qualifiers. It assumes that they reflect the intended specification.
Users can use this where the inference output is not as desired.

If the range checks on x and y were removed, WPI would terminate after
1 round, concluding that the type of both is T.

Inference reports facts (type qualifiers) that are true about
a program’s implementation. However, these facts may be
either stronger or weaker than the programmer’s intended
specification, depending on the current implementation of a
procedure and the observed calls to that procedure. In other
words, type inference can cause leakage of implementation de-
tails, permitting clients to depend on them. This is undesirable
because it constrains future refactoring.

Permitting programmer-written types is a solution to this
problem. Even when types are not required such as in some
functional programming languages, writing types is a best
practice for its documentation benefits [29, 30, 31, 32].

Within a programmer-written @SuppressWarnings annotation,
WPI does no inference.

B. Storing Intermediate Results

WPI needs to treat type qualifiers supplied by the program-
mer and by external libraries differently than type qualifiers
that were produced during earlier rounds of inference: the latter
may be further refined, but the former must not be.

This constraint disqualifies two ways to store intermediate
candidate qualifier sets that were already supported by the
Checker Framework: (1) insert the inferred type qualifiers in
the program, and (2) store the inferred type qualifiers in a side
file, like specifications for unannotated libraries.

Strategy 1 makes it impossible to distinguish between
qualifiers written by the programmer and qualifiers inferred
in previous fixpoint rounds. Strategy 2 does not permit
differentiating between library qualifiers and inferred qualifiers.
We tried placing all library qualifiers in source code, but
this made inference not work properly on libraries for which
checker-distributed library qualifier files existed, such as the
JDK, Guava, etc.

Instead, we devised a new side file mechanism specifically
for storing inferred annotations. Their syntax is the same as
library side files, but they have different semantics and are
processed separately. Library side files are never modified
during typechecking or inference, but inference side files change
on each iteration of the outer loop in fig. 2.

C. Generated Code and Analysis Termination

During prototyping, we encountered a program on which
WPI did not terminate. WPI implements the prevA = A test
of fig. 2 by running Unix’s diff on side files (section IV-B)
that store inferred annotations. These side files also contain the
program text, which we had assumed would remain constant.
For this one program, however, the program text itself was
not constant: the build system inserted the current date and
time (as a string constant) into the program, to enable a feature
that printed the time and date at which the program was
compiled. The Java file contained no other code except these
ever-changing “constants”.

This example highlights an assumption that is easy to make
(“the program text is constant”) but which can cause a complex
system like inference to fail to terminate. We solved the problem
on this particular program by not type-checking the offending

files; that is, we excluded the offending files from the input to
WPI.

D. Writing Output and Cross-file Dependencies

WPI has no way of knowing when the whole program has
been processed. (The Checker Framework, and therefore WPI,
runs each typechecker as a javac plug-in that is given files to
typecheck sequentially.) Therefore, WPI must write inference
results for each Java file at the end of processing that file.
However, those results might later be modified by calls that
are discovered in other files. Therefore, WPI records every
modification to inferred types, and at the end of processing
each Java file, WPI writes every inferred annotation that has
changed since the last time files were written. An annotation
side file may be written many times during one round of
inferring typechecking.

E. Unqualified Annotations and Defaults

Consistency among overridden methods is different between
WPT’s and the typechecker’s points of view. WPI’s unqualified
types mean inference has not yet learned any information, and
section III-A’s LUB ignores unqualified types. However, the
typechecker uses a default when there is no annotation. When
WPI would write no annotation at some location in a method
signature, it checks that the default annotation is consistent with
supertypes and subtypes (i.e., it checks behavioral subtyping for
methods). If not, it writes consistent, conservative annotations.
This process does not change WPI’s inference results, only
what is written to the file. Changing WPI’s inference results
would cause WPI to lose the distinction between unqualified
types and inference of some type, which would harm further
inference in the same round of inferring typechecking.

E. Preconditions and Postconditions

The Checker Framework’s specification language contains
not only type annotations but also pre- and post-conditions:
e.g., a method can specify that it may only be called when
field f of its first formal parameter is non-null, or can specify
that after the method returns, field g of its receiver is non-null.
These contracts are essential to verifying real-world code.

On entry to and exit from each method definition, WPI
converts annotations in the type store into their pre- and
post-condition equivalents. For example, if the exit store
contains @NonNull T as the type for expression a.b, then it
creates an @EnsuresNonNull("a.b") annotation for the method.
@EnsuresNonNull is a declaration annotation rather than a type
qualifier. The implementation is generic across all type systems,
not hard-coded for a specific type system such as nullness.

G. Non-type-system Properties

The Checker Framework’s specification language contains
information about whether a method is deterministic (returns
the same output each time it is given the same input), side-effect-
free (does not produce any effects observable from outside
the method other than its output), or pure (both deterministic
and side-effect-free). These are not type properties, but method

specifications. These specifications aid flow-sensitive typecheck-
ing. The framework conservatively assumes every method is
impure, and whenever a (possibly) side-effecting method is
called, local inference must discard most type refinements,
because the method might re-assign fields.

Because purity is not a type system, the Checker Framework
verifies it directly. Our modifications enhance that by inferring
these annotations whenever they would be verifiable. We
defined a lattice of purity annotations: pure is the top element,
deterministic and side-effect-free are sibling elements below it,
and we defined a new “impure” abstract value (and annotation,
which is invisible to users) to complete the lattice. To determine
the purity annotation to infer for a given method, WPI
applies this least upper bound to the purity of that method’s
implementation and the implementations of all of its overriding
methods, using the logic of the LUB function (section III-A).

H. Separate Compilation

An inference approach outputs annotations that pass the
typechecker only if the whole program is analyzed at once.
In practice, Java programs are usually compiled separately.
A simple example is that when compiling a library, its set
of possible callers is not known. We have also observed this
problem in Maven and Gradle sub-projects: a naive application
of our approach would treat these sub-projects separately, but
this could lead to inferences that are not sufficiently general.
Suppose m is defined in sub-project P, and is only passed non-
null values in P;. Inferring that m’s formal parameter is non-null
might lead to a spurious typechecking error in sub-project Po
that passes null to m.

Practically, this means that soundness in the traditional sense
is not a useful goal for practical inference tools for languages
that support separate compilation. A user can mitigate this issue
by including test suites in the “whole program” provided to
inference. Another mitigation is for users to write specifications
for module entry points. However, we still view this as an open
problem for practical type inference.

1. Type-system-specific Inference

We added three type-system-specific rules to improve WPI’s
real-world performance. Together, these modifications comprise
61 lines of code in 2 type systems. We did not observe the
need for type-system-specific rules in any of the other 9 type
systems. We stress that these modifications are optional: WPI
is functional even without them. Section VI-E2 discusses the
effect of these changes on our experiments.

1) Nullness: (22 lines of code) We disabled inference of
qualified types for receiver parameters, which are always
@NonNull. We also added a rule to infer the @onotonicNonNull
annotation, which means that a field may be null, but once it
is assigned a non-null value, it remains non-null forever. Only
fields can be @MonotonicNonNull, so local inference has no rules
to infer it. We added such a rule: if the only null assignments
to a field are in the enclosing class’s constructor or the field’s
initializer, WPI infers it to be @onotonicNonNull, not @Nullable.

2) Formatter: (39 lines of code) This checker supports the
@FormatMethod declaration annotation provided by Google’s
Error Prone [39], which is redundant with the checker’s own
@Format annotations. Our modifications remove inferred @Format
annotations from methods that already have @FormatMethod
annotations, to avoid code clutter and duplication of effort.

V. IMPLEMENTATION

We implemented WPI by modifying the Checker Frame-
work [6]. By implementing our algorithms in the framework
itself, our approach is applicable to any typechecker that
builds on top of the framework without any modification. WPI
provides two implementations of fig. 2:

o A template outer-loop shell script that repeatedly invokes
the target project’s build system. This requires the user
to copy the shell script and edit four variables at the
top of the script to set them to project specific values,
and to modify the build script itself so that WPI is on
the project’s annotation processor path (which typically
requires <10 lines of modified build script code).

¢ A tool that automatically instruments a target build script
(Ant, Maven, or Gradle) to run a given typechecker with
inference enabled, based on the do-1like-javac tool [40].

Our implementation of iterated local type inference (and,
therefore, of whole-program type inference) has been publicly
available and documented in the Checker Framework distribu-
tion (https://checkerframework.org/) since version 2.0.0 (May 2,
2016). This paper is the first formalization and evaluation of
the approach, though some prior work used an earlier version
of WPI to ease its evaluation [23, §4.5].

VI. EVALUATION

We have deployed WPI at a large software company. We
cannot discuss that experience for reasons of confidentiality,
SO wWe ran experiments on open-source programs.

Our experiments aim to answer two research questions:

o RQI1: Is iterated local type inference easy to apply to
an existing typechecker? How much per-checker work is
required?

e« RQ2: [s iterated local type inference effective? How
many of the annotations that humans have written can it
reconstruct? After it runs, are there fewer warnings for
humans to address?

A. Methodology

We collected projects that have already been annotated for
pluggable typechecking (section VI-B). For each subject project,
we performed the following steps:

1) remove the existing, ground-truth annotations that express

specifications;

2) manually modify the project’s build system and WPI’s
template outer-loop script (usually by adding and/or re-
moving a few command-line arguments to the invocations
of typecheckers);

3) run the outer-loop script. Its output is the inferred type
annotations.

TABLE I
Projects annotated by a human so that they typecheck with one or more
pluggable typecheckers. “LoC” is non-comment, non-blank lines of Java code.

Benchmark LoC Checkers

cache2k/cache2k-api [41] 2,615 1: Null

RxNorm-explorer [42] 993 1: Null

Nameless-Java-API [43] 2,831 4: Formatter, Null, Optional, Regex
icalavailable [44] 385 9 (+— without Resource Leak)
lookup [45] 274 10 | Formatter, Index, Interning,
multi-version-control [46] 1,252 10 » Lock, Null, Regex,
reflection-util [47] 1,163 10 | Resource Leak, Signature,
require-javadoc [48] 973 10) Signedness, Initialized Fields
randoop [49] 66,200 2: Resource Leak, Signature
dmn-check [50] 5,338 3: Formatter, Null, Regex
table-wrapper-api [51] 4,803 1: Null

table-wrapper-csv-impl [52] 1,853 1: Null

Total 88,680 11 distinct checkers

Finally, we compared the final set of annotations generated
by our approach to the original, human-written ground-truth
annotations that we removed in step (1). We measure the
following quantities:

¢ The number of inferred annotations. This number is always
much larger than the number of human-written annotations:
not all inferred annotations are interesting to humans,
nor are they necessary to verify the code. However, this
number gives a sense of how much information our
approach recovers about the program.

o The percentage of the human-written ground truth anno-
tations that were inferred.

o The number of typechecking errors before (on the unan-
notated program) and after inference completes.

The latter two metrics are proxies for how much work would
remain for a human to typecheck the project after running
inference. Note that writing a single annotation may enable
inference of other annotations and/or resolve multiple warnings,
so neither proxy is perfect (cf. section VII-B).

Our scripts and data, including detailed instructions on the
manual process we used to adapt existing, annotated projects to
use our approach, are available at https://github.com/kelloggm/
wpi-experiments. The WPI implementation is open-source as
part of the Checker Framework (https://checkerframework.org).

B. Subject Programs

We performed a type reconstruction experiment in which
the ground truth is programmer-written type annotations that
typecheck using a pluggable typechecker built on the Checker
Framework. We emphasize that our inference approach is
intended for programs without complete human-written type
annotations: we only use human-written annotations here as
ground truth to compare to the output of inference.

We constructed our dataset from open-source projects that
use the Checker Framework. To find such projects, we searched
GitHub (using the SourceGraph tool [53]) for use of the
Checker Framework’s Gradle plugin, and similarly for other
common integrations with build systems, which we obtained
from the Checker Framework manual. (We had initially tried
searching for projects that use type annotations, such as import

org.checkerframework. ... This search yielded hundreds of thou-
sands of hits, because the Checker Framework’s annotations,
such as @Nullable, are the de facto standard and are used by
other tools and for documentation.)

This search yielded 59 projects. Of these, 30 build success-
fully, and 14 typecheck with at least one pluggable typechecker
using version 3.25.2 of the Checker Framework. (We also
permitted subprojects; for example, in the cache2k project,
only the cache2k-api subproject satisfied these constraints.) We
excluded two that cause WPI to crash. The resulting dataset
(table I) contains 12 projects, 803 human-written annotations
that we use as ground truth, and 88,680 lines of non-comment,
non-blank Java source code. The version of the software that
we analyzed (that is, an exact commit SHA) appears in our
artifact at https://github.com/kelloggm/wpi-experiments.

Our technique and tool are applicable to projects of arbitrary
size, and its modular (method-at-a-time) approach makes it
scalable. The projects in our dataset are small to medium in
size. We suspect that this is in part because of the difficulty
of reverse-engineering a legacy program to annotate it with
pluggable types. Our work makes such a task easier.

C. Handling Warning Suppressions

When removing human-written annotations, we did not
remove @SuppressWarnings nor annotations within its bounds.
Warning suppressions indicate code that does not pass the
typechecker, and users sometimes write a few annotations
within the bounds of a warning suppression to indicate facts
that they believe are true, but which the type system is
unable to prove. A warning suppression indicates there is
no verifiable set of type qualifiers, so inference there would
produce unverifiable type qualifiers. Our experiments focus on
verifiable annotations.

D. RQI: Generality

We can answer RQ1 in the affirmative: WPI is general
over pluggable type systems. WPI is applicable to many
typecheckers without modification: 9 of the 11 we considered
were completely unmodified. The changes that we made to
two typecheckers (section IV-I) totaled only 61 lines of code,
which is 0.2% of the implementation of the 11 checkers.
Further, these modifications were not strictly necessary to get
these typecheckers working with WPI: they simply improved
performance in some obvious cases that we noticed.

E. RQ2: Effectiveness

Table II shows that for most projects, inference reduces
the developer’s burden, by inferring a reasonable percentage
of annotations and reducing the overall number of warnings
that developers must triage. Inference is expected to be slow,
but on our server (one node in an HPC cluster, with 32GB
of RAM and 8 Intel Xeon Gold 6354 CPUs at 3GHz), the
longest-running experiment (randoop) took only 23 minutes; 8
of the 11 projects converge in under one minute.

For one project (table-wrapper-api), WPI's inferred an-
notations increase the number of warnings that developers

TABLE II
WPI performance on human-annotated benchmarks without the annotations.
Annotations Warnings
Benchmark Human WPI HumanNWPI | Original WPI Reduction
cache2k/cache2k-api 149 1,365 47 32% 62 20 42%
RxNormExplorer 53 415 15 28% 17 9 47%
Nameless-Java-API 251 2304 176 70% 45 4 91%
icalavailable 8 668 6 75% 5 1 80%
lookup 7 36 1 14% 2 0 100%
multi-version-control 26 848 12 46% 28 4 86%
reflection-util 107 1,130 10 9% 29 20 31%
require-javadoc 2 821 2 100% 5 2 60%
randoop 92 7,899 16 17% 136 100 26%
dmn-check 14 1,163 9 64% 14 14 0%
table-wrapper-api 81 1,103 20 25% 13 18 -38%
table-wrapper-csv-impl 13 188 2 15% 5 5 0%
Total 803 17,940 316 39% 361 197 45%
TABLE III

The number of annotations that WPI cannot infer, by cause (section VI-E1).

Cause # %

Methods with no callers 91 21%

Generics 85 19%

Inferring a stronger annotation 68 15%

Other (no single cause >10%) 198 45%

need to triage. The primary reason is that six excess warn-
ings are caused by a single annotation that WPI infers as
@onotonicNonNull but that ought to be @NonNull (WPI’s inferred
annotations eliminate one other warning, so the total warning
count in table I only increases by five, not six). The reason
that WPI infers @MonotonicNonNull is that the field is non-
final and lacks an initializer (either at the field declaration
or in the constructor, which is automatically generated by
Lombok), so at object creation its value is actually null. Though
the setter for this field appears to be called before any of
the other methods (and its parameter is non-null), WPI is
technically correct that an incorrect usage of this class can cause
null pointer dereferences. This inference causes six warnings
about unguarded dereferences of the field. This sort of overly-
pessimistic inference is a downside of WPI’s design: it aims to
only infer annotations that the original typechecker can verify,
which can lead to many warnings about a single problem when
the typechecker is unable to prove some linchpin fact.

1) Why Inference Fails: Table III summarizes the reasons
that WPI fails to infer annotations that humans wrote. We
collected this data by examining each failed inference manually.

a) Methods With No Callers: The inference rules in fig. 1
update the inference environment for method parameters only
at call sites of the methods. If a method has no callers in a
given project, WPI cannot infer a type qualifier for any of that
method’s parameters, and therefore leaves them unqualified.
The same is true of fields with no assignments. Such methods
often appear in projects that are intended to be used as libraries.
Ideally, such projects would come with tests or examples that
would enable inference, but they do not always do so.

b) Generics: The type rules in fig. 1 do not include any
rules for adding a type to a generic type use or to its bounds (i.e.,
supporting Java generics); our prototype currently also does not
support these locations. WPI could learn that e.g., a List<int>

that only has positive ints added to it actually has the type
List<positive int>, but this may be overly specific and, due
to invariant subtyping for generic types, is incomparable to
List<int>. Full support for generics—in particular, inferring the
qualified bounds of type variables—is much harder [54, 55, 56]
due to the triplicate complexity of Java generics, which are
Turing-complete and therefore undecidable [57]; pluggable
types; and Java’s complex generic type inference rules [58,
pp- 765-798].

c) Inferring a Stronger Annotation: WPI infers the
strongest annotation that is compatible with the code that it
analyzes. Sometimes, this annotation is more specific than the
human intended. For example, consider the @EnsuresNonNull
annotation of the Nullness Checker. This postcondition annota-
tion (section IV-F) indicates that its argument(s) are non-null
after the annotated method completes. WPI sometimes infers
an @EnsuresNonNull annotation with more information than
what the human wrote: for example, it might infer that two
fields f and g are non-null, but the human-written code only
accounts for f. The human-written annotation in this case is
correct, but incomplete: WPI discovers more information. Our
experiments conservatively assume that such extra information
is not desirable: if WPI does not infer exactly the same
annotation as the one that the human wrote, we consider it not
to have found the correct annotation. If we include stronger
annotations when computing the percentage of human-written
annotations inferred by WPI, WPI infers an annotation that is
at least as strong as 48% of the human-written annotations,
compared to 39% as reported in table II.

2) Effect of Checker Modifications: Section IV-1 noted that
we made three small changes to checker implementations to
improve inference. This section discusses how those three
changes impact the results presented above. Disabling inference
of @NonNull on receiver parameters has no effect on correctness
(only performance): they would always be inferred to be non-
null, the default. Adding a rule for inferring @MonotonicNonNull
has a non-trivial impact on the results. While there is only a sin-
gle human-written @MonotonicNonNull in our benchmarks (in the
reflection-util project), this rule actually is responsible for many
of the “Stronger Annotation” cases described in section VI-El,
paragraph c: humans seem to commonly write @Nullable on
fields that are actually @MonotonicNonNull (we observed at least
12 cases of this pattern). So, in our experiments, this rule
actually makes WPI appear to do worse, because it infers the
stronger (and more useful) @MonotonicNonNull annotation where
humans write @Nullable. In our experience actually using WPI,
@MonotonicNonNull is usually the more useful annotation. The
changes to the formatter checker remove a single redundant
@Format annotation in Randoop, so they have a negligible impact
on the results presented here.

VII. LIMITATIONS AND THREATS TO VALIDITY

A. Limitations and Future Work

The most important limitation to our approach is that its
results depend on the uses in the program or test suite. If the
uses from which it learns are unrepresentative, it may infer

a qualified type that is different than what the programmer
intended. If there are no uses of a declaration in a program
at all, WPI cannot infer anything; in practice, this is a
serious limitation when analyzing libraries (cf. section VI-Ela).
Currently, WPI uses forward reasoning for inference. We plan
to extend WPI to use backward reasoning; for example, if a
formal parameter is dereferenced before being checked, then
WPI could assume that the programmer meant the parameter
type to be nonnull.

WPI’s output also depends on the target program’s imple-
mentation. If the program contains bugs, then no specification
enables verification. A research challenge is to produce
specifications such that the verifier warnings are well localized:
they indicate the part of the program that needs to be fixed. We
plan to investigate whether previous work [59, 60, 61, 62] gen-
eralizes to the domain of pluggable type checking. We also plan
to investigate prioritizing error messages [63, 64, 65, 66, 67].

The high volume of output from WPI currently makes
it implausible to directly present WPI’s output to humans.
Programmers often write annotations in order to prove a
property (such as no null pointer exceptions) rather than to
exhaustively document the program’s specification (such as the
nullness of every reference at every program point). We plan
to filter its output so that only facts necessary for a correctness
proof are output, which will also reduce the number of warnings
that a programmer must address.

WPI lacks support for some language and framework
features, such as Java generics and qualifier polymorphism.
Section VI-E1 suggests avenues for addressing this limitation.

The current implementation of WPI is too slow for a user
to run it repeatedly on the whole program during development.
However, it could be incrementalized. On each iteration of
the outer loop, the inner loop only needs to analyze code that
depends on specifications that changed in the previous iteration.
For example, if the inferred types for a class change, then all
uses of the class, and also all subtypes of the class, must be
re-analyzed. Implementing this optimization is future work.

Typechecking and abstract interpretation are equivalent in
expressive power [37], so our approach should generalize to
arbitrary dataflow analyses. We plan to test this hypothesis and
compare our approach to extant approaches for lifting dataflow
analyses [35, 36]. The main requirement is that the dataflow
implementation can read specifications from a side file.

B. Threats to Validity

Our choice of benchmarks is a threat to external validity. All
of the subject programs already typecheck, and so may already
have been modified to better suit analysis with a typechecker.
WPI may perform differently on arbitrary unannotated code
versus code that typechecks but has had its types erased. Future
work should run the whole-program inference on unannotated
programs. Further, the benchmarks are all written in Java; our
approach to inference may not generalize to other languages.

There are also a number of threats to construct validity. First,
the human-written type annotations that we rely on for ground
truth may contain errors: they may be correct but imprecise,

or they might suppress warnings in ways that lead to the
verification result being unsound. However, we lack a better
source of ground truth than the annotations that developers
actually write. Second, our metrics (% of human-written
annotations inferred and warning reduction %) are proxies for
what we are actually interested in, which is developer effort to
adopt a pluggable type system. Both are of these proxies are
likely weak: humans write annotations for other purposes than
typechecking (e.g., for documentation); and warnings do not
monotonically decrease with the amount of effort required to
verify the program. Future work should include user studies.
Third, we used our own judgment to categorize the reasons that
WPI did not infer annotations, and we may have miscategorized
some uninferred annotations. Fourth, there may be errors in
our experimental scripts. To mitigate this threat, we released
our scripts, data, and records of the human judgments we made
at https://github.com/kelloggm/wpi-experiments.

VIII. RELATED WORK

A. Type Inference For Pluggable Type Systems

Xiang et al. used a constraint-based approach to infer
pluggable types for measurement units [22, 68]. By using
a MaxSAT solver, it can output a partial typing when the
constraints are unsatisfiable. Previous approaches to error
explanation for type inference [62, 69, 70, 71] and gradual type
migration [72] also use a constraint-based encoding and could
be similarly adapted. Constraint-based approaches have a large
drawback compared to our approach: they require significant
work for each type system, and translating imperative code
in a typechecker into constraints is nontrivial. Xiang et al.’s
work [22] is specific to unit-of-measurement types, and is not
directly applicable to other pluggable type systems. Our work,
however, applies to any pluggable type system (including the
11 in our experiments in section VI).

Cascade [73] is an interactive type qualifier inference tool
that involves programmers in the inference process. This
approach is complementary to ours.

B. Type Inference Approaches

There is a rich literature on classical type inference (or type
reconstruction) [74, ch. 22], which focuses on discovering if
there exists a (complete) typing for an unannotated program,
given a type system. Our problem is different: we nearly always
target programs where no such typing exists, and we aim to
find a maximal set of useful type qualifiers for such programs.
Also, we focus on languages with both subtyping and generics
(e.g., Java); handling both remains an open research problem
for classical type inference [33, 34].

Researchers have also proposed type inference based on
machine learning [75, 76, 77], often targeting partial typings.
However, such approaches would lack training data for newly-
created pluggable type systems or those with few open-source
users. Our approach does not require any training data.

C. Dataflow Analysis

Pluggable typecheckers perform local type inference via
dataflow analysis: human-written type annotations are equiva-
lent to function summaries. With this view in mind, our work
can be compared to classic work on interprocedural dataflow
analysis [35, 36]: WPI is performing a 0-CFA (i.e., context-
insensitive) analysis to try to recover the correct summaries. In
the field of dataflow analysis, 0-CFA analyses are thought to be
imprecise, so adding context-sensitivity to WPI is an exciting
avenue for future work. Context-sensitivity might also allow
WPI to infer “polymorphic” type qualifiers, which express that
the annotated type takes on different qualifiers depending on
the context in which it is used. In our experiments, polymorphic
qualifiers were rarely written by humans (there are just two,
both in the reflection-util project), so the improvement in WPI
would be marginal. Our work differs from these classic results
for dataflow analyses because it applies to a new domain
(pluggable typecheckers), resulting in a different formalism.
However, we believe that the two lines of research are closely
related, and that each may be able to draw on the other.

D. Other Approaches

Like our approach, Houdini [78, 79] runs a verification tool
multiple times to fixpoint. It starts from the set of all possible
facts (many of which are inconsistent with one another) and on
each iteration removes all those that cannot be proven. This can
result in removing too many facts, when the program contains
a bug or unverifiable code. The specification that Houdini
outputs is provable, but it may not establish correctness (e.g.,
that the program has no null pointer exceptions). By contrast,
WPI iteratively adds facts, starting from nothing. Its output
is consistent with the program and its test cases, but is not
necessarily verifiable.

IX. CONCLUSION

Pluggable types are a promising verification approach, but the
cost of annotating existing legacy code hinders their adoption.
Our type inference approach achieves global type inference
by bootstrapping an existing typechecker’s local inference: it
converts a pluggable typechecker to an inferring pluggable
typechecker for free. The inference is reasonably effective at
reducing the developer’s burden to annotate legacy code: in our
experiments with 11 different pluggable typecheckers, WPI can
infer 39% of human-written annotations and reduce the number
of warnings presented to developers by 45% on average.

ACKNOWLEDGMENTS

Suzanne Millstein, Jonathan Burke, David McArthur, and
Jason Waataja contributed to WPI’s implementation. Thanks
to the anonymous referees and Manu Sridharan for comments
that helped to improve the paper.

This research was supported in part by the National Science
Foundation under grant CCF-2312262 and by DARPA under
contract FA8750-20-C-0226.

[1]

[2]

[3]

[5

=

[6]

[7

[8]

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20

REFERENCES

J. S. Foster, M. Fihndrich, and A. Aiken, “A theory of type qualifiers,”
in PLDI ’99: Proceedings of the ACM SIGPLAN ’99 Conference on
Programming Language Design and Implementation, Atlanta, GA, USA,
May 1999, pp. 192-203.

D. Evans and D. Larochelle, “Improving security using extensible
lightweight static analysis,” IEEE Softw., vol. 19, no. 1, pp. 42-51,
2002.

T. Ekman and G. Hedin, “Pluggable checking and inferencing of non-null
types for Java,” J. Object Tech., vol. 6, no. 9, pp. 455-475, Oct. 2007.
C. Male and D. J. Pearce, “Non-null type inference with type aliasing
for Java,” Aug. 20, 2007, http://www.mcs.vuw.ac.nz/~djp/files/MPO7.pdf.
S. Banerjee, L. Clapp, and M. Sridharan, “NullAway: Practical type-based
null safety for Java,” in ESEC/FSE 2019: The ACM 27th joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), Tallinn, Estonia, Aug. 2019, pp.
740-750.

M. M. Papi, M. Ali, T. L. Correa Jr., J. H. Perkins, and M. D. Ernst,

“Practical pluggable types for Java,” in ISSTA 2008, Proceedings of the

2008 International Symposium on Software Testing and Analysis, Seattle,
WA, USA, July 2008, pp. 201-212.

W. Dietl, S. Dietzel, M. D. Ernst, K. Muglu, and T. Schiller, “Building
and using pluggable type-checkers,” in ICSE 2011, Proceedings of the
33rd International Conference on Software Engineering, Waikiki, Hawaii,
USA, May 2011, pp. 681-690.

H. Xi and F. Pfenning, “Eliminating array bound checking through
dependent types,” in PLDI ’98: Proceedings of the ACM SIGPLAN’98
Conference on Programming Language Design and Implementation,
Montreal, Canada, June 1998, pp. 249-257.

M. Kellogg, V. Dort, S. Millstein, and M. D. Ernst, “Lightweight
verification of array indexing,” in ISSTA 2018, Proceedings of the 2018
International Symposium on Software Testing and Analysis, Amsterdam,
Netherlands, July 2018, pp. 3—14.

J. S. Foster, T. Terauchi, and A. Aiken, “Flow-sensitive type qualifiers,”
in PLDI 2002: Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, Berlin, Germany,
June 2002, pp. 1-12.

C. Flanagan and S. Qadeer, “A type and effect system for atomicity,” in
POPL 2003: Proceedings of the 30th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, New Orleans, LA,
Jan. 2003, pp. 338-349.

R. Agarwal, A. Sasturkar, and S. D. Stoller, “Type discovery for
Parameterized Race-Free Java,” Computer Science Department, SUNY
at Stony Brook, Tech. Rep. DAR-04-16, Sep. 2004.

M. Abadi, C. Flanagan, and S. N. Freund, “Types for safe locking: Static
race detection for Java,” ACM TOPLAS, vol. 28, no. 2, pp. 207-255,
Mar. 2006.

M. D. Ernst, A. Lovato, D. Macedonio, F. Spoto, and J. Thaine, “Locking
discipline inference and checking,” in ICSE 2016, Proceedings of the
38th International Conference on Software Engineering, Austin, TX,
USA, May 2016, pp. 1133-1144.

M. Coblenz, W. Nelson, J. Aldrich, B. Myers, and J. Sunshine, “Glacier:
Transitive class immutability for Java,” in ICSE 2017, Proceedings of the
39th International Conference on Software Engineering, Buenos Aires,
Argentina, May 2017, pp. 496-506.

Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kiezun, and M. D. Ernst, “Object
and reference immutability using Java generics,” in ESEC/FSE 2007:
Proceedings of the 11th European Software Engineering Conference and
the 15th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, Dubrovnik, Croatia, Sep. 2007, pp. 75-84.

M. S. Tschantz and M. D. Ernst, “Javari: Adding reference immutability
to Java,” in OOPSLA 2005, Object-Oriented Programming Systems,
Languages, and Applications, San Diego, CA, USA, Oct. 2005, pp.
211-230.

A. Birka and M. D. Ernst, “A practical type system and language for
reference immutability,” in OOPSLA 2004, Object-Oriented Programming
Systems, Languages, and Applications, Vancouver, BC, Canada, Oct.
2004, pp. 35-49.

Y. Zibin, A. Potanin, P. Li, M. Ali, and M. D. Ernst, “Ownership
and immutability in generic Java,” in OOPSLA 2010, Object-Oriented
Programming Systems, Languages, and Applications, Revo, NV, USA,

Oct. 2010, Xp. 598-617.
W. Huang, A. Milanova, W. Dietl, and M. D. Ernst, “Relm & RelmlInfer:

Checking and inference of reference immutability and method purity,”

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]
(32]

[33]

[34]

[35]

[36]

(371

[38]

(39]
[40]

[41]

[42]
[43]

[44]

[45]

in OOPSLA 2012, Object-Oriented Programming Systems, Languages,
and Applications, Tucson, AZ, USA, Oct. 2012, pp. 879-896.

E. Allen, D. Chase, V. Luchangco, J.-W. Maessen, and G. L. Steele
Jr., “Object-oriented units of measurement,” in OOPSLA 2004, Object-
Oriented Programming Systems, Languages, and Applications, Vancouver,
BC, Canada, Oct. 2004, pp. 384-403.

T. Xiang, J. Y. Luo, and W. Dietl, “Precise inference of expressive units
of measurement types,” in OOPSLA 2020, Object-Oriented Programming
Systems, Languages, and Applications, Chicago, IL, USA, Nov. 2020.
M. Kellogg, M. Schif, S. Tasiran, and M. D. Ernst, “Continuous
compliance,” in ASE 2020: Proceedings of the 35th Annual International
Conference on Automated Software Engineering, Melbourne, Australia,
Sep. 2020, pp. 511-523.

M. Kellogg, M. Ran, M. Sridharan, M. Schif, and M. D. Ernst, “Verifying
object construction,” in ICSE 2020, Proceedings of the 42nd International
Conference on Software Engineering, Seoul, Korea, May 2020, pp. 1447—
1458.

C. Woolf, B. Cook, and T. McAndrew, “Automate compliance verification
on AWS using provable security,” https://www.youtube.com/watch?v=
BbXK_-b3DTk, Dec. 2019, accessed 25 August 2020.

C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jaspan,
“Lessons from building static analysis tools at Google,” CACM, vol. 61,
no. 4, pp. 58-66, Mar. 2018.

A. Pianykh, I. Zorin, and D. Lyubarskiy, “Retrofitting null-safety onto
Java at Meta,” https://engineering.tb.com/2022/11/22/developer-tools/
meta-java-nullsafe/, Nov. 2022.

L. Damas and R. Milner, “Principal type-schemes for functional
programs,” in 9" Symp. Principles of Programming Languages. ACM,
1982, pp. 207-212.

S. L. Peyton Jones, “YACC in SASL — an exercise in functional
programming,” Software: Practice and Experience, vol. 15, no. 8, pp.
807-820, 1985.

J. Harrison, Introduction to Functional
https://dp.iit.bme.hu/mfp/mfp03s/intro2fp.pdf, 1997.
P. Hudak, The Haskell School of Expression: Learning Functional
Programming through Multimedia. Cambridge University Press, 2000.
Y. Minsky, A. Madhavapeddy, and J. Hickey, Real World OCaml:
Functional programming for the masses. O’Reilly, 2013.

L. Parreaux and C. Y. Chau, “MLstruct: principal type inference in a
boolean algebra of structural types,” in OOPSLA 2022, Object-Oriented
Programming Systems, Languages, and Applications, Auckland, New
Zealand, Dec. 2022, pp. 449-478.

S. Dolan and A. Mycroft, “Polymorphism, subtyping, and type inference
in MLsub,” in POPL 2017: Proceedings of the 44th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Paris, France, Jan. 2017, pp. 60-72.

M. Sharir and A. Pnueli, “Two approaches to interprocedural data
flow analysis,” Courant Institute of Mathematical Sciences, New York
University, Tech. Rep. 002, 1978.

R. Mangal, M. Naik, and H. Yang, “A correspondence between two
approaches to interprocedural analysis in the presence of join,” in ESOP
2014: 22nd European Symposium on Programming, Grenoble, France,
Apr. 2014, pp. 513-533.

P. Cousot, “Types as abstract interpretations,” in POPL '97: Proceedings
of the 24th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Paris, France, Jan. 1997, pp. 316-331.

P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints,” in POPL ’77: Proceedings of the Fourth Annual ACM
Symposium on Principles of Programming Languages, Los Angeles, CA,
Jan. 1977, pp. 238-252.

Google, “Error prone,” https://errorprone.info/, Jan. 2018.

do-like-javac developers, “do-like-javac,” https://github.com/SRI-CSL/do-
like-javac, 2023, accessed 2 May 2023.

“cache2k Java caching,” https://github.com/cache2k/cache2k, cache2k is
an in-memory high performance Java caching library.
“RxNorm-explorer,” https://github.com/ITHOFAR/RxNorm-explorer.
“Nameless-Java-APIL,” https://github.com/NamelessMC/Nameless-Java-
API, Java library for interacting with a NamelessMC website.
“ICalAvailable,” https://github.com/plume-lib/icalavailable, Given one
or more calendars in iCalendar format, produces a textual summary of
available times.

“lookup,” https://github.com/plume-lib/lookup, Lookup searches a set of
files, much like grep does.

Programming.

[46

(471

(48]

[49

[50

[51]

[52]

(53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

“multi-version-control,” https://github.com/plume-lib/multi- version-
control, Lets you run a version control command, such as status or pull,
on a set of CVS/Git/Hg/SVN clones/checkouts.

“Reflection-util: Utilities for Java reflection,” https://github.com/plume-
lib/reflection-util, Utility libraries related to Java reflection.
“require-javadoc,” https://github.com/plume-lib/require-javadoc, This
program requires that a Javadoc comment be present on every Java
class, constructor, method, and field.

“Randoop unit test generator for Java,” https://github.com/randoop/
randoop, It automatically creates unit tests for your classes, in JUnit
format.

“dmn-check,” https://github.com/red6/dmn-check, This is a tool for the
validation of Decision Model Notation (DMN) files.
“table-wrapper-api,” https://github.com/spacious-team/table- wrapper-api,
Provides a single convenient API for accessing tabular data from files in
excel, xml, csv, etc. formats.

“table-wrapper-csv-impl,” https://github.com/spacious-team/table-
wrapper-csv-impl, Provides an implementation of the Table Wrapper
API for easy access to tabular data stored in csv.

Sourcegraph developers, “Sourcegraph,” https://sourcegraph.com/search,
2023, accessed 1 March 2023.

R. Fuhrer, F. Tip, A. Kiezun, J. Dolby, and M. Keller, “Efficiently
refactoring Java applications to use generic libraries,” in ECOOP 2005
— Object-Oriented Programming, 19th European Conference, Glasgow,
Scotland, July 2005, pp. 71-96.

A. Kiezun, M. D. Ernst, F. Tip, and R. M. Fuhrer, “Refactoring for
parameterizing Java classes,” in ICSE 2007, Proceedings of the 29th
International Conference on Software Engineering, Minneapolis, MN,
USA, May 2007, pp. 437-446.

J. Altidor and Y. Smaragdakis, “Refactoring Java generics by inferring
wildcards, in practice,” in OOPSLA 2014, Object-Oriented Programming
Systems, Languages, and Applications, Portland, OR, USA, Oct. 2014,
p. 271-290.

R. Grigore, “Java generics are Turing complete,” in POPL 2017:
Proceedings of the 44th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Paris, France, Jan. 2017, pp.
73-85.

J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, D. Smith, and
G. Bierman, The Java Language Specification, Java SE 17 ed. Boston,
MA: Addison Wesley, 2021.

R. Henry, K. M. Whaley, and B. Forstall, “The University of Washington
Illustrating Compiler,” in PLDI "90: Proceedings of the SIGPLAN ’90
Conference on Programming Language Design and Implementation,
White Plains, NY, USA, June 1990, pp. 223-246.

D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as
deviant behavior: a general approach to inferring errors in systems code,”
in SOSP 2001, Proceedings of the 18th ACM Symposium on Operating
Systems Principles, Banff, Alberta, Canada, Oct. 2001, pp. 57-72.

R. Johnson and D. Wagner, “Finding user/kernel pointer bugs with type
inference,” in USENIX Security: 13th USENIX Security Symposium, San
Diego, CA, USA, Aug. 2004, pp. 119-134.

B. S. Lerner, M. Flower, D. Grossman, and C. Chambers, “Searching for
type-error messages,” in PLDI 2007: Proceedings of the ACM SIGPLAN
2007 Conference on Programming Language Design and Implementation,
San Diego, CA, USA, June 2007, pp. 425-434.

D. Hovemeyer, J. Spacco, and W. Pugh, “Evaluating and tuning
a static analysis to find null pointer bugs,” in PASTE 2005: ACM
SIGPLAN/SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering (PASTE 2005), Lisbon, Portugal, Sep. 2005, pp. 13-19.
D. Hovemeyer and W. Pugh, “Finding more null pointer bugs, but not
too many,” in PASTE 2007: ACM SIGPLAN/SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering (PASTE 2007),
San Diego, CA, USA, June 2007, pp. 9-14.

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

[79]

[80]

[81]

[82]

[83]

S. Kim and M. D. Ernst, “Which warnings should I fix first?” in
ESEC/FSE 2007: Proceedings of the 11th European Software Engineering
Conference and the 15th ACM SIGSOFT Symposium on the Foundations
of Software Engineering, Dubrovnik, Croatia, Sep. 2007, pp. 45-54.
M. Fihndrich and F. Logozzo, “Static contract checking with abstract
interpretation,” in International Conference on Formal Verification of
Object-Oriented Software, Paris, France, June 2010, pp. 10-30.

K. Tsushima, O. Chitil, and J. Sharrad, “Type debugging with counter-
factual type error messages using an existing type checker,” in /IFL '19:
Proceedings of the 31st Symposium on Implementation and Application

of Functional Languages, 2021.
J. Li, “A general pluggable type inference framework and its use for

data-flow analysis,” Master’s thesis, U. of Waterloo, Waterloo, Ontario,
Canada, 2017.

Z. Pavlinovic, T. King, and T. Wies, “Finding minimum type error
sources,” in OOPSLA 2014, Object-Oriented Programming Systems,
Languages, and Applications, Portland, OR, USA, Oct. 2014, p. 525-542.
C. Loncaric, S. Chandra, C. Schlesinger, and M. Sridharan, “A practical
framework for type inference error explanation,” in OOPSLA 2016,
Object-Oriented Programming Systems, Languages, and Applications,
Amsterdam, Nov. 2016, pp. 781-799.

D. Zhang, A. C. Myers, D. Vytiniotis, and S. Peyton-Jones, “SHErrLoc:
A static holistic error locator,” ACM TOPLAS, vol. 39, no. 4, 2017.

L. Phipps-Costin, C. J. Anderson, M. Greenberg, and A. Guha, “Solver-
based gradual type migration,” in OOPSLA 2021, Object-Oriented
Programming Systems, Languages, and Applications, Chicago, IL, USA,
Oct. 2021.

M. Vakilian, A. Phaosawasdi, M. D. Ernst, and R. E. Johnson, “Cascade:
A universal programmer-assisted type qualifier inference tool,” in ICSE
2015, Proceedings of the 37th International Conference on Software
Engineering, Florence, Italy, May 2015, pp. 234-245.
B. C. Pierce, Types and Programming Languages.
USA: MIT Press, 2002.

Z. Xu, X. Zhang, L. Chen, K. Pei, and B. Xu, “Python probabilistic type
inference with natural language support,” in FSE 2016: Proceedings of
the ACM SIGSOFT 24th Symposium on the Foundations of Software
Engineering, Seattle, WA, USA, Nov. 2016, pp. 607-618.

M. Pradel, G. Gousios, J. Liu, and S. Chandra, “TypeWriter: neural type
prediction with search-based validation,” in ESEC/FSE 2020: The ACM
28th joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE), Sacramento,
CA, USA, Nov. 2020, pp. 209-220.

Y. Peng, C. Gao, Z. Li, B. Gao, D. Lo, Q. Zhang, and M. Lyu, “Static
inference meets deep learning: a hybrid type inference approach for
Python,” in ICSE 2022, Proceedings of the 43rd International Conference
on Software Engineering, Pittsburgh, PA, USA, May 2022, pp. 2019—
2030.

C. Flanagan, R. Joshi, and K. R. M. Leino, “Annotation inference for
modular checkers,” Information Processing Letters, vol. 2, no. 4, pp.
97-108, Feb. 2001.

C. Flanagan and K. R. M. Leino, “Houdini, an annotation assistant for
ESC/Java,” in FME ’01: International Symposium on Formal Methods
Europe 2001: Formal Methods for Increasing Software Productivity,
Berlin, Germany, Mar. 2001, pp. 500-517.

OOPSLA 2014, Object-Oriented Programming Systems, Languages, and
Applications, Portland, OR, USA, Oct. 2014.

POPL 2017: Proceedings of the 44th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Paris, France, Jan.
2017.

OOPSLA 2004, Object-Oriented Programming Systems, Languages, and
Applications, Vancouver, BC, Canada, Oct. 2004.

ESEC/FSE 2007: Proceedings of the 11th European Software Engineering
Conference and the 15th ACM SIGSOFT Symposium on the Foundations
of Software Engineering, Dubrovnik, Croatia, Sep. 2007.

Cambridge, MA,

