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Fig. 1. To properly handle the view-dependent effects, we propose to break down the view synthesis process into two tasks of pixel reshading and relocation.

During reshading, we use a neural network to generate a new version of the input image (shown on the left) with the shading computed based on the novel

view. As shown on the middle, our reshading network correctly leaves the diffuse areas intact (the dog’s head), but moves the highlights on the specular areas

(wooden floor). The relocation process takes this reshaded image and generates the novel view image. The red crosses mark the same location on the wooden

floor to make it easier to observe the effect of reshading and relocation.

In recent years, novel view synthesis from a single image has seen signifi-

cant progress thanks to the rapid advancements in 3D scene representation

and image inpainting techniques. While the current approaches are able to

synthesize geometrically consistent novel views, they often do not handle

the view-dependent effects properly. Specifically, the highlights in their syn-

thesized images usually appear to be glued to the surfaces, making the novel

views unrealistic. To address this major problem, we make a key observation

that the process of synthesizing novel views requires changing the shading

of the pixels based on the novel camera, and moving them to appropriate

locations. Therefore, we propose to split the view synthesis process into two

independent tasks of pixel reshading and relocation. During the reshading

process, we take the single image as the input and adjust its shading based

on the novel camera. This reshaded image is then used as the input to an

existing view synthesis method to relocate the pixels and produce the final

novel view image. We propose to use a neural network to perform reshad-

ing and generate a large set of synthetic input-reshaded pairs to train our

network. We demonstrate that our approach produces plausible novel view

images with realistic moving highlights on a variety of real world scenes.
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1 INTRODUCTION

Creating novel views of a scene from a single image is a compelling

way to breathe life into still photographs. When displayed on virtual

reality (e.g., HTC vive and Meta Quest) or light field (e.g., Lume

Pad [Leia 2023]) devices, these “3D photographs” provide a highly

immersive experience for users, allowing them to vividly relive mo-

ments captured in still photographs as if they have been transported

back in time and place.

The rapid advancements in 3D scene representation and image in-

painting techniques have led to remarkable progress in single image

view synthesis in recent years. Despite this, the existing techniques

focus on producing geometrically consistent novel views and mostly

ignore the view-dependent effects. For example, a number of tech-

niques [Jampani et al. 2021; Shih et al. 2020], handle this application

in a modular manner. These approaches estimate the depth from

the input and use it to decompose the scene into multiple layers.

These depth layers are then warped to the novel view and composed

together to form the final image. Unfortunately, these methods treat

the highlights, which are quite common in real scenes, as textures

and warp them to the novel views along with other areas. Therefore,
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Input Input 3D Moments Ours

Fig. 2. We compare our results against 3D Moments by Wang et al. [2022].

3D Moments reconstructs the novel image by moving the input pixels

according to their depth values. As such, the highlights are treated as

textures and appear to be glued to the wooden table. Our approach, however,

is able to properly move the highlights over the table. The red crosses mark

the same location on the table. Note that the cross is inside the highlight

in the input and 3D Moment’s results, but it appears to be outside the

highlight in our results.

as shown in Fig. 2, the highlights in their synthesized views appear

to be glued to the surfaces, making their results unrealistic.

On the other hand, several approaches [Li and Kalantari 2020;

Srinivasan et al. 2017; Yu et al. 2021] handle this problem by learning

the process in an end-to-end manner. These techniques learn the

entire view synthesis pipeline either directly [Srinivasan et al. 2017],

or through various scene representations, such as neural radiance

field (NeRF) [Yu et al. 2021] and multiplane images (MPI) [Li and

Kalantari 2020; Tucker and Snavely 2020]. Although they could

potentially handle the view-dependent effects, these techniques

often struggle to properly reconstruct the moving highlights.

Our main observation is that both the shading and projected pixel

location of a 3D surface point change between the input and novel

view images. Modular approaches overlook the view-dependent

shading, focusing solely on pixel relocation. The end-to-end ap-

proaches, on the other hand, aim to learn to move the pixels and

change their shading within a unified system. However, the majority

of effort is dedicated to learning pixel relocation, as the contribution

of the shading mismatch to their training loss is often minimal.

Guided by this observation, we make a key contribution to break

down the novel view synthesis process into two tasks: pixel reshad-

ing and relocation (see Fig. 1). During the reshading process, we

only adjust the shading of the input image according to the novel

camera. We then perform pixel relocation on the reshaded image,

using the modular method by Wang et al. [2022], to obtain the final

novel view image. We propose to learn the reshading process using

a neural network that takes a single image as well as the relative

novel camera position as the input and produces the reshaded im-

age. Since there are no publicly available datasets of input-reshaded

image pairs, we render a large number of synthetic image pairs for

training. We train our reshading network on this newly introduced

dataset using a perceptual loss to ensure producing plausible, but de-

tailed reshaded images. We demonstrate that our method produces

high-quality novel view images with plausible moving highlights

on a wide range of real scenes.

2 RELATED WORK

The problem of view synthesis has been extensively studied and

many powerful multi- and single-image methods have been devel-

oped [Mildenhall et al. 2020; Shih et al. 2020; Tucker and Snavely

2020; Wizadwongsa et al. 2021]. A complete literature review is be-

yond the scope of this paper. Here, we mainly focus on approaches

that use a single image as the input. We also discuss image relighting

methods as they are relevant to the focus of our paper.

2.1 Single Image View Synthesis

Wediscuss these approaches by categorizing them into two classes of

modular and end-to-end. The modular methods [Jampani et al. 2021;

Kopf et al. 2019, 2020; Niklaus et al. 2019; Shih et al. 2020; Wang et al.

2022] break down the process into multiple components and address

each component separately. Specifically, these techniques divide

the view synthesis pipeline into depth estimation, image warping,

and image inpainting. The individual methods differ in how they

handle each stage of the pipeline. For example, Niklaus et al. [2019]

train a depth estimation network and use it to directly reproject the

input image to the novel view. On the other hand, Shih et al. [2020]

obtain the depth using an existing method [Ranftl et al. 2022] and

reconstructs layered depth image (LDI) representation [Shade et al.

1998] to warp the input image to the novel view. These techniques,

however, primarily focus on pixel relocation and overlook the pixel

reshading process. As a result, they produce results with incorrect

view-dependent effects, where the highlights appear to be glued to

the surfaces (see Fig. 2).

A category of modular methods focus on handling the view-

dependent effects by first decomposing the image(s) into multiple

layers (e.g., diffuse and reflective), warping each layer separately, and

blending them to generate the final image. However, most of these

techniques are either specifically designed for rendering [Lochmann

et al. 2014; Zimmer et al. 2015] where ground truth scene informa-

tion (e.g., geometry and material) is available, or require multiple

images [Blake 1985; Roth and Black 2006; Sinha et al. 2012].

In contrast to themodular approaches, a number of techniques [Han

et al. 2022; Li and Kalantari 2020; Srinivasan et al. 2017; Tucker and

Snavely 2020; Wiles et al. 2020; Yu et al. 2021] attempt to learn

the entire view synthesis process in an end-to-end manner. Zhou

et al. [2016] propose to estimate optical flows at novel views and

use the estimated flow to backward warp the input image. The

flow estimation network is trained by minimizing the loss between

the synthesized and ground truth novel view images. Srinivasan et

al. [2017] propose to estimate a light field from a single image using

a convolutional neural network (CNN). Several approaches use a

network to estimate intermediate representations, such as point

cloud [Wiles et al. 2020], multiplane images (MPI) [Han et al. 2022;

Li and Kalantari 2020; Tucker and Snavely 2020], and neural radi-

ance field (NeRF) [Yu et al. 2021]. Since these approaches perform

end-to-end training, they could potentially learn to handle the view-

dependent effects. However, highlights are usually concentrated in

small regions, and thus the shading mismatch does not significantly

contribute to the loss function. As such, these methods often are

not able to produce results with proper moving highlights.

Recently, several approaches [Chan et al. 2023; Fridman et al. 2023;

Gu et al. 2023; Poole et al. 2022; Shue et al. 2022; Watson et al. 2022]

have proposed to address this problem using diffusion models [Ho

et al. 2020]. Some of these techniques [Shue et al. 2022; Watson

et al. 2022] produce novel view images of only single objects or

simple scenes. Others [Chan et al. 2023; Fridman et al. 2023] handle

complex scenes and produce impressive walkthroughs from a single
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image. However, when synthesizing views that are relatively close

to the input, the quality of their synthesized images are not on par

with the existing modular or MPI-based techniques.

2.2 Image Relighting

Image relighting is the process of reconstructing images of a scene

under different illumination. This problem is highly related to in-

verse rendering where the aim is to estimate the image formation

factors (e.g., shape, reflectance, lighting) of a scene. Several methods

propose to handle this application either by directly estimating the

relit images [Xu et al. 2018], estimating the individual factors [Xu

et al. 2019], or by utilizing NeRF [Bi et al. 2020a,b; Boss et al. 2021;

Srinivasan et al. 2021; Zhang et al. 2021]. However, these approaches

focus on simple scenes or single objects, and require multiple images

as the input. For more complex scenes, Philip et al. [2019] propose

a relighting approach for outdoor scenes, while Philip et al. [2021]

and Wu et al. [2022] focus on indoor scenes. However, both of these

techniques use several images of the scene as the input.

Several techniques [Li et al. 2020, 2022; Sengupta et al. 2019;

Wang et al. 2021] propose to estimate all the image formation fac-

tors including shape, reflectance, and lighting, from a single image.

Sengupta et al. [2019] propose an inverse rendering network to

estimate albedo, normal, and a single environment lighting. Li et

al. [2020] extend this work to estimate per-pixel lighting, as well as

roughness and depth. Wang et al. [2021] further propose to estimate

3D lighting of the scene through volumetric spherical Gaussian.

Moreover, Li et al. [2022] present a holistic scene reconstruction

system that estimates the reflectance, shape, and parameteric 3D

lighting. These techniques demonstrate impressive results for object

insertion, material editing, and dramatic lighting change [Li et al.

2022] (e.g., covering a window). While they could potentially be

used to perform pixel reshading, these methods do not meet the

quality requirement for our application.

3 ALGORITHM

Given a single RGB image 𝐼 , captured with a camera at location c,

our primary goal is to synthesize an image 𝐼 ′ from a novel view

c
′. Similar to most existing methods [Han et al. 2022; Jampani et al.

2021], we assume the depth can be obtained with a reasonable

accuracy using single image depth estimation techniques [Ranftl

et al. 2022].

We begin by discussing the rendering equation [Kajiya 1986], a

reasonably expressive rendering model, to describe the relationship

between the input and novel view images. Formally, the rendering

equation describes the total outgoing radiance 𝐿𝑜 (x, 𝜔𝑜 ) at a 3D

point x along the viewing direction 𝜔𝑜 as follows:

𝐿𝑜 (x, 𝜔𝑜 ) = 𝐿𝑒 (x, 𝜔𝑜 ) +

∫
Ω
𝑓𝑟 (x, 𝜔𝑜 , 𝜔𝑖 ) 𝐿𝑖 (x, 𝜔𝑖 ) cos(𝜃𝑖 ) 𝑑𝜔𝑖 , (1)

where 𝐿𝑒 and 𝐿𝑖 are the emitted and incoming radiances, respec-

tively, 𝜔𝑖 is the incoming direction, and 𝑓𝑟 is the bidirectional re-

flectance distribution function (BRDF). Moreover, 𝜃𝑖 is the angle
between 𝜔𝑖 and the surface normal, and the integral is taken over

the entire hemisphere Ω over the surface point.

As shown in Fig. 3, the appearance of a surface point x in the

input and novel images is determined by the outgoing radiance

Fig. 3. We visualize the image formation process for the input (c) and

novel (c′) cameras. A surface point x appears at two different locations (px
and p

′
x) in the input and novel images. Moreover, the shading of point x

in the two images is determined by 𝐿𝑜 (x, 𝜔
x�c
𝑜 ) and 𝐿𝑜 (x, 𝜔

x�c
′

𝑜 ) , and

thus is different. Note that the incoming radiance 𝐿𝑖 , surface normal (and

consequently 𝜃𝑖 ), and the BRDF (shown with curly black line), are the same

for both the input and novel view images.

Input Image Novel View Image

160 px 160 px

Reshading

Relocation

Fig. 4. We show an input and a novel view image. The same point on the

table appears at different locations and with different shadings in the input

and novel images. Therefore, the view synthesis process can be divided into

two tasks of pixel reshading and relocation.

𝐿𝑜 (x, 𝜔
x�c
𝑜 ) and 𝐿𝑜 (x, 𝜔

x�c
′

𝑜 ), respectively. Here, 𝜔x�c
𝑜 is the direc-

tion from the surface point to input camera location c, while 𝜔x�c
′

𝑜
represents the direction to the novel camera at position c

′.

Based on this analysis, we observe that the appearance of point x

in the input and novel images differs in twomajor ways: 1) The point

x appears with different shadings in the input and novel images

as its appearance is determined by 𝐿𝑜 (x, 𝜔
x�c
𝑜 ) and 𝐿𝑜 (x, 𝜔

x�c
′

𝑜 ),

respectively. 2) The location of this point in the two images is

different; px and p
′
x in the input and novel images, respectively. This

is determined by the intersection of the rays along directions 𝜔x�c
𝑜

and 𝜔x�c
′

𝑜 with the image planes of the input and novel cameras,

respectively.

Therefore, we can describe the view synthesis process through

two tasks of pixel reshading and relocation, as shown in Fig. 4. Ex-

isting modular approaches [Jampani et al. 2021; Shih et al. 2020],

synthesize novel view images by warping the input image to the

novel view using the input depth. As such, they mainly focus on

the pixel relocation task and ignore the pixel reshading process,

which is responsible for the view-dependent effects. The end-to-

end systems [Han et al. 2022; Li and Kalantari 2020], on the other

hand, attempt to learn both pixel reshading and relocation processes
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by minimizing the loss between the estimated and ground truth

novel view images. However, these systems often ignore the pixel

reshading task as the contribution of the shading differences to the

appearance loss is small; view-dependent highlight are often con-

centrated in small regions in each scene. As such, these techniques

are not able to properly handle the view-dependent effects.

To address this problem, we propose to treat pixel reshading and

relocation as two independent tasks. Specifically, we first adjust

the shading of the input image according to the novel view camera.

We then use the reshaded image as the input to the approach by

Wang et al. [2022] to relocate the pixels and produce the final image.

Below we discuss our approach in detail.

3.1 Pixel Reshading

Our goal is to take the input image 𝐼 and produce a reshaded image

𝐼𝑠 that has the same shading as the novel view image. This necessi-

tates changing the shading of input pixel px from 𝐿𝑜 (x, 𝜔
x�c
𝑜 ), to

the shading of the corresponding pixel in the novel image p′x, i.e.,

𝐿𝑜 (x, 𝜔
x�c

′

𝑜 ). Note that at this stage, we are not interested in pixel

relocation and reshading occurs in the input camera frame.

According to the rendering equation (Eq. 1), performing the re-

shading process requires estimating various components: the light-

ing 𝐿𝑒 (emitters), material properties 𝑓𝑟 , incoming radiance from all

directions going through the hemisphere 𝐿𝑖 , and the normals (to

compute 𝜃𝑖 ). Once these quantities are estimated, it is possible to

recompute the shading of pixel px in the input image, by evaluating

the integral in Eq. 1 using the outgoing direction of the correspond-

ing pixel in the novel view image 𝜔x�c
′

𝑜 . Note that the outgoing

direction can be easily inferred from the input depth and the camera

positions (provided relatively to avoid the need for estimating the

input camera pose).

Unfortunately, estimating all of the aforementioned quantities

from a single image is an extremely challenging problem. While

there are existing techniques [Li et al. 2020, 2022; Sengupta et al.

2019; Wang et al. 2021] that estimate these various factors to a great

extent, the quality of their re-rendered images falls short of the

requirements for our view synthesis application.

Therefore, we instead propose to directly learn the reshaded im-

age from the input image using a neural network. Although simple,

as shown in Sec. 4 and in the supplementary video, our method is

able to handle this challenging problem reasonably well and produce

results with plausible moving highlights. In the following sections,

we describe our dataset, inputs, architecture, and training process.

3.2 Dataset

To train our reshading network, we need a dataset of input-reshaded

image pairs, which is currently not available. Unfortunately, obtain-

ing such a dataset from real scenes is extremely challenging. Cap-

turing the reshaded image necessitates taking a picture of the scene

from the input camera view, but with the light rays going towards

a different camera. One potential solution is to take a large number

of images of a scene and use neural radiance field (NeRF) [Milden-

hall et al. 2020] to reconstruct the radiance field of the scene. This

radiance field can then be used to produce the reshaded images.

Input Primary Ray

N
ovel Prim

ary Ray

Fig. 5. We visualize our modification to the path tracer to render the re-

shaded images. We trace a primary ray to find the first intersection from

the input camera. We then find the ray from the novel camera to this point

(novel primary ray). This ray is then used for shading computation at the

intersection point and generation of the secondary ray.

Input Image Ground Truth Reshaded Image

Depth Validity Mask

Fig. 6. For each training example in our dataset, we store the input and

ground truth reshaded images, as well as the depth and validity mask. The

red arrows point to the highlights in the input image that are moved in the

reshaded image. Note that the objects in the reshaded image are in the same

location as the input image, since reshading happens in the input camera

frame. Small areas in the reshaded image (indicated by the green arrow)

contain incorrect shading. We mask these out using the validity mask in

our training loss.

However, generating a large scale dataset using this approach is dif-

ficult. Additionally, even the state-of-the-art approaches [Kerbl et al.

2023; Kopanas et al. 2022; Verbin et al. 2022] struggle to produce

high-quality view-dependent effects on arbitrary surfaces.

Therefore, we propose to generate our input-reshaded image pairs

synthetically. Specifically, we use the Tungsten renderer [Bitterli

2014] and render our input images using a large number of samples

per pixel. We then slightly modify the path tracer to obtain the

corresponding reshaded images, as shown in Fig. 5. To do this, we

trace primary rays from the input camera (input primary ray) to find

the first intersection points. We then calculate the rays connecting

the novel camera to these intersection point (novel primary ray).

These novel primary rays are then used for shading and generating

all the additional secondary rays. An example input-reshaded image

pair from our dataset is shown in Fig. 6 (top row).

Note that some regions from the input image are occluded in

the novel camera. We could easily detect and mask these areas by

performing a visibility check with the novel primary ray. However,
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Fig. 7. Scenes used to create the synthetic dataset.

we choose not to do so to provide more content for our network to

learn from. Most of the occluded areas will be shaded correctly as

if they are not obscured from the camera. However, small regions

(see the green arrow in Fig. 6), typically along the boundaries of

objects, will be incorrectly shaded. These are the cases where the

angle between the surface normal and novel primary ray is greater

than 90 degrees. We detect these regions and create a validity mask,

as shown in Fig. 6, which is used to mask out such areas when

computing our training loss. Note that since we are using Monte

Carlo rendering, each pixel is rendered by tracing a large number of

rays. We mark a pixel as invalid if any of such rays does not satisfy

our constraint. This is why the line in the validity mask appears to

be thicker than the problematic region in the reshaded image.

We use the above approach to generate our synthetic dataset using

9 scenes, shown in Fig. 7, provided by Bitterli [2016]. For each scene,

we render 200 input-reshaded pairs by randomly placing the input

and novel cameras inside the scene. We randomly choose the novel

cameras inside a sphere, centered on the input camera, with radii

ranging from 0.1 to 0.3. Note that since all the scenes have similar

global scale, the chosen radius range corresponds to a reasonable

and uniform camera movement in all the training scenes. For every

image pair, we randomly change the texture and material properties

of the objects in the scene. By default, most scenes only use the

environment map as the light source. To increase the robustness of

our approach, we add multiple random colored orbs into the scene

at random locations. We render 1280 × 720 high dynamic range

(HDR) images with 8K samples per pixel and for each example, we

store the input and reshaded images, as well as the depth, validity

mask, and the metadata of the cameras. Our training data for one

example is shown in Fig. 6.

3.3 Inputs

For our network to be able to properly reshade an input image,

we need to provide the depth information along with the novel

camera position to our network. The novel camera position is a

3-channel vector containing position of the novel camera relative

to the input camera. Similar to most current single image view

synthesis methods, we estimate the depth map using an existing

single image depth estimation method (Ranftl et al.’s approach [2021;

2022] in our implementation). Instead of passing the depth to our

network, however, we first convert it to disparity. We then scale it

by a factor of 1/4 and clamp it to one. This ensures that the disparity
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Fig. 8. We show the architecture of our reshading network. Each convo-

lutional layers (shown in orange) is followed by a LeakyReLU activation,

except the last layer that uses tanh activation. We use average 2 × 2 pool-

ing for downsampling, while we use bilinear upsampling to increase the

resolution. We use an MLP to convert the 3 channel novel camera position

vector to a 125-channel feature vector. We then concatenate the original

camera position vector with this feature vector. The result is then replicated

and attached to the bottleneck feature map. The dashed lines represent skip

connections. Note that our network estimate the residual image which is

added to the input to obtain the reshaded image.

is in the range [0, 1] and it covers the depth from 0.25 to infinity.

Moreover, we apply frequency encoding [Mildenhall et al. 2020]

with 5 frequencies (11 channels; original plus 5 sines and 5 cosines)

to the input disparity to allow the network to effectively use the

disparity, particularly for far away regions. Frequency encoding

essentially increases the resolution of the disparity, while remaining

in the range [0, 1]; similar disparity values will have significantly

different representation in the frequency domain.

To summarize, we use the input RGB image, frequency encoded

disparity map, and the relative novel camera position as the input to

our network to produce the reshaded image. The effect of using the

disparity map and frequency encoding are shown in Figs. 11 and 12,

respectively.

3.4 Architecture

We utilize a UNet [Ronneberger et al. 2015] style encoder-decoder

style architecture consisting of 5 downsampling/upsampling layers.

The encoder takes the input image and frequency encoded dispar-

ity (3+11 channels) and produces a bottleneck feature map of size

𝐻/32 ×𝑊 /32 × 512, where 𝐻 and𝑊 are the height and width of

the input image, respectively. The three channel novel camera po-

sition vector is converted to a 125-channel feature vector using a

multilayer perceptron (MLP) with a series of fully connected layers.

This feature vector is then concatenated with the original 3-channel

camera position vector to produce our novel camera features. This

is then replicated and concatenated with the bottleneck feature map

from the encoder (map of size𝐻/32×𝑊 /32×640). The concatenated

feature map is then used as the input to the decoder to produce a

3-channel residual image. The residual is then added to the input to

produce the reshaded image. Our architecture is shown in Fig. 8.

3.5 Training

We perform a series of augmentations to improve the generalization

ability of our network. We take 384 × 384 random crops of the HDR

synthetic dataset and convert the input and ground truth reshaded

pairs to low dynamic range images by applying random exposure

(scale factor between 3 and 10) and gamma correction (𝛾 between

2.2 and 5). In addition, we randomly scale the disparity by a factor
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of 𝑓 and the camera position by a factor of 1/𝑓 simultaneously. This

increases the range of scene scales in our training data.

Since this problem is highly ill-posed, we perform the training

using a combination of L1 and perceptual losses. Specifically, our

loss consists of the following three terms:

L = 𝜆1L1 + 𝜆vggLVGG + 𝜆styleLstyle, (2)

where the first term is theL1 loss between the estimated and ground

truth reshaded images and is defined as follows:

L1 = ‖𝐼𝑠 − 𝐼𝑠 ‖1 . (3)

Moreover, the second term is a perceptual VGG-based loss and is

defined as:

LVGG = ‖𝜙 (𝐼𝑠 ) − 𝜙 (𝐼𝑠 )‖
2
2, (4)

where 𝜙 represents the output features from the conv4_4 layer of
VGG-19 [Simonyan and Zisserman 2014]. Furthermore, the third

term is a perceptual VGG-based style loss and is defined as:

Lstyle = ‖𝐺 (𝜙 (𝐼𝑠 )) −𝐺 (𝜙 (𝐼𝑠 ))‖
2
2, (5)

where𝐺 computes the Gram matrix of the VGG features extracted

from the estimated and ground truth reshaded images. Finally, 𝜆1,
𝜆vgg, and 𝜆style define the weight of each term in Eq. 2 and we set

them to 1e-1, 1e-2, and 1, respectively. Note that we multiply the

estimated and ground truth reshaded images by the validity mask

before computing each loss term.

3.6 Pixel Relocation

Once our reshading network is trained, we can use it to reshade

the input image during inference. We then use the reshaded image

as the input to the approach by Wang et al. [2022] to reconstruct

the final novel view image. This approach is designed to perform

view and time interpolation using near duplicate photos. However,

all the operations related to view synthesis utilize a single image.

Therefore, we isolate the view synthesis component and use it to

generate novel views from a single image.

The view synthesis component of this approach is an enhanced

version of the technique by Shih et al. [2020]. Specifically, using the

depth, this method first constructs a layered depth image (LDI) rep-

resentation [Shade et al. 1998]. It then inpaints the occluded regions

and produces LDI features using a network. The LDI features are

then warped to the novel view and combined using a subsequent

network to produce the final image. Note that our reshaded image is

different for each view, which could potentially change the inpaint-

ing results, and consequently affect coherency of the synthesized

views. However, we did not observe this effect in practice. As shown

in the supplementary video, our results are coherent.

We note that our approach can be combined with any view syn-

thesis technique that focuses on pixel relocation. We demonstrate

this in Table 1, where we examine the performance of our approach

using Shih et al.’s method [2020] (3D Photo) for pixel relocation.

4 RESULTS

We implement our approach in PyTorch and use Adam [Kingma and

Ba 2015] with the default parameters for training. We use a learning

rate of 1e-4 for 300K iterations and 1e-5 for another 200K iterations.

Our training takes 5 days on an Nvidia 2080 Ti GPU.

View
 2

View
 1

Ours3D MomentsSVMPIInput

View
 2

View
 1

View
 2

View
 1

View
 2

View
 1

View
 2

View
 1

Fig. 9. We show comparisons against SVMPI [Tucker and Snavely 2020]

and 3D Moments [Wang et al. 2022]. Only our approach is able to move

the highlights in different views. Note that we carefully select the insets to

cover roughly the same regions in the two views to be able to demonstrate

the view dependent effects.

We compare our approach against single image view synthesis

approaches by Tucker and Snavely [2020] (SVMPI) and Wang et

al. [2022] (3D Moments). SVMPI is trained in an end-to-end manner

on a multi-view dataset and ideally should be able to handle the

view-dependent effects. On the other hand, 3D Moments, which we

use for pixel relocation, is a modular approach that is not able to
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Table 1. We show numerical comparisons against the other approaches on

three synthetic scenes by evaluating the error between the ground truth

and novel view images in terms of PSNR, SSIM, and LPIPS.

Scene Method PSNR↑ SSIM↑ LPIPS↓

Veach Ajar

SVMPI 22.72 0.877 0.0428

3D Photo 30.06 0.962 0.0200

3D Photo + Ours 30.70 0.962 0.0198

3D Moments 29.78 0.962 0.0149

3D Moments + Ours 30.41 0.962 0.0147

Bathroom

SVMPI 20.27 0.602 0.1255

3D Photo 29.96 0.907 0.0329

3D Photo + Ours 30.84 0.910 0.0323

3D Moments 32.03 0.951 0.0284

3D Moments + Ours 33.12 0.953 0.0281

Modern Hall

SVMPI 22.73 0.763 0.0759

3D Photo 32.63 0.950 0.0230

3D Photo + Ours 32.99 0.951 0.0229

3D Moments 30.98 0.951 0.0197

3D Moments + Ours 31.21 0.953 0.0196

move the highlights. We use the code provided by the authors to

generate the results. We use images from several datasets, including

Holopix50K [Hua et al. 2020], Open Images V7 [Kuznetsova et al.

2020] and Shiny [Wizadwongsa et al. 2021]. Here, we show the

image results, but the differences can be better observed in the

supplementary video.

In Fig. 9, we show comparisons against the other techniques on

five scenes. For each scene, we show the results for two different

views. We have carefully selected the insets, so they roughly cover

the same region in the two views. Therefore, each approach’s ability

to adjust the shading based on the view can be observed by compar-

ing the two views. Overall, 3D Moments produce results where the

shading of the two views are almost identical. In some cases, SVMPI

slightly alters the position of the highlights, but when doing so, it

disturbs the texture underneath. Additionally, it produces slightly

overblurred results. Our approach, on the other hand, produces

detailed images with moving highlights. For example, in the first

and fourth rows, our approach moves the highlight to the right and

left, respectively, when transitioning from view 1 to 2. Note that

our method does not leak the highlights to the dark region in the

top row and the diffuse key fob in the fourth row. In the second row,

our method produces results with slightly darker shading in the

second view, while keeping the underlying texture intact. Finally,

in the third and last rows, our approach is able to properly move

the highlights (to the left from view 1 to 2) on the red structure and

the burger bun, respectively.

Furthermore, we numerically compare our view synthesis results

against the other techniques on three synthetic scenes in Table 1. To

demonstrate that our approach can be used with any pixel relocation

method, we show results with both 3D moments [Wang et al. 2022]

and Shih et al.’s approach [2020] (3D Photo). As seen, our approach

improves the performance of bothmodular relocationmethods. Note

Table 2. We numerically evaluate the effect of reshading in isolation. Our

reshading network produces results that are closer to the ground truth than

the input.

Scene Method PSNR↑ SSIM↑ LPIPS↓

Veach Ajar
Input 35.45 0.993 0.0012

Ours 40.10 0.994 0.0008

Bathroom
Input 36.50 0.991 0.0024

Ours 41.20 0.992 0.0020

Modern Hall
Input 39.99 0.989 0.0015

Ours 42.71 0.989 0.0012

Input

GTInput Ours

Reshading

3D Moments Ours GT

Relocation
+Reshading

Fig. 10. We show our reshading (top) and view synthesis (bottom) results on

theModern Hall scene. Our approach is able to properly move the highlights

during the reshading process (top) and produce novel view images that better

match the ground truth than existing techniques (bottom).

that SSIM and LPIPS are highly sensitive to the textures, but are not

sensitive to the smooth highlights. As such, these metrics do not

fully reflect our quality improvement. Moreover, we evaluate our

reshading network in isolation (see Table 2), by measuring the error

between our synthesized and ground truth reshaded images. By

appropriately moving the highlights, our approach produces results

that are significantly closer to the ground truth than the input

images (without reshading). This is shown visually in Fig. 10 for the

Modern Hall example. Our approach properly moves the highlights

(top row), and thus is able to synthesize a novel view image that

better matches the ground truth than 3D Moments (bottom row).

Next, we discuss the effect of several design choices in our ap-

proach numerically (Table 3) and visually (Figs. 11, 12, and 13). In

Fig. 11, we demonstrate that without the disparity as the input, our

reshading network is not able to detect the depth discontinuities and

smears the shading of the tomato on the bowl. Moreover, as shown

in Fig. 12, without frequency encoding, our network has difficulty

handling the objects that are far away and incorrectly changes their

shading. Finally, in Fig. 13 we show the result of directly concate-

nating the camera pose with the bottleneck features (w/o MLP).

As seen, without the MLP, our network cannot effectively utilize

the camera information and incorrectly changes the shading of the

background areas.

5 LIMITATIONS

Although we have demonstrated that our simple network can pro-

duce reasonable results, this is an extremely challenging problem

and, as shown in Fig. 14, our approach has several limitations. For
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Table 3. We show numerical comparisons against variations of our approach

without disparity, frequency encoding, and MLP. The results are averaged

over the three synthetic scenes. As shown, all these components are neces-

sary to achieve the best results.

Method PSNR↑ SSIM↑ LPIPS↓

w/o disparity 30.98 0.950 0.0213

w/o FE 31.11 0.950 0.0210

w/o MLP 31.17 0.951 0.0211

Ours 31.58 0.956 0.0208

Input Input w/o disparity w/ disparity
Fig. 11. We evaluate the effect of using disparity as the input to our shading

network.

Input Disparity Input w/o FE w/ FE

Fig. 12. We compare our results against a version of our approach where

we do not apply frequency encoding to the input disparity.

Input Input w/o MLP w/ MLP
Fig. 13. We compare our results against a version of our approach where

the camera position is directly concatenated to the bottleneck features of

the UNet.

example, we are currently not able to handle highly specular sur-

faces, such as mirrors. As shown in Fig. 14 (mirror on the right

wall), our technique is not able to correctly move the content inside

the mirror between the two reshaded images. Additionally, in cases

where the light sources are very close to diffuse surfaces, they create

strong saturated regions (see the area underneath the mirror). In

these cases, our reshading network interpret these as highlights and

moves them between different views.

6 CONCLUSION

We have presented a method to handle view dependent effects in

single image novel view synthesis. Specifically, we propose to split

the task of view synthesis into pixel reshading and relocation pro-

cesses and treat them independently. We use a network to adjust

the shading of the input image according to the novel camera. We

then use the reshaded image as the input to an existing view syn-

thesis method to perform the pixel relocation task. We demonstrate

that our method produces plausible results with view-dependent

highlights that are better than the existing methods.

Input Reshaded 1 Reshaded 2

Fig. 14. We show the input image as well as two reshaded images corre-

sponding to different views. As seen, our method is not able to properly

move the content of the mirror on the right wall in the two reshaded images.

Additionally, while our method correctly moves the highlights on the ground,

it detects the strong saturated regions under the mirror as highlights and

move them in the reshaded images.
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