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ABSTRACT

Thermal radiation has been extensively modeled in static particulate media with effective radiative prop-
erties or with statistical ray tracing techniques. However, these techniques are not directly compatible to
evaluate radiative fluxes on discrete particles, which is more suitable for particle flow systems. This study
focuses on such a discrete approach to compute radiative fluxes by developing view factors correlations
for particle-particle and particle-wall. Training data is generated from physics-based Monte Carlo ray trac-
ing simulations on a monodisperse, packed bed with solid volume fractions ranging from 0.016 to 0.45.
This data was used to develop reduced-order correlations to determine particle-particle and particle-wall
radiative view factors as a function of particle-particle and particle-wall separation distance, viewing an-
gle, and the number of shading particles. Uniquely, we determine best-fit functions that are physically
interpretable to account for shading effects by particles. A sigmoid function with a non-linear depen-
dence on viewing angle governs the extent of shading by an intermediate particle. A correction factor
with the particle-wall normal separation distance as the feature variable is introduced to account for
shading effects between a particle and a planar wall surface. View factor correlations result in reliable
and reasonably accurate predictions. For a solid volume fraction of 0.45, the root mean squared errors
of particle-particle and particle-wall view factors are 2.7e-4 and 0.021 with corresponding training data
in the ranges of 0-0.08 and 0-0.5 respectively. To scale these correlations for large number of particles,
restricting shading detection up to 5 nearest neighbors is demonstrated to be an effective strategy to bal-
ance prediction accuracy with computational efficiency. With thousands of particles, the computational
cost of proposed view factor correlations with thresholding of 5 shading particles is about 100 times
faster than serial Monte Carlo ray tracing simulations for a solid volume fraction of 0.45.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

of particles and therefore its effective radiative properties [22,23],
and chemical transformations can affect material composition and

Heat transfer in particulate media has important fundamental
and technological applications, and thermal radiation becomes a
dominant mode of heat transfer at high temperatures and in evac-
uated environments [1-6]. Particulate media enhances heat and
mass transfer between the solid and fluid phases such as in packed
beds [7-10], foams and fibers [11-14], granular flows and fluidized
beds [3,15-18]. Such media are radiatively participating, as ther-
mal radiation can be absorbed, emitted, and scattered within their
volume. Many models have been developed to predict radiative
transport in static porous and dispersed media [7,19-21]. However,
they can pose limitations to evaluate radiative transport in dy-
namically changing participating media involving flowing particles
and chemical reactions. Flow regimes dictate spatial distributions
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its properties [24,25]. Such dynamic participating media find im-
portant applications as heat-transfer and thermochemical materi-
als in concentrated solar power plants [2,3,26], and in reactors for
drying, catalysis and gasification for fuel production applications
[4-6,27]. Our study focuses on the determination of radiative view
factor correlations as a function of particle spatial locations and
plane wall dimensions to facilitate discrete radiative flux calcula-
tions for flowing particles.

Radiative fluxes in the energy transport equation can be evalu-
ated using deterministic and probabilistic approaches. The former
numerically/computationally solves the continuum radiative trans-
port equation with a priori knowledge of its effective radiative
properties, including the extinction coefficient, scattering albedo,
and phase function [28]. Many approximations have been devel-
oped to simplify the governing radiative transport equation spe-
cific to its application [29,30]. The diffusion and spherical harmon-
ics approximations are well-suited to quantify radiative fluxes in
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Nomenclature
a,b,c fit-function coefficients for the effect of shading
function

correction factor for particle-wall

distance or diameter, mm

function

view factor

height of modeling domain, mm

number of shading particles

Euclidean norm

length of modeling domain, mm

the maximum power of input variable
number

complexity

probability

line vector

shading factor for particle-particle

width of modeling domain, mm

pertaining to x-coordinate or input variable
input matrix

pertaining to y-coordinate or output variable
output matrix

pertaining to z-coordinate

NS XX g TozZzTC- T ITTmTAan

Greek symbols

o viewing angle magnitude, °

B coefficient for polynomial functions

y ratio or normalized value

1) volume fraction

Superscripts

m power of input variable

T transpose

* pertinent to a dimensionless value

- pertinent to a mean value

~ pertinent to a predicted value

— vector

Subscripts

c pertinent to a critical value

i the index of launching surface, including particles

imyj lines connecting particle centers of i, m; and i, j

j the index of intercepting surface, including particles
and six walls

my nearest shading particle

my the second nearest shading particle

max the maximum value

min the minimum value

n index of input variable

p pertinent to a particle or summation index of scal-
ing factor

pp particle-particle

pp,0 particle-particle without shading effect

pp.k particle-particle with k number of shading particles

pw particle-wall

pw,0 particle-wall without shading effect

pw,k particle-wall with k shading particles

q summation index of scaling factor

S solid

t tangential or training dataset

v validation dataset

w wall

L normal direction

Abbreviations

MCRT  Monte Carlo ray tracing

MRE mean relative error

RMSE root mean squared error

R? R squared value or the coefficient of determination

optically thick media and in regions precluded from large gradients
in energy densities [31-33]. The discrete ordinates approximation
assumes finite angular directions for radiative intensity transport
and provides the advantage of seamlessly integrating with finite
volume solvers for other transport phenomena (mass, momentum,
energy, species) [34-37]. However, due to the discrete nature of
the angular approximations, “ray effects” can arise due to spuri-
ous, large spatial oscillations in the radiative energy density [38].
This effect has been overcome by increasing the number of angular
directions, averaging over angular quadratures with different ref-
erence frame orientations [39] and by adding artificial scattering
of radiative intensity [40], but with the drawback of increase in
compute/memory requirements. Moreover, convergence and stabil-
ity need to be examined with the number of angular directions
in addition to the mesh density for the discrete ordinates method
[37]. For packed beds of large particles, the diffusion approxima-
tion [41-43], and the discrete ordinates method [8,34] are com-
monly used to model radiative transport. Beyond the constraints
and limitations already discussed, these techniques rely on inputs
for the effective radiative properties obtained from models and/or
measurements.

Probabilistic approaches can be used to launch and trace many
rays or photon bundles for absorption, scattering and emission
events in participating media [44,45]. This approach has been
used to determine effective radiative properties [46,47], to directly
model radiative fluxes [48,49], and to also compute radiative view
factors for participating media [49-51]. A high degree of accuracy
can be achieved with enough rays (typically ~10%) being tracked
and by using physics-based probability density functions. However,
this approach will be especially limiting for the cases of flowing
particles due to large computational time and memory require-
ments [50,52]. Therefore, radiative transport in particulate flows
have been modeled using ray tracing by either analyzing the sys-
tem at selected snapshots of time [53] or by considering very small
volume fractions of particles (< 0.006) to perform flow-radiation
coupling [54].

Other than deterministic and stochastic predictions, data-driven
modeling for radiative transport in participating media is also
gaining traction [55-60]. Wu et al. [57] and Tausendschén et al.
[58] have developed neural network models to obtain particle-
particle and particle-wall view factors based on distance normal-
ized by diameter. While the former did not generalize their results
for different solid volume fractions, the latter developed geometry-
based correlations which were however shown to be sensitive to
the solid volume fraction of the training dataset. Therefore, these
correlations are better suited for moderately dense particle beds
(solid volume fraction of 0.2-0.4). Additionally, one of the limi-
tations of the neural-network models is the increased barrier to
translate/reproduce outputs from one study to another without ex-
act inputs of the network layout and parameters. Johnson et al.
have developed view factor correlations based on particle posi-
tions, and applied it to model radiative heat transfer in the gravity-
driven flow through a channel [59,60]. However, this study did not
consider the effect of shading by neighboring particles and applied
average view factor values as a function of distance between par-
ticles. This approximation can lead to large deviations in predicted
view factors for high solid volume fractions, where shading effects
on view factor values become significant. Even though shading ef-
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fects were considered to predict particle-particle view factor in the
study by Feng and Han'’s [61], these results were not further inter-
preted to develop position based correlations.

Overall, ray tracing for view factor calculations is expected to be
computationally limiting for particle flow systems. Existing data-
driven view factor predictions are either applicable to a specific
morphology and/or preclude the effects of shading, especially for
particle-wall view factors, and lack physical interpretability. Moti-
vated by the current knowledge gaps, the primary objective of this
study is to determine particle-particle and particle-wall view factor
correlations as a function of spatial locations of the particles and
wall surfaces for an ensemble of large particles in a packed bed,
while considering shading effects. A notable outcome from this
study includes the development of physically interpretable view
factor correlations that explicitly account for shading while being
agnostic to the solid volume fraction. Data-driven modeling based
on multivariate linear regression is used to obtain the govern-
ing correlations. Training and validation datasets for the particle-
particle and particle-wall view factors are obtained from Monte
Carlo ray tracing (MCRT) simulations. Ray tracing is performed for
a random packed bed of spherical particles with solid volume frac-
tions ranging from 0.016 to 0.45. To isolate effects of shading by
neighboring particles, pairs of particles with varying number of
particles in between them were modeled using ray tracing, which
informs data-driven shading factor predictions. Compared to prior
work with similar scope, our study is the first to obtain view fac-
tor correlations accurately and efficiently while factoring in the ef-
fects of shading. Even though the training dataset of view factors
were obtained from a static bed, because the correlations devel-
oped only depend on spatial locations/positions, particle size and
plane wall dimensions, they can be extended to compute view fac-
tors even for flowing particles, where particle spatial locations can
be dynamically updated with time. Additionally, our correlations
present a more computationally lightweight approach to compute
radiative view factors compared to collision-based ray tracing eval-
uations.

2. Theory and modeling approach

A packed bed with monodisperse and randomly distributed
spherical particles was computationally generated to obtain
surface-surface view factors (Fig. 1). Particles with a fixed diameter
of 0.4 mm were placed inside a large enough domain with dimen-
sions (4 mm x 4 mm x 6 mm) that are at least ten times larger
than the particle size in any direction. Particle sizes are considered
to be large enough compared to the characteristic wavelengths
for thermal radiation, such that geometric optics is applicable to
model radiation [62,63]. The absolute size of the particles modeled,
and the modeling domain will not affect the predictions, as these
correlations were obtained as a function of non-dimensional pa-
rameters. The coordinates for particle centers within the bed were
randomly sampled from a uniform distribution of spatial locations
within the domain, with the constraint of no overlaps between any
pair of particles generated. If an overlap was detected, the coordi-
nates of particle position were regenerated. While particle centers
are always located inside the cuboid, some fraction of the parti-
cle surface area can lie outside the bounding surfaces (Fig. 1). Five
distinct solid volume fractions were considered, ¢s = 0.016, 0.068,
0.12, 0.28, and 0.45, by varying the number of particles, Np, inside
the domain (Eq. (1)).

3
pr%xr[x(%)
s = LxW xH (1

Solid volume fraction range selected in this study is representa-
tive of dilute to moderately dense packing of particles. For chem-
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Fig. 1. Schematic of packed bed modeling domain, in a size of
4 mm x 4 mm x 6 mm (length x width x height), with spherical particles
of diameter, d, = 0.4 mm, for MCRT simulations to predict particle-particle and
particle-wall view factors. Millions of rays are launched from target particle i (red)
and traced for intersections with other surfaces including every other particle j
(gray) and six walls. The distance between particles i and j and normal distance
between particle i and the right wall (blue shaded) are annotated as dp, and
dpw,. (mm).

ical catalysis applications, packed beds with solid volume frac-
tions in the range of 0.35-0.65 have been extensively used [64-
66]; in particle receivers for concentrated solar power applications
solid volume fractions of 0.01-0.23 are expected for free-falling
gravity-driven flow of sand-like particles [67,68], and solid volume
fractions of 0.01-0.15 are commonly encountered in fluidized bed
combustors [69-72].

2.1. Monte Carlo ray tracing simulations for view factor predictions

Radiative view factors, also referred to as exchange factors, are
geometric parameters that quantify the fraction of radiative en-
ergy leaving one surface that is intercepted by another surface [73].
Collision-based Monte Carlo ray tracing (MCRT) simulations were
performed to evaluate the diffuse view factor, (Eq. (2)) between
pairs of particles, and between particle and wall surfaces.

_ Total number of rays intercepted by surface j
" Total number of rays launched diffusely from particle surface i

(2)

A statistically large number of rays, up to 107, are launched
from every particle and traced for intersections with other par-
ticles and bounding wall surfaces. The launch coordinates were
sampled to be uniformly distributed on the particle surfaces (Sec-
tion A1). Particle surfaces were assumed to be diffuse, which is
a reasonable choice for unpolished material surfaces with rough-
ness. The polar and the azimuthal angle for the launched rays were
sampled from physics-informed cumulative distribution functions
to diffusely emit rays from the particle surface. All surfaces, in-
cluding particles and walls, were modeled to be perfectly absorp-
tive to determine the view factors [73]. Therefore, when a ray in-
tersects any surface, its tracking is complete and followed by the
launch of a new ray. Rays were launched from every particle sur-
face and tracked for intersections with every other particle and
wall surfaces in the domain. For particle-particle view factor, i and
j are both particles, and therefore F; is denoted as Fpp; similarly,
the particle-wall view factor is denoted as Fpy. For Np particles,
we compute Np(Np+6) view factors; for the largest solid volume

E;
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!

Particle-Particle
view factor, F,

! '

l

Particle-Wall
view factor, F,,

' '

Maximum view factor
between a pair of
particles, Fypo

Shading effect with
shading factor, Sy«

Maximum view factor
between a particle
and wall, Fp,y 0

Shading effect with
correction factor, Cpy,

Fopie = (1= Sppic) Fppo

!

Fowi = Fpw,o = prz Eppy
&

l

_| Particle-Particle shaded view factors, Fpy, i,
with k particles between a particle pair

Particle-Wall shaded view factors, Fyy 1 ,
with k particles between a particle and wall

Refine l
B

Validation data: View factors from ray tracing simulations to compare with prediction

| f.
Refine

|

| View factor correlations based on position of particles and walls |

Fig. 2. Flowchart depicting the use of ray tracing simulations to provide training and validation datasets to develop data-driven/ reduced-order correlations for particle-
particle and particle-wall view factors as a function of the spatial location of particles and wall surfaces and while accounting for shading effects.

fraction modeled, this amounts to about 1.6 million (~12892) total
view factors computed. A flowchart has been provided in Section
Al to detail the algorithm for computing view factors using MCRT
simulations.

An in-house C++ MCRT code, previously developed by Li et al.
[22], was adapted and modified to compute view factors. Statistical
convergence was ensured by launching and tracking a large enough
number of rays that yielded minimal changes in the predicted view
factors with increase in the number of rays launched. Changes in
view factors were quantified by computing the I, norm with re-
spect to results obtained for the case with 107 rays for a solid
volume fraction of ¢s = 0.28 with 800 particles. The I, norm of
0.0179, 0.0058 and 0.0020 were obtained for 104, 10°, and 10 rays
respectively, indicating statistical convergence for 106 rays. Simula-
tion results for view factors were validated by (a) checking for the
criteria of view factor summation, self-viewing, superposition and
reciprocity [73] (Section A2), and (b) by comparison with analyti-
cal solutions [74] of a pair of spherical particles (Section 3.1.). With
106 rays the summation criterion is satisfied perfectly, whereas
reciprocity criterion is satisfied with 4.7% error. Ray tracing pre-
dictions are within 1.3% of the analytical solution for a pair of par-
ticles.

The ray tracing simulations were compiled with Microsoft Vi-
sual Studio Community 2019 and performed on an Intel® Core™
i7-9700 processor (3.00 GHz, 32GB). For the largest solid volume
fraction modeled, ¢s = 0.45, the view factor computations from ray
tracing took about 14 hours of wall-clock time without paralleliza-
tion.

2.2. Data-driven modeling for view factor correlations

Fig. 2 shows the flowchart of the algorithm in this study.
Particle-particle, Fpp, and particle-wall, F,y, view factors obtained
from MCRT simulations were used as inputs to train and validate
data-driven models. Data-driven correlations and analytical solu-
tions are first obtained to predict the maximum particle-particle
and particle-wall view factor values in the absence of any shading
effects. Next, informed by ray tracing simulation data, we develop

geometry-based relationships to correct for shading effect as a
function of a shading factor based on k shading particles and view-
ing angle, S, for particle-particle view factor. Similarly, data-
driven correlations are developed to compute a correction factor,
Cypw, which scales the net contributions of shading effect from par-
ticles present between a particle and a wall surface. Predicted data
were compared with the validation dataset from the MCRT simu-
lations to optimize best-fit parameters and functions in the view
factor correlations obtained. Roughly 80% of view factor data from
ray tracing simulations was randomly selected and used for train-
ing, and the balance was used for validation.

Polynomial functions were considered in Eq. (3) to predict the
maximum particle-particle view factor without shading, y, = Fypo
and to determine the correction factor that scales the extent of
shading by particles in particle-wall view factors (Fig. 1), i.e., yn
= Cpw, with regression coefficients, B, and feature variables, xp,
with varying power m. The power is ranging from an integer value
of mp,;, to a maximum value of M, and N; is the size of the training
dataset.

Ya=) PBmxp, n
m

1, 2, ..., Ny m = Mpyjp, mmin+1s .o M

(3)

The description of the feature variable depends on what view
factor is being predicted. For particle-particle view factors, it is
the ratio of the inter-particle distance between pairs of particles,
dpp, to the diameter of the particles, d, (Eq. (4)). However, for
the correction factor predictions, the feature variable is the non-
dimensional normal distance, d%,, between a select particle and a

pwr
wall surface, as in Eq. (5).
d

M:d%:;%;p:],l.”,w (4)

P
* dPW-J-A

Xn =dp, = d ;p=1,2, ..., Np, w=1,2, ..., 6 (5)

P

In matrix form, Eq. (3) can be rearranged as Eq. (6a), and the
expanded expression is shown in Eq. (6b).

XB=Y (6a)
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_ ,Bm »
mm] y]
Mmin+
Y2
B |y = (6b)
Bm-1
Bu IN

The B values in Eq. (6a) were obtained by solving the linear
equation using matrix inversion (Eq. (7)),

B =(X"X)"'X"y 7)

where, XT is the transpose of the matrix X. Using the closed-form
solution for B works well in this case because of the relatively
small size of the datasets considered.

The best-fit functions are obtained by optimizing the 8 values
to minimize the root mean square error (RMSE) in Eq. (8), by con-
sidering the differences between the data, y,, from MCRT simula-
tions and predictions, yn, from different regression models; RMSE
is averaged over the total number of validation datasets, N,. The
coefficient of determination, R?, provides a measure of the qual-
ity of the fit by comparing the deviation of model predictions with
the variance obtained based on a mean value, y,, of the valida-
tion dataset (Eq. (9)). Additionally, to quantify relative variation be-
tween actual and predicted values, the mean relative error (MRE)
is calculated using y, from MCRT data and y, from regression
model predictions (Eq. (10)). Since y, can be an extremely small
value or even 0, this relative error is only computed for a subset of
the data, N/, where y, > 107,

Ny

1 ~
RMSE = [ 0/n =)’ (8)
V=1

Ny ~ 2
R2_1_ Zno1t On—yn)” 9)
ZQIV:] n —JTH)Z

1T K 0=l
MRE = > BT (10)
n=1
Yo > 107

Multivariate linear regression codes to obtain optimal S values
were developed and implemented in MATLAB R2019b using Intel®
Core™ {7-9700 processor (3.00 GHz 32GB).

2.2.1. Particle-particle view factors

Closed form expressions has been reported to determine the
maximum particle-particle view factor, Fp, o, for a pair of spheri-
cal particles without any shading particles for large distances be-
tween particles, and a lookup table/discrete numerical values exist
for small distance regimes as shown in Eq. (11) [74].

Numerical values, d;p <25

Fypo = : , (1)
bp ;(1 —<1_4d;p2) ) ds, > 2.5

Using MCRT results for a pair of spherical particles, we obtained
a closed-form expression for a wider range of inter-particle sepa-
ration distances of 1 < d;p < 20 as will be shown in Table 1.

MCRT simulations were performed to independently predict the
effects of shading by 1 and 2 particles present in between a pair of
particles (Fig. 3). Results from these cases were used to also quan-
tify shading effects in the presence of more than 2 particles. As
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will be discussed in the results, shading due to larger than 10 par-
ticles is most likely to result in particle-particle view factors that
are very close to 0 (Section 3.1.). Consider the geometry set up
when there is one particle, m;, between a pair of particles i and
j (Fig. 3(a)). The view factor between particles i and j was com-
puted in the presence of particle m;, and as a function of viewing
angles between particles. Ray tracing simulations were performed
with 108 rays launched from the surface of particle i and traced for
intersections with j. To probe the influences of the viewing angle,
the angular position of particle j was varied relative to the posi-
tions of i and m; (Fig. 3(a)). For this calculation, while the coor-
dinates of the centers of particles i and m; were fixed, the posi-
tion of particle j was varied as a function of the viewing angle,
Qim, j» for a selected distance, dj. This angle formed between the
line vectors connecting the centers of particle i and my, and parti-
cle i and j, and its calculation is shown in Fig. 3. For a viewing an-
gle of ;m, j = 0°, all three particles are along the same line vector.
Because this angle is computed as a magnitude, it also accounts
for particle j being rotated counterclockwise from the line vector
connecting i and my. View factors were computed as a function
of the viewing angle, ¢y, ;, from these calculations. Even though
the distances between pairs of particles were (dip, = 0.7 mm, dj
= 1.4 mm) fixed, as will be shown in the results, it doesn’t impact
the generality of the proposed prediction algorithm for monodis-
perse ensembles of particles.

The same approach was also extended to compute shading ef-
fects from the presence of two particles, m; and m,, between a
pair of particles i and j (Fig. 3 (b)). In this case, the relative an-
gular positions of particles m, and j were varied with respect to
fixed particle centers for i and my. The distances, dy,, di, and dj;
were 0.7, 1.4 and 2.7 mm respectively for these calculations. Cor-
respondingly, we predict the dependency of particle-particle view
factor between i and j as a function of two viewing angles,
and aim2j~

Results from these calculations were used to determine two
complimentary quantities — yp,, and Sp,; (Eq. (12a) and (12b)).

F
ypp,k:Fp;p,k§ k=0, 1, 2, ..., kmax (12a)
pp,0

Spp,k =1- Ypp.k (lzb)

The normalized view factor, y,,, is the ratio of the shaded
particle-particle view factor with k particles present between any
pair of particles to the maximum particle-particle view factor, and
a shading factor, Sy, determines the extent of normalized devia-
tion of shaded view factors from their maximum values. Both the
normalized view factor and the shading factor lie between 0 and 1.
When the shading factor value is Sy, = 0 (equivalent to ypp = 1),
it indicates no shading, whereas a value of Sy, = 1 (equivalent to
ypp = 0) indicates complete shading. As will be shown in results
(Section 3.1.), this shading factor is dependent on the viewing an-
gle, and whether a particle is a shading particle (Sp,; > 0) is deter-
mined by comparing viewing angle with a critical viewing angle.
Specifically, any particle, m,, present between a pair of particles (i
and j) will shade on particle j as viewed from i when the view-
ing angle, a;y, j, is smaller than the critical angle, «j,, , subtended
by particle i on particle m;, (Fig. 7). This criterion is also used to
identify the likelihood of number of shading particles as a func-
tion of solid volume fraction (Section A6). This calculation is use-
ful for finding a threshold number of shading particles after which
further accounting for shading doesn’t make a big influence on the
calculated view factors. The number of shading particles between
any particle pairs can range from 0, when there is no shading, to a
maximum of 50 for ¢s = 0.45.
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Table 1
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Ten hypothesis functions to predict the maximum particle-particle view factors (Eq. (3)) with coefficients obtained from multivariate linear regression with
feature variables based on dimensionless distance, dj,, which is shortened as d* for brevity. The corresponding RMSE and R? are shown.

Function # Hypothesis Functions RMSE R?

fi y =8.8e—2—4.4e—2d* +7.2e — 3d*? — 4.6e — 4d*> + 1e — 5d** 5.4e-3  0.90507
f y=—7.0e—3+6.2e —2/d* 39e-3  0.95279
f y=—47e—4+71e—2/d" 7.1e-4  0.99836
f y=19e—3+8e—2/d" 2.0e-3 098733
fs y=11e—3—13e—2/d" +8.5e—2/d*> 51e-4 099914
fs y=—4.6e — 4+ 8e — 3/d* +3.2e — 2/d** + 3.6e — 2/d*> 1.5e-4  0.99992
fr y=3.0e —4—5.6e—3/d* +9.4e — 2/d** — 6.3e — 2/d*> + 4.9¢e — 2/d** 7.0e-5  0.99998
fs y=—18e—4+44e—3/d* +29e —2/d*> + e — 1/d** — 1.3e — 1/d** + 7.1e — 2/d*° 6.9e-5  0.99998
fo y=13e—4—41e—-3/d*"" +1e—1/d*> —1.9e — 1/d*> + 4e — 1/d** —3.9e — 1/d*° + 1.5e — 1/d*° 6.9e-5  0.99998
f1o0 y=-97e—5+32e—3/d* +25e—2/d* +2.1e — 1/d*> —6.1e — 1/d** + 9.9e — 1/d** —8.1e — 1/d** +2.7e — 1/d*’  6.3e-5  0.99998

@ No shading
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QO Partial shading
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(b)

Fig. 3. Model set up to compute shaded view factors with (a) one particle m; and (b) two particles m;, m,, present between a pair of particles i and j. Viewing angle ajn,
quantifies the magnitude of the angle between the line vectors, iy, and fj;, connecting the centers of particles i and m; with i and j respectively; viewing angle a;p,; is
similarly defined between particles i and m, and i and j. For fixed positions of i, m; and m;, particles, different j particle positions illustrate complete, partial and no shading
scenarios. For the sake of illustration viewing angles are marked in (a) and (b) when particle j is present at the no shading position.

2.2.2. Particle-wall view factors

Particle-wall view factors are corrected for shading effects from
the analytical view factor for one particle viewing a plane wall,
Fyw,0, in Eq. (13a) obtained as a function of dimensionless distances
(Eq. (13b)), where, xp, yp, zp are the spatial coordinates of the par-
ticle, H and W are the height and width of the right wall in Fig. 1;
for other walls, the appropriate values are used for the height and
the width [73].

_ dpw,J_ dpw.J_ dpw,J_ dpw,J_
pr.O—f( X |z >+f< x,  H-z,
de.J_ de,J_ de,J_ de,J_
+f<W—xp’ Z >+f<W—xp’ A-z,) (B

1 -3
Jd;. d5) = 5 tan” (A7 4+ d3? + did5?) )

(13b)

In the presence of additional particles, the view factor between
a particle and a wall surface should be less than that predicted
by Eq. (13b). This is because rays leaving the particle of interest
can be obstructed by intermediate particles—particles present in
between the particle of interest and the wall surface. The number
of intermediate particles can be as large as 1287 for ¢s = 0.45 for
particle-wall view factor calculations, contrasting a maximum of
50 for particle-particle shading considerations for the same solid
volume fraction. Therefore, we propose corrections due to shading
effects from these intermediate particles by introducing a particle-
wall correction factor, Cpw (Eq. (14)), which ranges from 0 to 1.

k<450

Fowk =Fowo —Cow Y Fop, (14)
k=1

In Eq. (14), this correction factor scales the sum of the particle-
particle view factors between the particle of interest, p, and the
intermediate particles, py, up to a maximum of 450, to capture the
net shading effect from all the relevant intermediate particles. Be-
yond 450 intermediate particles, the particle-wall view factors be-
come small (< 5% of maximum value) and considering shading ef-
fects from more particles does not make the prediction any more
accurate - RMSE changes by less than 1% for k = 450 compared to
k = 1287. Even though this cut-off number of intermediate parti-
cles is dictated by the largest solid volume fraction modeled, ¢s =
0.45, it is not expected to vary significantly for even larger solid
volume fractions.

MCRT simulation results for the shaded particle-wall view fac-
tors, F,,; and our data-driven model predictions for particle-
particle view factor, Fyp, were used to obtain correlations for the
correction factor, Cpw, as a function of the dimensionless normal
distance between the particle and the wall, djy,, (Eq. (5)). Using
this dataset, data-driven models were trained by considering dif-
ferent hypothesis functions for Gy (Section A7) and determining
best-fit values by applying regression technique (Egs. (3), (5)-(10)).
From training data, it is observed that with an increase in the di-
mensionless particle-wall distance, the sum of the intermediate
particle-particle view factors increases, and the correction factor
decreases. Therefore, at small values of d},,, Cow approaches a value
of 1 with fewer intermediate particles, which results in the shaded
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particle-wall view factors approaching the analytical solution, i.e.,
Fowk — Fpwo (Eq. (14)). At large dj,,, Cpw approaches about 0.1, be-
cause many intermediate particles at least partially cast their shade
on the wall, and this increases the deviation between the shaded
particle-wall view factor and the analytical solution.

3. Results and discussion
3.1. Particle-Particle view factors

Fig. 4 shows the MCRT predictions for particle-particle view fac-
tors, Fpp, as a function of the dimensionless distance, djp (Eq. (4))
for the solid volume fractions modeled, ¢s = 0.016-0.45. For com-
parison, the maximum view factor between a pair of particles,
which is independent of ¢, is also included. At any solid volume
fraction, the particle-particle view factors decrease rapidly with in-
creasing dimensionless distance. This is driven by both a decrease
in solid angle with increased separation and an increase in shad-
ing by neighboring particles. For small distances (dj, < 1.3) all
the predicted view factors deviate from the maximum view fac-
tor by at most 10% for any solid volume fractions and is attributed
to the low likelihood of shading effects. However, for larger par-
ticle separation (dj, > 1.3) there is a more significant influence
of the solid volume fraction on the predicted view factors. With
increase in ¢s there is an increase in the spread of view factors
that lie between O and the maximum view factor value (inset
in Fig. 4). For dimensionless distances in the range of 2 < d*,
< 4, only a small fraction of the predicted data lies below the
maximum view factor value for ¢s = 0.016, while the spread be-
comes substantially larger for ¢s = 0.45. At large distances, 8 <
d*pp < 10, ¢s = 0.016 has a larger spread in the data compared to
¢s = 0.45. This is because shading effects are strong enough for the
larger solid volume fraction that all the view factor values become
small (< 2.5e-4). Even though shading effects are not as significant
for low solid volume fractions, it is still important enough to yield
a spread in the data. Results in Fig. 4 were further interpreted to
determine that the threshold distance between particles, beyond
which shading effects become important decreases with increase
in the solid volume fraction. For instance, all the predicted view
factors are within 10% deviation from the maximum view factor
at dj, < 2.7 for ¢s = 0.016. Contrastingly, this threshold distance is
reduced by more than half to dj, < 1.3 for ¢s = 0.45. For large
particle-particle distances at dj, > 12, even the maximum view
factor values become small (< 4.3e-4) at any solid volume fraction.

e
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Fig. 4. Particle-particle view factors, Fp,, from Monte Carlo ray tracing (MCRT)
simulations performed for a random packed bed with monodisperse and diffuse
spheres with a size of 0.4 mm (Fig. 1) with respect to dimensionless distances, dj,
for solid volume fractions, ¢s = 0.016, 0.068, 0.12, 0.28, and 0.45. Subplots show
the detailed data for ¢s = 0.016 and 0.45 for dimensionless distances of 2-4 and
8-10.
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This value is less than 1% of the maximum view factor value com-
puted at dj, = 13. Therefore, for large distances, particle-particle
view factors with shading effects can be reasonably approximated
as 0.

To further probe the effects of ¢s and dj, on shading, Fig. 5
shows the probability distributions of the normalized view factors,
Ypp, at selected distances of dj, = 2.525, 5.025, 7.525. At every
dy, , normalized view factors are computed for dimensionless dis-
tances that are within +0.025 deviation around the listed mean
values. For ¢s = 0.016 and small distances (Fig. 5(a)), the likeli-
hood of having view factor values larger than 80% of the maximum
value is 1. However, for ¢s = 0.45, the likelihood decreases as the
normalized view factor value increases from 0 to 1 (Fig. 5(d)). With
increasing distance between particles, stronger shading effects re-
sult in a more dispersed normalized view factor distribution for ¢
= 0.016 (Fig. 5(b), (c)) and leads to high likelihood of small values
of ypp < 0.1 for ¢s = 0.45. (Fig. 5(e), (f)). These results reinforce
the necessity to correct for shading effects in the determination
of particle-particle view factors and highlight how dominant these
effects are for the larger solid volume fractions.

Table 1 shows the root mean-squared error, RMSE (Eq. (8)), be-
tween the predicted and the validation datasets from MCRT simu-
lations for the various hypothesis functions tested to predict the
maximum value of the particle-particle view factor. The best-fit
function that yielded reasonably low RMSE values (7e-5) combined
with large R?2 = 0.99998 comprises five feature variables depen-
dent on dimensionless distance, d*™, with m varying from —4 to 0
(f7). Compared to this function, a fourth-order polynomial function
(f1), results in RMSE values that are larger by about two orders-
of-magnitude. The importance of the presence of the 1/d*? term
in the view factor correlation is illustrated by the substantially
smaller value for RMSE with functions, f3 compared to the func-
tions that only included the 1/d* and 1/d*3> dependence — f, and
f4 respectively. This result is physically reasonable and consistent
with the intrinsic solid angle definition that varies proportional to
1/d*2. When more negative m terms in d*™ (1/d*>, 1/d*5, etc.) are
included in functions fg—fig, the RMSE value only marginally de-
creases from the prediction in f;, but R? is no longer changing,
likely due to overfitting the data. Therefore, f; is selected as the
best-fit function as it achieves accurate predictions and good fit
quality with fewer fitting parameters compared to the other func-
tions. A detailed plot is shown in Section A3 for selected functions.
The maximum view factors are in the range of 0.075-1.56e-4 for
d* in the range of 1-20 and are constrained to be non-negative.

Fig. 6 shows the dependence of the normalized particle-particle
view factor on the viewing angle, oy, ; in a 3-particle system with
particle my in between particles i and j (Fig. 3). For &, j = 0, there
is complete shading as all 3 particles are along the same line, and
this results in y,, 1 = 0. However, there is a non-zero view factor
value for all other viewing angles because all particles are modeled
as diffuse emitters. For any viewing angle oy, ; > 0, some fraction
of the rays leaving particle i will still intercept particle j. As the
viewing angle increases, the view factor initially rapidly increases,
after which the rate of increase slows down until it attains the
maximum value, where particle j is no longer shaded by particle
my. The oscillation in the predicted maximum view factor value is
an artifact of the stochastic nature of MCRT simulations. For fixed
distances between pairs of particles (dim, and d;; in Fig. 3(a)), a
larger viewing angle reduces shading effects, and beyond a criti-
cal viewing angle, iy, , the predicted view factor approaches the
maximum value within 2%. A critical angle has been defined based
on this observation to be the viewing angle, oy, j, beyond which
there is very minimal shading effect by the intermediate particle
my when particle i views particle j. This critical angle is found to
be approximately twice the tangential angle, ¢ j,,, between parti-
cles i and m; for any combination of dy,, and dp values (Eq. (15)).
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Fig. 5. Probability distributions of normalized particle-particle view factors, yp,, at different dimensionless distance of (a), (d) 2.5-2.55, (b), (e) 5-5.05, (c), (f) 7.5-7.55 for
solid volume fractions of (a)-(c) ¢s = 0.016 and (d)-(f) ¢s = 0.45. Particle-particle view factors were obtained from Monte Carlo ray tracing (MCRT) simulations performed
for a random packed bed with monodisperse and diffuse spheres with a size of 0.4 mm.
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The tangential angle in Eq. (15), is the magnitude of the angle
between the tangent from the center of particle i to particle my,
and the line connecting the center of particle i and m;. When the
viewing angle is twice the tangential angle, geometrically, parti-
cle j is almost completely out of the shadow-zone cast by particle
my as viewed from particle i. The defined critical angle increases
with decreasing values of d;,, with a maximum value of 60° (from
Eq. (15)) when two particles touch each other i.e., djy, /dp = 1.
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Fig. 6. Normalized particle-particle view factor with one shading particle, yp1 , as
a function of viewing angle, e, j, from Monte Carlo ray tracing (MCRT) simula-
tions (solid line) and the best-fit prediction (dashed line) using a sigmoid function
in Eq. (16) with dj = 1.4 mm, di, =0.7 mm, and d, = 0.4 mm in Fig. 3. In the
inset is a schematic of the 3-particle system with critical, «., and tangential, «;,
angles annotated. The black star and vertical line correspond to the critical viewing
angle between particles i and m; beyond which shading effect by particle m; is not
significant.

A modified sigmoid function (Eq. (16a)) with three coefficients
(Eq. (16Db)) fits the functional dependence of the normalized view
factor due to shading by one particle, y,, 1, on the viewing angle,
Qim, j- Data from these predictions when validated against MCRT
simulations yield RMSE = 0.017 and R? = 0.9933.

Epp.1 a

P,

Vop1 =5 — = (16a)
PP Fpo  14exp (—c(etim,j — b))

a:l; b:at:Sin_l<0'5dP>; C:i (16b)
dim1 (o7

The numerator in a sigmoid function in Eq. (16a) is the lim-
iting value attained for large values of the independent variable.
The predicted view factor asymptotes to the maximum view fac-
tor, Fyp o, for large viewing angles, which results in the normalized
view factor and therefore the numerator, g, in Eq. (16a) being equal
to 1 (Fig. 6). From Eq. (16a), it is evident that when &;y,; = b, the
shaded view factor attains 50% of the maximum value. From re-
sults in Fig. 6, it is observed that when o;p, ; = o, the predicted
view factor is nearly 50% of the maximum view factor, and this
dictates the value of b (Eq. (16b)). The coefficient c in the domina-
tor is determined by making the predicted view factor value attain
about 98% of maximum value, which occurs when o ; = 20 It
cannot be 100% due to the inherent nature of sigmoid function,
which attains the exact maximum value as «jy,; — oo. The 95%
confidence intervals for the fitted coefficients in Eq. (16b) are listed
in Section A4. Although the result shown in Fig. 6 is for a spe-
cific combination of distances between particles, d;;,, and dj, the
deduced correlation in Eq. (16a) is applicable more generally for
any monodisperse distribution of particles, as fitted coefficients in
Eq. (16b) are non-dimensionalizing particle-particle separation dis-
tances with particle size. While coefficients a, b, ¢ in Eq. (16a) are
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Fig. 7. (a) Effects of viewing angles — n,j and o;y,; — in a 4-particle system with two shading particles on normalized particle-particle view factor, y,, 2, with the critical
viewing angles for particle m; and m; — acim, and a.;n,, represented as dashed lines leading to four regions, I - IV; (b) geometry illustration of example cases in four
regions I-IV, where the blue and the green shaded zones are based on critical angles of m; and m, respectively. Within the shading zone particle j will be shaded as viewed
from particle i. MCRT simulation data for this 4-particle system was obtained with d;;, = 0.7 mm, d;;,, = 1.4 mm, d;; = 2.7 mm, and d, = 0.4 mm.

drawn from geometry-based parameters, they are within 5% devi-
ation from those obtained via curve-fitting a sigmoid function in
MATLAB.

Fig. 7 applies a similar approach as in Fig. 6 to show the ef-
fects of shading in a 4-particle system with two shading parti-
cles my and m, (Fig. 3). The normalized shaded particle-particle
view factors, yp,,, are computed as a function of two view-
ing angles ap,; and ajy, ;. For selected particle-particle distances
(dim, = 0.7, djyy, = 14, d;j = 2.7 mm), the critical viewing angles
are oy, = 33° and &y, = 16° respectively. For any position of
particle mj, when oy, ; =0° and equivalently, for any position
of particle my, when oy, ; = 0°, the respective particle triplets —
(i, mq, j) and (i, my, j) are along the same line. This results in com-
plete shading at the boundaries in Fig. 7 with y,,, = 0.

Four regions can be identified in Fig. 7(a) based on the relative
values of &y ; and oyp,; with respect to the respective critical
angles, o¢m, and & y,, and these regions are visually illustrated
with sample particle locations in Fig. 7(b). The shading zones are
the effective shading regions by shading particles m; and m, when
particle i view particle j, which are derived based on the critical
angle in Eq. (15). In region I, both viewing angles are smaller than
their respective critical angles, and therefore, particle j is shaded
by both m; and m, (Fig. 7(b)). Therefore, in this region, both view-
ing angles can influence Fy,,. In regions II (&, > o jm, and
aimzj < acyimz) and III (Olim”' < O[C_iml and C(,‘mzj > ac,imz ), shad-
ing effects arise from only one particle, either particle m, or my
respectively for regions Il and III (Fig. 7(b)). Distinct from region
I, the shaded view factor in these two regions depend on only
one viewing angle (Fig. 7(a)). Therefore, the trends are like the 3-
particle system in Fig. 6, where an increase in viewing angle leads
to an increase in view factor and decrease of shading effect. In re-
gion IV, when both viewing angles are larger than their respec-
tive critical angles, there is minimal shading by either m; or m,
(Fig. 7(b)), and ypp» is within 2% of 1 (Fig. 7(a)). Oscillations in
the numerical values of y,, > in regions IV are due to the stochastic
nature of MCRT simulations.

From Fig. 7, we determine that the shading effects and there-
fore shading factor, S, ,, because of two particles will be a non-
linear function of shading factors by particle my (Sy_p,) or m;

(S1—m,) alone. S, 5 is shortened as S, for brevity. This prediction is
especially important in region I where both particles affect shad-
ing. If the overall shading factor S, is larger than 1, it is reset as
1 to ensure that predictions for view factors are non-negative. Dif-
ferent functional forms were tested to predict S, as a function of
Si—m, and Si_p, and presented in Section A5. The best-fit func-
tion presented in Eq. (17) yielded a RMSE of 0.032 and included
linear additions of the individual shading factors, Si_p, and Si_p,,
and a product term to compensate the overestimation of shading
by considering independent contributions by two particles.

Sy =Min(1, Si_m, +S1-m, — S1-m,S1-m,) (17)

Eq. (17) has been generalized in Eq. (18) for k particles present
between particles i and j,

k k-1 k
Sk=Min{1,> Si_m, =Y > S1_m,S1-m, |: k=1-50 (18)
p=1 p=1q>p

where, k ranges from 1 to a maximum of 50 for ¢s = 0.45, and the
product term that is summed over k particles will have k(k-1)/2
terms. Table A4 illustrates the expanded equations for k = 1-5.
Fig. 8 shows that the proposed extension in Eq. (18) re-
sults in reasonable comparisons with MCRT predictions of shaded
particle-particle view factors; ¢s = 0.016 (Fig. 8(a)) and ¢s = 0.45
(Fig. 8(b)) are shown for conciseness. Datasets are categorized also
by the number of shading particles, k, present between the desig-
nated pair of particles, which was computed based on the viewing
angle, Qi j» and critical angle, Ocim, (Fig. 7). For every value of
the number of shading particles, a maximum of 20 data points are
randomly selected and shown in Fig. 8 to avoid visual overcrowd-
ing; for ¢s = 0.016 and 5 shading particles, there are only 2 data
points to plot. Expectedly, at equivalent values of the dimension-
less distance, the number of shading particles between any pair of
particles is larger for the larger solid volume fraction. The RMSE
values reported in the tables are however calculated for all pair-
wise view factors predicted. The RMSE values are 8.3e-5 and 2.7e-
4 for ¢s = 0.016 and 0.45 respectively, which amounts to a MRE of
8.7% and 85%. With the increase in solid volume fraction, predic-
tion errors increase due to increased errors in accounting for shad-
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Fig. 8. Particle-particle view factor predictions from f; in Table 1 and Eq. (4), (12a),
(15)-(18) compared with Monte Carlo ray tracing (MCRT) simulations with different
colors representing different number of shading particles, k, for (a) ¢s = 0.016 and
(b) ¢s = 0.45 with root mean squared error (RMSE) reported in the inset tables as
a function of k; k value of All shows RMSE calculated for all predicted view factors.
MCRT simulations for particle-particle view factors were performed for a random
packed bed with monodisperse and diffuse spheres with a size of 0.4 mm.

ing from neighboring particles and the large magnitudes of rela-
tive errors stem from a high density of small view factor values (<
le-4). Therefore, deviations of small values get amplified in rela-
tive error (MRE) estimations. The RMSE values exhibit a somewhat
non-monotonic variation with the number of shading particles, es-
pecially for ¢s = 0.45, where these errors are smaller when more
than 5 particles cause shading compared to when shading occurs
due to at most 5 particles. This is because the RMSE values are
biased by the large density of view factors with very small mag-
nitudes (< le-4) when k > 5 for the high solid volume fraction
case.

3.2. Particle-wall view factor

Fig. 9 shows the training data and predictions for the particle-
wall correction factor, Cpw, as a function of the dimensionless
particle-wall normal distance, dj,, (Eq. (5)) for all 6 walls; train-
ing data was determined from Eq. (14). It is observed that Cpw
decreases with increasing dj,,, and the best-fit function and the
parameters are influenced by the solid volume fraction. Therefore,
distinct best-fit functions are reported for low, ¢s = 0.016, 0.068,
0.12 (Fig. 9(a)), and high, ¢s = 0.28, 0.45 (Fig. 9(b)), solid volume

fractions in Eq. (19a) and (19b) respectively.
Cpw = 0.67 — 0.059d5,, + 0.0016d32,, ¢s < 0.12 (19a)

Gow = 0.90 — 0.098d;,,, + O.OOBOCI;,ZN, 0.12 < ¢s <045 (19Db)
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The fit quality is mediocre with RMSE errors up to 0.0078 and
the R? values being less than 0.9 and attributed to the spread
in the training data at any dj,. This spread can stem from: (i)
scatter in the predictions for F,yo (Eq. (13)) due to the sensitiv-
ity to lateral positioning of particles; (ii) variations in the con-
tributions of intermediate particles to shading, and (iii) Cow be-
ing predicted solely as a function of dj, (Eq. (14)), when in ac-
tuality it might depend on more than one feature. However, as
will be shown (Fig. 10), the fit quality for Cpw doesn’t negatively
impact the particle-wall view factor predictions, Fpy. Event with
other prediction functions for Cpy including higher order polyno-
mial functions and sigmoid functions (Section A7), substantial im-
provements were not obtained to the quality of fits compared to
the quadratic functions.

Fig. 10 depicts the predicted values for particle-wall view fac-
tors, Fpyk, using Cpy obtained from Fig. 9 and using Eq. (14).
These predictions are compared against MCRT simulation data for
particle-wall view factors, and analytical estimates for view factors
without shading, F,y0, (Eq. (13a)) for ¢s = 0.016 and 0.45. View
factors are shown only for particles with the right wall, but the re-
sults for the other wall surfaces follow suit (insets in Fig. 10(a) and
(b)). Despite the average quality of fits for Cpw (Fig. 9), the predic-
tions match well with ray tracing simulations with RMSE values
of 0.0089 and 0.021 for ¢s = 0.016 and 0.45 respectively. These
RMSE values translate to MRE of 7.1% and 87% respectively. For the
lowest solid volume fraction modeled, even the analytical solution
matches the predictions from MCRT simulations quite well (RMSE
= 0.021) because the particle-particle shading effects are not as
pronounced. However, for the high solid volume fractions, shading
effects become significant and the analytical results substantially
overpredict the view factors at any distance leading to an order-of-
magnitude larger RMSE values compared to predictions from our
correlations (Fig. 10(b)). The analytical particle-wall view factor es-
pecially exhibits a large spread when the normal distance between
the particle and the wall is lesser than 1.2 mm, corresponding to
d}y, < 3. This is because, when a particle is near a wall, its lateral
positioning can severely impact the extent to which it views the
wall. Contrastingly, for the same dj,, values, MCRT simulation re-
sults that account for shading effects indicate lesser scatter in the
data, due to the significant obstructions caused by the presence of
intermediate particles. This trend is well-captured by our predic-
tions for the shaded view factors, Fp,,, from Eq. (14).

3.3. Computational accuracy and efficiency for particle-particle view
factors

Computing particle-particle view factors can pose formidable
challenges, to especially account for shading by particle neighbors,
when the number of particles becomes large. Particle-wall view
factors are also dependent on, and limited by, the calculation of
particle-particle view factors (Eq. (14)). Therefore, Fig. 11 assesses
different strategies for thresholding based on the number of shad-
ing particles to compute shaded particle-particle view factors, Fp,
(Eq. (18)). Thresholding values imply that the prediction is per-
formed up to k shading particles, and beyond this number the view
factor is set to 0, i.e., Fp, iy = 0 in Eq. (18). Comparisons of dif-
ferent thresholding approaches are made based on accuracy and
computational cost for the predictions.

The prediction errors — RMSE and MRE from view factor corre-
lations developed in this work (f; in Table 1, Egs. (4), (12), (15)-
(18) for Fypx and Egs. (5), (13)-(14), (19) for F,yy) are shown in
Fig. 11(a), (b) as a function of the threshold number of shading par-
ticles. For all solid volume fractions, the steepest reduction in the
prediction errors occurs when the thresholding value for the shad-
ing particles increases from O to 5; a threshold value of 0 implies
that no shading corrections are made and the maximum particle-
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particle view factor, F,po (f7 in Table 1) is used as such. For com-
parison, we also show the errors for the no-prediction case, where
all particle-particle view factor values are set to be 0, i.e., Fyp = 0
for all k. For ¢ps = 0.016, the maximum number of shading particles
is 5, and therefore the data do not extend beyond this value. For
¢s = 0.45, which can have shading by up to 50 particles, the er-
rors level off when accounting for only 5 nearest shading particles.
Results from a thresholding value of 10 nearest particles lead to
the same prediction errors as accounting for all possible shading
particles. This is consistent with the findings from the probabil-
ity distributions of the particle-particle view factors as a function
of the number of shading particles (Section A6), which indicate
that there is very low probability of view factors being even 10%
of the maximum view factor with more than 10 shading particles.
Additionally, the probability of having 10 shading particles is also
low for all solid volume fractions. Therefore, accurate predictions
can be made for view factors from our correlations by accounting
for shading effects by 5, and no more than 10, nearest particles
for ¢s in the range of 0.016-0.45. The RMSE and MRE increase as
the solid volume fraction increases because of the increased errors
in predicting shading corrections. MRE for the large solid volume
fractions is biased by the high density of particle-particle view fac-
tors with small magnitudes (< 1le-4). The error distribution plot
(Section A8) as a function of view factor reveals that relative error
drops off drastically to less than 10% for view factors larger than
0.02.

Fig. 11(c) shows computational time as a function of the num-
ber of particles and equivalently, the solid volume fraction, and its
dependency on thresholding values of 5 for the number of shading
particles. Compared to serially executed ray tracing simulations,
correlations for view factors developed in this study is more time-
efficient only when thresholding is applied to detect shading par-
ticles. The algorithm complexity scales as the square of the num-
ber of particles, O(Nf,), where N, is the number of particles, for
both MCRT simulations and the correlation-based approach with
thresholding. When all the shading particles are considered, the
complexity becomes O(N;), which can especially become penal-
izing when N, becomes large. For N, = 1289, view factor compu-
tations take 857 mins for MCRT simulations, and 40 mins and 7.4
mins for correlations from this study without and with threshold-
ing of 5 respectively. Even with the same complexity, MCRT simu-
lations have significantly larger compute times compared to corre-
lations with thresholding. This is because of the necessity to launch
and track ~10% rays for intersections with each particle. Hence,
view factor correlations can be about 100 times faster than serial
MCRT simulations while achieving reasonable accuracy even for
high solid volume fractions. While the comparisons made in this
study are relevant for serial MCRT simulations, significant compu-
tational efficiency gains may be possible with parallelization and
truncation techniques, but these aspects are outside the scope of
this study. Overall, detecting up to 5 nearest shading particles in
particle-particle view factor computations using correlations devel-
oped in this study results in combined benefits of prediction accu-
racy and computational efficiency. Current view factor correlations
are directly applicable to monodisperse particle and future work
will consider extension to polydisperse particles, where correlation
functions will depend on particle size and size distribution statis-
tics.

4. Summary & conclusion

In this study, we have developed data-driven correlations of
particle-particle and particle-wall radiative view factors as a func-
tion of spatial locations and size of particles and wall surfaces.
Compared to prior work, unique advancements in this study are
the development of physically interpretable correlations, and ex-
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plicitly checking and accounting for shading effects of neighboring
particles, which becomes especially significant for large solid vol-
ume fractions.

Monte Carlo ray tracing simulations were performed on a ran-
dom packed bed of monodisperse spheres with varying solid vol-
ume fractions of 0.016-0.45 to determine particle-particle and
particle-wall view factors. This provides training and validation
datasets to develop view factor correlations. Without any shading
effects, the particle-particle view factor is governed by an inverse
squared-relationship with the dimensionless distance, d*, which is
the ratio of the inter-particle separation distance to the particle di-
ameter. The best-fit function to predict maximum particle-particle
view factor (i.e., without any shading) involves 5 feature variables
in the form of d*™, where m varies from —4 to 0. To account for
shading effects, shading factors for individual particles are added
based on their respective viewing angles, from which their product
is deducted to account for overlaps in shadows cast by various par-
ticles. Predictions for shaded particle-particle view factors match
ray tracing data with root mean square errors (RMSE) of 8.3e-5
and 2.7e-4, translating to 8.7% and 85% mean relative errors (MRE)
for corresponding solid volume fractions of 0.016 and 0.45. Higher
solid volume fraction results in larger errors due to the complexity
of predicting shading effects by neighboring particles and the high
density of view factors less than 1e-4, which particularly amplifies
relative errors. For particle-wall view factor predictions, a correc-
tion factor, which is a quadratic function solely based on particle-
wall normal distance, quantifies the effect of shading by intermedi-
ate particles. Predictions for shaded particle-wall view factors ex-
hibit an excellent match with ray tracing data with RMSE and MRE
values of 0.021 and 87% for the largest solid volume fraction mod-
eled of 0.45.

View factor correlations developed in this study result in note-
worthy accuracy, but accounting for all possible shading surfaces
between a pair of particles will be computationally limiting, es-
pecially for large systems with many millions of particles. To this
end, the effects of thresholding the number of shading particles
was analyzed. Results show that accounting for shading effects by
the nearest 5 neighboring particles can balance prediction accuracy
with computational efficiency.

Overall, the radiative view factor correlations developed in this
study exhibit the appeal of simplicity while being accurate and
time efficient compared to ray tracing techniques to determine
pairwise view factors with shading effects in particulate media.
Additionally, correlations developed enable a discrete approach
to compute radiative fluxes on particle surfaces, which provides
better opportunities to integrate radiative heat transfer with dis-
crete/Lagrangian calculations of forces and conductive heat fluxes
for flowing particles.

Declaration of Competing Interest

None.

CRediT authorship contribution statement

Zijie Chen: Conceptualization, Methodology, Software, Investi-
gation, Data curation, Writing - original draft, Writing - review &
editing, Visualization, Validation. Rohini Bala Chandran: Concep-
tualization, Methodology, Writing - original draft, Writing - review
& editing, Resources, Supervision, Formal analysis, Project adminis-
tration, Funding acquisition.

Data availability

All raw data files in .xIsx format for the Results in Figures 4-11
have been included here — doi: 10.17632/5btz7hh399.1.



Z. Chen and R. Bala Chandran
Acknowledgments

Chen and Bala Chandran were partially supported by the
Donors of the American Chemical Society Petroleum Research Fund
(ACS-PRF, 62639-DNI9), and by the National Science Foundation
under Grant No. 2144184, in this research. Chen was in-part also
funded by the Rackham International Student Fellowship. Addition-
ally, the authors acknowledge the financial support from the De-
partment of Mechanical Engineering and the College of Engineer-
ing startup funds at the University of Michigan. Authors acknowl-
edge helpful discussions with Bingjia Li for the model development
in this paper.

Supplementary materials

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.jjheatmasstransfer.
2023.124250.

References

[1] V.T. Le, N.S. Ha, N.S. Goo, Advanced sandwich structures for thermal protec-
tion systems in hypersonic vehicles: a review, Compos. Part B Eng. 226 (2021)
109301, doi:10.1016/].COMPOSITESB.2021.109301.

[2] CK. Ho, A review of high-temperature particle receivers for concentrat-
ing solar power, Appl. Therm. Eng. 109 (2016) 958-969, doi:10.1016/].
APPLTHERMALENG.2016.04.103.

[3] J. Grobbel, Modeling Solar Particle Receivers with the Discrete Ele-
ment Method, Ph.D. thesis, RWTH Aachen University, 2019, doi:10.18154/
RWTH-2020-01764.

[4] Q. Bellouard, S. Rodat, M. Grateau, S. Abanades, Solar biomass gasification com-
bined with iron oxide reduction for syngas production and green iron metal-
lurgy, Front. Energy Res. 8 (2020) 66, doi:10.3389/fenrg.2020.00066.

[5] A. Lingayat, R. Balijepalli, V.P. Chandramohan, Applications of solar energy
based drying technologies in various industries - a review, Sol. Energy. 229
(2021) 52-68, doi:10.1016/].SOLENER.2021.05.058.

[6] M. Horio, Overview of fluidization science and fluidized bed technologies, in:
fluidized Bed Technologies for Near-Zero Emission, Combustion and Gasifica-
tion (2013), doi:10.1533/9780857098801.1.3.

[7] C.L. Tien, Thermal radiation in packed and fluidized beds, ]. Heat Transf. 110
(1988) 1230-1243, doi:10.1115/1.3250623.

[8] B.P. Singh, M. Kaviany, Modelling radiative heat transfer in packed beds, Int. ].
Heat Mass Transf. 35 (1992) 1397-1405, doi:10.1016/0017-9310(92)90031-M.

[9] H. Wu, N. Gui, X. Yang, ]. Tu, S. Jiang, Effect of scale on the modeling of radi-
ation heat transfer in packed pebble beds, Int. ]. Heat Mass Transf. 101 (2016)
562-569, doi:10.1016/j.ijheatmasstransfer.2016.05.090.

[10] T. Esence, A. Bruch, S. Molina, B. Stutz, ].F. Fourmigué, A review on experience
feedback and numerical modeling of packed-bed thermal energy storage sys-
tems, Sol. Energy. 153 (2017) 628-654, doi:10.1016/].SOLENER.2017.03.032.

[11] M. lasiello, N. Bianco, W.K.S. Chiu, V. Naso, The effects of variable porosity
and cell size on the thermal performance of functionally-graded foams, Int.
J. Therm. Sci. 160 (2021) 106696, doi:10.1016/J.JTHERMALSCI.2020.106696.

[12] S.C. Lee, G.R. Cunnington, Conduction and radiation heat transfer in high-
porosity fiber thermal insulation, J. Thermophys. Heat Transf. 14 (2000) 121-
136, doi:10.2514/2.6508.

[13] A.L. Avila-Marin, ]. Fernandez-Reche, A. Martinez-Tarifa, Modelling strategies
for porous structures as solar receivers in central receiver systems: a review,
Renew. Sustain. Energy Rev. 111 (2019) 15-33, doi:10.1016/].RSER.2019.03.059.

[14] R. Bala Chandran, RM. De Smith, J.H. Davidson, Model of an integrated so-
lar thermochemical reactor/reticulated ceramic foam heat exchanger for gas-
phase heat recovery, Int. J. Heat Mass Transf. 81 (2015) 404-414, doi:10.1016/
j-ijheatmasstransfer.2014.10.053.

[15] E.E. Johnson, . Tar1, D. Baker, Modeling heat exchangers with an open source
DEM-based code for granular flows, Sol. Energy. 228 (2021) 374-386, doi:10.
1016/j.solener.2021.09.067.

[16] J.D. Yarrington, M.V. Bagepalli, G. Pathikonda, A.J. Schrader, Z.M. Zhang, D. Ran-

jan, P.G. Loutzenhiser, Numerical analyses of high temperature dense, granu-

lar flows coupled to high temperature flow property measurements for solar
thermal energy storage, Sol. Energy. 213 (2021) 350-360, doi:10.1016/j.solener.

2020.10.085.

S. Bellan, N. Gokon, K. Matsubara, H.S. Cho, T. Kodama, Numerical and exper-

imental study on granular flow and heat transfer characteristics of directly-

irradiated fluidized bed reactor for solar gasification, Int. J. Hydrogen Energy.

43 (2018) 16443-16457, doi:10.1016/].]JHYDENE.2018.06.033.

M.S. Alagha, P. Szentannai, Analytical review of fluid-dynamic and ther-

mal modeling aspects of fluidized beds for energy conversion devices, Int.

J. Heat Mass Transf. 147 (2020) 118907, doi:10.1016/].JHEATMASSTRANSFER.

2019.118907.

[19] J.E. Sacadura, Thermal radiative properties of complex media: theoretical pre-
diction versus experimental identification, Heat Transf. Eng. 32 (2011) 754-
770, doi:10.1080/01457632.2011.525140.

[17]

(18]

13

International Journal of Heat and Mass Transfer 213 (2023) 124250

[20] L.A. Dombrovsky and D. Baillis, Thermal Radiation in Disperse Systems: An En-
gineering Approach, New York: Begell House, 2010.

[21] J. Randrianalisoa, D. Baillis, Radiative transfer in dispersed media: comparison
between homogeneous phase and multiphase approaches, ]. Heat Transf. 132
(2010) 1-11, doi:10.1115/1.4000237.

[22] B. Li, R. Bala Chandran, Effects of spatial correlations in particulate media
on dependent scattering and radiative transport, Int. . Heat Mass Transf. 182
(2022) 121951, doi:10.1016/j.ijheatmasstransfer.2021.121951.

[23] R.B. Rice, C.M. Hrenya, Characterization of clusters in rapid granular flows,
Phys. Rev. E. 79 (2009) 1-9, doi:10.1103/PhysRevE.79.021304.

[24] V.M. Wheeler, ].I. Zapata, P.B. Kreider, W. Lipifski, Effect of non-stoichiometry
on optical, radiative, and thermal characteristics of ceria undergoing reduction,
Opt. Express. 26 (2018) 10, doi:10.1364/0e.26.00a360.

[25] J.-M. Lavoie, J.H. Joo, W. Lipinski, R.C. Pullar, RM. Novais, A.P.F. Caetano,

M.A. Barreiros, S. Abanades, FA.C. Oliveira, A review of solar thermochem-

ical CO2 splitting using ceria-based ceramics with designed morphologies

and microstructures, Front. Chem. 7 (2019) 601, doi:10.3389/fchem.2019.

00601.

M. Mehos, C. Turchi, ]. Vidal, M. Wagner, Z. Ma, C. Ho, W. Kolb, C. Andraka,

A. Kruizenga, Concentrating Solar Power Gen3 Demonstration Roadmap, NREL

Rep., 2017, doi:10.2172/1338899.

P. Von Zedtwitz, A. Steinfeld, Steam-gasification of coal in a fluidized-

bed/packed-bed reactor exposed to concentrated thermal radiations model-

ing and experimental validation, Ind. Eng. Chem. 44 (2005) 3852-3861, doi:10.
1021/ie050138w.

[28] M.E. Modest, The radiative transfer equation in participating media (RTE),
in: Radiat. Heat Transf., Academic Press, 2013, pp. 279-302, doi:10.1016/
B978-0-12-386944-9.50010-8.

[29] G.L. Olson, LH. Auer, M.L. Hall, Diffusion, P1, and other approximate forms
of radiation transport, J. Quant. Spectrosc. Radiat. Transf. 64 (2000) 619-634,
doi:10.1016/S0022-4073(99)00150-8.

[30] T.A. Brunner, Forms of approximate radiation transport, Sandia Rep., 2002,
doi:10.2172/800993.

[31] M.F. Modest, Approximate solution methods for one-dimensional media,
in: Radiat. Heat Transf, Academic Press, 2013, pp. 480-494, doi:10.1016/
B978-0-12-386944-9.50015-7.

[32] M.E. Modest, The Method of Spherical Harmonics (PN-Approximation),
in: Radiat. Heat Transf, Academic Press, 2013, pp. 495-540, doi:10.1016/
B978-0-12-386944-9.50016-9.

[33] E.W. Larsen, G. Thommes, A. Klar, M. Seaid, T. Gotz, Simplified PN approxima-
tions to the equations of radiative heat transfer and applications, J. Comput.
Phys. 183 (2002) 652-675, doi:10.1006/JCPH.2002.7210.

[34] W.A. Fiveland, Three-dimensional radiative heat-transfer solutions by the
discrete-ordinates method, J. Thermophys. Heat Transf. 2 (1988) 309-316,
doi:10.2514/3.105.

[35] J.Y. Murthy, S.R. Mathur, Finite volume method for radiative heat transfer using
unstructured meshes, J. Thermophys. Heat Transf. 12 (1998) 313-321, doi:10.
2514/2.6363.

[36] E.H. Chui, G.D. Raithby, Computation of radiant heat transfer on a nonorthogo-
nal mesh using the finite-volume method, Numer. Heat Transf. Part B Fundam.
23 (1993) 269-288, doi:10.1080/10407799308914901.

[37] PJ. Coelho, Advances in the discrete ordinates and finite volume methods
for the solution of radiative heat transfer problems in participating media, J.
Quant. Spectrosc. Radiat. Transf. 145 (2014) 121-146, doi:10.1016/].JQSRT.2014.
04.021.

[38] J.C. Chai, H.S. Lee, S.V. Patankar, H. Lee, Ray effect and false scattering in the
discrete ordinates method, Numer. Heat Transf. Part B. 24 (1993) 373-389,
doi:10.1080/10407799308955899.

[39] J. Tencer, Ray effect mitigation through reference frame rotation, J. Heat Transf.
138 (2016) 1-11, doi:10.1115/1.4033699.

[40] M. Frank, J. Kusch, T. Camminady, C.D. Hauck, Ray effect mitigation for the
discrete ordinates method using artificial scattering, Nucl. Sci. Eng. 194 (2020)
971-988, doi:10.1080/00295639.2020.1730665.

[41] K. Nasr, R. Viskanta, S. Ramadhyani, An experimental evaluation of the effec-
tive thermal conductivities of packed beds at high temperatures, ]. Heat Transf.
116 (1994) 829-837, doi:10.1115/1.2911455.

[42] R.C. Moro Filho, W. Malalasekera, An analysis of thermal radiation in porous
media under local thermal non-equilibrium, Transp. Porous Media. 132 (2020)
683-705, doi:10.1007/s11242-020-01408-x.

[43] LA. Dombrovsky, The use of transport approximation and diffusion-based
models in radiative transfer calculations, Comput. Therm. Sci. 4 (2012) 297-
315, doi:10.1615/ComputThermalScien.2012005050.

[44] ].R. Howell, The Monte Carlo method in radiative heat transfer, J. Heat Transf.
120 (1998) 547-560, doi:10.1115/1.2824310.

[45] ML.F. Modest, The Monte Carlo method for participating media, in: Radiat. Heat
Transf,, Academic Press, 2013, pp. 694-723, doi:10.1016/B978-0-12-386944-9.
50021-2.

[46] ]. Petrasch, P. Wyss, A. Steinfeld, Tomography-based Monte Carlo determina-
tion of radiative properties of reticulate porous ceramics, ]J. Quant. Spectrosc.
Radiat. Transf. 105 (2007) 180-197, doi:10.1016/j.jqsrt.2006.11.002.

[47] R. Coquard, D. Baillis, Radiative characteristics of opaque spherical particles
beds: a new method of prediction, J. Thermophys. Heat Transf. 18 (2004) 178-
186, doi:10.2514/1.5082.

[48] J.P. Roccia, B. Piaud, C. Coustet, C. Caliot, E. Guillot, G. Flamant, J. Delatorre,
SOLFAST, a ray-tracing monte-carlo software for solar concentrating facilities,
J. Phys. Conf. Ser. 369 (2012), doi:10.1088/1742-6596/369/1/012029.

[26]

[27]


https://doi.org/10.13039/100006770
https://doi.org/10.13039/100000001
https://doi.org/10.13039/100008425
https://doi.org/10.1016/j.ijheatmasstransfer.2023.124250
https://doi.org/10.1016/J.COMPOSITESB.2021.109301
https://doi.org/10.1016/J.APPLTHERMALENG.2016.04.103
https://doi.org/10.18154/RWTH-2020-01764
https://doi.org/10.3389/fenrg.2020.00066
https://doi.org/10.1016/J.SOLENER.2021.05.058
https://doi.org/10.1533/9780857098801.1.3
https://doi.org/10.1115/1.3250623
https://doi.org/10.1016/0017-9310(92)90031-M
https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.090
https://doi.org/10.1016/J.SOLENER.2017.03.032
https://doi.org/10.1016/J.IJTHERMALSCI.2020.106696
https://doi.org/10.2514/2.6508
https://doi.org/10.1016/J.RSER.2019.03.059
https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.053
https://doi.org/10.1016/j.solener.2021.09.067
https://doi.org/10.1016/j.solener.2020.10.085
https://doi.org/10.1016/J.IJHYDENE.2018.06.033
https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2019.118907
https://doi.org/10.1080/01457632.2011.525140
https://doi.org/10.1115/1.4000237
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121951
https://doi.org/10.1103/PhysRevE.79.021304
https://doi.org/10.1364/oe.26.00a360
https://doi.org/10.3389/fchem.2019.penalty -@M 00601
https://doi.org/10.2172/1338899
https://doi.org/10.1021/ie050138w
https://doi.org/10.1016/B978-0-12-386944-9.50010-8
https://doi.org/10.1016/S0022-4073(99)00150-8
https://doi.org/10.2172/800993
https://doi.org/10.1016/B978-0-12-386944-9.50015-7
https://doi.org/10.1016/B978-0-12-386944-9.50016-9
https://doi.org/10.1006/JCPH.2002.7210
https://doi.org/10.2514/3.105
https://doi.org/10.2514/2.6363
https://doi.org/10.1080/10407799308914901
https://doi.org/10.1016/J.JQSRT.2014.04.021
https://doi.org/10.1080/10407799308955899
https://doi.org/10.1115/1.4033699
https://doi.org/10.1080/00295639.2020.1730665
https://doi.org/10.1115/1.2911455
https://doi.org/10.1007/s11242-020-01408-x
https://doi.org/10.1615/ComputThermalScien.2012005050
https://doi.org/10.1115/1.2824310
https://doi.org/10.1016/B978-0-12-386944-9.50021-2
https://doi.org/10.1016/j.jqsrt.2006.11.002
https://doi.org/10.2514/1.5082
https://doi.org/10.1088/1742-6596/369/1/012029

Z. Chen and R. Bala Chandran

[49] R. Dayal, T. Gambaryan-Roisman, Heat transfer in granular medium for applica-
tion to selective laser melting: a numerical study, Int. J. Therm. Sci. 113 (2017)
38-50, doi:10.1016/j.ijthermalsci.2016.11.014.

[50] J.D. Maltby, PJ. Burns, Performance, accuracy, and convergence in a three-
dimensional Monte Carlo radiative heat transfer simulation, Numer. Heat
Transf. Part B Fundam. 19 (1991) 191-209, doi:10.1080/10407799108944963.

[51] JW.C. Tseng, Y. Xia, W. Strieder, M. Carlo, Monte Carlo calculations of wall-to-
random-bed view factors: impenetrable spheres and fibers wall-to-sphere-bed
view factors, AIChE J. 38 (1992) 955-958, doi:10.1002/aic.690380616.

[52] J.T. Farmer, J.R. Howell, Comparison of Monte Carlo strategies for radiative
transfer in participating media, Adv. Heat Transf. 31 (1998) 333-429, doi:10.
1016/S0065-2717(08)70243-0.

[53] E. Farbar, LD. Boyd, M. Esmaily-Moghadam, Monte Carlo modeling of radia-
tive heat transfer in particle-laden flow, J. Quant. Spectrosc. Radiat. Transf. 184
(2016) 146-160, doi:10.1016/JJQSRT.2016.07.007.

[54] RJ. Braham, A.T. Harris, A complete multi-scale simulation of light absorption
within a fluidized bed photoreactor using integrated particle, fluid and pho-
ton behaviour models, Phys. Chem. Chem. Phys. 15 (2013) 12373, doi:10.1039/
c3cp50328c.

[55] H.H. Kang, M. Kaya, S. Hajimirza, A data driven artificial neural network model
for predicting radiative properties of metallic packed beds, J. Quant. Spectrosc.
Radiat. Transf. 226 (2019) 66-72, doi:10.1016/j.jqsrt.2019.01.013.

[56] RK. Desu, A.R. Peeketi, RK. Annabattula, Artificial neural network-based
prediction of effective thermal conductivity of a granular bed in a
gaseous environment, Comput. Part. Mech. 6 (2019) 503-514, doi:10.1007/
s40571-019-00228-1.

[57] H. Wu, S. Hao, A deep neural network model of particle thermal radiation in
packed bed, in: AAAI 34th, 2020, pp. 1029-1036, doi:10.1609/aaai.v34i01.5452.

[58] J. Tausendschon, S. Radl, Deep neural network-based heat radiation modelling
between particles and between walls and particles, Int. J. Heat Mass Transf.
177 (2021) 121557, doi:10.1016/j.ijheatmasstransfer.2021.121557.

[59] E. Johnson, D. Baker, I. Tari, Development of view factor correlations for mod-
eling thermal radiation in solid particle solar receivers using CFD-DEM, AIP
Conf. Proc. 2126 (2019) 030028, doi:10.1063/1.5117540.

[60] E.F. Johnson, I. Tari, D. Baker, Radiative heat transfer in the discrete element
method using distance based approximations, Powder Technol. 380 (2021)
164-182, doi:10.1016/].POWTEC.2020.11.050.

[61] Y.T. Feng, K. Han, An accurate evaluation of geometric view factors for mod-
elling radiative heat transfer in randomly packed beds of equally sized spheres,
Int. J. Heat Mass Transf. 55 (2012) 6374-6383, doi:10.1016/j.ijheatmasstransfer.
2012.06.025.

14

International Journal of Heat and Mass Transfer 213 (2023) 124250

[62] M.E. Modest, The Monte Carlo Method for Surface Exchange, in: Radiat. Heat
Transf., Academic Press, 2013, pp. 247-266, doi:10.1016/B978-0-12-386944-9.
50008-X.

[63] T. Vdisdnen, J. Martikainen, K. Muinonen, Scattering of light by dense particu-
late media in the geometric optics regime, ]. Quant. Spectrosc. Radiat. Transf.
241 (2020) 106719, doi:10.1016/J.JQSRT.2019.106719.

[64] S. Afandizadeh, E.A. Foumeny, Design of packed bed reactors: guides to cata-
lyst shape, size, and loading selection, Appl. Therm. Eng. 21 (2001) 669-682,
doi:10.1016/S1359-4311(00)00072-7.

[65] F. Benyahia, Enhanced voidage correlations for packed beds of various par-

ticle shapes and sizes, Part. Sci. Technol. 23 (2005) 169-177, doi:10.1080/

02726350590922242.

G.J. Auwerda, ].L. Kloosterman, D. Lathouwers, T.H.J.J. Van Der Hagen, Macro-

scopic and Microscopic Packing Properties of Experimental and Computa-

tional Pebble Beds, Nucl. Technol. 183 (2013) 272-286, doi:10.13182/NT13-

A19417.

C.K. Ho, ].M. Christian, D. Romano, ]. Yellowhair, N. Siegel, L. Savoldi, R. Zanino,

Characterization of particle flow in a free-falling solar particle receiver, ]. Sol.

Energy Eng. 139 (2017) 1-9, doi:10.1115/1.4035258.

G. Flamant, D. Gauthier, H. Benoit, J.L. Sans, R. Garcia, B. Boissiére, R. Ansart,

M. Hemati, Dense suspension of solid particles as a new heat transfer fluid for

concentrated solar thermal plants: on-sun proof of concept, Chem. Eng. Sci.

102 (2013) 567-576, doi:10.1016/j.ces.2013.08.051.

Y. Hua, G. Flamant, J. Lu, D. Gauthier, 3D modelling of radiative heat transfer in

circulating fluidized bed combustors: influence of the particulate composition,

Int. J. Heat Mass Transf. 48 (2005) 1145-1154, doi:10.1016/j.ijheatmasstransfer.

2004.10.001.

G.A. Valentine, M.R. Sweeney, Compressible flow phenomena at inception of

lateral density currents fed by collapsing gas-particle mixtures, J. Geophys. Res.

Solid Earth. 123 (2018) 1286-1302, doi:10.1002/2017]B015129.

[71] M. Salehi, M. Askarishahi, S. Radl, Quantification of solid mixing in bubbling
fluidized beds via two-fluid model simulations, Ind. Eng. Chem. Res. 59 (2020)
10606-10621, doi:10.1021/acs.iecr.9b06343.

[72] S.W. Kim, Application of particle imaging method for measurement of solid
volume fraction in carbon nanotube particles fluidized bed, Int. J. Eng. Technol.
7 (2018) 85-89, doi:10.14419/ijet.v7i3.33.18530.

[73] M.E. Modest, View factors, in: Radiat. Heat Transf, Academic Press, 2013,
pp. 129-159, doi:10.1016/B978-0-12-386944-9.50004-2.

[74] J. Howell, A catalog of radiation heat transfer configuration factors, (1982).
http://www.thermalradiation.net/indexCat.html.

[66]

(67]

(68]

[69]

[70]


https://doi.org/10.1016/j.ijthermalsci.2016.11.014
https://doi.org/10.1080/10407799108944963
https://doi.org/10.1002/aic.690380616
https://doi.org/10.1016/S0065-2717(08)70243-0
https://doi.org/10.1016/J.JQSRT.2016.07.007
https://doi.org/10.1039/c3cp50328c
https://doi.org/10.1016/j.jqsrt.2019.01.013
https://doi.org/10.1007/s40571-019-00228-1
https://doi.org/10.1609/aaai.v34i01.5452
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121557
https://doi.org/10.1063/1.5117540
https://doi.org/10.1016/J.POWTEC.2020.11.050
https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.025
https://doi.org/10.1016/B978-0-12-386944-9.50008-X
https://doi.org/10.1016/J.JQSRT.2019.106719
https://doi.org/10.1016/S1359-4311(00)00072-7
https://doi.org/10.1080/02726350590922242
https://doi.org/10.13182/NT13-penalty -@M A19417
https://doi.org/10.1115/1.4035258
https://doi.org/10.1016/j.ces.2013.08.051
https://doi.org/10.1016/j.ijheatmasstransfer.2004.10.001
https://doi.org/10.1002/2017JB015129
https://doi.org/10.1021/acs.iecr.9b06343
https://doi.org/10.14419/ijet.v7i3.33.18530
https://doi.org/10.1016/B978-0-12-386944-9.50004-2
http://www.thermalradiation.net/indexCat.html

	Radiative view factor correlations in particulate media from ray tracing simulations and data-driven modeling
	1 Introduction
	2 Theory and modeling approach
	2.1 Monte Carlo ray tracing simulations for view factor predictions
	2.2 Data-driven modeling for view factor correlations
	2.2.1 Particle-particle view factors
	2.2.2 Particle-wall view factors


	3 Results and discussion
	3.1 Particle-Particle view factors
	3.2 Particle-wall view factor
	3.3 Computational accuracy and efficiency for particle-particle view factors

	4 Summary & conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Supplementary materials
	References


