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a b s t r a c t 

Thermal radiation has been extensively modeled in static particulate media with effective radiative prop- 

erties or with statistical ray tracing techniques. However, these techniques are not directly compatible to 

evaluate radiative fluxes on discrete particles, which is more suitable for particle flow systems. This study 

focuses on such a discrete approach to compute radiative fluxes by developing view factors correlations 

for particle-particle and particle-wall. Training data is generated from physics-based Monte Carlo ray trac- 

ing simulations on a monodisperse, packed bed with solid volume fractions ranging from 0.016 to 0.45. 

This data was used to develop reduced-order correlations to determine particle-particle and particle-wall 

radiative view factors as a function of particle-particle and particle-wall separation distance, viewing an- 

gle, and the number of shading particles. Uniquely, we determine best-fit functions that are physically 

interpretable to account for shading effects by particles. A sigmoid function with a non-linear depen- 

dence on viewing angle governs the extent of shading by an intermediate particle. A correction factor 

with the particle-wall normal separation distance as the feature variable is introduced to account for 

shading effects between a particle and a planar wall surface. View factor correlations result in reliable 

and reasonably accurate predictions. For a solid volume fraction of 0.45, the root mean squared errors 

of particle-particle and particle-wall view factors are 2.7e-4 and 0.021 with corresponding training data 

in the ranges of 0–0.08 and 0–0.5 respectively. To scale these correlations for large number of particles, 

restricting shading detection up to 5 nearest neighbors is demonstrated to be an effective strategy to bal- 

ance prediction accuracy with computational efficiency. With thousands of particles, the computational 

cost of proposed view factor correlations with thresholding of 5 shading particles is about 100 times 

faster than serial Monte Carlo ray tracing simulations for a solid volume fraction of 0.45. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Heat transfer in particulate media has important fundamental 

nd technological applications, and thermal radiation becomes a 

ominant mode of heat transfer at high temperatures and in evac- 

ated environments [1–6] . Particulate media enhances heat and 

ass transfer between the solid and fluid phases such as in packed 

eds [7–10] , foams and fibers [11–14] , granular flows and fluidized 

eds [3,15–18] . Such media are radiatively participating, as ther- 

al radiation can be absorbed, emitted, and scattered within their 

olume. Many models have been developed to predict radiative 

ransport in static porous and dispersed media [7,19–21] . However, 

hey can pose limitations to evaluate radiative transport in dy- 

amically changing participating media involving flowing particles 

nd chemical reactions. Flow regimes dictate spatial distributions 
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f particles and therefore its effective radiative properties [22,23] , 

nd chemical transformations can affect material composition and 

ts properties [24,25] . Such dynamic participating media find im- 

ortant applications as heat-transfer and thermochemical materi- 

ls in concentrated solar power plants [2,3,26] , and in reactors for 

rying, catalysis and gasification for fuel production applications 

4–6,27] . Our study focuses on the determination of radiative view 

actor correlations as a function of particle spatial locations and 

lane wall dimensions to facilitate discrete radiative flux calcula- 

ions for flowing particles. 

Radiative fluxes in the energy transport equation can be evalu- 

ted using deterministic and probabilistic approaches. The former 

umerically/computationally solves the continuum radiative trans- 

ort equation with a priori knowledge of its effective radiative 

roperties, including the extinction coefficient, scattering albedo, 

nd phase function [28] . Many approximations have been devel- 

ped to simplify the governing radiative transport equation spe- 

ific to its application [29,30] . The diffusion and spherical harmon- 

cs approximations are well-suited to quantify radiative fluxes in 

https://doi.org/10.1016/j.ijheatmasstransfer.2023.124250
http://www.ScienceDirect.com
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Nomenclature 

a,b,c fit-function coefficients for the effect of shading 

function 

C correction factor for particle-wall 

d distance or diameter, mm 

f function 

F view factor 

H height of modeling domain, mm 

k number of shading particles 

l Euclidean norm 

L length of modeling domain, mm 

M the maximum power of input variable 

N number 

O complexity 

P probability 

r line vector 

S shading factor for particle-particle 

W width of modeling domain, mm 

x pertaining to x-coordinate or input variable 

X input matrix 

y pertaining to y-coordinate or output variable 

Y output matrix 

z pertaining to z-coordinate 

Greek symbols 

α viewing angle magnitude, °
β coefficient for polynomial functions 

γ ratio or normalized value 

φ volume fraction 

Superscripts 

m power of input variable 

T transpose 
∗ pertinent to a dimensionless value 

− pertinent to a mean value 

∼ pertinent to a predicted value 

→ vector 

Subscripts 

c pertinent to a critical value 

i the index of launching surface, including particles 

im 1 j lines connecting particle centers of i, m 1 and i, j 

j the index of intercepting surface, including particles 

and six walls 

m 1 nearest shading particle 

m 2 the second nearest shading particle 

max the maximum value 

min the minimum value 

n index of input variable 

p pertinent to a particle or summation index of scal- 

ing factor 

pp particle-particle 

pp,0 particle-particle without shading effect 

pp,k particle-particle with k number of shading particles 

pw particle-wall 

pw,0 particle-wall without shading effect 

pw,k particle-wall with k shading particles 

q summation index of scaling factor 

s solid 

t tangential or training dataset 

v validation dataset 

w wall 

⊥ normal direction 
o

2

Abbreviations 

MCRT Monte Carlo ray tracing 

MRE mean relative error 

RMSE root mean squared error 

R 2 R squared value or the coefficient of determination 

ptically thick media and in regions precluded from large gradients 

n energy densities [31–33] . The discrete ordinates approximation 

ssumes finite angular directions for radiative intensity transport 

nd provides the advantage of seamlessly integrating with finite 

olume solvers for other transport phenomena (mass, momentum, 

nergy, species) [34–37] . However, due to the discrete nature of 

he angular approximations, “ray effects” can arise due to spuri- 

us, large spatial oscillations in the radiative energy density [38] . 

his effect has been overcome by increasing the number of angular 

irections, averaging over angular quadratures with different ref- 

rence frame orientations [39] and by adding artificial scattering 

f radiative intensity [40] , but with the drawback of increase in 

ompute/memory requirements. Moreover, convergence and stabil- 

ty need to be examined with the number of angular directions 

n addition to the mesh density for the discrete ordinates method 

37] . For packed beds of large particles, the diffusion approxima- 

ion [41–43] , and the discrete ordinates method [8,34] are com- 

only used to model radiative transport. Beyond the constraints 

nd limitations already discussed, these techniques rely on inputs 

or the effective radiative properties obtained from models and/or 

easurements. 

Probabilistic approaches can be used to launch and trace many 

ays or photon bundles for absorption, scattering and emission 

vents in participating media [44,45] . This approach has been 

sed to determine effective radiative properties [46,47] , to directly 

odel radiative fluxes [4 8,4 9] , and to also compute radiative view 

actors for participating media [49–51] . A high degree of accuracy 

an be achieved with enough rays (typically ∼10 6 ) being tracked 

nd by using physics-based probability density functions. However, 

his approach will be especially limiting for the cases of flowing 

articles due to large computational time and memory require- 

ents [50,52] . Therefore, radiative transport in particulate flows 

ave been modeled using ray tracing by either analyzing the sys- 

em at selected snapshots of time [53] or by considering very small 

olume fractions of particles ( < 0.006) to perform flow-radiation 

oupling [54] . 

Other than deterministic and stochastic predictions, data-driven 

odeling for radiative transport in participating media is also 

aining traction [55–60] . Wu et al. [57] and Tausendschön et al. 

58] have developed neural network models to obtain particle- 

article and particle-wall view factors based on distance normal- 

zed by diameter. While the former did not generalize their results 

or different solid volume fractions, the latter developed geometry- 

ased correlations which were however shown to be sensitive to 

he solid volume fraction of the training dataset. Therefore, these 

orrelations are better suited for moderately dense particle beds 

solid volume fraction of 0.2–0.4). Additionally, one of the limi- 

ations of the neural-network models is the increased barrier to 

ranslate/reproduce outputs from one study to another without ex- 

ct inputs of the network layout and parameters. Johnson et al. 

ave developed view factor correlations based on particle posi- 

ions, and applied it to model radiative heat transfer in the gravity- 

riven flow through a channel [59,60] . However, this study did not 

onsider the effect of shading by neighboring particles and applied 

verage view factor values as a function of distance between par- 

icles. This approximation can lead to large deviations in predicted 

iew factors for high solid volume fractions, where shading effects 

n view factor values become significant. Even though shading ef- 
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Fig. 1. Schematic of packed bed modeling domain, in a size of 

4 mm × 4 mm × 6 mm (length × width × height), with spherical particles 

of diameter, d p = 0.4 mm, for MCRT simulations to predict particle-particle and 

particle-wall view factors. Millions of rays are launched from target particle i (red) 

and traced for intersections with other surfaces including every other particle j 

(gray) and six walls. The distance between particles i and j and normal distance 

between particle i and the right wall (blue shaded) are annotated as d pp and 

d pw , ⊥ (mm). 
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ects were considered to predict particle-particle view factor in the 

tudy by Feng and Han’s [61] , these results were not further inter- 

reted to develop position based correlations. 

Overall, ray tracing for view factor calculations is expected to be 

omputationally limiting for particle flow systems. Existing data- 

riven view factor predictions are either applicable to a specific 

orphology and/or preclude the effects of shading, especially for 

article-wall view factors, and lack physical interpretability. Moti- 

ated by the current knowledge gaps, the primary objective of this 

tudy is to determine particle-particle and particle-wall view factor 

orrelations as a function of spatial locations of the particles and 

all surfaces for an ensemble of large particles in a packed bed, 

hile considering shading effects. A notable outcome from this 

tudy includes the development of physically interpretable view 

actor correlations that explicitly account for shading while being 

gnostic to the solid volume fraction. Data-driven modeling based 

n multivariate linear regression is used to obtain the govern- 

ng correlations. Training and validation datasets for the particle- 

article and particle-wall view factors are obtained from Monte 

arlo ray tracing (MCRT) simulations. Ray tracing is performed for 

 random packed bed of spherical particles with solid volume frac- 

ions ranging from 0.016 to 0.45. To isolate effects of shading by 

eighboring particles, pairs of particles with varying number of 

articles in between them were modeled using ray tracing, which 

nforms data-driven shading factor predictions. Compared to prior 

ork with similar scope, our study is the first to obtain view fac- 

or correlations accurately and efficiently while factoring in the ef- 

ects of shading. Even though the training dataset of view factors 

ere obtained from a static bed, because the correlations devel- 

ped only depend on spatial locations/positions, particle size and 

lane wall dimensions, they can be extended to compute view fac- 

ors even for flowing particles, where particle spatial locations can 

e dynamically updated with time. Additionally, our correlations 

resent a more computationally lightweight approach to compute 

adiative view factors compared to collision-based ray tracing eval- 

ations. 

. Theory and modeling approach 

A packed bed with monodisperse and randomly distributed 

pherical particles was computationally generated to obtain 

urface-surface view factors ( Fig. 1 ). Particles with a fixed diameter 

f 0.4 mm were placed inside a large enough domain with dimen- 

ions (4 mm × 4 mm × 6 mm) that are at least ten times larger

han the particle size in any direction. Particle sizes are considered 

o be large enough compared to the characteristic wavelengths 

or thermal radiation, such that geometric optics is applicable to 

odel radiation [62,63] . The absolute size of the particles modeled, 

nd the modeling domain will not affect the predictions, as these 

orrelations were obtained as a function of non-dimensional pa- 

ameters. The coordinates for particle centers within the bed were 

andomly sampled from a uniform distribution of spatial locations 

ithin the domain, with the constraint of no overlaps between any 

air of particles generated. If an overlap was detected, the coordi- 

ates of particle position were regenerated. While particle centers 

re always located inside the cuboid, some fraction of the parti- 

le surface area can lie outside the bounding surfaces ( Fig. 1 ). Five

istinct solid volume fractions were considered, φs = 0.016, 0.068, 

.12, 0.28, and 0.45, by varying the number of particles, N p , inside 

he domain ( Eq. (1) ). 

s = 

N p × 4 
3 

× π ×
(

d p 
2 

)3 

L ×W × H 

(1) 

Solid volume fraction range selected in this study is representa- 

ive of dilute to moderately dense packing of particles. For chem- 
3 
cal catalysis applications, packed beds with solid volume frac- 

ions in the range of 0.35–0.65 have been extensively used [64–

6] ; in particle receivers for concentrated solar power applications 

olid volume fractions of 0.01–0.23 are expected for free-falling 

ravity-driven flow of sand-like particles [67,68] , and solid volume 

ractions of 0.01–0.15 are commonly encountered in fluidized bed 

ombustors [69–72] . 

.1. Monte Carlo ray tracing simulations for view factor predictions 

Radiative view factors, also referred to as exchange factors, are 

eometric parameters that quantify the fraction of radiative en- 

rgy leaving one surface that is intercepted by another surface [73] . 

ollision-based Monte Carlo ray tracing (MCRT) simulations were 

erformed to evaluate the diffuse view factor, ( Eq. (2) ) between 

airs of particles, and between particle and wall surfaces. 

 i j = 

Total number of rays intercepted by surface j 

Total number of rays launched diffusely from particle surface i 

(2) 

A statistically large number of rays, up to 10 7 , are launched 

rom every particle and traced for intersections with other par- 

icles and bounding wall surfaces. The launch coordinates were 

ampled to be uniformly distributed on the particle surfaces (Sec- 

ion A1). Particle surfaces were assumed to be diffuse, which is 

 reasonable choice for unpolished material surfaces with rough- 

ess. The polar and the azimuthal angle for the launched rays were 

ampled from physics-informed cumulative distribution functions 

o diffusely emit rays from the particle surface. All surfaces, in- 

luding particles and walls, were modeled to be perfectly absorp- 

ive to determine the view factors [73] . Therefore, when a ray in- 

ersects any surface, its tracking is complete and followed by the 

aunch of a new ray. Rays were launched from every particle sur- 

ace and tracked for intersections with every other particle and 

all surfaces in the domain. For particle-particle view factor, i and 

 are both particles, and therefore F ij is denoted as F pp ; similarly, 

he particle-wall view factor is denoted as F pw . For N p particles, 

e compute N p ( N p +6) view factors; for the largest solid volume 
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Fig. 2. Flowchart depicting the use of ray tracing simulations to provide training and validation datasets to develop data-driven/ reduced-order correlations for particle- 

particle and particle-wall view factors as a function of the spatial location of particles and wall surfaces and while accounting for shading effects. 
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X

raction modeled, this amounts to about 1.6 million ( ∼1289 2 ) total 

iew factors computed. A flowchart has been provided in Section 

1 to detail the algorithm for computing view factors using MCRT 

imulations. 

An in-house C ++ MCRT code, previously developed by Li et al. 

22] , was adapted and modified to compute view factors. Statistical 

onvergence was ensured by launching and tracking a large enough 

umber of rays that yielded minimal changes in the predicted view 

actors with increase in the number of rays launched. Changes in 

iew factors were quantified by computing the l 2 norm with re- 

pect to results obtained for the case with 10 7 rays for a solid 

olume fraction of φs = 0.28 with 800 particles. The l 2 norm of 

.0179, 0.0058 and 0.0020 were obtained for 10 4 , 10 5 , and 10 6 rays

espectively, indicating statistical convergence for 10 6 rays. Simula- 

ion results for view factors were validated by (a) checking for the 

riteria of view factor summation, self-viewing, superposition and 

eciprocity [73] (Section A2), and (b) by comparison with analyti- 

al solutions [74] of a pair of spherical particles ( Section 3.1 .). With

0 6 rays the summation criterion is satisfied perfectly, whereas 

eciprocity criterion is satisfied with 4.7% error. Ray tracing pre- 

ictions are within 1.3% of the analytical solution for a pair of par- 

icles. 

The ray tracing simulations were compiled with Microsoft Vi- 

ual Studio Community 2019 and performed on an Intel® Core TM 

7–970 0 processor (3.0 0 GHz, 32GB). For the largest solid volume 

raction modeled, φs = 0.45, the view factor computations from ray 

racing took about 14 hours of wall-clock time without paralleliza- 

ion. 

.2. Data-driven modeling for view factor correlations 

Fig. 2 shows the flowchart of the algorithm in this study. 

article-particle, F pp , and particle-wall, F pw , view factors obtained 

rom MCRT simulations were used as inputs to train and validate 

ata-driven models. Data-driven correlations and analytical solu- 

ions are first obtained to predict the maximum particle-particle 

nd particle-wall view factor values in the absence of any shading 

ffects. Next, informed by ray tracing simulation data, we develop 
4

eometry-based relationships to correct for shading effect as a 

unction of a shading factor based on k shading particles and view- 

ng angle, S pp,k , for particle-particle view factor. Similarly, data- 

riven correlations are developed to compute a correction factor, 

 pw , which scales the net contributions of shading effect from par- 

icles present between a particle and a wall surface. Predicted data 

ere compared with the validation dataset from the MCRT simu- 

ations to optimize best-fit parameters and functions in the view 

actor correlations obtained. Roughly 80% of view factor data from 

ay tracing simulations was randomly selected and used for train- 

ng, and the balance was used for validation. 

Polynomial functions were considered in Eq. (3) to predict the 

aximum particle-particle view factor without shading, y n = F pp ,0 
nd to determine the correction factor that scales the extent of 

hading by particles in particle-wall view factors ( Fig. 1 ), i.e., y n 
 C pw , with regression coefficients, βm , and feature variables, x n , 

ith varying power m . The power is ranging from an integer value 

f m min to a maximum value of M , and N t is the size of the training

ataset. 

 n = 

∑ 

m 

βm x 
m 

n , n = 1 , 2 , . . . , N t ; m = m min , m min + 1 , . . . , M 

(3) 

The description of the feature variable depends on what view 

actor is being predicted. For particle-particle view factors, it is 

he ratio of the inter-particle distance between pairs of particles, 

 pp , to the diameter of the particles, d p ( Eq. (4) ). However, for

he correction factor predictions, the feature variable is the non- 

imensional normal distance, d ∗pw , between a select particle and a 

all surface, as in Eq. (5) . 

 n = d ∗pp = 

d pp 

d p 
; p = 1 , 2 , . . . , N p (4) 

 n = d ∗pw = 

d pw , ⊥ 
d p 

; p = 1 , 2 , . . . , N p , w = 1 , 2 , . . . , 6 (5) 

In matrix form, Eq. (3) can be rearranged as Eq. (6a) , and the

xpanded expression is shown in Eq. (6b) . 

 β = Y (6a) 
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X = 

⎡ ⎢ ⎣ 

x m min 

1 
x m min +1 
1 

. . . x M−1 
1 

x M 

1 

x m min 

2 
x m min +1 
2 

. . . x M−1 
2 

x M 

2 

. . . . . . . . . . . . . . . 

x m min 

N t 
x m min +1 
N t 

. . . x M−1 
N t 

x M 

N t 

⎤ ⎥ ⎦ , 

= 

⎡ ⎢ ⎢ ⎣ 

βm min 

βm min +1 

. . . 

βM−1 

βM 

⎤ ⎥ ⎥ ⎦ 

, Y = 

⎡ ⎢ ⎣ 

y 1 
y 2 
. . . 

y N t 

⎤ ⎥ ⎦ (6b) 

The β values in Eq. (6a) were obtained by solving the linear 

quation using matrix inversion ( Eq. (7) ), 

= 

(
X T X 

)−1 
X T Y (7) 

here, X T is the transpose of the matrix X . Using the closed-form 

olution for β works well in this case because of the relatively 

mall size of the datasets considered. 

The best-fit functions are obtained by optimizing the β values 

o minimize the root mean square error (RMSE) in Eq. (8) , by con-

idering the differences between the data, y n , from MCRT simula- 

ions and predictions, ˜ y n , from different regression models; RMSE 

s averaged over the total number of validation datasets, N v . The 

oefficient of determination, R 2 , provides a measure of the qual- 

ty of the fit by comparing the deviation of model predictions with 

he variance obtained based on a mean value, y n , of the valida- 

ion dataset ( Eq. (9) ). Additionally, to quantify relative variation be- 

ween actual and predicted values, the mean relative error (MRE) 

s calculated using y n from MCRT data and ˜ y n from regression 

odel predictions ( Eq. (10) ). Since y n can be an extremely small 

alue or even 0, this relative error is only computed for a subset of 

he data, N 
′ , where y n > 10 -5 . 

MSE = 

√ 

1 

N v 

N v ∑ 

n =1 

( y n − ˜ y n ) 
2 

(8) 

 
2 = 1 −

∑ N v 
n =1 ( y n − ˜ y n ) 

2 ∑ N v 
n =1 ( y n − y n ) 

2 
(9) 

RE = 

1 

N 
′ 

N ′ ∑ 

n = 1 

y n > 10 −5 

| ( y n − ˜ y n ) | 
y n 

(10) 

Multivariate linear regression codes to obtain optimal β values 

ere developed and implemented in MATLAB R2019b using Intel®

ore TM i7–9700 processor (3.00 GHz 32GB). 

.2.1. Particle-particle view factors 

Closed form expressions has been reported to determine the 

aximum particle-particle view factor, F pp, 0 , for a pair of spheri- 

al particles without any shading particles for large distances be- 

ween particles, and a lookup table/discrete numerical values exist 

or small distance regimes as shown in Eq. (11) [74] . 

 pp , 0 = 

⎧ ⎨ ⎩ 

Numerical values , d ∗pp < 2 . 5 

1 
2 

(
1 −

(
1 − 1 

4 d ∗pp 
2 

) 1 
2 

)
, d ∗pp ≥ 2 . 5 

(11) 

Using MCRT results for a pair of spherical particles, we obtained 

 closed-form expression for a wider range of inter-particle sepa- 

ation distances of 1 < d ∗pp ≤ 20 as will be shown in Table 1 . 

MCRT simulations were performed to independently predict the 

ffects of shading by 1 and 2 particles present in between a pair of 

articles ( Fig. 3 ). Results from these cases were used to also quan-

ify shading effects in the presence of more than 2 particles. As 
5 
ill be discussed in the results, shading due to larger than 10 par- 

icles is most likely to result in particle-particle view factors that 

re very close to 0 ( Section 3.1 .). Consider the geometry set up 

hen there is one particle, m 1 , between a pair of particles i and

 ( Fig. 3 (a)). The view factor between particles i and j was com-

uted in the presence of particle m 1 , and as a function of viewing

ngles between particles. Ray tracing simulations were performed 

ith 10 6 rays launched from the surface of particle i and traced for 

ntersections with j . To probe the influences of the viewing angle, 

he angular position of particle j was varied relative to the posi- 

ions of i and m 1 ( Fig. 3 (a)). For this calculation, while the coor-

inates of the centers of particles i and m 1 were fixed, the posi- 

ion of particle j was varied as a function of the viewing angle, 

im 1 j 
, for a selected distance, d ij . This angle formed between the 

ine vectors connecting the centers of particle i and m 1 , and parti- 

le i and j , and its calculation is shown in Fig. 3 . For a viewing an-

le of αim 1 j 
= 0 °, all three particles are along the same line vector. 

ecause this angle is computed as a magnitude, it also accounts 

or particle j being rotated counterclockwise from the line vector 

onnecting i and m 1 . View factors were computed as a function 

f the viewing angle, αim 1 j 
, from these calculations. Even though 

he distances between pairs of particles were ( d im 1 
= 0.7 mm, d ij 

 1.4 mm) fixed, as will be shown in the results, it doesn’t impact 

he generality of the proposed prediction algorithm for monodis- 

erse ensembles of particles. 

The same approach was also extended to compute shading ef- 

ects from the presence of two particles, m 1 and m 2 , between a 

air of particles i and j ( Fig. 3 ( b )). In this case, the relative an-

ular positions of particles m 2 and j were varied with respect to 

xed particle centers for i and m 1 . The distances, d im 1 
, d im 2 

and d ij 
ere 0.7, 1.4 and 2.7 mm respectively for these calculations. Cor- 

espondingly, we predict the dependency of particle-particle view 

actor between i and j as a function of two viewing angles, αim 1 j 

nd αim 2 j 
. 

Results from these calculations were used to determine two 

omplimentary quantities — γ pp,k and S pp,k ( Eq. (12a) and (12b) ). 

pp ,k = 

F pp ,k 

F pp , 0 
; k = 0 , 1 , 2 , . . . , k max (12a) 

 pp,k = 1 − γpp,k (12b) 

The normalized view factor, γ pp,k , is the ratio of the shaded 

article-particle view factor with k particles present between any 

air of particles to the maximum particle-particle view factor, and 

 shading factor, S pp,k , determines the extent of normalized devia- 

ion of shaded view factors from their maximum values. Both the 

ormalized view factor and the shading factor lie between 0 and 1. 

hen the shading factor value is S pp = 0 (equivalent to γ pp = 1), 

t indicates no shading, whereas a value of S pp = 1 (equivalent to 

pp = 0) indicates complete shading. As will be shown in results 

 Section 3.1 .), this shading factor is dependent on the viewing an- 

le, and whether a particle is a shading particle ( S pp ,1 > 0) is deter-

ined by comparing viewing angle with a critical viewing angle. 

pecifically, any particle, m k , present between a pair of particles ( i 

nd j ) will shade on particle j as viewed from i when the view-

ng angle, αim k j 
, is smaller than the critical angle, αc,im k 

, subtended 

y particle i on particle m k ( Fig. 7 ). This criterion is also used to

dentify the likelihood of number of shading particles as a func- 

ion of solid volume fraction (Section A6). This calculation is use- 

ul for finding a threshold number of shading particles after which 

urther accounting for shading doesn’t make a big influence on the 

alculated view factors. The number of shading particles between 

ny particle pairs can range from 0, when there is no shading, to a 

aximum of 50 for φs = 0.45. 
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Table 1 

Ten hypothesis functions to predict the maximum particle-particle view factors ( Eq. (3) ) with coefficients obtained from multivariate linear regression with 

feature variables based on dimensionless distance, d ∗pp , which is shortened as d ∗ for brevity. The corresponding RMSE and R 2 are shown. 

Function # Hypothesis Functions RMSE R 2 

f 1 y = 8 . 8e − 2 − 4 . 4e − 2 d ∗ + 7 . 2e − 3 d ∗2 − 4 . 6e − 4 d ∗3 + 1e − 5 d ∗4 5.4e-3 0.90507 

f 2 y = −7 . 0e − 3 + 6 . 2e − 2 /d ∗ 3.9e-3 0.95279 

f 3 y = −4 . 7e − 4 + 7 . 1e − 2 /d ∗
2 

7.1e-4 0.99836 

f 4 y = 1 . 9e − 3 + 8e − 2 / d ∗3 2.0e-3 0.98733 

f 5 y = 1 . 1e − 3 − 1 . 3e − 2 / d ∗ + 8 . 5e − 2 / d ∗2 5.1e-4 0.99914 

f 6 y = −4 . 6e − 4 + 8e − 3 / d ∗ + 3 . 2e − 2 / d ∗2 + 3 . 6e − 2 / d ∗3 1.5e-4 0.99992 

f 7 y = 3 . 0e − 4 − 5 . 6e − 3 / d ∗ + 9 . 4e − 2 / d ∗2 − 6 . 3e − 2 / d ∗3 + 4 . 9e − 2 / d ∗4 7.0e-5 0.99998 

f 8 y = −1 . 8e − 4 + 4 . 4e − 3 / d ∗ + 2 . 9e − 2 / d ∗2 + 1e − 1 / d ∗3 − 1 . 3e − 1 / d ∗4 + 7 . 1e − 2 / d ∗5 6.9e-5 0.99998 

f 9 y = 1 . 3e − 4 − 4 . 1e − 3 / d ∗1 + 1e − 1 / d ∗2 − 1 . 9e − 1 / d ∗3 + 4e − 1 / d ∗4 − 3 . 9e − 1 / d ∗5 + 1 . 5e − 1 / d ∗6 6.9e-5 0.99998 

f 10 y = −9 . 7e − 5 + 3 . 2e − 3 / d ∗ + 2 . 5e − 2 / d ∗2 + 2 . 1e − 1 / d ∗3 − 6 . 1e − 1 / d ∗4 + 9 . 9e − 1 / d ∗5 − 8 . 1e − 1 / d ∗6 + 2 . 7e − 1 / d ∗7 6.3e-5 0.99998 

Fig. 3. Model set up to compute shaded view factors with (a) one particle m 1 and (b) two particles m 1 , m 2 , present between a pair of particles i and j . Viewing angle αim 1 j 

quantifies the magnitude of the angle between the line vectors, � r im 1 and � r i j , connecting the centers of particles i and m 1 with i and j respectively; viewing angle αim 2 j is 

similarly defined between particles i and m 2 and i and j. For fixed positions of i , m 1 and m 2 particles, different j particle positions illustrate complete, partial and no shading 

scenarios . For the sake of illustration viewing angles are marked in (a) and (b) when particle j is present at the no shading position. 
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.2.2. Particle-wall view factors 

Particle-wall view factors are corrected for shading effects from 

he analytical view factor for one particle viewing a plane wall, 

 pw ,0 , in Eq. (13a) obtained as a function of dimensionless distances 

 Eq. (13b) ), where, x p , y p , z p are the spatial coordinates of the par-

icle, H and W are the height and width of the right wall in Fig. 1 ;

or other walls, the appropriate values are used for the height and 

he width [73] . 

 pw , 0 = f 

(
d pw , ⊥ 
x p 

, 
d pw , ⊥ 
z p 

)
+ f 

(
d pw , ⊥ 
x p 

, 
d pw , ⊥ 
H − z p 

)
+ f 

(
d pw , ⊥ 

W − x p 
, 

d pw , ⊥ 
z p 

)
+ f 

(
d pw , ⊥ 

W − x p 
, 

d pw , ⊥ 
H − z p 

)
(13a) 

f ( d ∗1 , d 
∗
2 ) = 

1 

4 π
tan −1 

((
d ∗1 

2 + d ∗2 
2 + d ∗1 

2 d ∗2 
2 
)− 1 

2 

)
(13b) 

In the presence of additional particles, the view factor between 

 particle and a wall surface should be less than that predicted 

y Eq. (13b) . This is because rays leaving the particle of interest 

an be obstructed by intermediate particles—particles present in 

etween the particle of interest and the wall surface. The number 

f intermediate particles can be as large as 1287 for φs = 0.45 for 

article-wall view factor calculations, contrasting a maximum of 

0 for particle-particle shading considerations for the same solid 

olume fraction. Therefore, we propose corrections due to shading 

ffects from these intermediate particles by introducing a particle- 

all correction factor, C pw ( Eq. (14) ), which ranges from 0 to 1. 
6 
 pw,k = F pw, 0 −C pw 

k ≤450 ∑ 

k =1 

F pp k (14) 

In Eq. (14) , this correction factor scales the sum of the particle- 

article view factors between the particle of interest, p , and the 

ntermediate particles, p k , up to a maximum of 450, to capture the 

et shading effect from all the relevant intermediate particles. Be- 

ond 450 intermediate particles, the particle-wall view factors be- 

ome small ( < 5% of maximum value) and considering shading ef- 

ects from more particles does not make the prediction any more 

ccurate – RMSE changes by less than 1% for k = 450 compared to 

 = 1287. Even though this cut-off number of intermediate parti- 

les is dictated by the largest solid volume fraction modeled, φs = 

.45, it is not expected to vary significantly for even larger solid 

olume fractions. 

MCRT simulation results for the shaded particle-wall view fac- 

ors, F pw,k and our data-driven model predictions for particle- 

article view factor, F pp k were used to obtain correlations for the 

orrection factor, C pw , as a function of the dimensionless normal 

istance between the particle and the wall, d ∗pw ( Eq. (5) ). Using 
his dataset, data-driven models were trained by considering dif- 

erent hypothesis functions for C pw (Section A7) and determining 

est-fit values by applying regression technique ( Eqs. (3) , (5) –(10) ). 

rom training data, it is observed that with an increase in the di- 

ensionless particle-wall distance, the sum of the intermediate 

article-particle view factors increases, and the correction factor 

ecreases. Therefore, at small values of d ∗pw , C pw approaches a value 
f 1 with fewer intermediate particles, which results in the shaded 
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article-wall view factors approaching the analytical solution, i.e., 

 pw,k → F pw,0 
( Eq. (14) ). At large d ∗pw , C pw approaches about 0.1, be-

ause many intermediate particles at least partially cast their shade 

n the wall, and this increases the deviation between the shaded 

article-wall view factor and the analytical solution. 

. Results and discussion 

.1. Particle-Particle view factors 

Fig. 4 shows the MCRT predictions for particle-particle view fac- 

ors, F pp , as a function of the dimensionless distance, d ∗pp ( Eq. (4) )
or the solid volume fractions modeled, φs = 0.016–0.45. For com- 

arison, the maximum view factor between a pair of particles, 

hich is independent of φs , is also included. At any solid volume 

raction, the particle-particle view factors decrease rapidly with in- 

reasing dimensionless distance. This is driven by both a decrease 

n solid angle with increased separation and an increase in shad- 

ng by neighboring particles. For small distances ( d ∗pp ≤ 1.3) all 

he predicted view factors deviate from the maximum view fac- 

or by at most 10% for any solid volume fractions and is attributed 

o the low likelihood of shading effects. However, for larger par- 

icle separation ( d ∗pp > 1.3) there is a more significant influence 

f the solid volume fraction on the predicted view factors. With 

ncrease in φs there is an increase in the spread of view factors 

hat lie between 0 and the maximum view factor value (inset 

n Fig. 4 ). For dimensionless distances in the range of 2 ≤ d ∗pp 
4, only a small fraction of the predicted data lies below the 

aximum view factor value for φs = 0 . 016 , while the spread be-

omes substantially larger for φs = 0 . 45 . At large distances, 8 ≤
 
∗
pp ≤ 10, φs = 0 . 016 has a larger spread in the data compared to

s = 0.45. This is because shading effects are strong enough for the 

arger solid volume fraction that all the view factor values become 

mall ( < 2.5e-4). Even though shading effects are not as significant 

or low solid volume fractions, it is still important enough to yield 

 spread in the data. Results in Fig. 4 were further interpreted to 

etermine that the threshold distance between particles, beyond 

hich shading effects become important decreases with increase 

n the solid volume fraction. For instance, all the predicted view 

actors are within 10% deviation from the maximum view factor 

t d ∗pp ≤ 2 . 7 for φs = 0.016. Contrastingly, this threshold distance is 

educed by more than half to d ∗pp ≤ 1 . 3 for φs = 0.45. For large

article-particle distances at d ∗pp ≥ 12 , even the maximum view 

actor values become small ( < 4.3e-4) at any solid volume fraction. 
ig. 4. Particle-particle view factors, F pp , from Monte Carlo ray tracing (MCRT) 

imulations performed for a random packed bed with monodisperse and diffuse 

pheres with a size of 0.4 mm ( Fig. 1 ) with respect to dimensionless distances, d ∗pp , 
or solid volume fractions, φs = 0.016, 0.068, 0.12, 0.28, and 0.45. Subplots show 

he detailed data for φs = 0.016 and 0.45 for dimensionless distances of 2–4 and 

–10. 
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7 
his value is less than 1% of the maximum view factor value com- 

uted at d ∗pp = 1.3. Therefore, for large distances, particle-particle 

iew factors with shading effects can be reasonably approximated 

s 0. 

To further probe the effects of φs and d 
∗
pp on shading, Fig. 5 

hows the probability distributions of the normalized view factors, 

pp , at selected distances of d 
∗
pp = 2.525, 5.025, 7.525. At every 

 
∗
pp , normalized view factors are computed for dimensionless dis- 

ances that are within ±0.025 deviation around the listed mean 

alues. For φs = 0.016 and small distances ( Fig. 5(a) ), the likeli- 

ood of having view factor values larger than 80% of the maximum 

alue is 1. However, for φs = 0.45, the likelihood decreases as the 

ormalized view factor value increases from 0 to 1 ( Fig. 5(d) ). With

ncreasing distance between particles, stronger shading effects re- 

ult in a more dispersed normalized view factor distribution for φs 

 0.016 ( Fig. 5(b) , ( c )) and leads to high likelihood of small values

f γ pp < 0.1 for φs = 0.45. ( Fig. 5(e) , ( f )). These results reinforce

he necessity to correct for shading effects in the determination 

f particle-particle view factors and highlight how dominant these 

ffects are for the larger solid volume fractions. 

Table 1 shows the root mean-squared error, RMSE ( Eq. (8) ), be- 

ween the predicted and the validation datasets from MCRT simu- 

ations for the various hypothesis functions tested to predict the 

aximum value of the particle-particle view factor. The best-fit 

unction that yielded reasonably low RMSE values (7e-5) combined 

ith large R 2 = 0.99998 comprises five feature variables depen- 

ent on dimensionless distance, d ∗m , with m varying from −4 to 0 

 f 7 ). Compared to this function, a fourth-order polynomial function 

 f 1 ), results in RMSE values that are larger by about two orders- 

f-magnitude. The importance of the presence of the 1/ d ∗2 term 

n the view factor correlation is illustrated by the substantially 

maller value for RMSE with functions, f 3 compared to the func- 

ions that only included the 1/ d ∗ and 1/ d ∗3 dependence — f 2 and 

 4 respectively. This result is physically reasonable and consistent 

ith the intrinsic solid angle definition that varies proportional to 

/ d ∗2 . When more negative m terms in d ∗m (1/ d ∗5 , 1/ d ∗6 , etc.) are
ncluded in functions f 8 –f 10 , the RMSE value only marginally de- 

reases from the prediction in f 7 , but R 
2 is no longer changing, 

ikely due to overfitting the data. Therefore, f 7 is selected as the 

est-fit function as it achieves accurate predictions and good fit 

uality with fewer fitting parameters compared to the other func- 

ions . A detailed plot is shown in Section A3 for selected functions. 

he maximum view factors are in the range of 0.075–1.56e-4 for 

 
∗ in the range of 1–20 and are constrained to be non-negative. 

Fig. 6 shows the dependence of the normalized particle-particle 

iew factor on the viewing angle, αim 1 j 
in a 3-particle system with 

article m 1 in between particles i and j ( Fig. 3 ). For αim 1 j 
= 0 , there

s complete shading as all 3 particles are along the same line, and 

his results in γpp, 1 = 0 . However, there is a non-zero view factor 

alue for all other viewing angles because all particles are modeled 

s diffuse emitters. For any viewing angle αim 1 j 
> 0, some fraction 

f the rays leaving particle i will still intercept particle j . As the 

iewing angle increases, the view factor initially rapidly increases, 

fter which the rate of increase slows down until it attains the 

aximum value, where particle j is no longer shaded by particle 

 1 . The oscillation in the predicted maximum view factor value is 

n artifact of the stochastic nature of MCRT simulations. For fixed 

istances between pairs of particles ( d im 1 
and d i j in Fig. 3(a) ), a

arger viewing angle reduces shading effects, and beyond a criti- 

al viewing angle, αc,im 1 
, the predicted view factor approaches the 

aximum value within 2%. A critical angle has been defined based 

n this observation to be the viewing angle, αim 1 j 
, beyond which 

here is very minimal shading effect by the intermediate particle 

 1 when particle i views particle j . This critical angle is found to 

e approximately twice the tangential angle, αt,im 1 
, between parti- 

les i and m 1 for any combination of d im 
and d p values ( Eq. (15) ).
1 
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Fig. 5. Probability distributions of normalized particle-particle view factors, γ pp , at different dimensionless distance of (a), (d) 2.5–2.55, (b), (e) 5–5.05, (c), (f) 7.5–7.55 for 

solid volume fractions of (a)–(c) φs = 0.016 and (d)–(f) φs = 0.45. Particle-particle view factors were obtained from Monte Carlo ray tracing (MCRT) simulations performed 

for a random packed bed with monodisperse and diffuse spheres with a size of 0.4 mm. 
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= 2 sin 
−1 0 . 5 d p 

d im 1 

(15) 

The tangential angle in Eq. (15) , is the magnitude of the angle 

etween the tangent from the center of particle i to particle m 1 , 

nd the line connecting the center of particle i and m 1 . When the

iewing angle is twice the tangential angle, geometrically, parti- 

le j is almost completely out of the shadow-zone cast by particle 

 1 as viewed from particle i . The defined critical angle increases 

ith decreasing values of d im 1 
with a maximum value of 60 ° (from 

q. (15) ) when two particles touch each other i.e., d im 1 
/d p = 1. 
ig. 6. Normalized particle-particle view factor with one shading particle, γpp , 1 , as 

 function of viewing angle, αim 1 j , from Monte Carlo ray tracing (MCRT) simula- 

ions (solid line) and the best-fit prediction (dashed line) using a sigmoid function 

n Eq. (16) with d ij = 1.4 mm, d im 1 = 0 . 7 mm, and d p = 0.4 mm in Fig. 3 . In the 

nset is a schematic of the 3-particle system with critical, αc , and tangential, αt , 

ngles annotated. The black star and vertical line correspond to the critical viewing 

ngle between particles i and m 1 beyond which shading effect by particle m 1 is not 

ignificant. 
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8 
A modified sigmoid function ( Eq. (16a) ) with three coefficients 

 Eq. (16b) ) fits the functional dependence of the normalized view 

actor due to shading by one particle, γpp, 1 , on the viewing angle, 

im 1 j 
. Data from these predictions when validated against MCRT 

imulations yield RMSE = 0.017 and R 2 = 0.9933. 

pp , 1 = 

F pp , 1 

F pp , 0 
= 

a 

1 + exp 
(
−c 

(
αim 1 j − b 

) ) (16a) 

a = 1 ; b = αt = sin 
−1 

(
0 . 5 d p 

d im 1 

)
; c = 

4 

αt 
(16b) 

The numerator in a sigmoid function in Eq. (16a) is the lim- 

ting value attained for large values of the independent variable. 

he predicted view factor asymptotes to the maximum view fac- 

or, F pp, 0 , for large viewing angles, which results in the normalized 

iew factor and therefore the numerator, a , in Eq. (16a) being equal 

o 1 ( Fig. 6 ). From Eq. (16a) , it is evident that when αim 1 j 
= b , the

haded view factor attains 50% of the maximum value. From re- 

ults in Fig. 6 , it is observed that when αim 1 j 
= αt , the predicted

iew factor is nearly 50% of the maximum view factor, and this 

ictates the value of b ( Eq. (16b) ). The coefficient c in the domina-

or is determined by making the predicted view factor value attain 

bout 98% of maximum value, which occurs when αim 1 j 
= 2 αt . It 

annot be 100% due to the inherent nature of sigmoid function, 

hich attains the exact maximum value as αim 1 j 
→ ∞ . The 95% 

onfidence intervals for the fitted coefficients in Eq. (16b) are listed 

n Section A4. Although the result shown in Fig. 6 is for a spe-

ific combination of distances between particles, d im 1 
and d ij , the 

educed correlation in Eq. (16a) is applicable more generally for 

ny monodisperse distribution of particles, as fitted coefficients in 

q. (16b) are non-dimensionalizing particle-particle separation dis- 

ances with particle size. While coefficients a , b , c in Eq. (16a) are
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Fig. 7. (a) Effects of viewing angles — αim 1 j and αim 2 j — in a 4-particle system with two shading particles on normalized particle-particle view factor, γpp, 2 , with the critical 

viewing angles for particle m 1 and m 2 — αc,im 1 and αc,im 2 represented as dashed lines leading to four regions, I – IV; (b) geometry illustration of example cases in four 

regions I-IV, where the blue and the green shaded zones are based on critical angles of m 1 and m 2 respectively. Within the shading zone particle j will be shaded as viewed 

from particle i. MCRT simulation data for this 4-particle system was obtained with d im 1 = 0.7 mm, d im 2 = 1.4 mm, d i j = 2.7 mm, and d p = 0.4 mm. 
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rawn from geometry-based parameters, they are within 5% devi- 

tion from those obtained via curve-fitting a sigmoid function in 

ATLAB. 

Fig. 7 applies a similar approach as in Fig. 6 to show the ef-

ects of shading in a 4-particle system with two shading parti- 

les m 1 and m 2 ( Fig. 3 ). The normalized shaded particle-particle 

iew factors, γpp, 2 , are computed as a function of two view- 

ng angles αim 1 j 
and αim 2 j 

. For selected particle-particle distances 

 d im 1 
= 0.7, d im 2 

= 1.4, d i j = 2.7 mm), the critical viewing angles

re αc,im 1 
= 33 ° and αc,im 2 

= 16 ° respectively. For any position of 

article m 2 , when αim 1 j 
= 0 ° and equivalently, for any position 

f particle m 1 , when αim 2 j 
= 0 °, the respective particle triplets —

 i, m 1 , j ) and ( i, m 2 , j ) are along the same line. This results in com-

lete shading at the boundaries in Fig. 7 with γpp , 2 = 0 . 

Four regions can be identified in Fig. 7(a) based on the relative 

alues of αim 1 j 
and αim 2 j 

with respect to the respective critical 

ngles, αc,im 1 
and αc,im 2 

, and these regions are visually illustrated 

ith sample particle locations in Fig. 7(b) . The shading zones are 

he effective shading regions by shading particles m 1 and m 2 when 

article i view particle j , which are derived based on the critical 

ngle in Eq. (15) . In region I, both viewing angles are smaller than

heir respective critical angles, and therefore, particle j is shaded 

y both m 1 and m 2 ( Fig. 7(b) ). Therefore, in this region, both view-

ng angles can influence F pp, 2 . In regions II ( αim 1 j 
> αc,im 1 

and 

im 2 j 
< αc,im 2 

) and III ( αim 1 j 
< αc,im 1 

and αim 2 j 
> αc,im 2 

), shad- 

ng effects arise from only one particle, either particle m 2 or m 1 

espectively for regions II and III ( Fig. 7(b) ). Distinct from region 

, the shaded view factor in these two regions depend on only 

ne viewing angle ( Fig. 7(a) ). Therefore, the trends are like the 3-

article system in Fig. 6 , where an increase in viewing angle leads 

o an increase in view factor and decrease of shading effect. In re- 

ion IV, when both viewing angles are larger than their respec- 

ive critical angles, there is minimal shading by either m 1 or m 2 

 Fig. 7(b) ), and γpp, 2 is within 2% of 1 ( Fig. 7(a) ). Oscillations in 

he numerical values of γpp, 2 in regions IV are due to the stochastic 

ature of MCRT simulations. 

From Fig. 7 , we determine that the shading effects and there- 

ore shading factor, S pp, 2 , because of two particles will be a non- 

inear function of shading factors by particle m 1 ( S 1 −m 
) or m 2 
1 

9 
 S 1 −m 2 
) alone. S pp, 2 is shortened as S 2 for brevity. This prediction is 

specially important in region I where both particles affect shad- 

ng. If the overall shading factor S 2 is larger than 1, it is reset as

 to ensure that predictions for view factors are non-negative. Dif- 

erent functional forms were tested to predict S 2 as a function of 

 1 −m 1 
and S 1 −m 2 

and presented in Section A5. The best-fit func- 

ion presented in Eq. (17) yielded a RMSE of 0.032 and included 

inear additions of the individual shading factors, S 1 −m 1 
and S 1 −m 2 

, 

nd a product term to compensate the overestimation of shading 

y considering independent contributions by two particles. 

 2 = Min ( 1 , S 1 −m 1 
+ S 1 −m 2 

− S 1 −m 1 
S 1 −m 2 

) (17) 

Eq. (17) has been generalized in Eq. (18) for k particles present 

etween particles i and j, 

 k = Min 

( 

1 , 

k ∑ 

p=1 

S 1 −m p 
−

k −1 ∑ 

p=1 

k ∑ 

q>p 

S 1 −m p 
S 1 −m q 

) 

; k = 1 − 50 (18) 

here, k ranges from 1 to a maximum of 50 for φs = 0.45, and the

roduct term that is summed over k particles will have k ( k -1)/2 

erms. Table A4 illustrates the expanded equations for k = 1–5. 

Fig. 8 shows that the proposed extension in Eq. (18) re- 

ults in reasonable comparisons with MCRT predictions of shaded 

article-particle view factors; φs = 0.016 ( Fig. 8(a) ) and φs = 0.45 

 Fig. 8(b) ) are shown for conciseness. Datasets are categorized also 

y the number of shading particles, k , present between the desig- 

ated pair of particles, which was computed based on the viewing 

ngle, αim k j 
, and critical angle, αc,im k 

( Fig. 7 ). For every value of 

he number of shading particles, a maximum of 20 data points are 

andomly selected and shown in Fig. 8 to avoid visual overcrowd- 

ng; for φs = 0.016 and 5 shading particles, there are only 2 data 

oints to plot. Expectedly, at equivalent values of the dimension- 

ess distance, the number of shading particles between any pair of 

articles is larger for the larger solid volume fraction. The RMSE 

alues reported in the tables are however calculated for all pair- 

ise view factors predicted. The RMSE values are 8.3e-5 and 2.7e- 

 for φs = 0.016 and 0.45 respectively, which amounts to a MRE of 

.7% and 85%. With the increase in solid volume fraction, predic- 

ion errors increase due to increased errors in accounting for shad- 
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Fig. 8. Particle-particle view factor predictions from f 7 in Table 1 and Eq. (4) , (12a) , 

(15) –(18) compared with Monte Carlo ray tracing (MCRT) simulations with different 

colors representing different number of shading particles, k , for (a) φs = 0.016 and 

(b) φs = 0.45 with root mean squared error (RMSE) reported in the inset tables as 

a function of k; k value of All shows RMSE calculated for all predicted view factors. 

MCRT simulations for particle-particle view factors were performed for a random 

packed bed with monodisperse and diffuse spheres with a size of 0.4 mm. 
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ng from neighboring particles and the large magnitudes of rela- 

ive errors stem from a high density of small view factor values ( <

e-4). Therefore, deviations of small values get amplified in rela- 

ive error (MRE) estimations. The RMSE values exhibit a somewhat 

on-monotonic variation with the number of shading particles, es- 

ecially for φs = 0.45, where these errors are smaller when more 

han 5 particles cause shading compared to when shading occurs 

ue to at most 5 particles. This is because the RMSE values are 

iased by the large density of view factors with very small mag- 

itudes ( < 1e-4) when k > 5 for the high solid volume fraction

ase. 

.2. Particle-wall view factor 

Fig. 9 shows the training data and predictions for the particle- 

all correction factor, C pw , as a function of the dimensionless 

article-wall normal distance, d ∗pw , ( Eq. (5) ) for all 6 walls; train-

ng data was determined from Eq. (14) . It is observed that C pw 
ecreases with increasing d ∗pw , and the best-fit function and the 
arameters are influenced by the solid volume fraction. Therefore, 

istinct best-fit functions are reported for low, φs = 0.016, 0.068, 

.12 ( Fig. 9(a) ), and high, φs = 0.28, 0.45 ( Fig. 9(b) ), solid volume

ractions in Eq. (19a) and (19b) respectively. 

 pw = 0 . 67 − 0 . 059 d ∗pw + 0 . 0016 d ∗2 pw , φs ≤ 0 . 12 (19a) 

 pw = 0 . 90 − 0 . 098 d ∗pw + 0 . 0030 d ∗2 pw , 0 . 12 < φs ≤ 0 . 45 (19b) 

t

10 
The fit quality is mediocre with RMSE errors up to 0.0078 and 

he R 2 values being less than 0.9 and attributed to the spread 

n the training data at any d ∗pw . This spread can stem from: (i)

catter in the predictions for F pw ,0 ( Eq. (13) ) due to the sensitiv-

ty to lateral positioning of particles; (ii) variations in the con- 

ributions of intermediate particles to shading, and (iii) C pw be- 

ng predicted solely as a function of d ∗pw ( Eq. (14) ), when in ac-

uality it might depend on more than one feature. However, as 

ill be shown ( Fig. 10 ), the fit quality for C pw doesn’t negatively 

mpact the particle-wall view factor predictions, F pw,k . Event with 

ther prediction functions for C pw including higher order polyno- 

ial functions and sigmoid functions (Section A7), substantial im- 

rovements were not obtained to the quality of fits compared to 

he quadratic functions. 

Fig. 10 depicts the predicted values for particle-wall view fac- 

ors, F pw,k , using C pw obtained from Fig. 9 and using Eq. (14) .

hese predictions are compared against MCRT simulation data for 

article-wall view factors, and analytical estimates for view factors 

ithout shading, F pw, 0 , ( Eq. (13a) ) for φs = 0.016 and 0.45. View

actors are shown only for particles with the right wall, but the re- 

ults for the other wall surfaces follow suit (insets in Fig. 10(a) and 

b) ). Despite the average quality of fits for C pw ( Fig. 9 ), the predic-

ions match well with ray tracing simulations with RMSE values 

f 0.0089 and 0.021 for φs = 0.016 and 0.45 respectively. These 

MSE values translate to MRE of 7.1% and 87% respectively. For the 

owest solid volume fraction modeled, even the analytical solution 

atches the predictions from MCRT simulations quite well (RMSE 

 0.021) because the particle-particle shading effects are not as 

ronounced. However, for the high solid volume fractions, shading 

ffects become significant and the analytical results substantially 

verpredict the view factors at any distance leading to an order-of- 

agnitude larger RMSE values compared to predictions from our 

orrelations ( Fig. 10(b) ). The analytical particle-wall view factor es- 

ecially exhibits a large spread when the normal distance between 

he particle and the wall is lesser than 1.2 mm, corresponding to 

 
∗
pw < 3. This is because, when a particle is near a wall, its lateral

ositioning can severely impact the extent to which it views the 

all. Contrastingly, for the same d ∗pw values, MCRT simulation re- 

ults that account for shading effects indicate lesser scatter in the 

ata, due to the significant obstructions caused by the presence of 

ntermediate particles. This trend is well-captured by our predic- 

ions for the shaded view factors, F pw,k , from Eq. (14) . 

.3. Computational accuracy and efficiency for particle-particle view 

actors 

Computing particle-particle view factors can pose formidable 

hallenges, to especially account for shading by particle neighbors, 

hen the number of particles becomes large. Particle-wall view 

actors are also dependent on, and limited by, the calculation of 

article-particle view factors ( Eq. (14) ). Therefore, Fig. 11 assesses 

ifferent strategies for thresholding based on the number of shad- 

ng particles to compute shaded particle-particle view factors, F pp,k 
 Eq. (18) ). Thresholding values imply that the prediction is per- 

ormed up to k shading particles, and beyond this number the view 

actor is set to 0, i.e., F pp,k +1 = 0 in Eq. (18) . Comparisons of dif-

erent thresholding approaches are made based on accuracy and 

omputational cost for the predictions. 

The prediction errors — RMSE and MRE from view factor corre- 

ations developed in this work ( f 7 in Table 1 , Eqs. (4) , (12) , (15) –

18) for F pp,k and Eqs. (5) , (13) –(14) , (19) for F pw,k ) are shown in

ig. 11(a) , (b) as a function of the threshold number of shading par-

icles. For all solid volume fractions, the steepest reduction in the 

rediction errors occurs when the thresholding value for the shad- 

ng particles increases from 0 to 5; a threshold value of 0 implies 

hat no shading corrections are made and the maximum particle- 
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Fig. 9. Comparison of training data (blue) and prediction (black) from Eq. (19) for the particle-wall correction factor, C pw , with respect to the dimensionless particle-wall 

normal distance, d ∗pw ; RMSE and R 2 values are shown in the plot for (a) low ( φs = 0.016, 0.068, 0.12) and (b) high solid volume fraction ( φs = 0.28, 0.45). The density of the 

data in both plots is comparatively smaller for d ∗pw > 10 because of the rectangular shape of modeling domain. All training data for C pw were deduced from Monte Carlo ray 

tracing (MCRT) simulation results for particle-wall view factors with monodisperse and diffuse spheres with a size of 0.4 mm. 

Fig. 10. Comparison of view factors between particles and the right wall surface (highlighted in the inset) between Monte Carlo ray tracing (MCRT) simulation data, predic- 

tions from Eq. (14) for shaded particle-wall view factor, F pw,k , and analytical data for particle-wall view factor without shading, F pw, 0 , for (a) φs = 0.016 and (b) φs = 0.45 as 

a function of the dimensionless normal distance, d ∗pw ; root mean squared error (RMSE) is reported for our predictions and analytical solutions against MCRT simulations. All 

MCRT simulations for particle-wall view factors were obtained from a random packed bed with monodisperse and diffuse spheres with a size of 0.4 mm. 

Fig. 11. Effects of thresholding the number of shading particle detection on prediction errors of particle-particle view factors quantified by (a) root mean square error (RMSE) 

and (b) mean relative error (MRE); the dashed line for no prediction in (a) and (b) denotes RMSE and MRE values respectively when all predictions for particle-particle view 

factors are unanimously 0; (c) wall-clock time (mins) and algorithm complexity as a function of the number of particles for Monte Carlo ray tracing (MCRT) simulations and 

predictions with and without thresholding; actual data (solid) for compute times up to 1289 particles is projected in the trend lines (dashed) for up to 10 4 particles. 

11 
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have been included here — doi: 10.17632/5btz7hh399.1. 
article view factor, F pp, 0 ( f 7 in Table 1 ) is used as such. For com-

arison, we also show the errors for the no-prediction case, where 

ll particle-particle view factor values are set to be 0, i.e., F pp,k = 0

or all k . For φs = 0.016, the maximum number of shading particles 

s 5, and therefore the data do not extend beyond this value. For 

s = 0.45, which can have shading by up to 50 particles, the er- 

ors level off when accounting for only 5 nearest shading particles. 

esults from a thresholding value of 10 nearest particles lead to 

he same prediction errors as accounting for all possible shading 

articles. This is consistent with the findings from the probabil- 

ty distributions of the particle-particle view factors as a function 

f the number of shading particles (Section A6), which indicate 

hat there is very low probability of view factors being even 10% 

f the maximum view factor with more than 10 shading particles. 

dditionally, the probability of having 10 shading particles is also 

ow for all solid volume fractions. Therefore, accurate predictions 

an be made for view factors from our correlations by accounting 

or shading effects by 5, and no more than 10, nearest particles 

or φs in the range of 0.016–0.45. The RMSE and MRE increase as 

he solid volume fraction increases because of the increased errors 

n predicting shading corrections. MRE for the large solid volume 

ractions is biased by the high density of particle-particle view fac- 

ors with small magnitudes ( < 1e-4). The error distribution plot 

Section A8) as a function of view factor reveals that relative error 

rops off drastically to less than 10% for view factors larger than 

.02. 

Fig. 11(c) shows computational time as a function of the num- 

er of particles and equivalently, the solid volume fraction, and its 

ependency on thresholding values of 5 for the number of shading 

articles. Compared to serially executed ray tracing simulations, 

orrelations for view factors developed in this study is more time- 

fficient only when thresholding is applied to detect shading par- 

icles. The algorithm complexity scales as the square of the num- 

er of particles, O ( N 
2 
p ) , where N p is the number of particles, for

oth MCRT simulations and the correlation-based approach with 

hresholding. When all the shading particles are considered, the 

omplexity becomes O ( N 
3 
p ) , which can especially become penal- 

zing when N p becomes large. For N p = 1289, view factor compu- 

ations take 857 mins for MCRT simulations, and 40 mins and 7.4 

ins for correlations from this study without and with threshold- 

ng of 5 respectively. Even with the same complexity, MCRT simu- 

ations have significantly larger compute times compared to corre- 

ations with thresholding. This is because of the necessity to launch 

nd track ∼10 6 rays for intersections with each particle. Hence, 

iew factor correlations can be about 100 times faster than serial 

CRT simulations while achieving reasonable accuracy even for 

igh solid volume fractions. While the comparisons made in this 

tudy are relevant for serial MCRT simulations, significant compu- 

ational efficiency gains may be possible with parallelization and 

runcation techniques, but these aspects are outside the scope of 

his study. Overall, detecting up to 5 nearest shading particles in 

article-particle view factor computations using correlations devel- 

ped in this study results in combined benefits of prediction accu- 

acy and computational efficiency. Current view factor correlations 

re directly applicable to monodisperse particle and future work 

ill consider extension to polydisperse particles, where correlation 

unctions will depend on particle size and size distribution statis- 

ics. 

. Summary & conclusion 

In this study, we have developed data-driven correlations of 

article-particle and particle-wall radiative view factors as a func- 

ion of spatial locations and size of particles and wall surfaces. 

ompared to prior work, unique advancements in this study are 

he development of physically interpretable correlations, and ex- 
12 
licitly checking and accounting for shading effects of neighboring 

articles, which becomes especially significant for large solid vol- 

me fractions. 

Monte Carlo ray tracing simulations were performed on a ran- 

om packed bed of monodisperse spheres with varying solid vol- 

me fractions of 0.016–0.45 to determine particle-particle and 

article-wall view factors. This provides training and validation 

atasets to develop view factor correlations. Without any shading 

ffects, the particle-particle view factor is governed by an inverse 

quared-relationship with the dimensionless distance, d ∗, which is 

he ratio of the inter-particle separation distance to the particle di- 

meter. The best-fit function to predict maximum particle-particle 

iew factor (i.e., without any shading) involves 5 feature variables 

n the form of d ∗m , where m varies from −4 to 0. To account for

hading effects, shading factors for individual particles are added 

ased on their respective viewing angles, from which their product 

s deducted to account for overlaps in shadows cast by various par- 

icles. Predictions for shaded particle-particle view factors match 

ay tracing data with root mean square errors (RMSE) of 8.3e-5 

nd 2.7e-4, translating to 8.7% and 85% mean relative errors (MRE) 

or corresponding solid volume fractions of 0.016 and 0.45. Higher 

olid volume fraction results in larger errors due to the complexity 

f predicting shading effects by neighboring particles and the high 

ensity of view factors less than 1e-4, which particularly amplifies 

elative errors. For particle-wall view factor predictions, a correc- 

ion factor, which is a quadratic function solely based on particle- 

all normal distance, quantifies the effect of shading by intermedi- 

te particles. Predictions for shaded particle-wall view factors ex- 

ibit an excellent match with ray tracing data with RMSE and MRE 

alues of 0.021 and 87% for the largest solid volume fraction mod- 

led of 0.45. 

View factor correlations developed in this study result in note- 

orthy accuracy, but accounting for all possible shading surfaces 

etween a pair of particles will be computationally limiting, es- 

ecially for large systems with many millions of particles. To this 

nd, the effects of thresholding the number of shading particles 

as analyzed. Results show that accounting for shading effects by 

he nearest 5 neighboring particles can balance prediction accuracy 

ith computational efficiency. 

Overall, the radiative view factor correlations developed in this 

tudy exhibit the appeal of simplicity while being accurate and 

ime efficient compared to ray tracing techniques to determine 

airwise view factors with shading effects in particulate media. 

dditionally, correlations developed enable a discrete approach 

o compute radiative fluxes on particle surfaces, which provides 

etter opportunities to integrate radiative heat transfer with dis- 

rete/Lagrangian calculations of forces and conductive heat fluxes 

or flowing particles. 
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