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ABSTRACT: In AdS/CFT, observables on the boundary are invariant under renormalization
group (RG) flow in the bulk. In this paper, we study holographic entanglement entropy
under bulk RG flow and find that it is indeed invariant. We focus on tree-level RG flow,
where massive fields in a UV theory are integrated out to give the IR theory. We explicitly
show that in several simple examples, holographic entanglement entropy calculated in the
UV theory agrees with that calculated in the IR theory. Moreover, we give an argument
for this agreement to hold for general tree-level RG flow. Along the way, we generalize
the replica method of calculating holographic entanglement entropy to bulk theories that
include matter fields with nonzero spin.
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1 Introduction

Holographic entanglement entropy has played a significant role in understanding the emer-
gence of spacetime in AdS/CFT, a duality between a bulk gravitational theory in anti-de
Sitter space (AdS) and a boundary conformal field theory (CFT). At leading order in the
large-N expansion, the entanglement entropy of a subregion in the CFT is related to a
geometric quantity in the bulk. For Einstein gravity, this quantity is simply the area of an
extremal surface, given by the Ryu-Takayanagi (RT) formula [1-3]:

2
S = ezfit —7; /ddy Vh, k? =8rGy, (1.1)
K

where the extremization is over all candidate codimension-two surfaces v with induced met-
ric h and satisfying certain homology constraints. This formula was derived by Lewkowycz
and Maldacena (LM) [4] using the gravitational path integral.



For more general bulk gravity theories, such as higher-derivative gravity, the boundary
entanglement entropy is instead given by [5-7]

S = ezyct Agen[7], (1.2)

where Age, is an entropy functional evaluated on 7, generalizing the area in (1.1). This
formula can be derived via a generalization of the replica method of LM to arbitrary
bulk theories.! For Einstein gravity, Agen reduces to the area of the surface (1.1) divided
by 4G . For the case of f(Riemann) theories, the corresponding entropy functional was
derived in ref. [5]. For instance, when the bulk theory includes a Ricci-squared correction,
L = (R+AR,, R*) [2Kk?, Agen is given by the integral of the quantity 1-+\(R,*—K,K?/2)+
O()\?) over the extremizing surface, where K, is the trace of the extrinsic curvature along
the directions (or two-dimensional space) orthogonal to .2 In general, Agen is a local
functional determined from the action of the bulk theory. We will work to leading order in
the gravitational constant Gy and therefore ignore quantum corrections from bulk fields,
which are generally subleading.

Since the holographic entanglement entropy formula relates a quantity on the boundary
to a quantity in the bulk, this raises the question of what happens if there are different bulk
descriptions of the same boundary theory. For the holographic duality to be consistent,
the different bulk descriptions must give the same result for the boundary quantity, i.e.,

S = e?yit Agen,l[’)/; (I)l] = e?yit Agen,2[r7§ (I)Q] (13)

Here ®; and ®2 represent schematically two distinct sets of dynamical fields (including the
metric) that are present in the two bulk descriptions of the theory and evaluated on-shell in
Agen, whereas Agen 1 and Agen 2 are the corresponding holographic entropy functionals. The
descriptions encoded by @1 o could represent any reorganization of the bulk path integral,
e.g., two different field redefinitions of the bulk action or a repackaging in terms of auxiliary
fields.

One general situation where two bulk theories can have the same boundary description
occurs in a bulk renormalization group (RG) flow, i.e., where the actions of ®; 5 represent
the same bulk theory evaluated at different energy scales. The boundary CFT is not
sensitive to the scale at which the bulk effective field theory (EFT) is defined.® For this
reason, eq. (1.3) specializes to

S = ext Agen,uv[Y; guv, @] = ext Agen,IR[7; 9IR], (1.4)

where we focus on situations in which the IR theory is obtained by integrating out massive
matter fields ® in the UV theory, Lyv [guv, ®] — Lir [gir], and Agen,IR7 Agen,UV are the

'Nevertheless, we will continue to refer to this generalization as the LM method.

2Throughout, we will use a, b, ... for directions in the normal bundle to the codimension-two surface =,
while we use ¢, j, ... for directions within the surface and Greek letters u,v,... for full spacetime Lorentz
indices.

3This is different from the boundary RG flow (which holographically corresponds to changing a radial
cutoff in the bulk).
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Figure 1. Commutative diagram for the holographic entanglement entropy calculation from the
UV to the IR under bulk RG flow. The invariance of the entropy is demonstrated by first computing
it in a tree-level UV extension with massive nonminimally coupled matter; upon integrating out
the massive fields, the IR entropy agrees with that computed directly from the IR EFT.

holographic entropy functionals in the IR and UV theory, respectively, with g, ® evaluated
on-shell.* Here, gyv is a metric solution in the UV theory, and grg is the corresponding one
in the IR. Requiring eq. (1.4) to hold is a nontrivial consistency check for the holographic
entropy formulas.

Our main goal is to show that the UV entropy flowed to the IR matches the entropy
computed in the IR theory, as summarized in figure 1 as a commutative diagram. We do
this by first demonstrating the matching in a few examples, namely certain UV extensions
of four-derivative gravity, and then providing a general argument for all tree-level UV
extensions of gravitational EFTs.

Throughout, we work in the formalism of gravitational EFTs, where the leading cor-
rections to the Einstein-Hilbert action are given by the four-derivative curvature-squared
terms R2, R, R*", and R, ,c RFP?. To study the RG flow in these theories, we introduce
one-particle UV extensions, where the higher-derivative terms are generated at the tree
level by integrating out massive fields nonminimally coupled to the curvature.’ As a rule,
we will refer to such theories as UV extensions rather than UV completions; what happens
above their regime of validity will not affect our analysis.

4Furthermore, we will find in explicit examples of gravitational EFTs and their tree-level UV extensions
that a stronger version of eq. (1.4) holds, equating Agen v [gir] With limuv_1r Agen,uv[guv, P] at the func-
tional level — i.e., at the level of the entropy functional before extremization — where the UV — IR limit
denotes imposition of the equations of motion for ® at low energies.

SFor example, in four dimensions one could couple a scalar ¢ of mass m via the interaction term Mpi¢R,

generating Mg R*/m? at low energies. In this way, the introduction of ¢ allows the four-derivative term
to be replaced with one of lower mass dimension, while the scale at which the EFT breaks down is raised

from m to Mp.



We emphasize that while we were initially inspired by the conjecture of Susskind and
Uglum [8] which states that the generalized entropy — defined as the sum of Age, and the
bulk entropy Spuix — is invariant under RG flow, the statement that we want to make here
is only about the behavior of Age, itself. Indeed, as most of our discussion involves tree-
level effects, we will confine our consideration to Age, throughout. It would be interesting
to investigate how our results extend to the full generalized entropy beyond the tree level.

The remainder of the paper is organized as follows. We start by specifying the tree-
level extensions of four-derivative gravity in section 2, and show that the UV entropies
match the entropies derived from the IR theory under the tree-level RG flow. The toolkit
needed for deriving their entropy functionals is described in section 3, with the details
of the derivation presented in appendix A. In section 4, we give a general argument for
the entropy matching in tree-level UV extensions. We summarize our results and discuss
certain future directions in section 5. In appendix B, we study holographic entanglement
entropy under field redefinitions in two simple examples.

2 Tree-level UV extensions and their entropy functionals

We now study holographic entanglement entropy under bulk RG flow in several simple
examples. A physically motivated way to achieve such an RG flow is via a UV extension
of the higher-derivative interactions where the equations of motion are second order in the
UV.% We will therefore consider various tree-level UV extensions of the curvature-squared
corrections R?, R, RF, and Ry, p0 R* po 7

Studying tree-level UV extensions is both well-motivated and tractable. Tree-level
completions in gravity arise naturally from a string-theoretic perspective; the nonzero
effective curvature-squared terms that appear in (heterotic, type I, and bosonic) string
theory [11-13] are generated in the IR via a tower of massive states exchanged at the
tree level between scattering gravitons. Moreover, an h-counting argument implies that
graviton scattering in pure Einstein gravity must be UV-completed at the tree level in
any weakly-coupled completion [14] (as opposed to a loop-level completion, as in the case
of the Euler-Heisenberg Lagrangian), so considering higher-derivative gravitational terms
that are themselves generated at the tree level may be well-motivated. In an amplitude
context, it has been shown that the Kéllén-Lehmann spectral representation describing the
integrating out of massive degrees of freedom, even at the loop level, can be viewed as a
sum over tree-level composite states [15].

SThroughout, we use the phrase “UV extensions” rather than “UV completions” to denote integrating
in massive fields that render the equations of motion second order and for which, upon integrating out these
fields at the tree level, we obtain our desired EFTs. That is, we are replacing interaction terms of high mass
dimension with ones of lower mass dimension. In the case of massive scalars, this will raise the UV cutoff of
the theory, while for massive higher-spin fields the situation is more subtle [9, 10]. In all cases, we will be ag-
nostic about the UV completion above the scale of the massive fields, as it will not play a role in our analysis.

"We include R? and R, R, even though IR EFTs with solely these corrections are equivalent to vacuum
Einstein gravity under field redefinition, since we will find that working through the formalism demonstrat-
ing invariance of the holographic entropy under RG flow is already enlightening in these examples. We also
discuss such field redefinitions in appendix B.



As in refs. [10, 14, 16], we therefore integrate in new states at the tree level as a
UV extension of the original EFT.® This allows us to access features of the RG evolution
of the entropy calculation in toy models within the arena of quantum field theory and
semiclassical gravity while sidestepping the full UV completion of gravity itself.

We now turn to the construction of our three example theories for generating the
curvature-squared terms, using massive fields of spin zero, two, and four.

2.1 Massive scalar extension of R2

To generate R?, we consider a UV theory of a massive scalar nonminimally coupled to
gravity, reminiscent of a dilaton in a model with broken supersymmetry. The bulk action is

1 o 1 1
_ d+2.. —|_* a L 2 1 2.2 21
S= [ =g | s R+ SoR - (00) - Jmie?) (21)
where « is a dimensionless constant. The ¢ equation of motion for this theory is
O¢ —m?¢+arx 'R =0. (2.2)

At low energies, we find the solution

aR

— (2.3)

¢ =
up to higher order terms in 1/m?2. We now integrate out ¢ at the tree level, plugging (2.3)
into (2.1) and finding the low energy EFT
1 o?
L = _—R+-——R? 2.4
EFT = 55 + 22t (2.4)
dropping terms going like (a?/m?) x O(1/m?). The entropy functional for the UV the-
ory (2.1) is derived in appendix A.1 and is given by

Agen = ii; / d'yv/h (1+ 2ar0). (2.5)

We note that this equation is exact to all orders in « and 1/m?2. After RG flow to the IR
— that is, taking the large-m limit while keeping a/m fixed — the entropy functional Agey
becomes

2 20/
Agen = Hi; /ddy\/ﬁ (1 n nj;R> . (2.6)

This expression is again exact in «, but has been truncated to leading order in the 1/m?
expansion, since we have flowed to the IR. This result matches the entropy formula for the
IR theory (2.4), computed using eq. (3.9) and following the prescription to be reviewed in
section 3. Thus, we have demonstrated entropy matching in this example.

8This is similar to the generation of a (97)* term via h(d7)? in a linear sigma model of a Goldstone 7
and Higgs field h [17].



2.2 Massive spin-two extension of R, R"”

To generate the R,, R*” term, we consider a UV theory that couples the Ricci tensor to
a massive spin-two field ¢,,. As noted in footnote 6, this is not in general a full UV
completion, and massive higher-spin states famously can lead to worse UV divergences or
ghosts in the action unless we carefully choose the kinetic, mass, and interaction terms.
Nonetheless, such considerations will not impact our purposes here, where we are interested
in treating ¢, effectively as a massive auxiliary field, providing us with a system that is
equivalent to R + R, R*” gravity in the IR, while still possessing a second-order equation
of motion that will make the entropy calculation qualitatively different. As such, we will
not require ¢, to be a canonical (i.e., Fierz-Pauli) massive spin-two state [18].

Thus, we consider the UV action
d+2 1 « uv 1 a g uv 1 2 uv
S = d N —g ﬁR + EQMVR - §Va¢,u1/v (b - §m ¢m/¢ . (2'7)
The equation of motion for ¢, is
D(;S[,LV - m2¢uy + OéﬁilRuy =0, (28)

which at low energies V/m < 1 leads to an effective Lagrangian with a Ricci-squared term,

o

1
orr =5 3t 50

o R, R"™, (2.9)

again dropping terms going like (a?/m?) x O(1/m?). The UV entropy formula is derived
in appendix A.2 at leading order in a 1/m? expansion, keeping o/m fixed. The result is

044
+0 <m4) . (2.10)

After RG flow to the IR (which, in this case, amounts to the replacement ¢, = @R, /km?),

+0 <0‘4> , (2.11)

m4

062
1+ Oé/‘f(bg — wKaKa

2w
Agon = 2 /ddy\/ﬁ

Agen becomes

2 2 1
Agen =5 / Vi |1+ (Rg - QKQK“)

which agrees with the IR entropy formula derived from eq. (3.9).

2.3 Massive spin-four extension of R, ,, R*'F?

To complete our consideration of gravitational EFTs at four-derivative order, we now turn
to the Riemann-squared term. Consideration of Riemann-squared is in particular neces-
sary if we are to consider Gauss-Bonnet gravity and is nontrivial because, unlike R? and
R, R*, it cannot be related to Einstein gravity via a field redefinition. Using the tree-level
generation of the Gauss-Bonnet term in the IR EFT of various string theories [11-13] as
motivation, we will follow ref. [14] and consider a toy model in which the Riemann tensor



is coupled to a single massive quantum field, providing a spin-four-like” generalization of
the spin-zero and -two cases considered previously.

Suppose that in the UV we have a massive field ¢,,,, possessing all of the index
symmetries of the Riemann tensor, ¢uupe = —Puupe = —Ouvop = Ppopv s Well as @, 0] =
0, with action

1 1
§= [ a4203/=G 5oz B G R = 55 e V57— 0020, 67 ) . (2:12)
The equation of motion for ¢, is
nguupa’ - m2¢,u1/po' + aH_IRMVpO' =0, (213)

where, again in the regime V/m < 1, we have a low-energy effective Lagrangian with a
Riemann-squared term,

1 a?

[,EFT — 27/<;2R + WRMVPUR'LWPU, (214)

up to terms that go like (a?/m?) x O(1/m?). The UV entropy formula is derived in
appendix A.3, again at leading order in a 1/m? expansion, keeping a/m fixed. The result is

+0 (2‘;) . (2.15)

After RG flow to the IR (using the replacement ¢, = aRWpU//QmQ), Agen becomes

+0 <a4> , (2.16)

m4

202

2 .
Agen = ?7; / ddy\/ﬁ 1+ 204/{(;5abab — WKainm]

Agen = ’f dyv/h l1+ 5 (R™w — Koy K)

which agrees with the IR entropy formula using eq. (3.9).

3 Holographic entropy toolkit

In this section, we describe how to derive the entropy functionals presented in the previous
section. We will begin with a review of the LM method [4], and then explain the general-
izations needed for it to work in our examples. We will apply this method to the example
theories discussed in section 2, but since the details of the calculation are complicated, we
relegate the full calculation to appendix A.

9We say “spin-four-like” since a canonical spin-four field is totally symmetric on its four Lorentz indices,
which is incompatible with the symmetries of the Riemann tensor. Also, as in the case of the spin-two field,
we will not be using a canonical kinetic or mass term, possibly leading to ghosts or tachyons, though our
results will be insensitive to these subtleties.



3.1 Review of Lewkowycz-Maldacena

Consider a spatial subregion R in a quantum field theory and a density matrix pp on R.
The entanglement entropy of the state is defined as

S =—Tr(prlogpr) . (3.1)
This is often computed by taking the n — 1 limit of the Rényi entropy,

Sn = n—1

log Tr () (3.2)

a procedure referred to as the replica trick. For integer n > 2, the Rényi entropy may be

computed by
1

f S
" n—1

mhi&l

where Z,, is the partition function of the quantum field theory on an n-fold cover. This

(3.3)

partition function is often computed via a Euclidean path integral that prepares n copies
of the state pg.

We now apply this replica trick to holographic field theories, following the LM method.
In that context, we use the holographic dictionary to translate eq. (3.3) into a bulk gravi-
tational path integral,

Zp = / D e~ 1] (3.4)

integrating over all bulk fields (including the metric) with boundary conditions set by
the n-fold cover. Here, I is the Fuclidean gravitational action in the bulk. In the limit
Gpn — 0, this gravitational path integral can be computed by a saddle-point approximation
Z,, = e 11Bn] evaluated on the dominant saddle B,,. If we further assume that B, preserves
the boundary Z,, replica symmetry, then the action can be computed by a Z, quotient,
I[B,] = I|B,]/n, thought of as the on-shell action of the orbifold spacetime B, = By, /Zy.
Applying this prescription to eq. (3.3), we find the formula for the Rényi entropy,

g, =

: (11B,] — 1[B1]) . (3.5)

n —

The entanglement entropy is then obtained by taking the n — 1 limit, yielding

S = anf[én]\ . (3.6)
n=1
To compute this quantity, we now use what is known as the regularized cone method [4].
We write
S = lim —— (1[B.] ~ I[BY] + 1[B{) ~ 1[B1]) (3.7)

where we have subtracted and added the action of a new geometry, By(la), called the reg-

ularized cone, parameterized by a regulator a and defined so that lim,_q E,(za) = B, and

lim,, 1 R(f) = B (independent of a); see figure 2. The last two terms in eq. (3.7) then

cancel in the limit because Bj is on-shell. So the final expression is

S=0.I— 1) (3.8)

n=1
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Figure 2. Pictorial representation of the regularized cone method, as detailed in eq. (3.7). The
leftmost picture represents the singular cone configuration B,,, while the middle two pictures are
its regularized version Bﬁla). The rightmost picture is the solution By at n = 1.

where we have defined the shorthand I, = I [E,(La)] and Iy = I[B,]; note that Iy can be
obtained from I, by setting a = 0. Evaluating the variation in eq. (3.8) ultimately leads
to eq. (1.2), where the entropy can be expressed as the extremum of an entropy functional
Agen that generally takes the form of an integral of a local quantity (e.g., a local geometric
invariant) [4, 19, 20].

The entropy functional has been derived using this method in the presence of higher-
derivative terms. For example, for £ = f(Riemann) gravity, it was derived in ref. [5]:

oL 0*L
A en — 27T/ddy\/ﬁ{ — == &up€ro — QK)\ o K)\ o (39)
g aRupyo’ mp aRmmmmaRuzpzuzaz 1p101 2P202

A1A2 A2
X [(nu1u2nV1V2+€u1u25V1uz) n - (nu1u2€V1V2+5u1u2nV1V2) € T

where £ is the Lagrangian in Lorentzian signature, K),, is the extrinsic curvature along
the z* direction, euv is the Levi-Civita tensor in the two normal directions (orthogonal to
the surface), and ng, is the induced metric in the normal directions. The --- represent
terms involving higher orders in derivatives along the two normal directions. When eval-
uated in the examples that we studied in section 2, this expression precisely gives the IR
entropies (2.6), (2.11), and (2.16).

3.2 Expansions in conical geometries

We would now like to apply the LM method to our theories of interest and calculate the
UV entropies. Before doing so, several comments are in order. First, the derivation of
the formula (3.9) was known to suffer to some extent from ambiguities called the splitting
problem [5, 7, 21]. One aspect of this problem can be seen from the requirement that
the desired expression for Age, be a functional of quantities evaluated on a candidate
codimension-two surface in the original spacetime Bj, not the singular cone B,,. To satisfy
this requirement and resolve the ambiguities, we need to use certain equations of motion
to express quantities in the singular cone in terms of n = 1 quantities uniquely.

A framework for solving the splitting problem concretely was provided in ref. [22]. It
provided a prescription for a systematic conical expansion of the metric, i.e., an expansion
of the metric around the conical singularity when n # 1. To begin, write the metric for
the singular cone as in ref. [22]:

zdz — 2d3)?2 o |
ds? = dzd? + T(zzz;'z) + hygdy'dy + 2iU;dy (2dz — 2dZ), (3.10)



where the coordinates z,z satisfy the periodicity condition z ~ 2 e2mi/n_ For any X €
{T,U;, hi;j}, expand X in coupling constants Ai, Aa, ..., A; as
o0
X= 3 Afoapxo. (3.11)

14,7 =0

Additionally, the expansion coefficients X (™) themselves have the following expansions in z

and z,
o)
™= 3" T e (2z)8,
p,q=0, s=—r
pg>0 or s>0
@ S G
T T — —
Ui” = D Uipg #2M(22)", (3.12)
p,q=0,s=—r
pg>0 or s>0
oo —\
W= S e,

pas0 on 520
where the coefficients ngq) are functions of y* only. We will refer to the expressions in
q. (3.12) as conical expansions.

Our goal here is to generalize the above prescription to theories involving additional
matter fields, especially those nonminimally coupled to the metric. For a component X
of a general tensorial field (e.g., X = ¢.;z; or X = R.3.3), we first define an expansion in
terms of the coupling constants A1, Aa,... asineq. (3.11). Asin eq. (3.12), the coefficients
X themselves have a conical expansion,

X = <_) STX0) ez (2z)°, (3.13)

p,q,s

where the angular momentum [ is defined to be the number of upper z indices minus that
of upper z indices for the field component X (each lower z is considered as an upper Z,
and vice versa). The ranges of the indices p, ¢, s depend on the specific theory and field
component being considered.

To find the entropy functional, we define a regularized metric given by

~(zdz — 2dZz)?

2z

ds?® = dzdz +T + 21U dy’ (2dz — zdZ)| + ?Lijdyidyj, (3.14)

where T , ﬁj, and ?Lij are appropriately regularized versions of T', U;, and h;j, and € =
1 — 1/n. When matter fields are present, we also regularize them in a similar way. Here
A is a suitable regulating function of z,z and is parameterized by the same regulator a
that appeared in eq. (3.7). The entropy functional is found by evaluating eq. (3.8) in this
regularized field configuration. In appendix A, we show how to apply the above procedure
to the examples in section 2.

~10 -



4 General argument for entropy matching

In the examples we have considered in section 2, we found that the calculation of holo-
graphic entanglement entropy always commutes with RG flow. Specifically, whether we
compute the entropy in the UV theory using the method of section 3 and then flow to the
IR, or in the IR EFT directly using eq. (3.9), we obtain the same result. This relationship
is depicted in the commutative diagram shown in figure 1.

We now give a formal argument for this entropy matching in general theories.'? We will
show this result by proving that the Rényi entropies at integer Rényi index n > 2 satisfy
this property. Our claim for the entanglement entropy then follows from the analytic
continuation to n = 1.

To be concrete, consider a general IR EFT with a tree-level UV extension. Recall
from (3.3) that the Rényi entropy with integer n > 2 is computed from replicated partition
functions. Define Zyy and Zir as the replicated partition functions of the UV extension
and the IR EFT, respectively. By construction, the IR, EFT is obtained by integrating out
the UV degrees of freedom,

/Dg e_IIR[g] — /DQDCZ) e—IUV[Mﬁ]’ (4.1)

where we schematically write ¢ for any arbitrary UV fields, g for the metric (and any
other IR fields), and I for the Euclidean action for each theory. Thus, given well-defined
boundary conditions for the metric (including the integer n in the replica method), the
partition functions are formally equal, Zjg = Zyy. Hence, the Rényi entropies are equal.
Therefore, their analytic continuation in n, and in particular the entanglement entropy,
match between the UV and the IR, thus demonstrating our desired conclusion.

We can understand this result in more detail by investigating what happens near n = 1,
and more explicitly in terms of substituting in the equations of motion for the massive fields
¢. The path integral for ¢ is dominated by its saddle point that solves the equations of
motion (e.g., of the schematic form (00 — m?)¢ ~ R). Writing the solution collectively as
®lg], we find at the tree level

/Dg e~ Trlg] — /Dg e*IUV[g#;[gﬂ. (4.2)
Now, both I1r[g] and Iyy[g, ¢[g]] in general contain an infinite tower of higher-curvature
terms, which we can expand as a series in V/m. Retaining only the leading order in this
series corresponds to the EFT requirement that all curvature scales are larger than the
Compton wavelength of any UV states. In this case, ¢[g] reduces to a local functional of
g. The path integral over ¢ is dominated by its saddle point, putting the metric on-shell,
g — g. We therefore find

Iir[g(n)] = Tuv[g(n), 6(n)], (4.3)

10Tt is worth noting that in the examples of section 2, matching works at the level of the entropy

functional Agen (before extremization). This is sufficient (although not necessary) for the entropy value
(obtained after extremization) to match. In comparison, our general argument works at the level of the
entropy value directly.

- 11 -



where we explicitly write the argument n to emphasize that the solutions are functions of
the Rényi index n defining the boundary conditions. Assuming that we can analytically
continue in n so that we can act with lim,_,; 9,, on eq. (4.3), we obtain the matching of the
von Neumann entropy: on the left-hand side, it is the entropy computed directly in the IR
EFT, while on the right-hand side, it is the entropy computed in the UV theory, which we
RG-flow to the IR by coarse-graining the metric and field configuration on length scales
much larger than 1/m.

As we noted previously, in our example theories of section 2 we made a stronger
observation, namely that the entropy functionals in fact match (before extremization).
This can be understood by adding appropriate sources, as we will discuss in section 5.

5 Discussion

In this paper, we have studied the matching of entanglement entropies between bulk gravi-
tational effective theories and their UV extensions. In particular, through several example
EFTs, we have demonstrated that the entropy computed directly in the IR theory matches
that obtained by computing the entropy in the UV and flowing to the IR. We then gave
a general argument based on the bulk gravitational path integral for why this matching
should occur in any tree-level UV extension.

Along the way, we have generalized the LM method for deriving the holographic en-
tropy formula to allow for certain matter fields. We expect this procedure to work for more
general higher-derivative theories coupled to matter.

We now conclude with some open questions.

Entropy functional matching. The argument in section 4 holds at the level of the
entropy value S. On the other hand, from the examples in section 2, we expect the
matching to hold at the level of the entropy functional Agen, before imposing the extremality
condition. Thus, it would be interesting to generalize the argument in section 4 to one
that works at the level of the entropy functional. One way of doing so is to allow the
codimension-two surface to move from its extremal location to an arbitrary one. This can
be accomplished by introducing a source term 7),,6g"” into the action, as in ref. [7]. Here,
T, is a background stress tensor giving a source for the metric fluctuation dg,,, and it is
chosen appropriately to allow us to open a conical defect along a general, not necessarily
extremal, codimension-two surface. We expect this to upgrade the argument in section 4
to one showing a stronger matching at the level of the entropy functional, although we
leave the details to future work.!!

Finite-m entropy calculation. For the spin-two and spin-four examples that we con-
sidered, in order to solve the equations of motion in the conical expansion, we found it
convenient to perform a 1/m? expansion in the UV. It would be interesting to see if it is
possible to do a finite-m calculation as in the scalar case.

1 This functional-level matching between the UV and the IR is quite remarkable, as it need not hold in
other contexts such as field redefinitions. In particular, as shown in appendix B, under field redefinitions
the entropy values match, but not the entropy functionals in general.
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Quantum corrections. In a more general context, we expect the full generalized en-
tropy [23, 24], rather than the value of Age, alone, to match between the UV and IR as in
figure 1.12 It would be interesting to extend our results to incorporate quantum corrections
from bulk fields, especially to cases where the bulk matter entropy contribution is signifi-
cant. Further, it would be illuminating to extend our argument to loop-level extensions of
IR EFTs. We leave such investigations of quantum effects to future work.
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A Derivation of the entropy functionals

In this appendix, we compute the holographic entanglement entropy functional for each of
the UV extensions given in section 2 using the replica method described in section 3.

Recall that in section 3, the metric of the singular cone B, with opening angle 27 /n
can be written as in eq. (3.10), which we repeat here for convenience:

> —_ > 2 . . .
ds® = dzdz + TM + 21U dy’ (2dz — zdz) + hijdy'dy’ (A1)
2z

where the coordinates z, z satisfy the periodicity condition z ~ ze®™/™. The regularized

version of eq. (A.1) is given in eq. (3.14), which we reproduce here as well:
(zZdz — 2dz)? ~ ~ o
ds? = e | dzaz + 7B =22 2iU;dy’ (zdz — zdz)] + hydydyy, (A.2)
2z
where as before e =1 —1/n, and A = A(a, z, Z) is an appropriate regulating function that
depends on the regulator a. A simple example that is sufficient for our calculation is

A =log (ann) . (A.3)

Znzn 4 a2n

12Gee ref. [25] for an example using an O(N) invariant linear o model.

~13 -



Recall that T , U j, and Eij, which appear in eq. (A.2), are appropriately regularized versions
of T, Uj, and h;;. We denote the entire regularized metric defined by eq. (A.2) as g,,,. More
generally, we write any regularized quantity with a tilde; for example, any matter fields ¢
that are present in the theory are regularized to %, and the regularized version of the Ricci
scalar R is written as R. As in (3.13), a field component X (such as a component of ¢ or
R) in the singular cone has a conical expansion with coefficients X4, and its regularized
version X has a similar expansion with coefficients qus.

Recall that the entropy S can be calculated using eq. (3.8) by evaluating the action
difference between the singular and regularized cone to linear order in €. Here we would
like to derive the entropy functional Age, whose extremum gives S. It can be shown that
Agen is given by an equation similar to eq. (3.8):

Agen = 66(10 - Ia)

9y (A.4)

e=0
where Iy now denotes the action of a singular cone in which we only impose a suitable
subset of equations of motion (EOMs) [20], and I, is an appropriately regularized version.
Basically, not imposing all EOMs allows us to open a conical defect along a generic, not
necessarily extremal, codimension-two surface, whereas imposing some of the EOMs allows
us to solve quantities in the conical geometry in terms of quantities in the n = 1 solution.
Therefore, we will first evaluate eq. (A.4) as a function of conical expansion coefficients
Xpgs and then rewrite them in terms of standard Taylor expansion coefficients X, in the
n = 1 solution:
A2 2
X| _, = (Z) > Xpg 27, (A.5)
p,q=0

by using the imposed EOMs and the continuity condition at n = 1:

qu = E :Xp—&q—s,s
S

(A.6)

n—=

Here (and in the calculation below), we use commas to separate the indices of conical coeffi-
cients whenever necessary to avoid confusion. We will refer to X,,; as the n = 1 coefficients.
In principle, one can evaluate eq. (A.4) explicitly,

Io—1I, = / (Lo — La), (A7)

integrating over the entire bulk, where Ly and L, are the Lagrangians (containing a factor
of \/g) evaluated on the singular and regularized cones, respectively.'? However, it can be
shown [20] that eq. (A.7) reduces to

h—To= [ Lo- [Ih+0(), (A8)
|z|<a

and it is simpler to evaluate the right-hand side of this equation. Here L. denotes the sum
of a suitable subset of terms in L, that are called “Type I” terms [20]. Roughly speaking,

13We could denote I, and L, as I and 57 respectively, but for these two quantities we choose to use the
current notation to make the a-dependence explicit.
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these terms contain a factor of 9,0z A or its derivatives (after appropriate integration by
parts), and they contribute to eq. (A.8) as regularized delta functions of z,z. The precise
definition of Type I terms is provided in ref. [20]. For simplicity, in this appendix we will
use eq. (A.8) to calculate entropy functionals. However, one can always reproduce these
results by using eq. (A.7) directly, although the calculation would be more complicated.

A.1 Massive scalar extension of R2

Consider first the spin-zero theory (2.1) with Euclidean action
1 e 1 1
1= [ qi {_ ~YBR 1 2 (09) + ~m2¢?| . A
[ g =5 5 R = SoR + 500 + Jm® (A.9)

Since this theory has a scalar field, we need to prescribe an expansion for it in the singular
cone similar to what we have done for the metric. As in the case of the metric (3.12), let
us write the conical expansion for ¢ as

6= i bpgs 2"PE(25)". (A.10)

p,q,5=0

Due to the simplicity of this theory, we do not have to expand in « or 1/m?, so we will
effectively work with finite & and m. In particular, the s index in (A.10) and the conical
expansion of the metric is always nonnegative.

We now evaluate Iy — I, using eq. (A.8). The only nonzero contribution comes from
the f%zggz component in regularized Lagrangian L,:

1 «

Lo > 2 (V)ooo (9550) 0-0: (9:2.000¢4) (22 + ¢000) (1+0(c)). (A11)
k2K
Here, we have collected additional factors of €4 into (1 + O(e)) because the entropy func-
tional is not sensitive to anything beyond the linear order in € in the action. From now on,
we will sometimes omit writing (1 4+ O(¢)) in the regularized Lagrangian, with the caveat
above understood. Using eq. (A.8), we obtain the corresponding contribution to Iy — I, by
integrating the 0,0z A term in eq. (A.11):

1
In—1,D 47T€/ddy (Vh)ooo (%2 + :¢000) +0(e%). (A.12)
Using eq. (A.4) and the continuity condition at n =1
o0
¢(z =0,z = 0)|n:1 = Qoo = Z Qsp,p,fp = 000, (A'13)
p=0

the resulting entropy functional is given by
2
Agen = K—Z /ddy\/ﬁ (1+ 2ake), (A.14)

which is precisely eq. (2.5). This formula is exact in the mass parameter m, i.e., we are not
doing any large-mass expansion, in contrast to the spin-two and spin-four cases discussed
in the next two subsections.
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A.2 Massive spin-two extension of R,, RM

In this subsection, we derive the entropy functional for the spin-two theory given in eq. (2.7),
with Euclidean action

1 o 1 1
I= / A2z /g (—%QR — Eqb,wR’“’ + §VQ¢MUVO‘¢“” + 2m2¢W¢’“’) . (A.15)

We work perturbatively in both «a and 1/m?. In other words, we specialize eqs. (3.11)
and (3.13) to
PR —2t _npzn Z\S
( ) ZZ Z pqs 2"PZM (22)°. (A.16)
r=0t=0Dp,q,s
Here we have used a single (r) index rather than () as it corresponds to one coupling
constant « in this example. The angle brackets (- ) label the order in a large-mass expansion
as powers of 1/m?.
Let us first analyze the equation of motion for ¢, (which we impose):

D, = Oy — m*Gpu + ar 'Ry, = 0. (A.17)
Working at O(a?), the equation at leading order in 1/m? is

L ) (A18)

At the next order in 1/m?, we have

3OO = (O,,) OO — O — . (A.19)

(0)(0) )(1)

Since qﬁ = 0 from the previous order, this equation sets (b,(f)y

procedure at each order in the large-mass expansion, we have

= 0. Repeating this

¢\0) =0 (A.20)

to all orders in 1/m?2.
Moving to O(a), the matter equation of motion (A.17) at leading order in 1/m? reads

e = —p()0 = 0. (A.21)
The next order in 1/m? gives
1
)% = (D) — o) + —R{DO =0, (A.22)

where the first term is zero according to eq. (A.21), so

s — L poo (A.23)

pvipgs T tpw,pgs®

We now evaluate Iy — I, using eq. (A.8). First, we work at O(a). Note that even
though setting o = 0 in the Lagrangian gives Einstein gravity with matter, after using
eq. (A.20) the Lagrangian is simply

70 _ _#( /7O RO, (A.24)
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which is the same as in pure Einstein gravity without matter. Similarly, the regularized
version is

szo) _ _L

242 (\/5) VRO, (A.25)

(0)

Since the s index of Rpgs starts at —1, the only important contribution comes from the
following term (in R,zz.):

1 0) [ 2%,(0)\2 0 e
LY > ?(\/E)(()o)o (9000( )> 0.0z (Qiz?oooe A) : (A.26)
This contribution integrates to
2 2
(Lo — 7T‘S/dd 000 m/dd ‘*‘0(62)7 (A.27)

(0)

where we have rewritten the conical coefficient (\/E) in terms of the n = 1 coefficient

000
(\/E) (()%). We identify the contribution of eq. (A.27) as the zeroth-order area term in the
series expansion in a.
Next, at O(«), we find
= (va)" £
OT_ 1 poy_ (0 5 YO (PG YD) 4 120 Fav(D)
+(Va) |- 53R " O4 (V,6,) O (V) D+ m?60)

- (va)" (- zﬁzﬁ‘”) + (%'7)(0) (izé(”) ,
(A.28)

where we have used eq. (A.20) to set gzﬁfg,) and its regularized version to zero. This is still
just Einstein gravity, whose entropy functional is just the area, so we can write down its
contribution directly:

27T6 d > (1)
(Lo — /d [ PP, —P

p=0

27“/dd M 402, (A.29)

Note that the above contribution comes solely from the first term on the last line of
eq. (A.28), while the second term there turns out not to contribute, as can be checked
explicitly.
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At the next order O(a?), we have

2) 1 = 1) 1 =
@ — (/5 —_~ RO 7 — - RM
1= (Vi) [gaf } (ﬁ) 5]

(0) 1 o o .
+ (ﬁ) [ — RO =R M) +3 (Vp(bﬂ,,)(l)(quﬁuu)(l)Jr”;¢L13¢uu(1)1 .
(A.30)
The first three terms are from the Einstein-Hilbert action, so their contributions are known.

In particular, the second and third terms turn out not to contribute, and the first term
simply yields

2me [ a0 NS
(fo = Ia /d [ P.p—

This is similar to what we have seen at order O(«).

&) 2“/dd M £ 0@@). (A31)

Let us now focus on the last three terms in (A.30) and work order by order in 1/m?.
At the zeroth order in 1/m?, we find

OO T T 0100 T 1~ -~ ) RO
L2O5 (15) [_K RO G004 2(F,3,0) O (F0G) DO 1 G G (DO

(A.32)
This is set to zero by (A.21). At first order in 1/m?, we have
LW 5 (/500 [ LROO g W) 4 (5,3,,) 00 (Fegmymm 4 L ¢(1> Fw) }
~ v( 1~ Tuv
= (v/9)© [ (0) ) (W) §¢L1V)(1)¢u (1)(1)] _
(A.33)

We now work out the contribution of eq. (A.33) to Ip — I, according to eq. (A.8). First,
focus on the first term in the last line of eq. (A.33), which contributes in two ways. The
first way is through the following Type I terms in L, coming from (u,v) = (2, z) and (z, 2):

0)(0 2z,(0)(0 0)(0) ¢ 2z(1)(1 2z(1)(1
LW 5 (Vo) ~gia™0.0: (9 200he ) 2 [0 + 07 Y], (A3
which integrates to
27T6
(o~ 1)@ 5 [ aty =S [0 + 61 + o) (A.35)

(1)(1)

Here qbzzgll)_<11> could be written more clearly as ¢** 11,—1, but we will use the former for
simplicity. The second way for the first term in eq. (A.33) to contribute is through the
following non-Type I terms in Lg:

21 1 0)(0 1 i7(0)(0 0)( zz(1 —n
L(())”D,{(\/?)(()o)o”bhjéo)o( 10.0: (hijinn”2") 070 2"

. (A.36)
n gh”é%)é‘”aga (RO 2 67 ) o 2}
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which is integrated within |z| < a according to eq. (A.8) and gives
(= 1020 > [ aty (VR | TR GO b G0 + ce| +0(@). (a3

This expression is not manifestly O(e), but becomes so after we rewrite the spin-two field.
Using the matter equations of motion (A.23), eq. (A.37) becomes

o’ ..
(o = 1)1 5 [ aty (Vi) [ o histon ) REGY + c-c-] +O0(e). (A38)
Recall the definition K;; = %azhij. Using
1 ..
K. 0000 = Qh”(()%xmhijg%)( ' = h”((J%)(f 'hijign +OCe), (A.39)

and
22(0)(0 22(0)(0) »z(0)(0) [ 1 i7(0)(0
R = 0 [~ hn )] AT
O o (a0
= 4RO 0

eq. (A.38) becomes
4re
(Io - / dy (V)OO { Ko K —|—c.c} 0. (Ad)

Now we move on to the second term in the last line of eq. (A.33). It only contributes
through the following non-Type I terms in Ly,

1 n—2 1zz “n— n—2 2z n—
(L@ 5 (R [l 22 4 Y zm-2gei ),

2
(A.42)
which is again integrated according to eq. (A.8) and gives
(2) d 2m 2z (
(fo — dy (Vi) ot ¢ At 1 P T 1 "o | +0(e), (A.43)
Again using (A.23), this expression becomes
2
(IO . /dd 000 [ m RZZ%0)<1>RZZ(O)< >—|—C C:| 4 0(62)
27’”;6 (A.44)
/dd n)oo [ Kz(g())< >K2,(8())<0> X 2} +0(&).

We note that egs. (A.35), (A.41), and (A.44) are the only contributions of the last
three terms in (A.30) to Iy — I, at O(a?/m?), as can be verified explicitly. Combining
them gives

(Io—1, )(2)<1>

2
> 2me [ aty (VRGP |2 (570000 - SR00@ORGP] + o),
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Adding this to the contributions at order o’ given in eq. (A.27), at order a given in
eq. (A.29), and at order o? given in eq. (A.31), we use eq. (A.4) to find the entropy
functional

2 2,
Agen = 2 / d'yVR |1+ 25 (g7 00 2, 00 00
K m

4
+0 (;) (A.46)

up to higher order terms in 1/m?2. Here we have used the continuity condition at n = 1
o0
Puv(z=0,2 = 0)‘71:1 = Quv00 = Z Puv.p,p,—p- (A.47)
p=0

Writing eq. (A.46) covariantly in z, Z and using ¢2(%) = 0 from eq. (A.20), we find

2 2 4
Agen = K—Z / dlyvh [1 + akg® — ;WKK“] +0 (;) : (A.48)

which is precisely eq. (2.10).

A.3 Massive spin-four extension of R, ,, R*F°

Finally, we consider the spin-four theory (2.12) with Euclidean action

1 « vV po 1 (07 Vpo 1 vVpo
I= / A2z /g (MRquWpUR“ P +§va¢wav PHvP +§m2¢wg¢># p ) . (A.49)

and we will again work perturbatively in both o and 1/m?.
Repeating the order-by-order analysis that we performed for the spin-two field’s equa-
tion of motion, we find analogously that, to all orders in the 1/m? expansion,

¢\0) 5 = 0. (A.50)
We also find
1)(0
¢EU’)[<’02P(18 =0,
(A.51)

s L poo

pvpospgs . Sturpo,pgs:

We now analyze the action difference Iy — I, to linear order in e. First, note that at
O(a?) the action is exactly the same as that of the spin-two theory with « set to zero, so
we obtain eq. (A.27) again without having to repeat the calculation. In other words, the
leading-order result is just the area term of Einstein gravity.

At O(a), using eq. (A.50), we can write down the analogue of eq. (A.28):

0= (0 () (3 (). am

2K

The second term turns out not to contribute (as in the spin-two case), and the first term
gives eq. (A.29) again.
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At O(a?), we have

@[ 1 ~ (1)
(2) — = R >1() = (1)
1= (Va) [-5eR) + (v8)" |-52h?)
_\ (0) 1 ~ o
+ (\/§) [— ﬁfﬁ ) — ng,’)paw po(1) (A.53)

1 ~
+2( O‘%Vpa)(l)(vaﬁbwpa) +¢£}V)pa¢“”90(l)]

The first three terms give eq. (A.31) again. Now we focus on the remaining three terms
and work order by order in 1/m?. At O(mP), they vanish after using the matter equations
of motion. At O(1/m?), the remaining three terms give

1 =00+ 1~y00~
— = RO G 00 4 2¢§Lll)/§(17>¢uvp0(1)<1>} . (A.54)

The first term contributes through Type I terms

L)@ > (V" | 0.0 (s 20e) 4 (6B + o= 00) | (as9)
where the factor of 4 comes from symmetries of ¢p#**??, and the above equation integrates to
2me
([0 _ Ia)(2)<1> D) 7/daly (f)000 <¢zzzz _|_ ¢zzzz(1_1>) + O( ) (A.56)
The first term in eq. (A.54) also contributes through non-Type I terms
1 212
E)@Y 5 (D | 500 (i Q42" 497590 22
(A.57)
O Ziz TL
+ iagag (Risorn ' 2") 4751} 2},
which is integrated according to eq. (A.8) and gives
(1~ 1)@ 5 [ aty( { 2 hsg 7950 + C.c} 0@, (A58)

As before, we proceed by rewriting the spin-four field. Using the matter equations of
motion (A.51), eq. (A.58) becomes

(Io — L) P% /dd R)on [Qh on0 =i ) +cc} +0(). (A.59)
Using
0 1.y 1,0
Kizjxog = §hz(j,)1<0> = §hz(j,)1<03 + O(e) (A.60)

and

2i25(0)(0 22(0)(0) _22(0)(0 1 0)(0) 4 i (0)(0) , 77(0)(0
R — 0 0 (Lt~ 1)) g

S T (Ao

_ —46K§j(()%)<0> + 0(62),

~921 —



eq. (A.59) becomes

16
(Io — I / ddy (Vh) OO [—;Kzijé%xmK;g%)@—i—c.cl +0(&).  (A62)

Moving on to the second term in eq. (A.54), we find that it only contributes through the
non-Type I terms

1 —
(o)W 5 2 (Voo 4 (duizsioir 6770 + dmimni Y 670N ) (2277 (A63)

which gives
d 271' 21z 2
(lo— 1, /d c zzz310 1 ¢ J +CC + O(e%). (A.64)
Again using eq. (A.51), this expression becomes
2
(To - /dd oX [ ;TERZZZ]<O><1>RWJ< O e C] +O(e).

d 8Te€ . (0)(0) 7-i5(0)(0) 2 (4.65)
/d 000 2 —5 Keijog K g0 x 2|+ O(€).

Again, at this order in o and 1/m?, we have no further contributions. Combining the
results from egs. (A.56), (A.62), and (A.65), we have

(Io — I,) (2)(1)
2z72( zzzz 8 1 0
D 27T6/dd 000 |: ((Z5 00 ¢ ) - 2 Kzz]80)< >sz((]0)< >:| (AGG)
+ O(€).

Adding this result to the area contributions given in egs. (A.27), (A.29), and (A.31), we find
ol
co(2)

up to higher order terms in 1/m?. Writing this covariantly in z, z and using ™0 =0,

2 2 _ .
Agon = / aty/i 14 0 (o0 g 00 OO

we find

202

2 .
Agen = ? /ddy\/ﬁ 1+ 204/ﬁ;¢abab — WKM.J.K‘“]

o
o|— A.68
+O( ], (A.G8)
which is precisely eq. (2.15).

B Holographic entanglement entropy under field redefinition

A particular representation of an EFT Lagrangian, in terms of higher-dimension interac-
tions and their associated Wilson coefficients, is only well-defined — in the sense of being
uniquely specified given IR physics — modulo field redefinition. For example, Einstein
gravity £ ~ R can be field redefined to £ ~ R + A\ R? + Mo RM R, (to leading order
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in the Wilson coefficients A1, A2), so the two theories are in fact equivalent.'* A priori,
there might be some tension: if two bulk theories are equivalent, the dual boundary theory
should be the same, and therefore the boundary entropy should be independent of which
bulk description we use; on the other hand, the two equivalent theories do have different
Lagrangians leading to potentially different entropy functionals, and one might question
whether they have the same extremal value.

In this appendix, we will see that the two representations of the theory do in fact give
the same entanglement entropy, despite apparent dissimilarities. We will demonstrate this
in two simple examples. The key ingredients in the resolution are the equations of motion
and the extremality condition.

B.1 From Einstein to R2

To demonstrate this equivalence with an example, consider the Euclidean action
1
L= / AP\ /Gs (—Ro + 2A + g1V 16V ,0) (B.1)

where the subscript ¢ denotes the quantities before redefinition and D = d + 2 is the
bulk spacetime dimension. We have included a scalar field ¢ to make the example more
nontrivial. The entropy functional is simply the area

Ageno = 27T/ddy\/h><>. (B.2)

Einstein’s equation is given by the vanishing of

2 61 1 1
5 = R — SRegs” + 5 (20 + V,0VH9) g8 — VHVY g, (B.3)
v 9o 7S 2 2
uv

where it is understood that the index on V* is raised with g,.

Now let us perform a small field redefinition,
Jor = (L +AR)Gpvs  0Gpw = Gopw — G = ARG (B.4)

and work to linear order in A. The action becomes
I= % / Pz /G [~R+ 20+ (V)] + % / AP JGE™ 5, L
— ;/de\/ﬁ [—R +2A+ (V)2 + A (—;lR? + (d+2)AR + ;l(Vqﬁ)2R>] , B2

up to boundary terms that are not important for our purposes. Using the method in
section 3, we find the entropy functional Age, for this new action:

Agen = zw/ddy\/ﬁ [1 + A (dR —(d+2)A - Z(V@Zﬂ . (B.6)

Note that the R***" R, o term is not related to Einstein gravity via a field redefintion. Hence, we do
not consider it in this appendix.
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On the other hand, if we simply apply the field redefinition (B.4) to the entropy func-
tional (B.2), we find

d
Al =21 / d%yv/h (1 + 2/\R) : (B.7)

which appears to disagree with (B.6).
To resolve this discrepancy, we need to use the equations of motion (B.3). Specifically,
we only need the trace,

El = —gR + (d+2)A + g(w))? = 0. (B.8)

We then have p
Agen = gn/ddy\/ﬁ (1 + QAR) , (B.9)

so the expressions agree: Aj., = Agen.

In this example, we have seen that the equations of motion alone are enough to equate
two apparently different expressions for the entropy functional. Next, we consider an
example where this is not the case.

B.2 From Einstein to R, R""

Consider again Einstein gravity with a cosmological constant (B.1), but this time for sim-
plicity without the matter field ¢. To generate a Ricci-squared term, we take our field
redefinition to be

Gour = Guv + )\R/J,I/' (BlO)

Then the action becomes
1= JREN [—R +2A 4 A (AR SR RWRW)] . (B.11)
Applying eq. (3.9) to this new action, we find the entropy functional to linear order in A:
Agen = 27r/ddyx/ﬁ [1 +A (—A +R— R+ ;K“Ka)] : (B.12)

Applying the field redefinition (B.10) directly to the entropy functional (B.2), on the other
hand, yields

Al =27 / dyv/h (1 + ;\R§> : (B.13)

To check whether this agrees with (B.12), we again use the equations of motion. Taking
the trace of the metric equation of motion in all directions, in the a-type directions, and
in the i-type directions gives, respectively,

2(d+d2)A, RS = %, R =2A. (B.14)

Substituting these equations into egs. (B.12) and (B.13), we obtain
1
Agen = 27r/ddy\/ﬁ {1 A (A + 2K“Kaﬂ ,

Agen, = QW/ddy\/E(l +AA).

R =

(B.15)
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The difference between Agen and Ay, is now given by a term proportional to K“K,. This
is where we need to use the extremality condition at zeroth order in A\, K, = 0, so the
extra term K“K, vanishes (up to higher order terms in A). Thus, we have shown that
even though the entropy functional of the field-redefined theory generally does not match
the field-redefined entropy functional, their extremal values (i.e., the entropy values) are
indeed the same.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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