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1 Introduction

Holography in asymptotically flat spacetimes has grown into a vividly active field of re-
search in recent years. An emerging candidate for such dualities is the idea of celestial
holography [1]. According to its tenets, quantum gravity in zero cosmological constant
spacetimes is proposed to be dual to celestial conformal field theories (CCFT) living on
lightcone cuts like the celestial sphere in Lorentzian signature [2, 3] or the celestial torus in
split signature [4]. Scattering amplitudes in the bulk are expected to equal correlators of
local operators in such CCFTs. A top-down toy model realizing some of these expectations
has also been put forward in [5].

A key observation made in [6] was that collinear limits of flat space scattering ampli-
tudes map to operator product expansions (OPEs) in the dual CFT. In subsequent work [7],
their observation was generalized to compute such celestial OPEs in a wide variety of the-
ories like Yang-Mills and Einstein gravity. They determined the singular terms in celestial
OPEs by using universal collinear limits that hold for all gluon and graviton amplitudes.
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In this paper, we will be concerned with completing the program of computing these OPEs
to all orders (singular as well as regular) in the collinear expansion at tree level.

At this stage in the subject, due to open issues regarding locality and associativity
of the celestial OPE [8–10], this computation is only accessible in a specific scattering
configuration called the maximally helicity violating (MHV) sector. This corresponds to
scattering two negative helicity massless particles against multiple positive helicity massless
particles. It is this configuration that we will restrict attention to. At tree level in the MHV
sector, we will show that the all-order celestial OPE of gluons and gravitons can be very
easily extracted purely from the inverse soft recursion relations that their amplitudes satisfy.

This method bypasses a number of computational hurdles encountered in past work.
In the original works [11–14] that started the study of subleading terms in celestial OPEs,
the authors were restricted to working order-by-order in a non-systematic fashion. They
only studied regular terms at the first and second subleading orders in the collinear limit,
and were also restricted to low multiplicity amplitudes. This was because they worked with
explicit expressions for the MHV amplitudes like the Parke-Taylor or Hodges’ formulae.
Mellin transforms of these formulae tend to be highly nontrivial generalized hypergeometric
functions [15]. We will show that it is incredibly more judicious to work directly with the
recursion relations. In fact, the lesson one learns this way is that the inverse soft recursion
for MHV amplitudes is equivalent to the OPE recursion in celestial CFT. In this sense,
on-shell recursion takes the guise of an emergent phenomenon. This point has already been
hinted at by other works like [16] for CSW rules or [17] for BCFW recursion.

The most powerful application of subleading terms in celestial OPEs has been to
the discovery of infinite chiral symmetries. In a beautiful series of works [18–22], it was
gradually realized that celestial duals of gravity and gauge theory possess symmetries
generated by the loop algebras of Ham(C2) and Maps(C2, g) respectively, with g being the
gauge group’s Lie algebra. Our results for the all-order celestial OPE will be adapted to
their representation theory. Crucially, the only descendants that appear in our OPEs will
be the descendants associated to these symmetries, along with antiholomorphic conformal
descendants. There won’t be any holomorphic conformal descendant in sight! The reason
this does not shriek inconsistency is that holomorphic conformal descendants happen to be
expressible in terms of such current algebra descendants due to null state relations [12, 14]
(see also [23–25]).

In the case of MHV gluon scattering, our all-order OPE has been previously obtained
from a concrete vertex algebra realization in [26]. This specific realization was constructed
by studying twistor string theory in the MHV sector. Twistor and ambitwistor strings are a
class of topological string theories that give rise to remarkably compact worldsheet formulae
for gluon and graviton tree amplitudes in all NkMHV sectors (i.e., amplitudes involving
k + 2 negative helicity particles) [27–31]. As such, the algebra of their vertex operators
can be systematically matched to the celestial OPE algebra (see also [32, 33]). However,
calculating celestial OPEs from such vertex operators becomes cumbersome rather quickly.
For example, it has proven much trickier to repeat such a calculation for the all-order
MHV graviton OPE. In contrast, our recursion relation based approach will display no
such shortcomings.
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In the rest of this work, we provide more details of this approach. In section 2, we
review inverse soft recursion relations in the MHV sector. In sections 3 and 4, we turn
them into all-order collinear expansions for gluon and graviton scattering respectively.
These are recast as all-order celestial OPEs both in momentum space and in the space
of boost eigenstates. In section 5, we close with a discussion of possible applications and
generalizations.

Appendix A discusses the behavior of soft-hard correlators at infinity, which feeds
into certain contour integral manipulations used to obtain correlators with descendant
insertions. Appendix B contains the computation of the all-order OPE of soft gluon and
graviton currents, again valid within the MHV sector. Appendix C provides further details
of the Mellin transforms that convert momentum eigenstate celestial OPEs to those of
boost eigenstates.

2 Inverse soft recursion

In this section, we review the inverse soft recursion relations for MHV amplitudes. Brief
definitions of concepts of celestial holography will also be provided as and when required in
later sections. Many reviews of celestial holography are by now available in the literature,
see for instance [34, 35].

Gluons. A tree level gluon amplitude in gauge theory can be decomposed as

A(1a1 2a2 3a3 · · ·nan) =
∑

σ∈Sn−2

Ca1a2aσ3 ...aσn A[1 2σ3 · · ·σn] . (2.1)

Here, the ai are Lie algebra indices for the gauge group. A[1 2σ3 · · ·σn] denotes a color-
ordered amplitude in the ordering associated to a permutation σ over n− 2 legs. It carries
a factor of the momentum conserving delta function δ4(p1 +p2 + · · ·+pn). The coefficients
Ca1a2aσ3 ...aσn are color factors that can be written in a variety of bases. To make contact
with a CFT interpretation, it is convenient to work in the Del Duca-Dixon-Maltoni (DDM)
basis [36]. DDM take the color factors to be

Ca1a2a3...an = fa2a3
b1f b1a4

b2 · · · f bn−4an−1
bn−3f bn−3ana1 , (2.2)

where fab
c are the gauge group’s structure constants, and Lie algebra indices are raised

using the Killing form as usual.
Inverse soft recursion constructs n-point MHV amplitudes by attaching soft factors to

lower multiplicity MHV amplitudes. For color-ordered gluon amplitudes A[1 2 3 · · ·n], this
recurses over smaller color-ordered amplitudes while preserving the ordering of the labels.
For concreteness, we will take gluon 1 to be positive helicity. The two negative helicity
gluons need not be explicitly specified for the recursion to work, but the reader may feel
free to take them to be gluons r and s.

Let pαα̇
i = λα

i λ̃α̇
i , α = 1, 2, α̇ = 1̇, 2̇, denote the null momenta of the gluons, expressed

in terms of standard spinor-helicity variables [37]. The inverse soft recursion for the color-
ordered MHV amplitude only involves a single term on its right hand side:

A[1+ 2 3 · · ·n] = ⟨n2⟩
⟨n1⟩⟨12⟩ A[2̂ · · ·n − 1 n̂] , (2.3)
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where the subscript on 1+ singles it out as a positive helicity particle for clarity. The
hatted particles have momenta p̂αα̇

2 = λα
2
ˆ̃λα̇

2 and p̂αα̇
n = λα

n
ˆ̃λα̇

n, with the hatted spinor-
helicity variables taking the deformed values

ˆ̃λ2 = λ̃2 +
⟨n1⟩
⟨n2⟩ λ̃1 , ˆ̃λn = λ̃n + ⟨12⟩

⟨n2⟩ λ̃1 . (2.4)

Here and in what follows, ⟨ij⟩ := ϵβαλα
i λβ

j and [ij] := ϵβ̇α̇λ̃α̇
i λ̃β̇

j denote Lorentz invariant
spinor contractions built out of the SL(2,C) invariant Levi Civita symbols ϵαβ , ϵα̇β̇ . An
application of Schouten’s identity shows that p̂2 +p3 + · · ·+ p̂n = p1 +p2 + · · ·+pn, so that
A[2̂ · · ·n−1 n̂] also automatically contains the correct (n−1)-point momentum conserving
delta functions δ4(p̂2 + p3 + · · ·+ p̂n).

This recursion can be derived from BCFW recursion [38]. In the past, it has been used
for obtaining the subleading soft gluon theorem [39]. To extend it to the color-dressed
amplitude (2.1), relabel the index σn ≡ i and break the sum over σ ∈ Sn−2 into a sum over
i times a sum over permutations π ∈ Sn−3 of the remaining n − 3 gluons:

A(1a1 2a2 3a3 · · ·nan) =
n∑

i=3

∑
π∈Sn−3[i]

Ca1a2aπ3 ...aπn aiA[1 2π3 · · ·πn i] , (2.5)

where Sn−3[i] denotes permutations of the set {3, . . . , n}−{i}, so that the subscript on πa

runs over a ∈ {3, . . . , n} − {i} in the ith summand of the first sum. Inverse soft recursions
for the summands are found by permuting the particle labels in (2.3):

A[1+ 2π3 · · ·πn i] = ⟨i2⟩
⟨i1⟩⟨12⟩ A[2̂π3 · · ·πn î] . (2.6)

From (2.2), we also find a recursion for the DDM color factor,

Ca1a2aπ3 ...aπn ai = −fa1ai
b Cba2aπ3 ...aπn , (2.7)

where Cba2aσ3 ...aσn−1 is an (n − 1)-gluon color factor.
Plugging these into (2.1) and using cyclic symmetry A[2̂π3 · · ·πn î] = A[̂i 2̂π3 · · ·πn]

gives a recursion for the color-dressed MHV amplitude1

A(1a1
+ 2a2 · · ·nan) = −

n∑
i=3

⟨i2⟩
⟨i1⟩⟨12⟩ T a1

i A(2̂a2 · · · îai · · ·nan) , (2.8)

where, for clarity, we repeat the definitions of the hatted particles’ spinor-helicity data:

λ̂2 = λ2 , ˆ̃λ2 = λ̃2 +
⟨i1⟩
⟨i2⟩ λ̃1,

λ̂i = λi , ˆ̃λi = λ̃i +
⟨12⟩
⟨i2⟩ λ̃1 .

(2.9)

The momenta of the other particles remain undeformed. We have also introduced an
operator T a

i that rotates the Lie algebra indices as

T a1
i A(2̂a2 · · · îai · · ·nan) := fa1ai

b A(2̂a2 · · · îb · · ·nan) . (2.10)

This is just a transformation in the adjoint representation.
1See [40] for a similar treatment of tree level BCFW recursion in full generality.
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Gravitons. The inverse soft recursion for graviton amplitudes can also be derived from
BCFW recursion. It was used in [41] to derive the subleading and sub-subleading soft
graviton theorems.

Let M(1 2 · · ·n) denote an n-graviton amplitude. Take it to be an MHV amplitude
with graviton 1 being positive helicity. Then it satisfies the inverse soft recursion

M(1+ 2 · · ·n) =
n∑

i=3

[1i]
⟨1i⟩

⟨i2⟩2

⟨12⟩2 M(2̂ · · · î · · ·n) . (2.11)

The hatted gravitons have the same spinor-helicity variables (2.9) as the hatted gluons.
There is no color-ordering to be dealt with in this case. The color factors fa1ai

b are instead
replaced by kinematic factors [1i]/⟨1i⟩, reflecting color-kinematics duality. This fact is also
known to translate to a color-kinematics duality at the level of celestial OPEs [42].

If one goes beyond the MHV sector, such recursion relations involve further terms on
their right hand sides [37]. These terms generally contain multiparticle factorization poles.
They cannot be interpreted as poles in the correlators of a local vertex algebra and also
break the usual notions of associativity of the celestial OPE [10]. We leave the study of
these more involved terms to the future, which might very well require a generalization like
non-local vertex algebras [43].

3 MHV gluon OPE

3.1 Collinear expansion

Spinor-helicity variables λα
i , λ̃α̇

i are only defined up to the scalings (λi, λ̃i) ∼ (tiλi, t−1
i λ̃i)

for ti ∈ C∗. This is known as little group scaling. Using this freedom, we choose to fix

λα
i =

(
1
zi

)
, λ̃α̇

i = ωi

(
1
z̄i

)
, zi, z̄i ∈ C , ωi ∈ C∗ . (3.1)

zi, z̄i are generally taken to be complex and independent of each other. They are complex
conjugates only in Lorentzian signature where they act as coordinates on the celestial
sphere. With this fixing of the scalings, one finds

⟨ij⟩ = zij , [ij] = ωiωj z̄ij , (3.2)

where zij ≡ zi − zj and z̄ij ≡ z̄i − z̄j . This choice of little group fixing is the most efficient
when working with a holomorphic collinear expansion, i.e., an expansion in small zij while
keeping [ij] arbitrary. While studying the twistorial origin of celestial OPEs, it was applied
by Costello and Paquette to great success in [16, 44].

Let us now return to the recursion relations. The main observation underpinning our
derivation of the celestial OPE is that the hatted spinor-helicity variables (2.9) can be
written in the suggestive form

ˆ̃λ2 = λ̃2 +
zi1
zi2

λ̃1 = λ̃1 + λ̃2 −
z12
zi2

λ̃1 ,

ˆ̃λi = λ̃i +
z12
zi2

λ̃1 .
(3.3)
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As a result, the inverse soft recursion (2.8) for the gluon MHV amplitude can be recast in
terms of exponentiations of linear shifts of λ̃2 and λ̃i:

A(1a1
+ 2a2 · · ·nan) = −

n∑
i=3

1
z12

(
1− z12

zi2

)−1
exp

{
z12
zi2

(
[1∂i]− [1∂2]

)}
T a1

i A(2a2 · · ·nan) (3.4)

where we have introduced the abbreviation

[i∂j ] ≡ λ̃α̇
i

∂

∂λ̃α̇
j

= ωi

ωj

(
z̄ij

∂

∂z̄j
+ ωj

∂

∂ωj

)
. (3.5)

On the right hand side of (3.4), particles 3, . . . , n now carry the original undeformed mo-
menta p3, . . . , pn. On the other hand, particle 2 is depicted in bold to signify that it carries
the “effective” momentum

pαα̇
2 = λα

2 (λ̃1 + λ̃2)α̇ . (3.6)

Because λ1
j = 1 ∀ j = 1, . . . , n in our little group fixing, if needed, pαα̇

2 can also be written
in a little group invariant form by replacing λ̃α̇

1 7→ (λ1
1/λ1

2)λ̃α̇
1 .

These steps have brought the recursion to a form that is ripe for holomorphic collinear
expansion. Taylor expanding (3.4) around z12 = 0 yields

A(1a1
+ 2a2 · · ·nan) = −

n∑
i=3

∞∑
p=0

zp−1
12
zp

i2

p∑
q=0

([1∂i]− [1∂2])q

q! T a1
i A(2a2 · · ·nan) . (3.7)

Further expanding the factors of ([1∂i]− [1∂2])q using the binomial theorem, one finds the
all-order collinear expansion of the tree level MHV gluon amplitude,

A(1a1
+ 2a2 · · ·nan) = −

∞∑
p=0

zp−1
12

p∑
q=0

q∑
r=0

(−[1∂2])q−r

r!(q − r)!

n∑
i=3

[1∂i]r

zp
i2

T a1
i A(2a2 · · ·nan) . (3.8)

This holds regardless of the helicity of gluon 2.

3.2 Celestial OPE of momentum eigenstates

Celestial holography posits the existence of two dimensional operators Oai
si
(zi, λ̃i) in the

celestial CFT that are dual to gluon momentum eigenstates. The subscripts denote he-
licities si ∈ {±1}. Correlators of such operators are conjectured to reproduce scattering
amplitudes in the bulk,

A(1a1 2a2 · · ·nan) =
〈
Oa1

s1 (z1, λ̃1)Oa2
s2 (z2, λ̃2) · · ·Oan

sn
(zn, λ̃n)

〉
. (3.9)

In particular, one reads off conjectural operator product expansions of the dual operators
by demanding that the OPE expansions of the correlators reproduce collinear limits of
scattering amplitudes. The resulting operator products are known as celestial OPEs.

– 6 –
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Soft gluon currents. In the MHV sector, we can use this logic to read off gluon celestial
OPEs to all orders from (3.8). To do so, we need to introduce positive helicity soft gluon
currents. The soft expansion of a positive helicity hard gluon Oa

+(z, λ̃) with λ̃α̇ = ω(1, z̄)
is a Taylor expansion in the energy ω.2 Equivalently, it can be represented as a double
Taylor expansion in λ̃1̇, λ̃2̇,

Oa
+(z, λ̃) =

∞∑
k,ℓ=0

(λ̃1̇)k(λ̃2̇)ℓ

k! ℓ! Ja[k, ℓ](z) . (3.10)

The Taylor coefficients Ja[k, ℓ](z) are chiral currents known as soft gluon currents. Under
Möbius transformations of z, they transform as chiral conformal primaries with conformal
weights h = 1− k+ℓ

2 . Similarly, under SL(2,C) rotations of λ̃α̇, the currents at fixed k + ℓ

span a spin k+ℓ
2 representation of SL(2,C).

Celestial OPEs of these soft currents were determined in [19, 20]. Strominger further
recognized in [20] that their modes generate the loop algebra of holomorphic maps C2 → g,
where g is the gauge group’s Lie algebra. Hence, this loop algebra was established to be
a symmetry algebra of the celestial CFT dual to gauge theory. For the purposes of this
work, we are adopting the simplifying notation of [16] for these currents.3

The leading singularity in (3.8) allows us to extract the singular part of the OPE. To
see this, begin by truncating (3.8) to the singular order,

A(1a1
+ 2a2 · · ·nan) = − 1

z12

n∑
i=3

T a1
i A(2a2 · · ·nan) + O(z0

12) . (3.11)

Global color conservation for the (n − 1)-point amplitude A(2a2 · · ·nan) gives the identity

n∑
i=3

T a1
i A(2a2 · · ·nan) = −T a1

2 A(2a2 · · ·nan) = −fa1a2
b A(2b · · ·nan) . (3.12)

This is the conservation law associated to the leading soft gluon theorem [45]. Using this,
we obtain the singular part of the collinear expansion,

A(1a1
+ 2a2 · · ·nan) = fa1a2

b

z12
A(2b · · ·nan) + O(z0

12) . (3.13)

This provides the standard conjecture for the holomorphic hard gluon celestial OPE at
order 1/z12 and all orders in z̄12 [6, 7, 19, 21]

Oa1
+ (z1, λ̃1)Oa2

s2 (z2, λ̃2) ∼
fa1a2

b

z12
Ob

s2(z2, λ̃1 + λ̃2) , s2 ∈ {±1} . (3.14)

Thankfully, singularities in z̄12 do not come into play as long as we stay within the MHV
sector, giving us a perfect toy model to work with.

2Our soft expansion starts at ω0 in this little group fixing instead of with the usual Weinberg soft pole
ω−1 that one encounters for the choice λα =

√
ω(1, z), λ̃α̇ =

√
ω(1, z̄). This is just a convenient convention.

3Our currents are related to Strominger’s S-algebra currents as Sp,a
m (z) = Ja[p − 1 + m, p − 1 − m](z),

where p ∈
{

1, 3
2 , 2, 5

2 , . . .
}

and |m| ≤ p − 1.

– 7 –
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Choosing s2 = +1 and expanding in λ̃α̇
1 , λ̃α̇

2 , one can read off the current algebra of
soft gluons,

Ja[k, ℓ](z) Jb[m, n](w) ∼ fab
c

z − w
Jc[k + m, ℓ + n](w) . (3.15)

This has vanishing level (at least at tree level in the bulk). As mentioned before, this
is the loop algebra of Maps(C2, g) found in [20].4 It originates in the symmetries of the
Penrose-Ward transform as elaborated in [16].

It is also useful to define certain currents that fall between the hard and soft gluons:

Ja[r](z, λ̃) =
r∑

k=0

(λ̃1̇)k(λ̃2̇)r−k

k!(r − k)! Ja[k, r − k](z) , r ∈ Z≥0 . (3.16)

These act as generating functions of the soft gluon currents. In terms of these, the positive
helicity hard gluons admit the clean decomposition

Oa
+(z, λ̃) =

∞∑
r=0

Ja[r](z, λ̃) . (3.17)

Because Ja[r](z, λ̃) is homogeneous of weight r in λ̃α̇ = ω(1, z̄), the rth term of this expan-
sion is just ωr times the rth subleading soft gluon.

The OPE between soft and hard gluons can be compactly expressed as

Ja1 [r](z1, λ̃1)Oai
si
(zi, λ̃i) ∼

fa1ai
b

z1i

[1∂i]r

r! Ob
si
(zi, λ̃i) . (3.18)

This is a momentum space version of the boost eigenstate soft-hard OPEs found in [21].
It is obtained by relabeling 2 7→ i in (3.14), expanding Ob

si
(zi, λ̃1 + λ̃i) = e[1∂i]Ob

si
(zi, λ̃i)

in powers of [1∂i], then comparing terms of homogeneity r in λ̃α̇
1 on both sides. The

operator [1∂i] ≡ λ̃1 · ∂λ̃i
differentiates the λ̃α̇

i dependence of the hard gluon. The simple
expression (3.18) is the main upshot of using the generating functions Ja[r]. OPEs between
soft gluon currents Ja1 [k, ℓ](z1) and hard gluon operators can be extracted by equating the
coefficients of (λ̃1̇

1)k(λ̃2̇
1)ℓ.

Soft gluon descendants. In the MHV sector, one does not encounter singularities in
z̄12. Complexifying zi, z̄i (or working in split signature), one can therefore continue to
treat the soft gluons Ja[r](z, λ̃) as chiral currents living on the sphere coordinatized by z.
That is, we are treating λ̃α̇ as an operator label rather than a coordinate on the Riemann
sphere on which the CCFT is defined. In particular, we can define Ja[r] descendants as
the λ̃-dependent operators

Ja1
−p[r](λ̃1)Oa2

s2 (z2, λ̃2) :=
∮
|z12|=ε

dz1
2πi

1
zp

12
Ja1 [r](z1, λ̃1)Oa2

s2 (z2, λ̃2), (3.19)

4Holomorphic maps C2 → g are generated by the monomials vk
1 vℓ

2t
a, where v1, v2 are complex coordinates

on C2 and ta are generators of g with Lie bracket [ta, tb] = fab
ct

c. The set of such holomorphic maps has
the natural Lie algebra structure [vk

1 vℓ
2t

a, vm
1 vn

2 t
b] = vk+m

1 vℓ+n
2 fab

ct
c. The soft gluon OPE is seen to be the

loop algebra based on this Lie algebra.
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where ε ≪ 1 and p ≥ 0. The integrand of the contour integral is to be understood as the
radially ordered operator product as is standard in 2d CFT.

Suppose one inserts such a descendant in a correlation function of hard gluon operators,〈
Ja1
−p[r](λ̃1)Oa2

s2 (z2, λ̃2)
n∏

i=3
Oai

si
(zi, λ̃i)

〉

=
∮
|z12|=ε

dz1
2πi

1
zp

12

〈
Ja1 [r](z1, λ̃1)Oa2

s2 (z2, λ̃2)
n∏

i=3
Oai

si
(zi, λ̃i)

〉
. (3.20)

Since the current Ja[r](z, λ̃) transforms as a primary of weight h = 1− r/2 under Möbius
transformations of z, it has a pole of order r − 2 at z = ∞. Because of this, the correlator
on the right can also a priori have a pole of order r − 2 at z1 = ∞.5

In a garden variety CFT, we would have expected such a pole to drop out entirely and
only two-particle singularities at zij = 0 to survive. We prove in appendix A the weaker
result that the soft-hard amplitude that is supposed to equal the correlator on the right
of (3.20) contains a pole at infinity that is indeed of order at most r − 2. This is all we
need for what follows. It might still be the case that the residue at this pole vanishes, so
that the pole may be spurious, but we leave this analysis to the future. In fact, such poles
are expected to be related to the absence of universal soft theorems beyond the subleading
order.

All in all, because correlators of Ja1 [r](z1, λ̃1) only have a pole of order r − 2 or less
at z1 = ∞, the integrand of the contour integral in (3.20) definitely has no singularities at
z1 = ∞ for 0 ≤ r ≤ p.6 In this range of r, the contour of integration can be deformed to
surround all the other poles at z1 = zi, i = 3, . . . , n, instead of the original pole at z1 = z2.
This converts the right hand side to

−
n∑

i=3

∮
|z1i|=ε

dz1
2πi

1
zp

12

〈
Ja1 [r](z1, λ̃1)Oa2

s2 (z2, λ̃2)
n∏

j=3
O

aj
sj (zj , λ̃j)

〉
. (3.21)

The pole at z1i = 0 is a simple pole with residue fixed by the soft-hard OPE (3.18).
Hence, for r ≤ p, the descendant correlator can be expressed purely in terms of hard gluon
correlators:〈

Ja1
−p[r](λ̃1)Oa2

s2 (z2, λ̃2)
n∏

i=3
Oai

si
(zi, λ̃i)

〉
= − 1

r!

n∑
i=3

fa1ai
b

zp
i2

〈
[1∂i]rOb

si
(zi, λ̃i)

n∏
j=2
j ̸=i

O
aj
sj (zj , λ̃j)

〉

= − 1
r!

n∑
i=3

[1∂i]r

zp
i2

T a1
i A(2a2 3a3 · · ·nan) . (3.22)

To get the second line, we have used the duality statement (3.9) as well as the defini-
tion (2.10) of the adjoint action T a1

i . Luckily, we will only require descendant correlators
for the range r ≤ p when extracting the OPE.

5We thank Elizabeth Himwich as well as one of the referees of this paper for emphasizing this subtlety.
6Keep in mind that dz1 itself has a pole of order 2 while z−p

12 has a zero of order p at infinity.
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All-order gluon OPE. Having defined the soft gluon descendants and their correlators,
it becomes straightforward to extract the all-order celestial OPE from the all-order collinear
expansion (3.8).

Using the duality statement (3.9) and the descendant correlator (3.22) — taken after
a shift λ̃2 7→ λ̃1 + λ̃2 — we get the all-order OPE expansion for CCFT correlators in the
MHV sector,〈

Oa1
+ (z1, λ̃1)Oa2

s2 (z2, λ̃2)
n∏

i=3
Oai

si
(zi, λ̃i)

〉

=
∞∑

p=0
zp−1

12

p∑
q=0

q∑
r=0

(−[1∂2])q−r

(q − r)!

〈
Ja1
−p[r](λ̃1)Oa2

s2 (z2, λ̃1 + λ̃2)
n∏

i=3
Oai

si
(zi, λ̃i)

〉
. (3.23)

As foreshadowed, the index r only runs up to p. So we are happily in the range in which
the contour deformation used to obtain (3.21) holds.

This relation is equivalent to giving the following OPE to gluons 1 and 2:

Oa1
+ (z1, λ̃1)Oa2

s2 (z2, λ̃2) =
∞∑

p=0
zp−1

12

p∑
q=0

q∑
r=0

(−[1∂2])q−r

(q − r)! Ja1
−p[r](λ̃1)Oa2

s2 (z2, λ̃1 + λ̃2) . (3.24)

It can be further cleaned up by exchanging the sums over q and r,

Oa1
+ (z1, λ̃1)Oa2

s2 (z2, λ̃2) =
∞∑

p=0
zp−1

12

p∑
r=0

p−r∑
q=0

(−[1∂2])q

q! Ja1
−p[r](λ̃1)Oa2

s2 (z2, λ̃1 + λ̃2) . (3.25)

This is our result for the momentum space all-order celestial OPE of two gluons partic-
ipating in an MHV amplitude. It holds for either value s2 = ±1 of the helicity of the
second gluon. To get a feel for this, it is useful to write out the first few terms of the sum
explicitly,

Oa1
+ (z1, λ̃1)Oa2

s2 (z2, λ̃2)

= 1
z12

Ja1
0 [0](λ̃1)Oa2

s2 (z2, λ̃1 + λ̃2) +
{(

1− [1∂2]
)

Ja1
−1[0](λ̃1) + Ja1

−1[1](λ̃1)
}

Oa2
s2 (z2, λ̃1 + λ̃2)

+ z12

{(
1− [1∂2] +

[1∂2]2

2!

)
Ja1
−2[0](λ̃1) +

(
1− [1∂2]

)
Ja1
−2[1](λ̃1) + Ja1

−2[2](λ̃1)
}

× Oa2
s2 (z2, λ̃1 + λ̃2) + O(z2

12) . (3.26)

The leading term is of course just the leading “descendant” Ja1
0 [0](λ̃1)Oa2

s2 (z2, λ̃1 + λ̃2) =
fa1a2

b Oa2
s2 (z2, λ̃1+λ̃2). The first subleading term receives contributions from descendants of

both the leading and subleading soft gluon symmetries. Further terms receive contributions
from soft gluons that sit at higher orders in the soft expansion.

As expected, (3.25) matches the all-order OPE obtained from the explicit vertex al-
gebra realization coming from twistor string theory [26]. But even though finding such
realizations is the ultimate goal of the celestial holography program, computations using
explicit vertex operators can be cumbersome and depend intimately on the specific vertex
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algebra being studied. On the other hand, our bottom-up derivation of the OPE from
on-shell recursion is more transparent and relatively more universal.

It also allows us to conclude that inverse soft recursion for MHV amplitudes is dual
to OPE recursion for CCFT correlators. In this sense, on-shell recursion relations can
potentially emerge from flat space holography. Since inverse soft recursion is just BCFW
recursion in disguise, we hope that a similar statement might hold for BCFW recursion
beyond the MHV sector, but this is left to future work.

3.3 Celestial OPE of boost eigenstates

The celestial OPE of boost eigenstates can be found by Mellin transforming the momen-
tum space OPE. This calculation was already performed in [26], so we only repeat the
main ideas.

Suppose we restrict to split signature kinematics following the lines of [46]. Decom-
pose the dotted spinor helicity variable associated to a momentum eigenstate operator
Oa

s (z, λ̃) as

λ̃α̇ = ε ω

(
1
z̄

)
, ε ∈ {±1} , ω ∈ (0,∞) , (3.27)

with z, z̄ now being real and independent. Let ∆ ∈ C and h = (∆ + s)/2, h̄ = (∆− s)/2.
Celestial operators dual to boost eigenstates of weight ∆ and spin s are found by Mellin
transforming the momentum eigenstate operators,

Oε,a
∆,s(z, z̄) =

∫ ∞

0

dω

ω
ω2h̄ Oa

s (z, λ̃) . (3.28)

Under SL(2,R)× SL(2,R) transformations of z, z̄, these operators transform as conformal
primaries of weights (h, h̄). So the basis of boost eigenstates is also known as a conformal
basis, first constructed in [3].

Define the conformal primary positive helicity soft gluons

Ja[r](z, z̄) := Ja[r](z, λ̃)
(εω)r

=
r∑

k=0

z̄r−kJa[k, r − k](z)
k!(r − k)! . (3.29)

Equivalently, one can define Ja[r] through residues of the conformal primary gluon opera-
tors [19]. The descendants appearing in their OPE with boost eigenstates are also defined
by the usual contour integrals

Ja
−p[r](z̄)O

ε,b
∆,s(w, w̄) =

∮ dz

2πi
1

(z − w)p
Ja[r](z, z̄)Oε,b

∆,s(w, w̄) , (3.30)

where the contour surrounds the pole at z = w. Let’s see how to express the celestial OPE
of boost eigenstates in terms of these descendants.

Mellin transforming both sides of (3.25) leads to the following set of integrals:

Oε1,a1
∆1,+(z1, z̄1)Oε2,a2

∆2,s2
(z2, z̄2)

=
∞∑

p=0
zp−1

12

p∑
r=0

p−r∑
q=0

∞∑
m=0

(−1)q

q!m!

∫ ∞

0
dω1 ω2h̄1−1

1

∫ ∞

0
dω2 ω2h̄2−1

2 (ε1ω1)r+m

×
(

ε1ω1
ε2ω2

(
z̄12∂̄2 + ω2∂ω2

))q

z̄m
12∂̄m

2 Ja1
−p[r](z̄1)Oa2

s2

(
z2,

(ε1ω1 + ε2ω2)
ε2ω2

λ̃2

)
,

(3.31)
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where (hi, h̄i) =
(∆i+si

2 , ∆i−si
2
)
, and ∂̄i ≡ ∂/∂z̄i. The sum over m is just the Taylor

expansion in z̄12 of the momentum eigenstate on the right of (3.25).

ε1 = ε2. In this case, we can introduce the change of integration variables

ω1 = tω , ω2 = (1− t)ω , t ∈ (0, 1) , ω ∈ (0,∞) , (3.32)

under which the integral (3.31) turns into (after some math):

Oε1,a1
∆1,+(z1, z̄1)Oε2,a2

∆2,s2
(z2, z̄2) (3.33)

=
∞∑

p,m=0
zp−1

12

p∑
r=0

p−r∑
q=0

q∑
q′=0

q′∑
s=0

∫ ∞

0
dω ω2h̄1+2h̄2−1+r

∫ 1

0
dt t2h̄1−1+r+q+m(1− t)2h̄2−q−1

× εr
1(−1)q−s Γ(−2h̄2 + q − q′ + 1) z̄q′+m−s

12
(q − q′)! s! (q′ − s)!(m − s)! Γ(−2h̄2 + 1)

∂̄q′+m−s
2 Ja1

−p[r](z̄1)Oa2
s2

(
z2,

(ε1ω1 + ε2ω2)
ε2ω2

λ̃2

)
.

Performing the Mellin transform as well as the summation we finally get:

Oε1,a1
∆1,+(z1, z̄1)Oε2,a2

∆2,s2
(z2, z̄2) =

∞∑
p,m̄=0

p∑
r=0

εr
1

m̄!B(2h̄1 + r + m̄, 2h̄2)
Γ(2h̄1 + p + 1)

(p − r)! Γ(2h̄1 + r + 1)

× zp−1
12 z̄m̄

12∂̄m̄
2 Ja1

−p[r](z̄1)Oε1,a2
∆1+∆2+r−1,s2

(z2, z̄2).
(3.34)

We have put the derivation details in appendix C.

ε1 = −ε2. The OPE when ε1 = −ε2 gives a similar formula only that there are two
terms produced corresponding to different ingoing/outgoing directions:

Oε1,a1
∆1,+(z1, z̄1)Oε2,a2

∆2,s2
(z2, z̄2)

=
∞∑

p,m̄=0

p∑
r=0

εr
2

m̄! (−1)r+m̄B(2h̄1 + r + m̄,−2h̄1 − 2h̄2 − r − m̄ + 1) Γ(2h̄1 + p + 1)
(p − r)! Γ(2h̄1 + r + 1)

× zp−1
12 z̄m̄

12∂̄m̄
2 Ja1

−p[r](z̄1)Oε2,a2
∆1+∆2+r−1,s2

(z2, z̄2)

+
∞∑

p,m̄=0

p∑
r=0

εr
1

m̄!B(−2h̄1 − 2h̄2 − r − m̄ + 1, 2h̄2)
Γ(2h̄1 + p + 1)

(p − r)! Γ(2h̄1 + r + 1)

× zp−1
12 z̄m̄

12∂̄m̄
2 Ja1

−p[r](z̄1)Oε2,a2
∆1+∆2+r−1,s2

(z1, z̄2) .

(3.35)

4 MHV graviton OPE

4.1 Collinear expansion

A similar story holds for MHV graviton scattering. In the choice of little group fixing
λα

i = (1, zi), the inverse soft recursion (2.11) for graviton MHV amplitudes takes the form

M(1+ 2 · · ·n) =
n∑

i=3

[1i]
z1i

z2
i2

z2
12

M(2̂ · · · î · · ·n) , (4.1)
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wherein the hatted spinor-helicity variables read

ˆ̃λ2 = λ̃1 + λ̃2 −
z12
zi2

λ̃1 , ˆ̃λi = λ̃i +
z12
zi2

λ̃1 . (4.2)

These are the same as for the gluon case.
Once again, we can expand the (n − 1)-graviton amplitude on the right in small z12

by writing it in terms of exponentiations of linear shifts:

M(1+ 2 · · ·n) = −
n∑

i=3

zi2[1i]
z2

12

(
1− z12

zi2

)−1
exp

{
z12
zi2

(
[1∂i]− [1∂2]

)}
M(2 · · ·n) . (4.3)

On the right, gravitons 3, . . . , n carry the undeformed null momenta p3, . . . , pn, whereas the
graviton 2 in bold carries the deformed null momentum pαα̇

2 = λα
2 (λ̃1 + λ̃2)α̇. Expanding

this in z12, one finds the all-order collinear expansion

M(1+ 2 · · ·n) = −
∞∑

p=0
zp−2

12

p∑
q=0

q∑
r=0

(−[1∂2])q−r

r!(q − r)!

n∑
i=3

[1i][1∂i]r

zp−1
i2

M(2 · · ·n) . (4.4)

Naively, it appears that this expansion starts at order 1/z2
12 instead of the universal collinear

pole 1/z12 expected in a (tree level) holomorphic collinear limit. This is actually a spurious
pole that drops out due to momentum conservation.

To see this, recall that our (n − 1)-point amplitude M(2 3 · · ·n) comes equipped with
delta functions imposing the momentum conservation

pαα̇
2 + pαα̇

3 + · · ·+ pαα̇
n = 0 . (4.5)

Contracting this with λα
2 λ̃α̇

1 and using the fact that ⟨i2⟩ = zi2, we get the conservation law

n∑
i=3

⟨i2⟩[1i] ≡
n∑

i=3
zi2[1i] = 0 . (4.6)

Hence, if we write out the term of order 1/z2
12 in the expansion (4.4), we find that it

vanishes:

− 1
z2

12

n∑
i=3

zi2[1i]M(2 · · ·n) = 0 . (4.7)

This confirms that the collinear limit starts at order 1/z12.
So, dropping the p = 0 term in the sum (4.4), we can shift the summation index

p 7→ p + 1 to find the collinear expansion

M(1+ 2 · · ·n) = −
∞∑

p=0
zp−1

12

p+1∑
q=0

q∑
r=0

(−[1∂2])q−r

r!(q − r)!

n∑
i=3

[1i][1∂i]r

zp
i2

M(2 · · ·n) . (4.8)

This is our result for the all-order collinear expansion of the tree level graviton MHV
amplitude. Next let us turn this into OPE expansions.

– 13 –



J
H
E
P
1
0
(
2
0
2
3
)
0
8
0

4.2 Celestial OPE of momentum eigenstates

Like in gauge theory, it is expected that there exist local operators Gsi(zi, λ̃i) dual to
graviton momentum eigenstates of helicity si ∈ {±2} and spinor-helicity data λα

i = (1, zi),
λ̃α̇

i = ωi(1, z̄i). Their correlators should compute graviton amplitudes in the bulk,

M(1 2 · · ·n) =
〈
Gs1(z1, λ̃1)Gs2(z2, λ̃2) · · ·Gsn(zn, λ̃n)

〉
. (4.9)

Combining this with the collinear expansion (4.8), we can once again extract the all-order
OPE in the MHV sector. Let us begin by recalling the notion of soft graviton currents.

Soft graviton currents. The soft expansion of a positive helicity graviton operator —
as valid at least within an MHV correlator — is given by the double Taylor expansion7

G+(z, λ̃) =
∞∑

k,ℓ=0

(λ̃1̇)k(λ̃2̇)ℓ

k! ℓ! w[k, ℓ](z) . (4.10)

The chiral operators w[k, ℓ](z) are currents with weights h = 2 − k+ℓ
2 with respect to the

conformal transformations of z. The currents at fixed k + ℓ also transform in a spin k+ℓ
2

representation of the SL(2,C) that rotates λ̃α̇. As shown by Strominger [20], the celestial
OPEs of these currents form the loop algebra of Ham(C2), the holomorphic symplecto-
morphisms of C2. In the celestial holography literature, Ham(C2) is also referred to as
the wedge subalgebra of w1+∞, which motivated the notation w[k, ℓ] for the currents. The
weight h = 2 current w[0, 0] actually turns out to be central, and its insertions in celes-
tial correlators do not give rise to a nontrivial soft theorem. But it is usually left in for
completeness.

The first step in deriving the celestial OPE is again to extract the singular terms in
the OPE. The singular parts of the MHV collinear expansion are read off from (4.8),

M(1+ 2 · · ·n) = − 1
z12

(
n∑

i=3
[1i]−

n∑
i=3

[1i][1∂2] +
n∑

i=3
[1i][1∂i]

)
M(2 · · ·n) + O(z0

12) . (4.11)

Since λ1
i = 1 in our choice of little group fixing, specific components of the (n − 1)-point

momentum and angular momentum conservation laws give the constraints

n∑
i=3

[1i]M(2 · · ·n) = −[12]M(2 · · ·n) , (4.12)

n∑
i=3

[1i][1∂i]M(2 · · ·n) = −[12][1∂2]M(2 · · ·n) , (4.13)

thereby reducing the collinear limit to

M(1+ 2 · · ·n) = [12]
z12

M(2 · · ·n) + O(z0
12) . (4.14)

7Again, this starts at order ω0 instead of the usual soft graviton pole ω−1 due to our choice of little
group fixing.
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Applying the duality dictionary (4.9), the singular part of the hard graviton OPE is found
to be

G+(z1, λ̃1)Gs2(z2, λ̃2) ∼
[12]
z12

Gs2(z2, λ̃1 + λ̃2) . (4.15)

This is the graviton celestial OPE of [7, 19] written in momentum space. It is leading order
in z12 and all-order exact in z̄12.

Setting s2 = +2, Taylor expanding both sides in λ̃α̇
1 and λ̃α̇

2 , and equating coefficients
of (λ̃1̇

1)k(λ̃2̇
1)ℓ(λ̃1̇

2)m(λ̃2̇
2)n yields the soft graviton current algebra (see appendix B for details)

w[k, ℓ](z) w[m, n](w) ∼ kn − ℓm

z − w
w[k + m − 1, ℓ + n − 1](w) . (4.16)

As mentioned above, this is the loop algebra of Ham(C2).8 It provides an infinite dimen-
sional enhancement of the holographic symmetries of quantum gravity in flat space whose
implications are still being fervently investigated. The origin of these symmetries is again
found in the twistor theory of Penrose’s nonlinear graviton construction [22].

For our purposes, we will again be interested in working with their generating functions

w[r](z, λ̃) =
r∑

k=0

(λ̃1̇)k(λ̃2̇)r−k

k!(r − k)! w[k, r − k](z) , r ∈ Z≥0 . (4.17)

The hard gravitons can be expanded upon these as

G+(z, λ̃) =
∞∑

r=0
w[r](z, λ̃) , (4.18)

where the rth term is essentially ωr times the rth order soft graviton. From (4.15), one
finds a compact expression for the OPE of soft gravitons with hard gravitons,

w[r](z1, λ̃1)Gsi(zi, λ̃i) ∼
[1i]
z1i

[1∂i]r−1

(r − 1)! Gsi(zi, λ̃i) . (4.19)

The boost eigenbasis version of these soft-hard OPEs were found in [21]. The central
current w[0](z, λ̃) ≡ w[0, 0](z) of course has a regular OPE with all hard gravitons. The
r = 1 OPE is the supertranslation action. The r = 2 OPE corresponds to superrotations.
And the r = 3 OPE corresponds to the sub-subleading soft graviton theorem of [41].

Soft graviton descendants. Viewing w[r](z, λ̃) as chiral currents on the sphere with
coordinate z, we define the soft graviton descendants of a hard graviton by the contour
integral

w−p[r](λ̃1)Gs2(z2, λ̃2) :=
∮
|z12|=ε

dz1
2πi

1
zp

12
w[r](z1, λ̃1)Gs2(z2, λ̃2) (4.20)

8Equip C2 with complex coordinates v1, v2 and a holomorphic Poisson structure

{f, g} = ∂v1 f ∂v2 g − ∂v2 f ∂v1 g , f, g ∈ Ω0(C2) .

Holomorphic symplectomorphisms of C2 are generated by the basis of holomorphic hamiltonians vk
1 vℓ

2 with
algebra {vk

1 vℓ
2, vm

1 vn
2 } = (kn − ℓm) vk+m−1

1 vℓ+n−1
2 . The soft graviton currents span the loop algebra of this

Poisson algebra.
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with ε ≪ 1 and p ≥ 0. The p = 0 term is just meant to be the primary occurring
on the right of (4.19), while the p ≥ 1 descendants correspond to regular terms in the
soft-hard OPE.

The current w[r](z, λ̃) has weight h = 2−r/2 under conformal transformations of z, so
correlators involving it can have a pole of order at most r−4 at z = ∞. Using (4.9), (4.19)
and a contour-pulling argument that is identical to the gluon case, we then find that for
0 ≤ r ≤ p + 2, an insertion of such a descendant in a correlator of hard gravitons can be
expressed purely in terms of hard graviton amplitudes with one fewer particle:〈

w−p[r](λ̃1)Gs2(z2, λ̃2)
n∏

i=3
Gsi(zi, λ̃i)

〉
= − 1

(r − 1)!

n∑
i=3

[1i][1∂i]r−1

zp
i2

M(2 3 · · ·n) . (4.21)

After shifting λ̃2 7→ λ̃1 + λ̃2 and r 7→ r + 1, these are immediately recognized to be the
summands of the collinear expansion (4.8).

All-order graviton OPE. Using the duality dictionary (4.9) for graviton scattering, we
can rewrite the MHV collinear expansion (4.8) as the OPE expansion〈

G+(z1, λ̃1)Gs2(z2, λ̃2)
n∏

i=3
Gsi(zi, λ̃i)

〉

=
∞∑

p=0
zp−1

12

p+1∑
q=0

q∑
r=0

(−[1∂2])q−r

(q − r)!

〈
w−p[r + 1](λ̃1)Oa2

s2 (z2, λ̃1 + λ̃2)
n∏

i=3
Oai

si
(zi, λ̃i)

〉
. (4.22)

Again, r + 1 ≤ p + 2 so our contour manipulations work. This can be further simplified
by exchanging the sums over q and r, then shifting r 7→ r − 1. When the dust settles, one
finds the following all-order OPE for two gravitons in the MHV sector:

G+(z1, λ̃1)Gs2(z2, λ̃2) =
∞∑

p=0
zp−1

12

p+2∑
r=1

p+2−r∑
q=0

(−[1∂2])q

q! w−p[r](λ̃1)Gs2(z2, λ̃1 + λ̃2) . (4.23)

For the reader’s benefit, we write out the first few terms of this OPE explicitly

G+(z1, λ̃1)Gs2(z2, λ̃2)

= 1
z12

{(
1− [1∂2]) w0[1](λ̃1) + w0[2](λ̃1)

}
Gs2(z2, λ̃1 + λ̃2)

+
{(

1−[1∂2] +
[1∂2]2

2!

)
w−1[1](λ̃1) +

(
1− [1∂2]

)
w−1[2](λ̃1)+w−1[3](λ̃1)

}
Gs2(z2, λ̃1+λ̃2)

+ z12

{(
1− [1∂2] +

[1∂2]2

2! − [1∂2]3

3!

)
w−2[1](λ̃1) +

(
1− [1∂2] +

[1∂2]2

2!

)
w−2[2](λ̃1)

+
(
1− [1∂2]

)
w−2[3](λ̃1) + w−2[4](λ̃1)

}
Gs2(z2, λ̃1 + λ̃2) + O(z2

12) . (4.24)

This helps illuminate the pattern of the sums. The first term looks different from (4.15),
but can be matched if one remembers from (4.19) that the leading “descendants” are given
by w0[r](λ̃1)Gs2(z2, λ̃1 + λ̃2) = [12][1∂2]r−1Gs2(z2, λ̃1 + λ̃2)/(r − 1)!. The remaining terms
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display the various orders of soft gravitons whose descendants enter the OPE. At the first
subleading order, one finds supertranslation, superrotation as well as the sub-subleading
soft graviton descendants. At order zp−1

12 , one only needs to use descendants of soft gravitons
up to order p + 2.

We find it remarkable that this can be expressed purely in terms of the soft graviton
descendants (and L̄−1 = ∂z̄2 descendants if expanded in small z̄12). It does not really
require an expansion in holomorphic conformal (or Virasoro) descendants. Moreover, ex-
plicit vertex algebra realizations of this OPE (like the ones for the gluon OPE coming from
twistor strings [26]) have not been constructed as of the writing of this work. It would be
very interesting to see if Skinner’s gravitational twistor string [29] could fill in this gap.

4.3 Celestial OPE of boost eigenstates

In a similar manner to that of section 3.3, we can study the celestial OPE of graviton
boost eigenstates via Mellin transforming the OPE of momentum eigenstates. The boost
eigenstates of gravitons are defined in the same way as (3.28). Similar to (3.29), we define
the conformal primary positive helicity soft gravitons

w(z, z̄) := w(z, λ̃)
(εω)r

=
r∑

k=0

z̄r−kw[k, r − k](z)
k!(r − k)! . (4.25)

One can then perform mode expansion over z on w(z, z̄), whose OPE with the boost
eigenstates can be obtained by contour integrals

w−p[r](z̄)Gε
∆,s(w, w̄) =

∮ dz

2πi
1

(z − w)p
w[r](z, z̄)Oε

∆,s(w, w̄) , (4.26)

The modes w−p[r](z̄) can be regarded as the generators of soft descendant states. Mellin
transforming (4.23) one can get the OPE of boost eigenstates of gravitons in terms of the
following integral

Gε1
∆1,+(z1, z̄1)Gε2

∆2,s2
(z2, z̄2)

=
∞∑

p=0
zp−1

12

p+1∑
r=0

p+1−r∑
q=0

∞∑
m=0

(−1)q

q!m!

∫ ∞

0
dω1 ω2h̄1−1

1

∫ ∞

0
dω2 ω2h̄2−1

2 (ε1ω1)r+m+1

×
(

ε1ω1
ε2ω2

(
z̄12∂̄2 + ω2∂ω2

))q

z̄m
12∂̄m

2 w−p[r + 1](z̄1)Gε1
s2

(
z2,

(ε1ω1 + ε2ω2)
ε2ω2

λ̃2

)
.

(4.27)

After some math similar to appendix C, the final OPE is

Gε1
∆1,+(z1, z̄1)Gε2

∆2,s2
(z2, z̄2) =

∞∑
p,m̄=0

p+1∑
r=0

εr+1
1
m̄!

B(2h̄1 + r + m̄ + 1, 2h̄2) Γ(2h̄1 + p + 3)
(p − r + 1)! Γ(2h̄1 + r + 2)

× zp−1
12 z̄m̄

12∂̄m̄
2 w−p[r + 1](z̄1)Gε1

∆1+∆2+r−1,s2
(z2, z̄2).

(4.28)
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The boost eigenstate OPE when ε1 = −ε2 is similar only that there are two terms produced
corresponding to different ingoing/outgoing directions:

Gε1
∆1,+(z1, z̄1)Gε2

∆2,s2
(z2, z̄2)

=
∞∑

p,m̄=0

p+1∑
r=0

εr+1
2
m̄! (−1)r+m̄+1 B(2h̄1 + r + m̄ + 1,−2h̄1 − 2h̄2 − r − m̄) Γ(2h̄1 + p + 3)

(p − r + 1)! Γ(2h̄1 + r + 2)

× zp−1
12 z̄m̄

12∂̄m̄
2 w−p[r + 1](z̄1)Gε2

∆1+∆2+r−1,s2
(z2, z̄2)

+
∞∑

p,m̄=0

p+1∑
r=0

εr+1
1
m̄!

B(−2h̄1 − 2h̄2 − r − m̄, 2h̄2) Γ(2h̄1 + p + 3)
(p − r + 1)! Γ(2h̄1 + r + 2)

× zp−1
12 z̄m̄

12∂̄m̄
2 w−p[r + 1](z̄1)Gε1

∆1+∆2+r−1,s2
(z2, z̄2) . (4.29)

5 Discussion

Regular terms have proven useful for extracting differential equations satisfied by MHV
amplitudes from null state decoupling relations in CCFT [12, 14]. Remarkably, these
differential equations were already shown to be equivalent to a linearized version of tree
level BCFW recursion in [47]. Our calculation confirms that, indeed, the all-order celestial
OPE is just a nonlinear extension of this idea that reproduces the exact recursion relation.

One intriguing shortcoming of our analysis is that the recursion relation does not allow
us to obtain 3-point amplitudes from 2-point amplitudes. The latter are just meant to be
the identity parts of the S-matrix, so that the corresponding 2-point celestial amplitudes
tend to take the distributional form δ(z12)δ(z̄12) [48]. This means we do not yet know how to
apply our OPE to a 2-point CCFT correlator and obtain the 3- and higher-point correlators.
This is an important issue that needs to be resolved before any CCFT interpretation of 4d
gauge theory or gravity may be taken seriously. A promising approach to this lies in the
use of light and shadow transforms that may be cleverly used to make the 2- and 3-point
functions non-distributional [49–58]. It would be interesting to see if our all-order OPE can
be used to build higher-point MHV amplitudes directly starting from a 2-point amplitude
made non-distributional in this manner.

Another important issue facing celestial holography is to compute analogues of celestial
OPE beyond the MHV sector. The singular part of the OPE is universal and valid for all
scattering amplitudes, so it remains the same in NkMHV amplitudes. At tree level, one
expects that only the regular part may be nontrivially deformed.9 Our calculation of
regular terms in the MHV OPE is meant to provide an accessible test case to develop
methods for obtaining regular terms in more involved celestial OPEs. In this way, we
hope that our results bring us one step closer to bootstrapping flat space amplitudes from
constraints imposed by the existence of a celestial dual. Going beyond pure Yang-Mills,
along the lines of e.g. [59, 60], or beyond tree level, along the lines of e.g. [61, 62], would
also be interesting.

9Here, one includes terms that are regular in the holomorphic collinear limit but singular in the anti-
holomorphic one, and vice versa. It is standard to treat these limits as independent limits by complexifying
momenta.
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At the first few orders, the gluon OPE was worked out in [13, 14] and the graviton OPE
in [12], where holomorphic conformal descendants were found. However, at those orders,
due the existence of null states [12, 14, 23], they can be fully converted to soft current
descendants and antiholomorphic conformal descendants, consistent with our expressions
(see for example [26]). Beyond the first few orders, consistency of our results with the
appearance of holomorphic conformal descendants at arbitrarily high orders in z and z̄ [13]
would require the existence of sufficiently many null states at each order. We leave this as
an interesting question for the future. If the exact set of null states can be written down
at each order, it would also allow one to write down the OPEs in alternative bases, with
different forms useful for different situations.

Perhaps most ambitiously, if one found a way to reverse the logic of our paper and
bootstrapped the all-order celestial OPE by other means, it would provide the means of
bootstrapping BCFW recursion for MHV tree amplitudes directly from celestial CFT.
Now, it turns out that MHV amplitudes as well as celestial OPEs have also been explored
at loop level in [63–65] and in self-dual curved backgrounds in [5, 66, 67]. These works
discover that infinite dimensional symmetries like the w1+∞ algebra persist in a wide range
of scenarios, showing the robustness of the formalism of celestial holography. It may
be possible to construct regular terms in the associated celestial OPEs, possibly using
symmetry constraints, and derive novel recursion relations for (at least rational parts of)
amplitudes at loop level or on curved backgrounds. Perhaps the best success story in this
direction is the recent work by Costello on two-loop amplitudes in QCD-like theories [68],
wherein we expect the choice of regular terms in the OPE to translate into a choice of
conformal block.
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A Poles at infinity

In going from (3.20) to (3.21), we deformed the contour and dropped the contribution from
z1 = ∞. To justify this, we need to check whether the 1-form

dz1
zp

12

〈
Ja1 [r](z1, λ̃1)

n∏
i=2

Oai
si
(zi, λ̃i)

〉
(A.1)
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has a pole at z1 = ∞ when viewed as a bulk scattering amplitude. We will show that this
has no pole at z1 = ∞ precisely for the range

0 ≤ r ≤ p (A.2)

that is suggested by the expected behavior of Ja1 [r](z1, λ̃1) as a current of weight h =
1− r/2.

This is precisely what we will need for extracting the celestial OPE. We only show this
explicitly in the gluon case. The corresponding proof in the graviton case involves identical
steps taken using Hodges’ formula [69] for the MHV graviton amplitude (with rows and
columns corresponding to graviton 1 and the two negative helicity gravitons removed, and
both reference spinors chosen to be λα

1 ). We will avoid speculating what happens for
r > p (or r > p + 2 in the graviton case), but this may be related to the residue of MHV
amplitudes at infinity as obtained for instance in equation (35) of [70].

To begin with the proof, we postulate as usual that there exist operators Oai
si
(zi, λ̃i)

whose correlation function is the gluon MHV amplitude〈
n∏

i=1
Oai

si
(zi, λ̃i)

〉
=

∑
σ∈Sn−2

Ca1a2aσ3 ...aσn A[1 2σ3 · · ·σn] , (A.3)

where A[1 2 3 · · ·n] is the Parke-Taylor color-stripped amplitude

A[1 2 3 · · ·n] = z4
kl

z12z23 · · · zn1
δ4(p1 + p2 + · · ·+ pn) (A.4)

written for the configuration in which particles k, l are negative helicity. For sake of sim-
plicity, we are setting λα

i = (1, zi), λ̃α̇
i = ωi(1, z̄i) from the start.

As before, take particle 1 to be positive helicity without loss of generality. The soft-
hard correlator 〈

Ja1 [r](z1, λ̃1)
n∏

i=2
Oai

si
(zi, λ̃i)

〉
(A.5)

is obtained by expanding the MHV amplitude as a series in λ̃α̇
1 . At the level of the Parke-

Taylor amplitude, one finds the series expansion

A[1+ 2 3 · · ·n] = zn2
z12zn1

∞∑
r=0

1
r! D

rA[2 3 · · ·n] , (A.6)

where D is the differential operator

D = 1
zkl

(z1l[1∂k]− z1k[1∂l]) . (A.7)

This expansion may be obtained by using a Fourier representation of the momentum con-
serving delta functions,

δ4(p1 + p2 + · · ·+ pn) =
∫

d4x
∞∑

r=0

(ip1 · x)r

r! ei(p2+···+pn)·x , (A.8)
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and applying the identity

xαα̇ ei(pk+pl)·x = −i
⟨kl⟩

(
λα

k

∂

∂λ̃lα̇

− λα
l

∂

∂λ̃kα̇

)
ei(pk+pl)·x (A.9)

to replace the factors of (ip1 · x)r by derivatives in the external data.
Since D is homogeneous of degree 1 in λ̃α̇

1 (and thereby also in ω1), (A.5) gets contri-
butions only from terms of order Dr in each color order. This allows us to obtain the rth

soft-limit〈
Ja1 [r](z1, λ̃1)

n∏
i=2

Oai
si
(zi, λ̃i)

〉
=

∑
σ∈Sn−2

Ca1a2aσ3 ...aσn
zσn2

z12zσn1

1
r! D

rA[2σ3 · · ·σn] (A.10)

which has weight r in ω1 as needed. (The actual soft limit is then obtained by dividing out
the factor of ωr

1, but it is innocuous here so we leave it be.)
To complete the proof, we observe from (A.7) that D has a pole of order 1 at z1 = ∞.

So Dr has a pole of order r. Because the extra factors of zσn2/z12zσn1 have a second order
zero, each summand in the net soft-hard correlator (A.10) has a pole of order r − 2 at
z1 = ∞. On the other hand, the 1-form dz1 has a pole of order 2 at infinity, while the
prefactor z−p

12 has a zero of order p. In total, (A.1) behaves like

zr−2+2−p
1 = zr−p

1 (A.11)

at large z1. And as we wished to prove, this is regular at infinity for r ≤ p.
As an aside, notice that although the hard amplitude depended on z1 in a distributional

manner via its momentum conserving delta functions, the soft-hard amplitude only depends
on z1 rationally! So it makes sense to study its contour integrals as a function of z1.

B Soft current OPEs

In this appendix, we obtain all-order OPEs between soft currents of both gluons and
gravitons from momentum eigenstate hard-hard OPEs. Incidentally, the same results can
be obtained from Mellin-transformed (boost eigenstate) OPEs.

B.1 All-order soft gluon OPE

Consider gluons first. From the definition (3.10), the soft currents are given by its inverse
form

Ja[m, n](z) =
∮ dλ̃1̇

2πiλ̃1̇
dλ̃2̇

2πiλ̃2̇
(λ̃1̇)−m(λ̃2̇)−n m!n! Oa

+[z, λ̃]. (B.1)

Then the current OPE can be extracted by performing the integral

Ja[k, l](z)Jb[m, n](w)

=
∮ dλ̃1̇

2πiλ̃1̇
dλ̃2̇

2πiλ̃2̇
dκ̃1̇

2πiκ̃1̇
dκ̃2̇

2πiκ̃2̇
k! l!m!n!

(λ̃1̇)k(λ̃2̇)l(κ̃1̇)m(κ̃2̇)n
Oa

+[z, λ̃]Ob
+[w, κ̃]. (B.2)

Let us first look at the leading order calculation (in z − w), which already contains
the main conceptual steps. The all-order calculation is analogous and will be presented
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afterwards. At leading order, the OPE between two positive-helicity hard gluons is given
in (3.14) with s2 set to +1:

Oa
+(z, λ̃)Ob

+(w, κ̃) ∼ fab
c

z − w
Oc

+(w, λ̃ + κ̃). (B.3)

The hard gluon Oc
+(w, λ̃ + κ̃) has the soft expansion

Oc
+(w, λ̃ + κ̃) =

∞∑
u,v=0

(λ̃1̇ + κ̃1̇)u(λ̃2̇ + κ̃2̇)v

u! v! Jc[u, v](w) , (B.4)

which after binomial expansions becomes

Oc
+(w, λ̃ + κ̃) =

∞∑
u,v

u∑
i=0

v∑
j=0

(
u

i

)(
v

j

)
(λ̃1̇)i(κ̃1̇)u−i(λ̃2̇)j(κ̃2̇)v−j Jc[u, v](w)

u!v! . (B.5)

This can now be substituted into (B.2) to obtain

Ja[k, l](z)Jb[m, n](w)

∼ fab
c

z − w

(
k + m

k

)(
l + n

m

)
k!l!m!n! 1

(k + m)!(l + n)!J
c[k + m, l + n](w)

= fab
c

z − w
Jc[k + m, l + n](w), (B.6)

where we have used the fact that only the term with i = k, u− i = m, j = l and v − j = n

gets picked up by the contour integrals.
Now repeat the steps while keeping to all orders. The all-order hard-hard gluon OPE

was given in (3.25). Since Ja
−p[r](λ̃) appears in the OPE and depends on λ̃, we need to

expand it out to perform the explicit contour integrations. Combining (3.16) and (3.19)
leads to the expansion

Ja
−p[r](λ̃) =

r∑
s=0

(λ̃1̇)s(λ̃2̇)r−s

s! (r − s)! Ja
−p[s, r − s]. (B.7)

Another object in (3.25) that needs expansion is

[λ̃∂κ̃]q =
q∑

t=0

(
q

t

)(
λ̃1̇ ∂

∂κ̃1̇

)t (
λ̃2̇ ∂

∂κ̃2̇

)q−t

. (B.8)

With that, the soft current OPE can now be easily obtained. Substituting (3.19), (B.8)
and (B.5) into (3.25), and then the resulting expression into (B.2), we obtain

Ja[k, l](z)Jb[m, n](w)

=
∞∑

p=0
(z − w)p−1

p∑
r=0

p−r∑
q=0

r∑
s=0

q∑
t=0

(−1)q

(
k

s

)(
l

r − s

)(
k − s

t

)(
l − (r − s)

q − t

)
× Ja

−p[s, r − s]Jb[k + m − s, l + n − (r − s)](w). (B.9)
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Similar to before, to arrive at this expression, we have performed the contour integrals
which picked up terms satisfying

s + i + t = k, u − i − t = m, r − s + j + q − t = l, v − j − q + t = n. (B.10)

Not all terms in the sums necessarily contribute. In fact, during the derivation, one has
to be careful with two types of conditions. One arises from the fact that taking too many
derivatives (with respect to κ̃1̇ and κ̃2̇ in our case) would result in zero, and this requires
t ≤ u − i and q − t ≤ v − j. The other type of conditions comes from the ranges of u, v, i

and j in (B.5). After carefully treating them, we find that only terms with

s ≤ k + m, r − s ≤ l + n, s + t ≤ k, r − s + q − t ≤ l (B.11)

contribute to the sum. The formula written above is, however, still correct, owning to the
fact that Ja[m, n] = 0 when either m or n is negative and that

(m
n

)
= 0 when m < n.

Performing the summations over q and t leads to

Ja[k, l](z)Jb[m, n](w) =
∞∑

p=0
(z − w)p−1

p∑
r=0

r∑
s=0

(
k

s

)(
l

r − s

)(
p − k − l

p − r

)
× Ja

−p[s, r − s]Jb[k + m − s, l + n − (r − s)](w).
(B.12)

If desired, this can be written in an alternative form by swapping the order of summations
and relabeling, leading to

Ja[k, l](z)Jb[m, n](w) =
∞∑

p=0
(z − w)p−1

p∑
s=0

p−s∑
r=0

(
k

s

)(
l

r

)(
p − k − l

p − r − s

)
× Ja

−p[s, r]Jb[k + m − s, l + n − r](w). (B.13)

B.2 All-order soft graviton OPE

The soft graviton current OPE can be derived in exactly the same way, with the analogue
of (B.9) being

w[k, l](z)w[m, n](w)

=
∞∑

p=0
(z − w)p−1

p+2∑
r=1

p+2−r∑
q=0

r∑
s=0

q∑
t=0

(−1)q

(
k

s

)(
l

r − s

)(
k − s

t

)(
l − (r − s)

q − t

)
× w−p[s, r − s]w[k + m − s, l + n − (r − s)](w). (B.14)

Performing the summations over q and t gives

w[k, l](z)w[m, n](w) =
∞∑

p=0
(z − w)p−1

p+2∑
r=1

r∑
s=0

(
k

s

)(
l

r − s

)(
p + 2− k − l

p + 2− r

)
× w−p[s, r − s]w[k + m − s, l + n − (r − s)](w).

(B.15)

Unlike the gluon case, the r and s sums cannot be swapped to give a simpler expression.
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C Mellin transforms of momentum space OPEs

In this section we provide the computation details for the OPE of boost eigenstates when
ε1 = ε2. Starting from (3.31), we first use the identity:

(
ε1ω1
ε2ω2

(
z̄12∂̄2 + ω2∂ω2

))q

=
q∑

q′=0

q!
q′! (q − q′)!

(
ε1ω1
ε2ω2

ω2∂ω2

)q−q′ (ε1ω1
ε2ω2

)q′

z̄q′

12∂̄q′

2

=
q∑

q′=0

q!
q′! (q − q′)!

(
ε1ω1
ε2ω2

)q (
ω2∂ω2 − q + 1

)
· · ·
(
ω2∂ω2 − q′

)
z̄q′

12∂̄q′

2 . (C.1)

Now we can see there are two contributions of ∂̄2: one is from z̄q′

12∂̄q′

2 above, the other is
from z̄m

12∂̄m
2 in (3.31). We prefer to merge them together:

(
z̄q′

12∂̄q′

2
)(

z̄m
12∂̄m

2
)
=

q′∑
s=0

(
q′

s

)
(−1)sm · · · (m − s + 1)z̄q′

12 z̄m−s
12 ∂̄q′−s

2 ∂̄m
2

=
q′∑

s=0
(−1)s q′!m!

s!(q′ − s)!(m − s)! z̄
m−s
12 ∂̄q2−s

2 . (C.2)

Plugging (C.1) and (C.2) into (3.31), we get

Oε1,a1
∆1,+(z1, z̄1)Oε2,a2

∆2,s2
(z2, z̄2)

=
∞∑

p=0
zp−1

12

p∑
r=0

p−r∑
q=0

∞∑
m=0

q∑
q′=0

q′∑
s=0

∫ ∞

0
dω1 ω2h̄1−1

1

∫ ∞

0
dω2 ω2h̄2−1

2

× (−1)q−s

q′! s!(q′ − s)!(m − s)!
(ε1ω1)q+r

(ε2ω2)q
(ω2∂ω2 + 1) · · ·

(
ω2∂ω2 − q′

)
×
(

ε1ω1
ε1ω1 + ε2ω2

)m

z̄q′+m−s
12 ∂̄q′+m−s

2 Ja1
−p[r](z̄1)Oa2

s2

(
z2,

(ε1ω1 + ε2ω2)
ε2ω2

λ̃2

)

=
∞∑

p=0
zp−1

12

p∑
r=0

p−r∑
q=0

∞∑
m=0

q∑
q′=0

q′∑
s=0

∫ ∞

0
dω1 ω2h̄1−1

1

∫ ∞

0
dω2 ω2h̄2−1

2

× (−1)q−s

q′! s!(q′ − s)!(m − s)!
(ε1ω1)q+r

(ε2ω2)q

(
−2h̄2 + 1

)
· · ·
(
−2h̄2 + q′

)
×
(

ε1ω1
ε1ω1 + ε2ω2

)m

z̄q′+m−s
12 ∂̄q′+m−s

2 Ja1
−p[r](z̄1)Oa2

s2

(
z2,

(ε1ω1 + ε2ω2)
ε2ω2

λ̃2

)
. (C.3)

Taking ε1 = ε2 and use the change of integration variables

ω1 = tω , ω2 = (1− t)ω , t ∈ (0, 1) , ω ∈ (0,∞) , (C.4)
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the OPE (C.3) turns into:

Oε1,a1
∆1,+(z1, z̄1)Oε2,a2

∆2,s2
(z2, z̄2)

=
∞∑

p=0
zp−1

12

p∑
r=0

p−r∑
q=0

∞∑
m=0

q∑
q′=0

q′∑
s=0

∫ ∞

0
dω ω2h̄1+2h̄2−1+r

∫ 1

0
dt t2h̄1−1+r+q+m (1− t)2h̄2−1−q

× εr
1 (−1)q−s(−2h̄2 + q − q′)!

(q−q′)!s! (q′−s)!(m−s)!(−2h̄2)!
z̄q′+m−s

12 ∂̄q′+m−s
2 Ja1

−p[r](z̄1)Oa2
s2

(
z2,

(ε1ω1 + ε2ω2)
ε2ω2

λ̃2

)
,

(C.5)
which equals (3.33). The t-integral produces an Euler-Beta function:

Oε1,a1
∆1,+(z1, z̄1)Oε2,a2

∆2,s2
(z2, z̄2)

=
∞∑

p=0
zp−1

12

p∑
r=0

p−r∑
q=0

∞∑
m=0

q∑
q′=0

q′∑
s=0

∫ ∞

0
dω ω2h̄1+2h̄2−1+r Γ(2h̄2 − q)Γ(2h̄1 + r + q + m)

Γ(2h̄1 + 2h̄2 + r + m)

× εr
1 (−1)q−s(−2h̄2 + q − q′)!

(q−q′)!s! (q′−s)!(m−s)!(−2h̄2)!
z̄q′+m−s

12 ∂̄q′+m−s
2 Ja1

−p[r](z̄1)Oa2
s2

(
z2,

(ε1ω1 + ε2ω2)
ε2ω2

λ̃2

)
.

(C.6)
Since the total power of z̄12 and ∂̄2 in the summand is equal to q′ + m − s, we replace the
index m by m̄ := q′ + m − s. Furthermore, we also consider changing q → b := q − q′,
q′ → a := q′ − s. Therefore the regions of summation above become

Oε1,a1
∆1,+(z1, z̄1)Oε2,a2

∆2,s2
(z2, z̄2)

=
∞∑

p=0
zp−1

12

p∑
r=0

∞∑
m̄=0

min(m̄,p−r)∑
a=0

p−r−a∑
s=0

p−r−a−s∑
b=0

∫ ∞

0
dω ω2h̄1+2h̄2−1+r

× (−1)a+bεr
1
Γ(2h̄2 − a − b − s)Γ(2h̄1 + r + b + s + m̄) Γ(−2h̄2 + b + 1)
Γ(2h̄1 + 2h̄2 + r + m̄ − a) b! s! a! (m̄ − a − s)! Γ(−2h̄2 + 1)

× z̄m̄
12∂̄m̄

2 Ja1
−p[r](z̄1)Oa2

s2

(
z2,

(ε1ω1 + ε2ω2)
ε2ω2

λ̃2

)
. (C.7)

To perform the summation on a, b, s, we use the identity

min(m̄,p−r)∑
a=0

p−r−a∑
s=0

p−r−a−s∑
b=0

(−1)a+bΓ(2h̄2 − a − b − s)Γ(2h̄1 + r + b + s + m̄) Γ(−2h̄2 + b + 1)
Γ(2h̄1 + 2h̄2 + r + m̄ − a) b! s! a! (m̄ − a − s)! Γ(−2h̄2 + 1)

= 1
m̄!B(2h̄1 + r + m̄, 2h̄2)

Γ(2h̄1 + p + 1)
(p − r)! Γ(2h̄1 + r + 1)

. (C.8)

Plugging (C.8) into (C.7), we obtain the final answer (3.34). In a similar manner, we can
also obtain the Mellin-transformed graviton OPE (4.28).
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