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1 Introduction

Pole skipping refers to the multivalued nature of Green’s functions at special points in the
momentum space where lines of zeros intersect lines of poles [1–3]. In holographic theories
at large N and finite temperature T , this phenomenon can be understood through the
existence of extra ingoing modes at the black hole horizon, resulting in non-uniqueness
of the bulk solution that determines the holographic retarded Green’s function [3]. The
first example of pole skipping was found in Einstein gravity, where it happens at frequency
ω = iλL and momentum k = iλL/vB [1, 3], λL being the Lyapunov exponent [4–7] and vB

being the butterfly velocity [8, 9] for this theory. One can therefore say that the analytic
structure of the Green’s function contains some information about the chaotic properties of
the quantum system, especially true when the stress tensor dominates chaos [10–12].

For bulk theories containing bosonic fields, it was noticed through numerous examples
that pole skipping happens for more general theories and at many more positions in the
momentum space [13–48]. Moreover, even though the number of pole-skipping points at
each frequency and the corresponding momenta depend on the details of the theory, there
is a universal pattern: pole skipping happens at frequencies ω = i(lb − s)2πT for all positive
s, where lb is the highest spin in the theory. For lb ≥ 2, we can write the leading frequency
as ω = iλL because λL = (lb − 1)2πT is the Lyapunov exponent for a theory with a spin
lb [49–51]. To derive this general statement, [52] used what we will refer to as the covariant
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expansion formalism. Expanding bulk fields around the black hole horizon, not using partial
derivatives, ∂r, but using covariant derivatives, ∇r, one finds that certain properties of the
equations of motion become manifest. The covariant expansion formalism also provides an
algorithm for locating skipped poles, making it automatable on a computer program.

Interestingly, this pattern of frequencies for bosonic fields was found to hold analogously
in some examples with fermionic fields as well. For the theory of a minimally coupled
Dirac fermion, the leading frequency was found to be −iπT [53], and, for the theory of a
minimally coupled Rarita-Schwinger field, it was found to be iπT [54]. We will show that
this pattern holds for fermionic theories in general. More explicitly, for a theory of fermions
(with no gravitational backreaction) with the highest spin being lf , pole skipping happens
universally at frequencies i(lf − s)2πT for all s ∈ Z+.

More generally, a theory will contain both bosonic and fermionic fields that are dynamic.
For example, supergravity theories have both. We will argue that there would be two towers
of pole-skipping frequencies starting at i(lb − 1)2πT and i(lf − 1)2πT respectively. This is
regardless of how the bosons and fermions are coupled.

The covariant expansion method relies on a classification of linearized perturbations of
bulk fields and an analysis of equations of motion on this basis. In a theory with gauge
symmetry, not all equations of motion are independent. This redundancy is commonly dealt
with by restricting to only gauge-invariant quantities [55], which is a theory-dependent
procedure. Since part of the motivation of [52] was to provide an algorithm, it is thus helpful
if we have a systematic procedure for finding the pole-skipping points given a Lagrangian
while sidestepping the gauge analysis. In this paper, we present a pole-skipping condition
that works without having to remove the gauge redundancy, and we will refer to it as the
gauge-covariant condition.

We will begin by reviewing the covariant expansion formalism in the bosonic case in
section 2, followed by a discussion of gauge redundancy which leads to the gauge-covariant
pole-skipping condition in section 3. We then present the analogous formalism for theories
with only fermions in section 4. In section 5, we present an argument for the general pattern
of pole-skipping frequencies when both bosonic and fermionic fields are present. We then
discuss some consequences and future directions in section 6. Some examples with bosonic
fields and fermionic fields are presented in appendices A and B respectively, where gauge
symmetry is present in two of the bosonic and one of the fermionic examples.

2 Bosonic fields

We now review the covariant expansion formalism of [52] which was in the context of general
holographic theories with bosonic fields. Consider a local diffeomorphism-invariant action
of the form

S =
∫

dd+2x
√
−gL (g,R,∇,Φ) , (2.1)

where L is constructed from contractions of the metric, g, the Riemann tensor, Rµνρσ,
bosonic matter fields which are collectively denoted as Φ, and their covariant derivatives
such as ∇λRµνρσ and ∇µ∇νΦ. An example of a term that can appear in L is ϕRµνρσF

µνF ρσ

for some scalar field ϕ and some field strength Fµν .
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At large N and finite temperature T , a boundary state in thermal equilibrium is
described by a stationary black hole in the bulk [56]. Let us write its metric in ingoing
Eddington-Finkelstein coordinates as

ds2 = −f(r)dv2 + 2dvdr + h(r)dxidxi, (2.2)

where f(r0) = 0 at the horizon r = r0 and i ∈ {1, . . . , d} labels the transverse directions.
We will refer to it as the background metric. We can also have stationary background
matter fields, which, as a simplifying assumption, are isotropic and homogeneous in xi.
Furthermore, all background fields should be regular at both past and future horizons.

For future reference, the non-vanishing Christoffel symbols for our background metric are

Γv
vv = 1

2f
′, Γv

ij = −1
2h

′δij , Γr
vr = −1

2f
′,

Γi
rj = h′

2hδ
i
j , Γr

vv = 1
2ff

′, Γr
ij = −1

2fh
′δij ,

(2.3)

and the non-vanishing components of the Riemann tensor are

Rvrvr = 1
2f

′′, Rvirj = −1
4f

′h′δij , Rrirj = h′2 − 2hh′′

4h δij ,

Rvivj = 1
4ff

′h′δij , Rijkl = −1
4fh

′2 (δikδjl − δilδjk) .
(2.4)

Quasinormal modes are perturbations of the dynamical fields on the black hole back-
ground that satisfy the linearized equations of motion with ingoing boundary conditions at
the future horizon and trivial Dirichlet boundary conditions at the asymptotic boundary,
i.e., with the non-normalizable falloff set to zero [57, 58]. In the Fourier space with frequency
denoted by ω and momenta denoted by ki, finding all quasinormal modes amounts to finding
a dispersion relation ω(ki).1 The retarded Green’s function, on the other hand, is computed
by solving for the linearized on-shell perturbation with ingoing boundary conditions at the
future horizon but non-trivial Dirichlet boundary conditions at the asymptotic boundary,
i.e., with the non-normalizable mode turned on. The Green’s function is then defined to
be the ratio of the coefficient of the normalizable falloff to that of the non-normalizable
falloff [59–61]. It follows from these definitions that the poles of the retarded Green’s
function in the Fourier space are identified with the quasinormal mode spectrum, ω(ki) [60].

Recently, it has been discovered that equations of motion (along with boundary con-
ditions at the horizon and the asymptotic infinity) do not always uniquely determine the
bulk solution, leading to an ambiguity in the Green’s function whose value depends on how
the limit is taken in the frequency-momentum space (ω, ki) [3, 24].

More precisely, at special frequencies and momenta, an equation of motion at the
horizon becomes trivial. The triviality of an equation of motion implies that there is one
fewer constraint than the dynamical degrees of freedom, leading to the existence of an extra
ingoing mode (see [24] for more detailed explanations and examples). This unconstrained
ingoing mode would then result in an ambiguity in the holographic retarded Green’s function
as the latter is computed from the bulk solution, now non-unique. This ambiguity was known

1Because the transverse dimensions xi are non-compact, ki are continuous parameters.
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to be related to the phenomenon of pole skipping, where the retarded Green’s function at
special values ω = ω∗ and k = k∗ (i-index suppressed) takes the form G ∼ 0/0.2 To see
why the Green’s function is ambiguous or in other words multi-valued at pole-skipping
points, expand the numerator and the denominator in terms of small δω and δk around
such a point:

G(ω∗ + δω, k∗ + δk) ∼ 0 + a(δω) + b(δk)
0 + c(δω) + d(δk) ∼ a(δω/δk) + b

c(δω/δk) + d
. (2.5)

This illustrates the dependence of the value of G(ω∗, k∗) on the direction in which it is
approached in the (ω, k) plane. In the special case a = c = 0, called anomalous in [24],
the Green’s function does not depend on δω/δk to leading order, but the limit would now
depend on higher order quantities such as (δk)2 [20]. In either case, we have 0/0, so the
pole is skipped.

Pole skipping can therefore be studied by examining the equations of motion. It turns
out that it is sufficient to expand the equations of motion perturbatively in the radial
direction away from the future horizon r = r0. This is a manifestation of the expectation
that the near-horizon geometry is responsible for many universal aspects of the dual thermal
system, one prime example being the near-horizon explanation [62] for the universal ratio
of shear viscosity to entropy density [63].

A single Fourier mode of linear perturbation of a dynamical field X takes the form

δX(r, v, x) = δX(r) e−iωv+ikx, (2.6)

where kx is a shorthand for kix
i. The Fourier coefficient δX(r) still depends on the radial

coordinate r because the radial direction is not a coordinate of the boundary theory; since
we are computing the boundary Green’s function, albeit in the bulk, the radial direction
should not be Fourier transformed. Often, the next step is to expand this function as a
Taylor series around the horizon r = r0:

δX(r) =
∞∑

n=0

((∂r)nδX)|r=r0

n! (r − r0)n. (2.7)

However, it was noticed in [52] that

((∇r)nδX)|r=r0
, n ≥ 0, (2.8)

form a more convenient basis for the near-horizon degrees of freedom. As we will see,
working with covariant expressions like these turns out to be a key idea that helps reveal
various hidden symmetries of the equations of motion. We shall denote this set by δX ; for
example, δX = [δgvv, δgvi,∇rδgvv, . . . ]|r=r0 . Similarly, let us use δE = 0 to denote perturbed
equations of motions and their covariant radial derivatives evaluated on the horizon.

In order to organize the equations of motion, it is useful to define the weight [52, 64]
for a general tensor component as

weight = #(lower v)−#(lower r)−#(upper v) + #(upper r), (2.9)
2Technically, the ambiguity of the bulk solution is only a necessary condition for pole skipping; however,

it is also sufficient in all known examples.
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i.e., each v-index carries a weight of +1 if downstairs and −1 if upstairs, and the opposite is
true for r-indices; transverse indices i, j, . . . do not carry weights. With this, define δXp as
the subset of δX that has weight p and similarly for δEp. We will think of and refer to them
as vectors to compactify some of our equations, but it is nothing more than a notational
convenience. For example, in Einstein gravity,

δX2 = [δgvv]|r=r0 ,

δX1 = [∇rδgvv, δgvi]|r=r0 ,

δX0 = [∇r∇rδgvv,∇rδgvi, δgij , δgvr]|r=r0 .

(2.10)

More generally, with matter fields, say Bµνρ and Aµ, it could contain additional terms like

δX0 = [· · · ,∇3
rδBvvv,∇2

rδBvvi, δBijk, δAi,∇rδAv, · · · ]|r=r0 . (2.11)

The near-horizon expansions of the perturbed equations of motion can now be compactly
written as

δEp =
∑

q

Mp,q(ω, k) δXq, (2.12)

where a Fourier mode of the form (2.6) has been substituted. It is worth mentioning that
Mp,q(ω, k) for each p and q is a |δEp|-by-|δXq| matrix, the modulus sign denoting the length
of the vectors. The definition of the weight has allowed us to divide the infinite matrix into
these finite ones, each labeled by p and q. This division leads to an important property
that, for p > q,

Mp,q(ω, k) ∝ [ω − (p− 1)ω0] . . . [ω − qω0] , (2.13)
where

ω0 ≡ i2πT = if ′(r0)/2. (2.14)
The proof of this statement uses the covariance of the equation of motion and the symmetry
of the background fields including in particular the metric (2.2). To see the origin of these
factors, notice that a component of a linearized equation of motion is a sum of terms with
the following form:

δEp =
∑

F (g,R,∇,Φ)(∇v)k(∇i)l(∇r)mδXq′+m, (2.15)

where F is a tensor component constructed from the background fields. To get into this
form, one needs to use the Riemann tensor to commute the covariant derivatives, and it is
important that ∇v derivatives are pushed through to the very left for our purpose.

A consequence of the background fields being stationary is that any tensor component
constructed from background fields with a positive weight must vanish, so F must have a
non-positive weight. When p > q′, we must then have k ≥ p− q′ to balance the weights on
both sides. The action of (∇v)k along with (2.6) then immediately leads to the factors

[ω − (p− 1)ω0] . . .
[
ω − q′ω0

]
(2.16)

because they have a very simple action on a general tensor component T with weight w
when evaluated on the horizon:

∇vT =
(
∂v −

w
2 f

′(r0)
)
T. (2.17)

It is a straightforward exercise to show this using the definition of the covariant derivative
and the associated Christoffel symbols explicitly given in (2.3).
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To go from (2.15) to (2.12), besides substituting the Fourier mode and unpacking
(∇v)k, we still need to unpack (∇i)l(∇r)mδXq′+m, which can lead to additional terms, each
proportional to δXq for some q. From (2.3), one should notice that the only non-vanishing
Christoffel symbols that can appear in ∇i are Γv

ij and Γj
ri, i.e.,

∇iT...µ... = ∂iT + · · · − Γρ
µiT...ρ... + · · ·

= ∂iT + · · · − δj
µΓv

jiT...v... − δr
µΓ

j
riT...j... + · · · ,

(2.18)

so it can at most turn a lower i-index into a lower v-index or a lower r into a lower j,
thereby increasing the weight by one in either case. The same is true for upper indices. In
other words, we must have q ≥ q′. This concludes the derivation of (2.13) because (2.16)
contains at least as many factors as needed, with the extra factors playing no obvious role.

We now turn to the condition under which an equation of motion trivializes. From
property (2.13), it follows that, for any integer s > 0, matrices Mp,q(ω, k) with p > q0−s ≥ q

vanish identically when
ω = (q0 − s)ω0, (2.19)

where q0 is the highest possible weight of any dynamical field in the theory. Then the
infinite dimension matrix

M∞(ω, k) ≡

 Mq0,q0 Mq0,q0−1 . . .

Mq0−1,q0 Mq0−1,q0−1 . . .

. . . . . . . . .

 (2.20)

takes the form

M∞((q0 − s)ω0, k) =



Ms(k) 0

· · · · · ·


. (2.21)

As soon as we make the finite submatrix

Ms(k) ≡

 Mq0,q0 . . . Mq0,q0−s+1
. . . . . . . . .

Mq0−s+1,q0 . . . Mq0−s+1,q0−s+1


∣∣∣∣∣∣∣
ω=(q0−s)ω0

(2.22)

degenerate, a certain linear combination of the equations of motion δEp with p > q0 − s

would become trivial, leaving a certain linear combination of the degrees of freedom δXq with
q > q0 − s free. This generally happens at discrete values of |k| ≡

√
kiki. Incidentally, the

number of such |k| generically increases with s: as the size of Ms(k) grows, the determinant
becomes a polynomial of higher degree which generically has more roots.

To summarize, the general pole-skipping condition is given by

ω = (q0 − s)ω0 and det Ms(k) = 0 (2.23)

for any s ∈ Z+, where for convenience we repeat that q0 is the highest weight in the theory
and ω0 ≡ i2πT = if ′(r0)/2.
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3 Gauge fields

We have just reviewed the covariant expansion formalism for general holographic theories.
It works well for bosonic fields without gauge symmetry. For gauge theories, the formalism
works only after removing the gauge redundancy. To understand why there might be
subtleties if we do not do so, realize that a pure gauge perturbation should automatically
satisfy all equations of motion by their very nature.

To see how this is reflected in the covariant expansion formalism, write a general gauge
parameter as

δξ(v, r, x) = δξ(r)e−iωv+ikx, (3.1)

where ξ could carry Lorentz indices. For example, δξ(v, r, x) = Λ(v, r, x) in Maxwell theory
where the gauge transformation is given by Aµ → Aµ+∇µΛ. As another example, in General
Relativity, δξ = ζµ, where the gauge transformation is given by gµν → gµν +∇µζν +∇νζµ.
With this, just like how we defined δXq below (2.9), we define δΞu to be the subset of
∇n

r δξ|r=r0 with weight u.
With this, we can write a general pure-gauge perturbation as

δXq =
∑

u

Tq,u(ω, k) δΞu. (3.2)

Continuing with the Maxwell example, δAµ = ∇µδξ = ∇µΛ. Writing out the components
of (3.2), the first few orders are given by3



δAv

δAi

∇rδAv

δAr

∇rδAi

∇2
rδAv

. . .


=



−iω
iki

0
0

−ikih
′/2h

0
. . .


Λ +



0
0

−iω + f ′/2
1
iki

f ′′/2
. . .


∇rΛ + · · · . (3.3)

The gravitational case is very similar and will be presented in appendix A.3.
Once again, Tq,u satisfies the property of being proportional to [ω − (q − 1)ω0] . . .

[ω − uω0] for q > u for exactly the same reason, namely that we need sufficiently many ∇v

to raise the weight from u to q, as reviewed in section 2.
A pure-gauge perturbation has the property that it automatically satisfies the equations

of motion

δEp =
∑
q,u

Mp,q Tq,u δΞu = 0 ∀p. (3.4)

This can help us understand some features of the matrices Mp,q. At ω = (q0 − s)ω0 where
s > 0, as explained earlier, the entries of Mp,q with p > q0 − s ≥ q will be zero. At the same

3Here, everything is evaluated on the horizon, but from now on we will frequently avoid writing (·)|r=r0

when it is clear that the quantity should be evaluated on the horizon.
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time, for the same reason, the entries of Tq,u with q > q0 − s ≥ u will be zero. Therefore,
the infinite-dimensional statement (3.4) reduces to a finite one:

q0∑
q=q0−s+1

u0∑
u=q0−s+1

Mp,q Tq,u δΞu =0

⇒
q0∑

q=q0−s+1
Mp,q (Tq,u0δΞu0+. . .+Tq,q0−s+1δΞq0−s+1)= 0, q0−s+1≤ p≤ q0. (3.5)

Since δΞu is the gauge parameter, we can choose its value for different u independently.
Furthermore, for a given u, we can even choose its |δΞu| entries independently. From (3.5),
it is now clear that, for δΞu with a given u > q0 − s, each Tq,uδΞu (with the range of q
restricted to q0 − s+ 1 ≤ q ≤ q0) belongs to the kernel of Ms(k).

Before moving on, let us comment on the visibility of gauge redundancy at different
orders. Notice that u0 < q0 usually. For example, in Maxwell theory, the highest weight for
δX is q0 = 1 owing to Av, whereas the highest weight for δξ = Λ is u0 = 0 as it is a scalar;
similarly, in Einstein or higher-derivative gravity, q0 = 2 owing to δgvv, but u0 = 1 because
δξ = ζµ is a vector. This means that, in both cases, the matrix Ms(k) has no kernel at
leading order (s = 1). This is due to the fact that the range of u-index in (3.5) is empty
if u0 < q0 − s+ 1. As soon as s is large enough, however, a kernel will exist for all larger
values of s.

In summary, the determinant of Ms(k) will always vanish automatically, i.e., without
having to fine-tune k, for all s ≥ q0 − u0 + 1. This invalidates our earlier proposal for the
pole-skipping condition (2.23) as we expect to turn detMs(k) to zero only at special k.

Here is the moral of the story. This automatic degeneracy, as we have just seen, is a
manifestation of gauge redundancy, i.e., gauge symmetry makes some equations of motion
redundant. Pole skipping, however, is a statement about the physical bulk solution having
an extra degree of freedom. Therefore, if we want to stick to (2.23) as our pole-skipping
condition, we would have to remove the redundancy at the onset. This can be done by
e.g. restricting to the physical (gauge-invariant) degrees of freedom and their equations of
motion as in [55].

In practice, we find it convenient to skip the step of figuring out the gauge symmetry of
the theory and finding the physical degrees of freedom. This is particularly advantageous if
whether a theory has gauge symmetry depends on the values of certain coupling constants of
the theory. For example, for a theory of Rarita-Schwinger field on curved space with mass m,
there is gauge symmetry if m = d/2 and the curved background satisfies vacuum Einstein’s
equation with a negative cosmological constant, and no gauge symmetry otherwise. We
study this example in appendix B.2.

With the understanding above, we now present what we call the gauge-covariant version
of (2.23):

ω = (q0 − s)ω0 and dim(kerMs(k)) ↗ (3.6)

for each s ≥ 1. To state it in words, for a given pole-skipping frequency, pole skipping
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happens for values of k that increase the dimension of the kernel (from its dimension at
generic values of k).4

As examples, we use this new prescription to study Maxwell theory in appendix A.2,
Einstein gravity in appendix A.3, and Rarita-Schwinger theory in appendix B.2. For other
examples where there is no gauge symmetry, the condition (3.6) reduces to (2.23).

4 Fermionic fields

Let us now turn to bulk theories with only fermionic degrees of freedom. In this case,
bosonic fields (including the metric) exist only as fixed backgrounds. This assumption
is justified for example in theories with minimally coupled fermionic matter where the
matter action carries an extra factor of GN relative to the gravitational action since the
gravitational backreaction can be neglected at leading order in GN . Alternatively, if the
fermionic background is trivial, the stress tensor remains zero at linear order, so we can
neglect the backreaction in this case, too. With only dynamical fermionic bulk fields, the
resulting pole skipping will be for holographic Green’s functions of boundary fermionic
operators, so the results in this section also help understand the analytic structure of
such boundary quantities. Another motivation for this section is to demonstrate how the
techniques used in the bosonic case generalize, as many tools from this section will be useful
when we consider general theories with both types of dynamical fields in the next section.

To begin with, the metric is again given by (2.2), repeated here for readability:

ds2 = −f(r)dv2 + 2dvdr + h(r)dxidxi. (4.1)

The transverse direction x1 is now x for notational simplicity. To couple to fermions on a
curved background, we need to introduce the tetrad, or frame fields. Just like how a useful
choice of coordinates made various properties of the metric manifest, a specific choice for the
tetrad will be similarly useful. Taking (v̄, r̄, x̄i) as coordinates for the (d+ 2)-dimensional
Minkowski spacetime with

ηv̄v̄ = −1, ηr̄r̄ = 1, ηı̄ȷ̄ = δı̄ȷ̄, (4.2)

we choose the frame fields to have components

ev̄
v = 1

2 (1 + f) , ev̄
r = −1, er̄

v = 1
2 (1− f) , er̄

r = 1, eȷ̄
i =

√
h δȷ̄

i , (4.3)

4Incidentally, increasing the dimension of the kernel is different from setting non-zero diagonal entries of
the Jordan normal form to zero. As an example, the matrix[

0 1
0 x

]
has eigenvalues 0 and x, but setting x = 0 will not expand its kernel from one dimension to two. Terminology-
wise, increasing the algebraic multiplicity does not necessarily increase the geometric multiplicity. The
geometric multiplicity of an eigenvalue is the dimension of its eigenspace. The algebraic multiplicity of an
eigenvalue is its multiplicity as a root of the characteristic polynomial det(λ1− M) for the matrix M . A
given eigenvalue’s algebraic multiplicity is equal to or greater than its geometric multiplicity. The kernel’s
dimension is the geometric multiplicity of the eigenvalue zero.
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which satisfy gµν = ηabe
a
µe

b
ν . Bars over the flat space indices are used to distinguish

them from the curved spacetime indices, and we use the Latin alphabet a, b, . . . to denote
them abstractly.

The associated non-vanishing spin connections are then given by

(ωv̄r̄)v = −1
2f

′, (ωv̄ı̄)j = 1
4
h′√
h
(1− f) δı̄j , (ωr̄ı̄)j = −1

4
h′√
h
(1 + f) δı̄j . (4.4)

Note that the barred indices are anti-symmetric. We also use ∇µ to denote the full covariant
derivative, whose action depends on the object it acts on. For example, for a spinor ψ,

∇µψ = ∂µψ + 1
4(ωab)µΓabψ, (4.5)

and for a vector-spinor ψµ,

∇µψν = ∂µψν + 1
4(ωab)µΓabψν − Γρ

µνψρ. (4.6)

To avoid unnecessary complications caused by the dimension-dependent nature of
gamma matrices, we will from now on work in 2 + 1 bulk dimensions; the generalization to
higher dimensions is straightforward and will be discussed briefly at the end of the section.
With d = 1, we have the following three gamma matrices:

Γv̄ =
[

0 1
−1 0

]
, Γr̄ =

[
0 1
1 0

]
, Γx̄ =

[
−1 0
0 1

]
. (4.7)

In curved spacetime coordinates,

Γv =
[
0 2
0 0

]
, Γr =

[
0 f

1 0

]
, Γx = 1√

h

[
−1 0
0 1

]
. (4.8)

Define projectors

P± = 1∓
√
hΓx

2 = 1∓ Γx̄

2 , (4.9)

which, for a general fermionic quantity X (potentially carrying Lorentz indices), has the
following effect:

X =
[
X+
X−

]
, P+X =

[
X+
0

]
, P−X =

[
0
X−

]
. (4.10)

Just like how we decomposed Lorentzian tensors into its components when considering
bosons, we do the analogous thing here of decomposing all fermionic quantities into ±
components. For example, they could be δψ+,∇rδψ−,∇r∇rδΨv,+, etc. An operator acting
on a spinor carries two spinor indices. For such objects, we decompose in the same way
and write

O =
[
O+

+ O+
−

O−
+ O−

−

]
. (4.11)
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This allows us to easily generalize the definition of the weight. We define a lower ± to
carry ±1/2 weight and an upper ± to carry ∓1/2 in addition to the contributions from
Lorentz indices, i.e., the total weight is given by

weight = #(lower v) −#(lower r) −#(upper v) + #(upper r)

+ 1
2#(lower +) − 1

2#(lower −) − 1
2#(upper +) + 1

2#(upper −).

(4.12)

The analogue of (2.12) can be written as

δEp =
∑

q

Mp,q(ω, k) δXq, (4.13)

which looks exactly the same, but p and q are now half-integers. Each entry in δEp or δXq is
not just a tensor component, but a tensor-spinor projected onto one of the two eigenspaces
of Γx. As before, we absorb ∇r derivatives into the definition of δX , i.e., ∇r should not be
unpacked. In the bosonic case, we have explained that (∇r)nδX|r=r0 form a better basis
than partial derivatives. Here, we are going one step further by saying that

(∇r)n

[
δX+
δX−

]∣∣∣∣∣
r=r0

=
[
((∇r)nδX)+|r=r0

((∇r)nδX)−|r=r0

]
(4.14)

is a good basis for packaging things.
Recall that the most important property of the matrix Mp,q(ω, k) is (2.13). We now

proceed to show that it holds for fermions as well. A general component of the equation of
motion for a fermion can be written as

(∇r)nδ

[
E+
E−

]
=
∑

F (g,R,∇,Φ,Ψ) (∇v)k (∇i)l (∇r)mδ

[
X+
X−

]
, (4.15)

where F is a component of a spacetime tensor and at the same time a spinor operator, and
the sum is over different terms of this form. Because the three gamma matrices together
with the identity matrix form a complete basis for all 2-by-2 matrices and because F is
itself a component of a covariant tensor, we can decompose it into

F (g,R,∇,Φ,Ψ) = Vµ(g,R,∇,Φ,Ψ)Γµ + F0(g,R,∇,Φ,Ψ)1, (4.16)

where Vµ is a vector and F0 is a scalar, neither of which carries spinor indices.
The fermionic analogue of (2.15) can be written as

δEp =
∑

F(g,R,∇,Φ,Ψ) (∇v)k (∇i)l (∇r)m δXq′+m. (4.17)

What is different from (2.15) is that δE and δX both carry a ± index, and F , being a
projected component of an operator in the spinor space, carries two of them. We emphasize
again that ∇µ here contains spin connections, so they are also operators on the spinors.

Like in the bosonic case, we first need to show that F vanishes on the horizon if it has
a positive weight. In addition to bosonic constituents, fermionic fields are also potential
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ingredients. The trick here is to realize that F is a component of the matrix VµΓµ + F01.
Since Vµ and F0 do not carry spinor indices, the boost symmetry argument in the bosonic
case applies still. Following our definition of the weight in (4.12), it is straightforward to
check that Γµ and 1 all have this property. For example, the only entry in the identity
matrix that carries a positive weight is the (1)+

− component, which is zero indeed; the
components of

Γr =
[
(Γr)+

+ (Γr)+
−

(Γr)−+ (Γr)−−

]
=
[
0 f

1 0

]
(4.18)

have weights 1, 2, 0 and 1, so the only one that does not have to vanish on the horizon is
(Γr)−+; for

Γv =
[
0 2
0 0

]
, (4.19)

the components all have non-positive weights, so there is no requirement for any component
to be zero even though some of them are. Since F is built from Vµ, F0, Γ and 1, the fact
that F = 0 in (4.17) if it has a positive weight is now guaranteed.

To show (2.13), we just need to look at ∇v, which is the only way to increase the
weight, knowing that F cannot. Consider a spinor ψ first:

∇v

[
ψ+
ψ−

]
=
[
(∂v − f ′/4)ψ+
(∂v + f ′/4)ψ−

]
. (4.20)

This clearly satisfies
∇vT ∝

(
∂v −

w
2 f

′ (r0)
)
T (4.21)

since ψ± have weights ±1/2. For a more general tensor-spinor, we just need to take into
account Christoffel symbols in ∇v, but those were exactly the same as for bosons! This
concludes the proof that F is proportional to (2.16).

To show that Mp,q is proportional to (2.13), which is what we really need, we must
show q ≥ q′, where q′ is the weight of (∇r)mδXq′+m appearing in (4.17) and q is what
appears in (4.13). They differ because ∇’s will need to operate on the quantities to their
right before evaluating everything on the horizon. In addition to Christoffel symbols, spin
connections also appear in this process. Notice that ∇i acts on a spinor as

(∇iδψ)+ = ∂xδψ+ − h′f

4
√
h
δψ−, (4.22)

(∇iδψ)− = ∂xδψ− + h′

4
√
h
δψ+. (4.23)

Combined with (2.18), we see that ∇i will only turn a tensor-spinor component into another
tensor-spinor component with a higher weight (when evaluated at the horizon). This ensures
that q ≥ q′. Finally, substitution of the Fourier expansion gives the desired factors (2.13).

In fact, this concludes the discussion of bulk theories with only dynamical fermions
(in three dimensions), because the rest follows in exactly the same way as in the bosonic
case. The only difference is that p, q are half-integers. Even the conclusion reads the same
as before: pole skipping happens at frequencies (q0 − s)ω0 for s = 1, 2, . . . , where q0 is the
highest weight present in the theory, now a half-integer.
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So far, we have not said anything about gauge symmetry. Fortunately, this goes through
just like in the bosonic case. Without gauge symmetry, the pole-skipping condition is given
in (2.23); with gauge symmetry, we could either restrict to gauge-invariant quantities and
use the same condition, or we can use the gauge-covariant condition (3.6). We note, however,
that the gauge parameter δΞu appearing in (3.2) would have to become a fermionic one,
i.e., u should take half-integer values. Having a bosonic gauge parameter in a theory of
only dynamical fermions is neither common nor within the scope of the current section, but
it does belong to the more general class we study in section 5.

Higher dimensions. To define a spinor on curved spacetime, we need to define the
gamma matrices in Minkowski space first. The gamma matrices in Minkowski space R1,D−1

satisfy the Clifford algebra Cℓ(1, D − 1): {γa, γb} = 2ηab. We can define these gamma
matrices recursively, starting from two dimensions, where we can choose

γ0
2 =

[
0 1

−1 0

]
, γ1

2 =
[
0 1
1 0

]
. (4.24)

The (2n + 1)-dimensional gamma matrices are then defined using the (2n)-dimensional
gamma matrices by

γa
2n+1 = γa

2n, a = 0, . . . , 2n− 1,
γ2n

2n+1 = in+1γ0
2n . . . γ

2n−1
2n . (4.25)

Similarly, the (2n)-dimensional gamma matrices are defined from (2n − 1)-dimensional
gamma matrices by

γa
2n = γa

2n−1 ⊗
[
1 0
0 −1

]
, a = 0, . . . , 2n− 2,

γ2n−1
2n = 1⊗

[
0 1
1 0

]
. (4.26)

It is then straightforward to check that these matrices satisfy the Clifford algebra. In this
construction, gamma matrices are 2⌊

D
2 ⌋ × 2⌊

D
2 ⌋ matrices.

Now we can define the Γ-matrices in the (v̄, r̄, x̄i) coordinates by

Γv̄
D = γ0

D, Γr̄
D = γ1

D,

Γı̄
D = γi

Dδı̄,i−1, ı̄ = 1, . . . , d. (4.27)

For D = 3 (d = 1), this reproduces (4.7).
The projectors to the subspaces are defined by

P+ = 1 + Γv̄Γr̄

2 =
[
1
0

]
⊗ 12⌊D/2−1⌋ , P− = 1− Γv̄Γr̄

2 =
[
0
1

]
⊗ 12⌊D/2−1⌋ . (4.28)

Here, even though each subspace would have more degrees of freedom than in D = 3 (e.g., ψ±
each has 2⌊D/2−1⌋ components), in the basis we have defined, there is no need to distinguish
them further as in [53, 54]. We attribute this difference to the choice of projectors.
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Using these Γ-matrices, most of the argument for D = 3 goes through in the same way,
but some aspects must be generalized. For example, instead of having Γµ and 1 in (4.16) as
a complete basis for the general operator F , a complete basis in higher dimensions is formed
using 1 and commutators of all the gamma matrices [65]. Explicitly, in even dimensions
(D = 2k), a complete basis for 2k × 2k matrices is given by

1 ∪
{
Γ[µ1Γµ2 . . .Γµm] | m = 1, . . . , 2k

}
, (4.29)

and in odd dimensions (D = 2k + 1), a complete basis for 2k × 2k matrices is given by

1 ∪
{
Γ[µ1Γµ2 . . .Γµm] | m = 1, . . . , k

}
. (4.30)

5 Bosonic and fermionic fields

We discussed general theories with either dynamical bosonic fields or fermionic fields in
earlier sections. It is then natural to ask whether the argument generalizes to the case
when both are present. A naive expectation might be that, if we have already worked out
the pole-skipping points for a theory with e.g. only bosonic fields, adding fermions will not
change them even though it may lead to more. This is not always correct because fermions
can appear even in the bosonic equations of motion, adding extra terms proportional to
fermionic perturbations, so the special frequencies that could turn the original bosonic
equations of motion trivial would no longer necessarily do so. In other words, the linearized
bosonic equations of motion δEB takes the form

δEB = MBBδXB +MBF δXF , (5.1)

where δXB and δXF are bosonic and fermionic perturbations respectively, so even if special
frequencies and momenta set MBB to zero, MBF can still be non-zero, preventing a linear
combination of δEB from necessarily becoming trivial.

In this section, we will consider this general case. To begin with, write covariant
expansion coefficients of the equations of motion evaluated on the horizon as

δEp =
∑

q

Mp,q(ω, k) δXq. (5.2)

This looks exactly like (2.12) and (4.13), but p, q can now both be integers or half-integers.
When p is an integer, this is a bosonic equation of motion, receiving contributions from
both bosonic field perturbations which have integer q’s and fermionic field perturbations
which have half-integer q’s; when p is a half-integer, this is a fermionic equation of motion,
again receiving contributions from both integer and half-integer q’s.

Section 3 presented a gauge-covariant formalism. It would be natural if we now proceed
with the current section gauge-covariantly. However, as we will see, when both bosons and
fermions are present, it is not obvious whether there exists any systematic and practical way
of locating the pole-skipping momenta k. Nevertheless, we can still derive a general pattern
of pole-skipping frequencies ω. Since the main motivation for the gauge-covariant formalism
was to compute the pole-skipping momenta with less effort, its advantage is lost if we are
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uncommitted to that goal. As a result, we find it easier to derive our statements after
removing gauge redundancy. We will comment more on this issue at the end of the section.

In this approach, we still write (5.2), now with the understanding that only physical
(gauge-invariant) degrees of freedom and their corresponding equations of motion are
included. Let us also organize the basis so that the matrix M∞ defined in (2.20) divides
into four blocks of infinite size:

M∞ =



Mlb,lb Mlb,lb−1 · · ·
Mlb−1,lb Mlb−1,lb−1 · · ·

· · · · · · · · ·

Mlb,lf Mlb,lf−1 · · ·
Mlb−1,lf Mlb−1,lf−1 · · ·

· · · · · · · · ·
Mlf ,lb Mlf ,lb−1 · · ·
Mlf−1,lb Mlf−1,lb−1 · · ·

· · · · · · · · ·

Mlf ,lf Mlf ,lf−1 · · ·
Mlf−1,lf Mlf−1,lf−1 · · ·

· · · · · · · · ·


, (5.3)

where lb is the highest integer weight and lf is the highest half-integer weight. With this
separation, we can give each of the blocks a name so that δE = M∞δX can be written as

δEB

δEF


=



MBB MBF

MF B MF F





δXB

δXF


. (5.4)

Recall that pole skipping happens when M∞ is degenerate. When we only have bosonic
fields, we only have MBB; when we only have fermionic fields, we only have MF F . The
problem with MBF and MBB is that they interpolate between a half-integer weight and an
integer weight, so we do not have a relation like (2.13). (The argument does not generalize
to this case.)

As is by now clear, a main theme of the covariant expansion formalism is to reorganize
things to manifest hidden features, so it is what we will now do once again. Acting on both
sides of (5.2) with the invertible matrix

U ≡

 1 −MBFM−1
F F

0 1

 (5.5)

defines a new basis for δE while keeping the same basis for δX . This physically means that we
are taking linear combinations of the original equations of motion. In this basis, (5.2) becomes

UδE = UM∞δX δEB −MBFM−1
F F δEF

δEF

 =

MBB −MBFM−1
F FMF B 0

MF B MF F

 δXB

δXF

 . (5.6)

With the top-right block set to zero, we have now reduced the problem of finding the
conditions under which an equation of motion in the upper-left block becomes trivial. But
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this is the same problem as in the bosonic case! We conclude that pole skipping happens at
frequencies i(lb − s)2πT for s ∈ Z+. Similarly, we can use another invertible matrix to turn
the lower-left block to zero, which immediately leads to the conclusion that pole skipping
also happens at frequencies i(lf − s)2πT for s ∈ Z+. This concludes the proof.

We should note that this proof uses the inverse of an infinite-dimensional matrix MF F

to eliminate the whole upper-right block of the equation of motion matrix. The inverse
should exist after removing gauge redundancy because all equations of motion are linearly
independent. It would be good to prove this rigorously. The existence of the inverse is
certainly sufficient for the next steps, but it may not be necessary. In particular, when we
look for pole skipping by studying (5.6), we only need finitely many rows of the upper-right
block of UM∞ to vanish at each order in s. This suggests that it might be possible to
remove the need to invert an infinite matrix from the argument.

To go from the current approach to a gauge-covariant approach is in principle easy.
The inverse of MF F might not exist with gauge symmetry.5 The physical reason why we
need to invert MF F is because we want to use the fermionic equations of motion to turn
fermionic perturbations into bosonic ones. This procedure can be of course performed in
the gauge-covariant approach, but instead of inverting the whole matrix, we should only
invert the “physical part” of the matrix. More precisely, we should project out the kernel
before performing the inverse. We have avoided doing that to keep the equations simple.

6 Discussion

In this paper, we studied pole skipping in the presence of gauge and fermionic fields.
In the presence of gauge fields, we presented a pole-skipping condition that automatically

deals with gauge symmetry. This upgrade is in fact quite practical as it allows one to
compute pole-skipping points for any theory with a given Lagrangian without having
to worry about removing the redundancy which usually involves determining the gauge-
invariant combinations of field components. This condition reduces to the one in [52] in the
absence of gauge symmetry.

For theories with only fermionic fields, we provided a formalism that is parallel to
the bosonic case. This formalism is again practically useful and allows one to locate the
pole-skipping points systematically. With this extension, we found that pole skipping
generally happens at frequencies i(lf − s)2πT for positive integer s, where lf is the highest
spin in the fermionic theory.

We then applied the formalism to theories with both dynamic bosonic and fermionic
fields. In this case, we provided an argument for the pole-skipping frequencies, namely
that there is one tower of pole skipping at frequencies i(lb − s)2πT and another tower with
i(lf −s)2πT . This statement is nontrivial as the presence of fermionic fields highly influences
the pole-skipping momenta of the bosonic tower and vice versa. Unlike the purely bosonic
or fermionic cases, the argument here is rather abstract — it might be difficult to actually
do the computations for a specific theory due to the need to invert an infinite matrix. It

5It certainly would not exist if the gauge parameter is fermionic and only acts on the fermions. Similarly
the inverse of MBB would not exist if the gauge parameter is bosonic and only acts on the bosons. This
follows from the discussion in section 3.
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would be interesting to see if this requirement can be lifted. There is one situation, however,
where we do not need this inverse even when both dynamical bosons and fermions are
present: when the background fermions are all zero, the bosonic and fermionic perturbations
then decouple (MBF = MF B = 0 in (5.4)), so the problem becomes equivalent to a purely
bosonic theory plus a purely fermionic theory.

Let us now comment on the connection to chaos. Since the leading pole-skipping
frequency is given by i(l− 1)2πT , where l is the highest spin in the theory (either integer or
half-integer), for l ≥ 3/2, it seems that this frequency is positive in the imaginary direction,
meaning that the Fourier mode (which is proportional to e−iωv) will grow exponentially
in the retarded time. This already suggests a connection to chaos. More quantitatively,
this connection was explained in [3] by comparing the form of the OTOC and the leading
pole-skipping mode in Einstein gravity with matter. This connection was further explained
in [52] at the level of the metric: the shockwave solution for general higher-derivative
gravity [66] is found to be a limit of the quasinormal mode responsible for the leading
pole-skipping point.

In Einstein gravity or higher-derivative gravity, l = 2 and the leading frequency
is iλL,max, where λL,max = 2πT is the Lyapunov exponent for maximal chaos [7]. For
higher spins, the leading pole-skipping point still happens at iλL but now λL > λL,max,
consistent with the well-known result that (finitely many) higher-spin fields violate the chaos
bound [7, 67–69]. It would be interesting to extend the connection between the leading
pole-skipping point and the OTOC to l > 2. To achieve this, one might first generalize the
shockwave solution to general higher-spin theories, perhaps in the same way that shockwave
solutions were constructed for a general higher-derivative theory (appendix A of [66]). The
analysis in [52] then suggests that the higher-spin shockwave can be obtained as a limit of
the leading pole-skipping mode. Since shockwaves tell us about the OTOC, this would be
enough to connect the dots.

Moreover, it would be interesting, though arguably more challenging, to do the same
for half-integer l. In other words, can we find shockwave solutions in gravitational theories
where the highest-spin field is fermionic and use that to build the connection between the
leading pole-skipping frequency and the OTOC? A rigid way to compute the Lyapunov
exponent in the presence of fermionic fields might require a scattering perspective [6], and
it is a priori not clear whether there is a classical limit where the OTOC is described by a
“fermionic” shockwave. The quasinormal mode at the leading pole-skipping point, however,
suggests that there might be.

So far, this formalism has restricted to planar black holes with planar symmetry.
Evidence has found that the connection between pole skipping and the OTOC holds even
for rotating black holes [25, 34, 38, 70, 71]. It would be interesting to generalize the
covariant expansion formalism in this direction and use it to prove this connection for
general higher-derivative gravity.

In maximally chaotic systems, the form of pole skipping and the OTOC are constrained
by symmetry [2, 50, 72–74]. In the bulk, we have seen how they are constrained by the
boost symmetry of the black hole. Beyond maximal chaos, the connection between pole
skipping and the OTOC is more subtle [10, 11, 75]. It would be interesting to understand
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the more general relation between them better, perhaps in effective models of non-maximal
chaos [76–78].

Recent work has found pole skipping on non-black hole backgrounds [79, 80]. It is not
clear whether there exists a similar covariant expansion formalism beyond black holes as
the formalism relies heavily on the boost symmetry. However, since the example in [80] was
obtained via a double Wick rotation from a black hole spacetime, it is plausible that pole
skipping happens only for those spacetimes that are related to black holes via analytical
continuation, in which case the analytically continued symmetry generator might again play
an important role.

Finally, we should mention that this formalism works well in practice for any number of
fields with very general interactions even though we did not present such examples. For this
reason, this formalism might be helpful for interesting computations that were previously
considered too complicated. For example, this could be an efficient way of constraining the
quasinormal mode spectrum of a given theory [24].
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A Bosonic examples

A.1 Minimally coupled scalar

Consider the following theory for a massive scalar field on the black hole background:

L = −1
2(∇ϕ)

2 − 1
2m

2ϕ2. (A.1)

This has been considered in [41] at leading weight and in [24] at lower weights. In this
section, we perform the calculation in the covariant expansion formalism.

Its equation of motion is given by

E ≡
(
∇2 −m2

)
ϕ = 0. (A.2)

Taking covariant derivatives in the radial direction,

(∇r)nδE = (∇r)nδ
[(
∇2 −m2

)
ϕ
]

= (∇r)n
(
∇2 −m2

)
δϕ, (A.3)

– 18 –



J
H
E
P
1
2
(
2
0
2
3
)
0
8
4

where everything is evaluated at r = r0 after derivatives are taken. Notice that we have
passed the variation operator, δ, through the background differential operator

(
∇2 −m2)

because the background is fixed. In the notation reviewed in section 2,

δE = [δE,∇rδE,∇r∇rδE, . . .]|r=r0 . (A.4)

The components have weights 0,−1,−2, . . .. In other words,

δE0 = [δE|r=r0 ], δE−1 = [(∇rδE)|r=r0 ], etc. (A.5)

Since there is only one component for each weight in this example, |δEp| = 1 for all p ∈ Z≤0.
We will omit the brackets for one-by-one matrices from now on.

Since this theory has only one dynamical field which has spin zero, the highest-weight
equation of motion has p = q0 = 0:

δE0 = gµν∇µ∇νδϕ−m2δϕ

= 2gvr∇v∇rδϕ+ grr∇r∇rδϕ+ gij∇i∇jδϕ−m2δϕ

=
(
gij∇i∇j −m2

)
δϕ︸︷︷︸
[0]

+2gvr∇v ∇rδϕ︸ ︷︷ ︸
[−1]

+grr ∇r∇rδϕ︸ ︷︷ ︸
[−2]

=
[(
gij∇i∇j −m2) 2gvr∇v grr

]  δϕ

∇rδϕ

∇2
rδϕ



=
[(
gij(∂i∇j − Γµ

ij∇µ)−m2
)

2gvr∇v grr
]  δϕ

∇rδϕ

∇2
rδϕ

 . (A.6)

From (2.3), Γµ
ij is only non-zero for µ = v (on the horizon), so

δE0

=
[(
h−1δij

(
∂i∂j + 1

2h
′δij∂v

)
−m2

)
2∇v f

]  δϕ

∇rδϕ

∇2
rδϕ



=
[(
−h−1kiki + 1

2h
−1h′(−iω)d−m2

)
2(−iω + 1

2f
′) 0

]  δϕ

∇rδϕ

∇2
rδϕ

 . (A.7)

Notice that we have terms with various weights q on the right hand side, even though we
are only considering the equation of motion with weight p = 0. Also, in the process, we have
canonicalized the expression by moving ∇r to the right of ∇v according to the prescription.
It is easy at this order because [∇µ,∇ν ] = 0 when acting on scalars.

Also, recall that we have defined

δX =


δX0
δX−1
δX−2
· · ·

 =


δϕ

∇rδϕ

∇2
rδϕ

· · ·

 , (A.8)
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so what we have written down was δEp =
∑

q Mp,qδXq for p = 0.
Now let ω = −ω0, then this equation reduces to

− h−1k2 − d

2h
−1h′2πT −m2 = 0, (A.9)

=⇒ k2 = −dπTh′ −m2h, (A.10)

which is exactly (2.16) of [24]. In our language, this comes from the pole-skipping condi-
tion (2.23) with s = 1, i.e., detM1(k) = 0, which in this case involves only M0,0.

Let us now include the next value of p, which is −1. For simplicity, take d = 1. Then

δE−1 = ∇r(gµν∇µ∇ν −m2)δϕ

=
(
2hh′′ − h′2

4h2
(
−2iω + f ′/2

)
+ k2h′

h2

)
δϕ

+
(
f ′h′

4h − k2

h
+ h′

2h
(
−iω + f ′/2

)
+ 2f ′′ −m2

)
∇rδϕ

+ 2
(
−iω + f ′

)
∇2

rδϕ. (A.11)

According to (2.23), the second set of pole-skipping points appears at the frequency ω = −2ω0
and when the determinant of M2(k) vanishes, where

M2(k) =
[

−h−1k2 − 1
2f

′h−1h′ −m2 −f ′

−3
8h

−2(2hh′′ − h′2)f ′ + k2h′h−2 −k2h−1 + 2f ′′ −m2

]
. (A.12)

On the BTZ background, where

f(r) = r2
(
1− r2

0
r2

)
, h(r) = r2, (A.13)

and for m = 0, the pole-skipping points at this order are given by

k2 = r2
0

2(r0 − 2)

[
4± r0

(
∓4 + r0

(
∓3 + r−2

0

√
(4 + 3r2

0)(4− 8r0 + 7r2
0)
))]

. (A.14)

It is straightforward to continue to higher orders. We will go to higher orders in some more
complicated examples.

A.2 Maxwell theory

Consider Maxwell theory whose Lagrangian is given by

L = 1
4FµνF

µν , (A.15)

where
Fµν = ∇µAν −∇νAµ. (A.16)

This is our first example with a gauge symmetry: Aµ → Aµ + ∇µΛ. This example will
demonstrate how gauge redundancy is reflected in the formalism and how the gauge-covariant
pole-skipping condition works.
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The equation of motion is given by

Eν = ∇µFµν = ∇µ∇µAν −∇µ∇νAµ. (A.17)

We simplify the calculation by setting d = 1 in this example, so

δEv = ∇µ∇µδAv −∇µ∇vδAµ

= ∇v∇rδAv +
1
h
∇2

xδAv −∇2
vδAr −

1
h
∇x∇vδAx. (A.18)

Unpacking the ∇’s and evaluating it on the horizon, we have:

δE1 = (δEv)|r=r0 = (−iω)∇rδAv −
1
h
k2δAv + iω

(
−iω + f ′

2

)
δAr −

kω

h
δAx. (A.19)

It is easy to see that the first pole-skipping point appears at

(ω, k) = (0, 0) (A.20)

because M1(k) is just the coefficient in front of δAv. We note that gauge symmetry is
not yet visible at this order because s = 1 is smaller than q0 − u0 + 1 = 2, as explained
in section 3.

At the next order s = 2, we have both ∇rδEv and δEx to consider. By following the
prescription, we compute

M2(k) =


−k2

h
ikf ′

2h −f ′

2
ikh′

2h
f ′h′

4h −ik
k2h′

h2 − ikf ′h′

2h2
f ′h′−4k2

4h

 , (A.21)

where we have chosen the basis elements in the following order:

δX1 ⊕ δX0 = [δAv, δAi,∇rδAv]|r=r0 , (A.22)
δE1 ⊕ δE0 = [δEv, δEi,∇rδEv]|r=r0 . (A.23)

From now on, we will only state the basis for δX , and it should be understood that the
basis for δE is chosen analogously, as above. The determinant of this matrix is zero for
any value k. More precisely, this matrix has a one-dimensional kernel. This is due to the
fact that the pure-gauge perturbation δAµ = ∇µΛ automatically satisfies the equations of
motion. Using the language of (3.5), the kernel of M2(k) is spanned by δAv

δAx

∇rδAv

 =

if
′/2
k

0

Λ. (A.24)

Here δξ|r0 = Λ|r0 is the only degree of freedom of the gauge parameter at this order, so the
kernel is one-dimensional. See later for cases with larger kernels. The pole-skipping points
at this order can now be found using (3.6). At

k2 = −1
4f

′h′, (A.25)

the dimension of the kernel increases from 1 to 2.
At the next order, s = 3 and ω = (q0 − s)ω0 = −2ω0, choosing

δX1 ⊕ δX0 ⊕ δX−1 = [δAv, δAi,∇rδAv, δAr,∇rδAi,∇2
rδAv]|r=r0 (A.26)

as the basis, the relevant matrix is given by
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M3(k) = (A.27)

−k2

h
ikf ′

h −f ′ − 1
2f

′2 0 0
ikh′

2h 0 −ik 1
2 ikf

′ −f ′ 0
k2h′

h2 − 3ikf ′h′

4h2
f ′h′−4k2

4h
f ′2h′+2hf ′f ′′

8h
ikf ′

2h − f ′

2

0 − ikh′

2h2 − h′

2h
2hf ′′−f ′h′−4k2

4h − ik
h −1

ik(2hh′′−3h′2)
4h2

hf ′′h′+hf ′h′′−f ′h′2

2h2
ikh′

h − 1
2 ikf

′′ f ′′ + f ′h′

2h −ik
k2(hh′′−2h′2)

h3
k(−hf ′′h′−4hf ′h′′+6f ′h′2)

4ih3 A B hkf ′′+2kf ′h′

2ih2
hf ′′+f ′h′−2k2

2h


where

A = hf ′′h′ + 2hf ′h′′ − 2f ′h′2 + 8k2h′

4h2 ,

B = −2h2f ′′2 + 2hf ′2h′′ − 2f ′2h′2 − hf ′f ′′h′

8h2 ,

which already has a two-dimensional kernel spanned by

δAv

δAx

∇rδAv

δAr

∇rδAx

∇2
rδAv


=



−f ′

ik
0
0

− ikh′

2h

0


Λ +



0
0

−1
2f

′

1
ik

1
2f

′′


∇rΛ, (A.28)

where δξ|r0 = Λ|r0 = δΞ0 and ∇rδξ|r0 = ∇rΛ|r0 = δΞ−1 are the two gauge parameters
appearing in the sum (3.5). The pole-skipping momenta are given by the solutions to(

k2 + 1
2f

′h′
)
(k2 + f ′h′ − hf ′′)− hf ′

2
h′′ = 0. (A.29)

They will increase the dimension of the kernel from 2 to 3. On the BTZ black ground (A.13),
they simplify to

k2 = r2
0

(
−2± 2

√
2
)
. (A.30)

A.3 Einstein gravity

Consider the Einstein-Hilbert action with a negative cosmological constant:

S = 1
16πGN

∫
dd+2x

√
−g(R− 2Λ), Λ = −d(d+ 1)

2ℓ2 , ℓ = 1. (A.31)

Compared to the other examples we study, this one is computationally the hardest. This
will hopefully illustrate the advantage of using the covariant expansion method: it is fully
automatable. This also serves as another illustration of the nature of gauge symmetry,
which in this case is given by: gµν → gµν +∇µζν +∇νζµ.

Einstein’s equation is given by

Eµν = Rµν − 2Λ
d
gµν . (A.32)
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The linearized Einstein’s equation is given by

δEµν = 1
2 (−∇α∇αδgµν −∇µ∇νδg

α
α +∇µ∇αδgνα +∇ν∇αδgµα)

+ 1
2g

αβRµαδgνβ + 1
2g

αβRναδgµβ − gαρgβσRµανβδgρσ − 2Λ
d
δgµν . (A.33)

We will first keep d general but turn to d = 2 later for concreteness; if one wishes, one can
keep d general throughout the whole calculation. To avoid repetition, we now state the
order in which the basis elements are presented throughout this example:

[δgvv, δgv1, δgv2,∇rδgvv, δgvr, δg11, δg12, δg22,∇rδgv1,∇rδgv2,∇2
rδgvv, δgr1,

δgr2,∇rδgvr,∇rδg11,∇rδg12,∇rδg22,∇2
rδgv1,∇2

rδgv2,∇3
rδgvv, · · · ]|r=r0 , (A.34)

where the subscripts 1 and 2 abbreviate x1 and x2. To begin with, consider the highest-weight
equation of motion

δE2 = δEvv|r0
=
[
− 1
2h∂i∂i +

dh′

4h
(
∂v − f ′

)
− 1

2f
′′ − 2Λ

d

]
δgvv

+ 1
h

(
∂v −

1
2f

′
)
∂iδgvi −

1
2h∂v

(
∂v −

1
2f

′
)
δgii. (A.35)

Again, the gauge symmetry is not visible at this order, as s = 1 is smaller than q0 −u0 +1 =
2− 1 + 1 = 2. We can therefore easily read off the location of the first skipped pole:

ω = ω0, k2 = −d4f
′h′, (A.36)

where we have used the fact that the background metric satisfies Einstein’s equation.
At the next order (s = 2, ω = 0), we have (for general d)

δEvi|r0
=(d−2) h

′

4h∂iδgvv+
[
− 1
2h∂j∂j+

h′

4h
(
∂v−2f ′

)
− 2Λ
d

]
δgvi+

1
2h∂i∂jδgvj

+1
2∂i∇rδgvv+

1
2∂v∂iδgvr−

1
2∂v∇rδgvi+

1
2∂v

(
∂v+

1
2f

′
)
δgri, (A.37)

∇rδEvv|r0
=
[
− 1
2h∂i∂i+

dh′

4h (∂v−f ′)−
1
2f

′′
]′
δgvv−

[
h′

h2∂v+
1
2

(
f ′

h

)′]
∂iδgvi

+
[
− 1
2h∂i∂i+

dh′

4h (∂v−f ′)−
1
2f

′′− 2Λ
d

]
∇rδgvv+

dh′

4h ∂vδgvr

+1
4

(
f ′

h

)′
∂vδgii+

1
h
∂v∂i∇rδgvi−

1
2h∂v

(
∂v+

1
2f

′
)
∇rδgii. (A.38)

We can easily write down the matrix M2(k) using the expressions above. The determinant
of this matrix is automatically zero. Its kernel is spanned by the pure-gauge perturbations
δgµν = ∇µζν +∇νζµ with weights q ≥ 1. In the near-horizon covariant expansion, this is δgvv

δgvi

∇rδgvv

 =

−f
′

iki

−f ′′

 ζv, (A.39)
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where ζv|r0 = δΞ1 is the only gauge parameter appearing in (3.5) at this order. For simplicity,
we now specialize to a specific background, the Schwarzschild-AdS4 black hole, which has

f(r) = r2
(
1− r3

0
r3

)
, h(r) = r2. (A.40)

Now our matrix simplifies to

M2(k) =



k2
1+k2

2
2r2

0
−3ik1

2r0
−3ik2

2r0
0

0 k2
2

2r2
0

−k1k2
2r2

0

ik1
2

0 −k1k2
2r2

0

k2
1

2r2
0

ik2
2

−k2
1+k2

2
r3

0

3ik1
r2

0

3ik2
r2

0

k2
1+k2

2
2r2

0


. (A.41)

As we described above for general background, there is a one-dimensional kernel of this
matrix (A.39). On our chosen background, it reduces to

δgvv

δgv1
δgv2

∇rδgvv

 =


−3
ik1
ik2
0

 ζv. (A.42)

The product of nonzero diagonal entries of its Jordan normal form is

k4(k2 + 6r2
0). (A.43)

Setting k = 0 will increase the dimension of the kernel from 1 to 4, while k2 = −6r2
0 will

not. According to (3.6) and with the caveat mentioned in Footnote 4, pole skipping only
happens at k = 0.

We can continue to find the skipped poles at the next order (s = 3), where ω = −ω0.
We now need all equations of motion with weights greater or equal to 0. The relevant
matrix is worked out to be

M3(k) = (A.44)

A − 3ik1
r0

− 3ik2
r0

0 0 − 9
4 0 − 9

4 0 0 0

0 k2
2

2r2
0
− 3

4 − k1k2
2r2

0

ik1
2

3
4 ik1r0 0 − 3ik2

4r0
3ik1
4r0

3r0
4 0 0

0 − k1k2
2r2

0

k2
1

2r2
0
− 3

4
ik2
2

3
4 ik2r0

3ik2
4r0

− 3ik1
4r0

0 0 3r0
4 0

− k2
1+k2

2
r3

0
+ 3

2
9ik1
2r2

0

9ik2
2r2

0
A − 9r0

2
9

4r0
0 9

4r0
− 3ik1

2r0
− 3ik2

2r0
0

0 ik1
2r3

0

ik2
2r3

0

1
r0

k2
1+k2

2
2r2

0
+ 3 3

4r2
0

0 3
4r2

0

ik1
2r2

0

ik2
2r2

0

1
2

1 2ik1
r0

ik2
r0

r0 k2
1 + 3r2

0
k2

2
2r2

0
+ 9

4 − k1k2
r2

0

k2
1

2r2
0

+ 3
4 ik1 0 0

0 ik2
2r0

ik1
2r0

0 k1k2 0 3
2 0 ik2

2
ik1
2 0

1 ik1
r0

2ik2
r0

r0 k2
2 + 3r2

0
k2

2
2r2

0
+ 3

4 − k1k2
r2

0

k2
1

2r2
0

+ 9
4 0 ik2 0

0 9
4r0

− k2
2

r3
0

k1k2
r3

0
− ik1

2r0
3ik1

4 0 3ik2
4r2

0
− 3ik1

4r2
0

k2
2

2r2
0
− 9

4 − k1k2
2r2

0

ik1
2

0 k1k2
r3

0

9
4r0

− k2
1

r3
0

− ik2
2r0

3ik2
4 − 3ik2

4r2
0

3ik1
4r2

0
0 − k1k2

2r2
0

k2
1

2r2
0
− 9

4
ik2
2

3(k2
1+k2

2−r2
0)

r4
0

− 15ik1
r3

0
− 15ik2

r3
0

3
r0

− 2(k2
1+k2

2)
r3

0
9 − 27

4r2
0

0 − 27
4r2

0

6ik1
r2

0

6ik2
r2

0
A


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where

A = 1
2

(
k2

1 + k2
2

r2
0

− 3
)
.

Here, the dimension of the kernel is already 4, an indication of the size of the gauge group
(diffeomorphism). The kernel is spanned by

δgvv

δgv1
δgv2

∇rδgvv

δgvr

δg11
δg12
δg22

∇rδgv1
∇rδgv2
∇2

rδgvv



=



−6
ik1
ik2
0
0
2
0
2

−ik1
−ik2
−6



ζv +



0
−3

2
0
0
0

2ik1
ik2
0
−3

2
0
0



ζ1 +



0
0
−3

2
0
0
0
ik1
2ik2
0
−3

2
0



ζ2 +



0
0
0
−3
1
0
0
0
ik1
ik2
0



∇rζv, (A.45)

where δΞ1 = [ζv]|r=r0 and δΞ0 = [ζ1, ζ2,∇rζv]|r=r0 parameterize the four dimensions of the
kernel. The product of nonzero diagonal entries of its Jordan normal form is given by

(k2 − 3r2
0)(k2 + 6r2

0)(k2 + 9r2
0)(k4 + 9r4

0)(k4 + 15k2r2
0 + 18r4

0). (A.46)

Among the roots of this expression, it can be checked that k2 = 3k2
0, k4 = −9k4

0 increases
the dimension of the kernel.

We can continue doing this, but the size of the matrix is getting unmanageable. We
will just state the results for the next two orders. At s = 4 (ω = −2ω0), pole-skipping
momenta are given by

k4 = 18r4
0, k4 = −18r4

0. (A.47)

At s = 5 (ω = −3ω0), they are given by

k4 = 27r4
0, k4 = −27r4

0, k2 = −15r2
0. (A.48)

All the results that overlap with (5.17) and (E.8) of [24] agree.

B Fermionic examples

B.1 Free Dirac spinor

Consider a theory of a minimally coupled free Dirac field on curved spacetime:

L = iψ̄ (Γµ∇µ −m)ψ. (B.1)

Pole skipping for this theory has been studied in [53]. In this section, we perform the
analysis using the formalism of section 4. For simplicity, we work in three bulk dimensions
(d = 1). To begin with, the linear order perturbation to the equation of motion

E = (Γµ∇µ −m)ψ (B.2)
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is given by

δE = Γµ∇µδψ −mδψ

= Γv∇vδψ + Γr∇rδψ + Γx∇xδψ −mδψ

=
[
0 2
0 0

] [
(∂v − f ′/4)δψ+
(∂v + f ′/4)δψ−

]
+
[
0 f

1 0

] [
(∇rδψ)+
(∇rδψ)−

]

+
[
−1/

√
h 0

0 1/
√
h

] [
∂x −h′f/(4

√
h)

h′/(4
√
h) ∂x

] [
δψ+
δψ−

]
−m

[
δψ+
δψ−

]
. (B.3)

When evaluated at the horizon,

δE1/2 = δE+|r0
= −

( 1√
h
∂x +m

)
δψ+ + 2

(
∂v +

f ′

4

)
δψ−. (B.4)

According to (2.23), the first pole-skipping point happens at frequency ω = −1
2ω0, and the

corresponding momentum can be easily found by setting detM1(k), which in this case is the
prefactor in front of δψ+, to zero, after substituting the Fourier expansion (2.6). Solving
for k immediately leads to k = im

√
h.

To find the next pole-skipping point, we need

δE−1/2 =
[

δE−
(∇rδE)+

]∣∣∣∣∣
r0

, (B.5)

where

δE−|r0
= h′

4hδψ+ +
( 1√

h
∂x −m

)
δψ− + (∇rδψ)+, (B.6)

(∇rδE)+|r0
= h′

2h3/2∂xδψ+ +
(1
2f

′′ + f ′h′

4h

)
δψ−

−
( 1√

h
∂x +m

)
(∇rδψ)+ + 2

(
∂v +

3
4f

′
)
(∇rδψ)−. (B.7)

From the general argument, we know that setting ω = −3
2ω0 would kill all terms involving

δXq with q ≤ −3/2. One can check explicitly that the prefactor in front of (∇rδψ)− vanishes.
As always, we are left with a square matrix to analyze:

δE+

δE−

(∇rδE)+

 =


− 1√

h
ik −m −f ′ 0
h′

4h
1√
h
ik −m 1

h′

2h3/2 ik f ′′

2 + f ′h′

4h − 1√
h
ik −m




δψ+

δψ−

(∇rδψ)+

 . (B.8)

The determinant of the square matrix is evaluated to be

detM2(k) =
ikf ′′

2
√
h
+ 1

2mf
′′ − ikf ′h′

2h3/2 − ik3

h3/2 − k2m

h
− ikm2

√
h

−m3. (B.9)

– 26 –



J
H
E
P
1
2
(
2
0
2
3
)
0
8
4

On the BTZ background (A.13), the pole-skipping momenta can be found by solving

0 = detM2(k) = − i
r3

0
(k + imr0)(k − i(m− 1)r0)(k − i(m+ 1)r0), (B.10)

with solutions
k = −imr0, i(m− 1)r0, i(m+ 1)r0. (B.11)

At the next order (s = 3 and ω3 = −5
2ω0), taking

δX1/2 ⊕ δX−1/2 ⊕ δX−3/2 = [δψ+, δψ−,∇rδψ+,∇rδψ−,∇2
rδψ+]|r0 (B.12)

as our basis (in the order presented),

M3(k) =

−m− ik√
h

−2f ′ 0 0 0
h′

4h −m+ ik√
h

1 0 0
ikh′

2h3/2
1
4

(
2f ′′ + f ′h′

h

)
−m− ik√

h
−f ′ 0

−h′2−hh′′

4h2 − ikh′

2h3/2
h′

4h −m+ ik√
h

1
ik(2hh′′−3h′2)

4h5/2
h(2f (3)h+f ′′h′)−2f ′(h′2−hh′′)

4h2
ikh′

h3/2 2f ′′ + f ′h′

2h −m− ik√
h


. (B.13)

On the BTZ background (A.13), the pole-skipping momenta are found by solving

0 = detM3(k) (B.14)

= −i
r5

0
(k − imr0)(k + i(m− 1)r0)(k + i(m+ 1)r0)(k − i(m− 2)r0)(k − i(m+ 2)r0).

At the next order (s = 4 and ω4 = −7
2ω0), taking our basis as

[δψ+, δψ−,∇rδψ+,∇rδψ−,∇2
rδψ+,∇2

rδψ−,∇3
rδψ+]|r0 , (B.15)

the relevant matrix is given by

M4(k)= (B.16)

−m− ik√
h

−3f ′ 0 0 0 0 0
h′

4h
−m+ ik√

h
1 0 0 0 0

ikh′

2h3/2
1
4

(
2f ′′+ f ′h′

h

)
−m− ik√

h
−2f ′ 0 0 0

−h′2−hh′′

4h2 − ikh′

2h3/2
h′

4h
−m+ ik√

h
1 0 0

ik(2hh′′−3h′2)
4h5/2 A ikh′

h3/2 2f ′′+ f ′h′

2h
−m− ik√

h
−f ′ 0

2h′3+h2h(3)−3hh′h′′

4h3
ik(3h′2−2hh′′)

4h5/2 −h′2−hh′′

2h2 − ikh′

h3/2
h′

4h
−m+ ik√

h
1

ik
(

15h′3+4h2h(3)−18hh′h′′
)

8h7/2 B
3ik(2hh′′−3h′2)

4h5/2 C 3ikh′

2h3/2
3
4

(
6f ′′+ f ′h′

h

)
−m− ik√

h


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where

A =
h
(
2f (3)h+ f ′′h′

)
− 2f ′

(
h′2 − hh′′

)
4h2 ,

B =
3f ′

(
2h′3 + h2h(3) − 3hh′h′′

)
+ h

(
f (3)hh′ − 3f ′′h′2 + h

(
2hf (4)(r) + 3f ′′h′′

))
4h3 ,

C = 5f (3)

2 + 3hf ′′h′ − 6f ′
(
h′2 − hh′′

)
4h2 .

On the BTZ background (A.13), the determinant simplifies to

detM4(k) = − i
r7

0
(k + imr0)(k − i(m− 1)r0)(k − i(m+ 1)r0)

× (k + i(m− 2)r0)(k + i(m+ 2)r0)(k − i(m− 3)r0)(k − i(m+ 3)r0). (B.17)

Again, setting this to zero gives the corresponding pole-skipping momenta at this frequency,
which one can easily read off from the expression.

This procedure can be continued to higher orders systematically, but we will stop here
to save space. To all the orders we have presented, the locations exactly match those
found in [53].

B.2 Rarita-Schwinger field

Consider the following action for the spin- 3
2 Rarita-Schwinger field, ψµ, on a curved

background:

S = − 1
16πGN

∫
dd+2x

√
−g

(
ψ̄µΓµνρ∇νψρ +mψ̄µΓµνψν

)
. (B.18)

This theory has been considered in [54]. This is an interesting example not only because
this is the only example of ours where the dynamic field carries both Lorentz and spinor
indices but also because it has a gauge symmetry only when we tune the mass m to a
special value.

The equation of motion for ψµ is given by

Eµ(ψν) = Γµνρ∇νψρ +mΓµνψν = 0. (B.19)

This action has a gauge symmetry when m = mc ≡ d/2 if the background satisfies
vacuum Einstein’s equation with a negative cosmological constant. To see this, consider
the transformation

δψµ =
(
∇µ − 1

2Γµ

)
χ, (B.20)

under which the equation of motion changes by

δEµ|mc =Γµνρ∇ν

(
∇ρ −

1
2Γρ

)
χ+ d

2Γ
µν
(
∇ν − 1

2Γν

)
χ

= gµν
(
Rνρ −

1
2gνρR

)
Γρχ− 1

2Γ
µνρΓρ∇νχ+ d

2Γ
µν∇νχ− d

4Γ
µνΓνχ

= 1
2

(
Rµν − 1

2g
µνR− d(d+ 1)

2 gµν
)
Γνχ = 0, (B.21)

where ΓµνΓν = (d+ 1)Γµ, ΓµνρΓρ = dΓµν , and the AdS length has been set to 1.
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We again work in three bulk dimensions (d = 1). The highest-weight equation of motion
is given by

δE3/2 = δEv+|r0
= −

( 1√
h
∂x +m

)
δψv+ − 1√

h

(
∂v −

1
4f

′
)
δψx+. (B.22)

The first skipped pole is then located at ω = 1
2ω0, k = im

√
h. To find the next few points,

we need

δEv−|r0
= − h′

4hδψv+ −
( 1√

h
∂x −m

)
δψv− − m√

h
δψx+ + 1√

h

(
∂v +

1
4f

′
)
δψx−,

δEx+|r0
= −2m

√
hδψv− +

√
h(∇rψ)v+ −

√
h

(
∂v +

1
4f

′
)
δψr+,

∇rδEv+|r0
= h′

2h3/2∂xδψv+ + f ′h′

4h δψv− + f ′h′ − hf ′′

4h3/2 δψx+ −
( 1√

h
∂x +m

)
(∇rψ)v+.

(B.23)

At the next order (s = 2, ω = −1
2ω0), in the basis

δX3/2 ⊕ δX1/2 = [δψv+, δψv−, δψx+,∇rδψv+]|r0 , (B.24)

the square matrix we are interested in is given by

M2(k) =



−m− ik√
h

0 − f ′

2
√

h
0

− h′

4h m− ik√
h

− m√
h

0

0 −2m
√
h 0

√
h

ikh′

2h3/2
f ′h′

4h
f ′h′−hf ′′

4h3/2 −m− ik√
h


, (B.25)

which has determinant

detM2(k)

= −k
2f ′′

4h − 1
4m

2f ′′+ ikmf ′h′

4h3/2 +3m2f ′h′

4h − f ′2h′2

32h2 +2k2m2

h
− 4ikm3

√
h

−2m4. (B.26)

As mentioned at the beginning of the section, there is a gauge symmetry for the Rarita-
Schwinger field when the background Einstein’s equation is satisfied. In our case, they
constrain the metric as follows:(

h′(r)
)2 − 2h(r)h′′(r) = 0, f ′(r)h′(r)− 4h(r) = 0, f ′′(r) = 2. (B.27)

Using the last two equations, the determinant becomes

1
2h(4m

2 − 1)(−2ikm
√
h−m2h+ h+ k2). (B.28)

For the generic case m ̸= mc, the determinant is non-zero and pole skipping happens
at those k’s that make the determinant zero. For m = mc, the determinant vanishes
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automatically, consistent with what we showed in section 3. In this special case, we need to
use the gauge-covariant version of pole-skipping conditions (3.6). This gives

k = − i
2
√
h. (B.29)

This momentum increases the dimension of the kernel from 1 to 2. We should emphasize
that one cannot locate the pole-skipping points in this case by taking m→ mc after finding
pole-skipping points for m ̸= mc, i.e., the procedures do not commute.

To understand why the matrix has a kernel of dimension 1, consider the pure-gauge
perturbation

δψµ =
(
∇µ − 1

2Γµ

)
δξ =

(
∇µ − 1

2Γµ

)
χ. (B.30)

The relevant part of (3.2) at ω = −1
2ω0 is

δψv+
δψv−
δψx+

(∇rδψ)v+

 = −1
2


f ′

1
−(

√
h+ 2ik)
1
2f

′′

χ+. (B.31)

This is indeed an eigenvector of the 4 × 4 matrix (B.23) with eigenvalue 0, assuming
background Einstein’s equation and m = mc.

At s = 3 (ω = −3
2ω0), using the basis

δX3/2 ⊕ δX1/2 ⊕ δX−1/2

= [δψv+, δψv−, δψx+,∇rδψv+, δψx−, δψr+,∇rδψv−,∇rδψx+,∇2
rδψv+]|r0 , (B.32)

the matrix we are interested in is

M3(k) = (B.33)

−m− ik√
h

0 − f ′
√

h
0 0 0 0 0 0

− h′

4h m− ik√
h

− m√
h

0 − f ′

2
√

h
0 0 0 0

0 −2
√
hm 0

√
h 0

√
hf ′

2 0 0 0
ikh′

2h3/2
f ′h′

4h
f ′h′−hf ′′

4h3/2 −m− ik√
h

0 0 0 − f ′

2
√

h
0

0 0 0 0 0
√
hm

√
h 0 0

0 0 − h′

2h3/2 0 2m√
h

m+ ik√
h

0 − 1√
h

0
h′2−hh′′

4h2
ikh′

2h3/2 0 − h′

4h
hf ′′+f ′h′

4h3/2 0 m− ik√
h

− m√
h

0

0 0 0 0 0 − 1
4
√
hf ′′ −2

√
hm 0

√
h

ik(2hh′′−3h′2)
4h5/2 A B ikh′

h3/2 0 0 f ′h′

2h
f ′h′

2h3/2 −m− ik√
h


where

A = hf ′′h′ − 2f ′
(
h′2 − hh′′

)
4h2 ,

B =
h
(
f ′′h′ − f (3)h

)
− 2f ′

(
h′2 − hh′′

)
4h5/2 .
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Again, the determinant is automatically zero when the background Einstein equation is
satisfied and m = mc. In this case, the kernel of this matrix is spanned by the pure-gauge
perturbations



δψv+
δψv−
δψx+

(∇rδψ)v+
δψx−
δψr+

(∇rδψ)v−
(∇rδψ)x+
(∇2

rδψ)v+


=



−f ′
− 1

2
1
2
√
h+ik

− 1
4f

′′

h′

4
√

h

0
0

− ikh′

2h

− 1
4f

(3)


χ++



0
− f ′

2
0
0

− 1
2
√
h+ik

−1
f ′′

4
− f ′h′

4
√

h

0


χ−+



0
0
0

− f ′

2
0
1
− 1

2
1
2 (
√
h+2ik)
0


(∇rχ)+. (B.34)

According to our gauge-covariant pole-skipping condition (3.6), we need to look for values
of k that increase the dimension of kerM3(k). Curiously, there turns out to be none at this
order. Incidentally, the values

k = i
2
√
h, −3i

2
√
h,

5i
2
√
h (B.35)

would increase the number of zeros in the characteristic polynomial but not the dimension
of the kernel. See Footnote 4 for this distinction.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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