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Spin-dependent interactions and heavy-quark transport in the quark-gluon plasma
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We extend a previously constructed T -matrix approach to the quark-gluon plasma (QGP) to include the effects

of spin-dependent interactions between partons. Following earlier work within the relativistic quark model, the

spin-dependent interactions figure as relativistic corrections to the Cornell potential. When applied to the vacuum

spectroscopy of quarkonia, in particular their mass splittings in S- and P-wave states, the issue of the Lorentz

structure of the confining potential arises. We confirm that a significant admixture of a vector interaction (to

the previously assumed scalar interaction) improves the description of the experimental mass splittings. The

temperature corrections to the in-medium potential are constrained by results from thermal lattice quantum

chromodynamics for the equation of state and heavy-quark free energy in a self-consistent setup for heavy-

and light-parton spectral functions in the QGP. We then deploy the refined in-medium heavy-light T matrix to

compute the charm-quark transport coefficients in the QGP. The vector component of the confining potential,

through its relativistic corrections, enhances the friction coefficient for charm quarks in the QGP over previous

calculations by tens of percentages at low momenta and temperatures and more at higher momenta. Our results

are promising for improving the current phenomenology of open heavy-flavor observables at Relativistic Heavy

Ion Collider and the Large Hadron Collider.
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I. INTRODUCTION

The exploration of hadron properties in vacuum and the

properties of the quark-gluon plasma (QGP) are usually

regarded as rather independent areas in the study of quan-

tum chromodynamics (QCD). However, in both areas the

basic building block are soft parton interactions rooted in

the nonperturbative sector of the theory, albeit in differ-

ent environments. Of particular interest are heavy quarks:

heavy-quarkonium spectroscopy in vacuum has provided deep

insights into potential between a heavy (charm or bottom)

quark (Q = c, b) and its antiquark (Q̄). The Cornell potential

and its refinements remain a phenomenologically successful

tool in the description of the pertinent bound states, taking

advantage of expansion in the inverse heavy-quark (HQ) mass,

1/MQ [1]. The long-range (linear) part of the potential, which

by now is also well established in lattice QCD (lQCD), is

arguably one of the most direct manifestations of the confining

force in QCD. In the context of high-temperature QCD and

its study in ultrarelativistic heavy-ion collisions (URHICs),

this led to the idea of utilizing quarkonium production as

a probe of deconfinement, although the originally proposed

suppression signature has evolved considerably since the early

1990s [2–4]. Specifically, transport approaches have been
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developed toward the more general objective of deducing

the in-medium QCD force from quarkonium observables by

implementing it into the transport coefficients that govern

both suppression and regeneration reactions in the evolving

fireball of a heavy-ion collision, see, e.g., Ref. [5]. This effort

is critically aided by ample information from lQCD on the

in-medium properties of quarkonia through HQ free energies

and Euclidean correlation functions [6–9], which constrain

calculations of spectral functions that can serve as an interface

to phenomenological applications [10–12].

Open heavy-flavor (HF) particles have emerged as an ex-

cellent probe of the transport properties of the QCD medium

in URHICs [13–15]. Produced in initial hard processes, low-

momentum heavy quarks exert a Brownian motion through

the QGP characterized by a spatial diffusion coefficient,

hadronize in different HF hadrons, and subsequently are fur-

ther transported through the hadronic medium. The large HQ

mass implies the dominance of elastic interactions with small

energy transfer amenable to potential approximations, and the

final HF baryon spectra carry a memory of their interaction

history due to a thermalization time being comparable or

larger than the fireball lifetime.

The present work builds on previous efforts to develop

a quantum many-body theory to describe the spectral and

transport properties of open and hidden HF particles in

a strongly coupled QGP [16,17], including the one- and

two-body Green’s functions of thermal partons for obtaining

the equation of state (EoS) in a self-consistent Brueckner

scheme [18,19]. The basic ingredient to this framework is the

two-body interaction kernel for the in-medium T matrix for

which we employ an ansatz using a Cornell potential, whose
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temperature corrections are constrained by lQCD data for

the HQ free energy. A salient feature of this approach is that

it recovers basic features of vacuum spectroscopy (such as

masses of quarkonia, D and B mesons, and non-Goldstone

light hadrons), providing a baseline for the calculation of

medium effects. In the spirit of a 1/MQ expansion, spin-orbit

and spin-spin interactions were not included thus far. In the

present paper, we take the next step by including the latter by

benchmarking them against the hyper-/fine mass splittings of

quarkonia in vacuum.

Our study raises the question of the Lorentz structure of

the confining potential. Historically, a default assumption of a

purely scalar interaction has been employed [20,21], implying

a vanishing long-range magnetic contribution that neverthe-

less could reproduce the empirical fine structure for heavy

quarkonium [22]. However, studies of the Wilson loop suggest

that the confining potential cannot be a purely scalar kernel

[23,24], and the latter also causes problems in construct-

ing a stable vacuum of QCD [25]. In the relativistic quark

model [26,27] a mixing of scalar and vector structures in

the confining potential has been found to yield a quarkonium

spectroscopy in good overall agreement with experimental

data. The approach we employ in the present paper is close in

spirit to these works, i.e., we will incorporate the possibility

of a mixed confining Lorentz structure in the T -matrix kernel

with the goal of improving the description of the observed the

hyper/fine splittings in the vacuum quarkonium spectroscopy;

the pertinent relativistic corrections will turn out to have sig-

nificant ramifications for the HQ diffusion coefficient.

This article is organized as follows. In Sec. II, we briefly

recollect the main elements of the thermodynamic T -matrix

approach. In Sec. III we implement spin-dependent interac-

tions as well as a vector component of the confining force

into the potential. In Sec. IV we compute heavy-quarkonium

spectral functions from the T matrix and discuss the charmo-

nium and bottomonium spectroscopy in vacuum. In Sec. V

we lay out our constraints on the in-medium corrections to

the potential using lQCD data for static HQ free energies

(Sec. V A) and the QGP equation of state (Sec. V B) and

discuss the pertinent numerical results (Sec. V C). In Sec. VI

we outline the calculation of the HQ transport coefficients

and highlight the implications of the vector component in

the confining interaction on the numerical results for charm

quarks. We summarize and conclude in Sec. VII.

II. T-MATRIX APPROACH

The thermodynamic T matrix is a two-particle irreducible

(PI) quantum many-body scheme that self-consistently solves

the one- and two-body Green’s functions and is thus suitable

for strongly interacting systems. In Refs. [17,18] it has been

initially developed to study the properties of HF particles in

the QGP allowing for a reduction of the four-dimensional

(4D) Bethe-Salpeter two-body scattering equation to a 3D one

which allows for tractable numerical solutions. Subsequently,

it has also been extended to the light-parton sector [28],

based on the notion that the effective masses of the QGP’s

constituents are typically large compared to temperatures not

too far above the pseudocritcal one of Tpc � 160 MeV. The

TT T = + + ...+

FIG. 1. T -matrices resummation for ladder diagrams.

starting point can be formulated in terms of an effective

Hamiltonian with a relativistic potential,

H =
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which emphasizes the implementation of unitarity through

resummations of the propagators (also referred to as a

Dyson-Schwinger setup). Here p and p′ denote the relative

momentum of the incoming and outgoing states and P the total

momentum of the two-body system. Furthermore, ·i(p) =√
M2

i + p2 is the dispersion relation of a parton with mass Mi,

and the V a
i j are the potentials between particles i and j in a

color channel a. The summation includes momentum, spin,

color, and flavor for quarks and gluons. The infinite series

of ladder diagrams generated by the Hamiltonian in Eq. (1)

straightforwardly results in the T -matrix equation, depicted

in Fig. 1. In the center-of-mass (c.m.) frame, one has

T a
i j (z, p, p′) =V a

i j (p, p′) +
∫ >

2>

d3k

(2Ã )3
V a

i j (p, k)

× G0
i j (z, k)T a

i j (z, k, p′), (2)

where G0
i j is the two-body propagator, z = E ± iε the ana-

lytical energy variable, and p and p′ are the incoming and

outgoing 3-momenta in the center-of-mass frame, respec-

tively. The reduction scheme from 4D to 3D is not unique

[29] but its specific choice has minor impact on the results; we

choose the Thompson scheme following our previous studies

[17,28]. In this scheme, the two-body propagator in spectral

representation can be written as

G0
i j (z, k) =

∫ >

2>
dË1dË2

[1 ± ni(Ë1) ± n j (Ë2)]

z 2 Ë1 2 Ë2

× Ãi(Ë1, k)Ã j (Ë2, k), (3)

with the single-particle propagator

Gi(z) =
1

[
G0

i (z, k)
]21 2 �i(z, k)

=
1

z 2 ·i(k) 2 �i(z, k)

(4)

and the single-particle spectral function

Ãi(Ë,k) = 2
1

Ã
Im Gi(Ë + iε). (5)

The ± signs in Eq. (3) correspond to bosons (upper) or

fermions (lower),1 and ni is the Bose or Fermi distribution

1The convention that upper/lower signs denote bosons/fermions is

applied throughout this work.

044906-2



SPIN-DEPENDENT INTERACTIONS AND HEAVY-QUARK … PHYSICAL REVIEW C 108, 044906 (2023)

function for parton i. In quasiparticle approximation Eq. (3)

reduces to2

G0
i j (z, k) =

1

z 2 ·i(k) 2 · j (k) 2 �i(k) 2 � j (k)
. (6)

The single-particle self-energies in the QGP, �i(k), are

obtained by closing the T matrix with an in-medium

single-parton propagator from the heat bath; its spectral rep-

resentation is

�i(z, p1) =
1

di

∫
d3p2

(2Ã )3

∫ >

2>
dË2

dE

Ã

21

z + Ë2 2 E

×
∑

a, j

d i j
s d i j

a Im T a
i j (E , p1, p2 | p1, p2)

× Ã j (Ë2, p2)[n j (Ë2) 3 ni j (E )], (7)

with T (E , p1, p2 | p1, p2) the forward-scattering T matrix,

i.e., p′
1 = p1 and p′

2 = p2, where p1,2 and p′
1,2 are the incom-

ing and outgoing momenta for particles 1 and 2, respectively,

defined in the thermal frame. The ni j refers to the thermal

distribution for the two-body state i j, while 3 refers to the

bosonic/fermionic single-parton state i. The d
i j
a,s are color and

spin degeneracies of the two-body system, and di is the spin-

color degeneracy of the single parton i. We also need to add

the purely real thermal Fock term [30],

�i(p1) = 3
∫

d3p2

(2Ã )3

∫ >

2>
dË2V

a=1
iī

(p1 2 p2)Ãi(Ë2, p2)

× ni(Ë2), (8)

which is not part of the self-energy in Eq. (7). The V a=1
iī

refers to the color-singlet potential between particle and an-

tiparticle. The self-energy can be solved self-consistently

by iterating Eqs. (2), (7), and (8) numerically. In doing

so, the T matrix in the thermal frame, T a
i j (Ë1 + Ë2, p1, p2 |

p′
1, p′

2) needs to be transformed into the center-of-mass frame,

T a
i j (Ec.m., pc.m., p′

c.m., cos(»c.m.)). This is accomplished by

Ec.m. =
√

(Ë1 + Ë2)2 2 (p1 + p2)2

son = [·1(p1) + ·2(p2)]2 2 (p1 + p2)2

pc.m. =

√(
son 2 M2

i 2 M2
j

)2 2 4M2
i M2

j

4son

cos (»c.m.) =
pc.m. · p′

c.m.

pc.m. p′
c.m.

, (9)

where cos(»c.m.) is the angle between the incoming and out-

going momenta in the center-of-mass frame and p′
c.m. can

be obtained by substituting son(p1, p2) with son(p′
1, p′

2). As

discussed in Ref. [28], the reason for using the on-shell value,

son, for pc.m. is to preserve the analytical properties of the T

matrix after the transformation into the center-of-mass frame.

2This differs from Refs. [17,29] by a factor of mi j (k) = MiM j

·i (k)· j (k)
;

here we keep the convention of Ref. [28] where mi j (k) is absorbed

into the relativistic corrections to the potential which will be elabo-

rated in Sec. III B.

The 3D T -matrix integral equation can be further reduced

to a 1D one by applying the partial-wave expansion in the

center-of-mass frame (from hereon the subscript “c.m.” is

suppressed for simplicity),

X (p, p′) = 4Ã
∑

L

(2L + 1)X L(p, p′)PL[cos(» )], (10)

where X denotes V or T , L the angular-momentum quantum

number, and p and p′ are the moduli of p and p′. The 1D

T -matrix equation then takes the form

T L,a
i j (z, p, p′) = V L,a

i j (p, p′) +
2

Ã

∫ >

2>
k2dkV L,a

i j (p, k)

× G0
i j (z, k)T L,a

i j (z, k, p′). (11)

Equation (11) can be solved by discretizing the momenta

to convert it into a matrix equation and solve it by matrix

inversion.

III. TWO-BODY POTENTIALS IN VACUUM

In this section we first discuss the static potentials in

Sec. III A, then introduce the relativistic corrections to the

potential between particles i and j and construct the confining

potential with mixed Lorentz structures in Sec. III B. The

potential is generalized to different color channels at the end

of this section. For simplicity, we suppress the color factors

indices until the end of this section.

A. Static potential

The kernel of the T -matrix equation (2) is based on the

Cornell potential, with a color-Coulomb potential, VC , plus a

confining potential (“string” term), VS . In coordinate space the

common ansatz is

Ṽ (r) = ṼC (r) + ṼS (r) = 2
4

3

³s

r
+ Ã r, (12)

where ³s and Ã are the perturbative coupling constant and

nonperturbative string tension, respectively. To obtain the

momentum-space potentials, VC/S (k), depending on the mo-

mentum transfer k = p 2 p′, we use the subtracted quantities

VC/S (r) = ṼC/S (r) 2 ṼC/S (>) to ensure the convergence of

the Fourier transforms. A running coupling is implemented

in the Coulomb potential for off-shell scattering in momen-

tum space as [17] Frun(p, p′) = ln[�2


2 ]/ ln[
(p2p′ )2+�2


2 ]. For the

confining potential, we enforce a flat potential above a string

breaking scale of about rSB = 1 fm to account for string break-

ing. We employ the same potential parameters as in previous

studies [28], i.e., ³s = 0.27, Ã = 0.225 GeV2, � = 1 GeV,

and 
 = 0.2 GeV, which are fitted to the lQCD data of the

vacuum free energy [11,31–35] as shown in Fig. 2, noting

that in vacuum the color-singlet free energy is identical to the

potential (as there is no entropy term).

B. Relativistic corrections and spin-dependent interactions

Relativistic effects in the one-gluon exchange amplitude

are well known, containing spin-independent and spin-

dependent ones. For the pertinent vector potential (denoted as
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FIG. 2. The fitted vacuum potential versus the lQCD data. The

blue line denotes the fitted vacuum potential, the colored dots the

lQCD data from Refs. [11,31–35].

V vec), the spin-independent correction amounts to multiplying

the momentum-space potential by a factor

Ri j =

√
1

mi j (p)

√
1 +

p2

·i(p)· j (p)

×

√
1

mi j (p′)

√
1 +

p′2

·i(p′)· j (p′)
, (13)

which is known as the Breit correction, representing magnetic

effects. For scalar potentials, denoted as V sca, no relativistic

correction arises to leading order in 1/MQ, see Ref. [17]. We

write the total spin-independent potential in momentum space

as

Vi j (p, p′) = Ri jV
vec(p 2 p′) + V sca(p 2 p′). (14)

To implement spin-dependent interactions, including spin-

orbit (V LS), spin-spin (V SS), and tensor (V T ) channels, we

follow Ref. [36] where the detailed procedure to derive the

Fermi-Breit Hamiltonian is laid out. The pertinent corrections

for vector and scalar potentials between two partons with

equal masses (Mi = M j c M) in coordinate space are given

by

V LS (r) =
1

2M2r
〈L · S〉

[
3

d

dr
V vec(r) 2

d

dr
V sca(r)

]
,

V SS (r) =
2

3M2
〈S1 · S2〉�V vec(r),

V T (r) =
1

12M2
〈S12〉

[
1

r

d

dr
V vec(r) 2

d2

dr2
V vec(r)

]
, (15)

where � c '2 in the SS interaction is the Laplace operator.

Note that the scalar interactions do not contribute to the SS

and T corrections. We note that the vector potential, V vec,

in the spin-dependent potentials above do not receive the

spin-independent Breit correction, R, introduced in Eq. (13).

Following Ref. [37], we smear the Dirac delta function · in

the SS part by a Gaussian, ·̃(r) = ( b:
Ã

)3e2b2r2

, to avoid the

singularity. We take b = 10 in this work and have checked

that for b > 10 the SS interaction saturates in the quarkonium

spectroscopy.

The expectation values take the standard form

(with L, S, and J denoting the orbital, spin, and total

angular-momentum quantum numbers, respectively):

〈L · S〉 = 1
2
[J (J + 1) 2 L(L + 1) 2 S(S + 1)], 〈S1 · S2〉 =

1
2
[S(S + 1) 2 3

2
], and 〈S12〉 = 4

(2L+3)(2L21)
[S(S+1)J (J+1) 2

3
2
〈L · S〉 2 3(〈L · S〉)2] for L �= 0 and S = 1, but 〈S12〉

vanishes for either L = 0 or S = 0. The total potential (with

relativistic corrections) between, e.g., a heavy quark and

antiquark in momentum-space reads

VQQ̄(p, p′) =RQQ̄V vec(p 2 p′) + V sca(p 2 p′)

+ V LS (p 2 p′) + V SS (p 2 p′) + V T (p 2 p′),

(16)

where the spin-dependent terms in momentum space

are obtained through Fourier transform, V a(k = p 2 p′) =∫
d3re2ik·rV a(r) with a = LS, SS, T . We absorb mi j (k) in the

two-body propagator into the relativistic corrections for the

potentials to keep the same convention as in Ref. [28], and

thus Eq. (14) become

Vi j (p, p′) ³
√

mi j (p)
√

mi j (p′)Vi j (p, p′)

= R
vec
i j V vec(p 2 p′) + R

sca
i j V sca(p 2 p′), (17)

with

R
vec
i j c

√
mi j (p)

√
mi j (p′)Ri j

=

√
1 +

p2

·i(p)· j (p)

√
1 +

p′2

·i(p′)· j (p′)
,

R
sca
i j c

√
mi j (p)

√
mi j (p′)

=

√
MiM j

·i(p)· j (p)

√
MiM j

·i(p′)· j (p′)
, (18)

and Eq. (16) becomes

VQQ̄(p, p′) ³
√

mi j (p)
√

mi j (p′)VQQ̄(p, p′)

=R
vec
QQ̄

V vec(p 2 p′) + R
sca
QQ̄

V sca(p 2 p′)

+ R
spin

QQ̄
[V LS (p 2 p′) + V SS (p 2 p′)

+ V T (p 2 p′)], (19)

with

R
spin
i j c

√
mi j (p)

√
mi j (p′)

=

√
MiM j

·i(p)· j (p)

√
MiM j

·i(p′)· j (p′)
. (20)

The Lorentz structure for Coulomb potential is entirely vector,

and a common assumption for the confining one is to be en-

tirely scalar, i.e., V vec = VC and V sca = VS . As was mentioned

in the Introduction, there are reasons to believe that the confin-

ing potential is not a purely scalar one but a mixture of vector

and scalar Lorentz structures, i.e., V vec = VC + (1 2 Ç )VS

and V sca = ÇVS . The key parameter is the mixing coefficient,
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TABLE I. Casimir and degeneracy factors for different color

channels (Casimir factor, degeneracy).

qq qq̄ (q/q̄)g gg

(1/2, 3) (1,1) (9/8, 3) (9/4, 1)

(21/4, 6) (21/8, 8) (3/8, 6) (9/8, 16)

(23/8, 15) (23/4, 27)

Ç , defined such that for Ç = 1 the interaction reduces to the

case with a purely scalar confining potential, while values

below one characterize a vector admixture.

The potentials in the various color channels, V a
i j (p, p′),

are obtained by the substitutions VC (p 2 p′) ³ FC
a VC (p 2 p′)

and VS (p 2 p′) ³ FS
a VS (p 2 p′). For the Coulomb interac-

tion, FC
a are the standard Casimir coefficients listed in Table I

(together with the pertinent degeneracy factors), and we take

the absolute values of the Casimir coefficients for the string in-

teraction, FS
a , to ensure a positive definite string tension [28].

The parton masses are also related to the potential intro-

duced above. The constituent masses of the heavy quarks, MQ,

receives two contributions, the first one is calculated by the

self-energy from the color-singlet (a = 1) potential (including

the relativistic factors) and the second one is a “bare mass,”

M0
Q, which is associated with condensate contributions that

we do not calculate explicitly in the present framework,

MQ = 2
1

2

∫
d3p

(2Ã )3
V a=1

QQ̄
(p) + M0

Q, (21)

IV. HEAVY-QUARKONIUM SPECTROSCOPY IN VACUUM

In this section we introduce the correlation and spec-

tral functions including their nonrelativistic classifications

in angular momentum (Sec. IV A) and discuss our fits to

the vacuum spectra including the spin-related interactions

(Sec. IV B).

A. Correlation and spectral functions

To evaluate the quarkonia spectra in both charm and bottom

sectors, we compute the quark-antiquark spectral functions

for different mesonic quantum-numbers channels using the

pertinent T matrices as described in Sec. II. The bound-state

masses are then determined from the peak values of cor-

responding mesonic spectral functions. In the vacuum, we

introduce a small width in the single-quark propagators which

allows us to numerically resolve the bound-state mass while

not distorting their masses. Since we only account for the

QQ̄ channels (off-shell) couplings to intermediate two-meson

states (e.g., DD7 channels) are not accounted for, which could

affect the masses near the DD̄ threshold somewhat.

Table II lists the L, S, and J assignments in the scalar (S),

pseudoscalar (PS), vector (V), axial-vector (AV), and tensor

(T) mesonic channels. In practice, a cutoff rc = 0.01 fm is

introduced in the Fourier transform for the spin-dependent

potentials to avoid ultraviolet divergences; we have checked

that the results are not sensitive to variations in rc by ±50%.

TABLE II. Nonrelativistic classification of

angular-momentum quantum numbers in different

mesonic channels.

Channels L S J

S 1 1 0

PS 0 0 0

V 0 1 1

AV1 1 0 1

AV2 1 1 1

T 1 1 2

The spectral functions are obtained form the correlation

functions, G, of the meson currents. The latter are obtained

by closing the two incoming and outgoing legs of T matrix

(plus a noninteracting contribution) with the corresponding

projection operator for the different quarkonium channels, see

Fig. 3. Writing

G = G0 + �G, (22)

the noninteracting part of correlation function in the center-

of-mass frame is given by

G0(E , T ) = N f Nc

∫
d3 p

(2Ã )3
R

sca
QQ̄

× Tr{�³
+(p)�³
2(2p)}G0
QQ̄

(E , p), (23)

where 
±(p) = [·Q(p)³ 0 2 (p · γ ) ± MQ]/2MQ are the

positive/negative energy projectors for quark and antiquark,

respectively, and �³ * (1, i³5, ³
¿, ³ ¿³5,

i
2
[³ ¿, ³ ¿]) the

vertex operators for the mesonic S, PS, V, AV, and T channels,

respectively; the pertinent traces are listed in Table III.

Furthermore, N f = 1 and Nc = 3 are the numbers of flavor

and color for the heavy quark.

The interacting part of correlation function in the center-

of-mass frame is given by

�G(E , T ) =
N f Nc

8Ã4

∫
d pp2G0

QQ̄
(E , p)

∫
d p′ p′2G0

QQ̄
(E , p′)

×R
sca
QQ̄

T (�³; E , p, p′), (24)

with the scattering amplitude

T (�³; E , p, p′) =
∫

d (cos » )Tr(�³; p, p′, » )TQQ̄(E , p, p′)

= 8Ã
[
a0(p, p′)T 0

QQ̄
+ a1(p, p′)T 1

QQ̄

]
. (25)

+++

+

...V V V

T

FIG. 3. Diagrammatic representation of the QQ̄ correlation func-

tion. The dots denote meson current operators �M .
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TABLE III. Values for the trace coefficients in

different mesonic channels for the noninteracting

part, G0, of the correlation functions.

�³ G0 trace

S 2
p2

M2
Q

PS 2
(
1 + p2

M2
Q

)

V 6 + 4
p2

M2
Q

AV 4
p2

M2
Q

T 4
p2

M2
Q

The T matrix, T L
QQ̄

, is calculated from Eq. (11) with the inter-

action kernel in Eq. (19). The aL denote the coefficients of the

orbital-angular momentum, L, in the partial-wave expansion

of the trace,

Tr(�³; p, p′, » ) = Tr{
+(p)�³
2(2p)
2(2p′)�³
+(p′)}
= a0(p, p′)P0(cos » ) + a1(p, p′)P1(cos » );

(26)

they are listed in Table IV. For the evaluation of the traces in

the V, AV, and T channels we focus on the spatial components.

The correlation functions defined in Refs. [16] and [17] do

not have the Rsca
QQ̄

factor due to the different definitions of

potentials and two-body propagators, but they are equivalent

to those in Refs. [28] and in this work.

At higher orders in the 1/MQ expansion, the partial-wave

expansion leads to a mixing between S- and P-wave com-

ponents in a given meson channel. However, to keep with

the (nonrelativistic) classification of the meson channels with

definite quantum numbers of L, S, and J , we terminate the

expansion when the “unnatural” partial waves admix [16]. The

pertinent leading orders are collected in Table V.

From the correlation functions, the mesonic spectral func-

tions follow from the imaginary part,

Ã³ (E , T ) = 2
1

Ã
Im G³ (E + iε, T ), (27)

TABLE IV. Coefficients of orbital angular momentum (up to L =
1) in different mesonic channels for the interacting part, G, of the

correlation functions.

�³ a0(p, p′) a1(p, p′)

S 2 p2 p′2

M4
Q

[
1 + ·(p)·Q (p′ )

M2
Q

]
pp′

M2
Q

PS 1 + p2+p′2

M2
Q

+ ·Q (p)·Q (p′ )

M2
Q

+ p2 p′2

M4
Q

2 ·Q (p)·Q (p′ )pp′

M4
Q

V 3
[
1 + ·Q (p)·Q (p′ )

M2
Q

]
+2

p2+p′2

M2
Q

+ 4

3

p2 p′2

M4
Q

2
[
1 + 2

·Q (p)·Q (p′ )

M2
Q

]
pp′

M2
Q

AV 2 4

3

p2 p′2

M4
Q

2
[
1 + ·Q (p)·Q (p′ )

M2
Q

]
pp′

M2
Q

T 2 2

3

p2 p′2

M4
Q

2
[
1 + ·Q (p)·Q (p′ )

M2
Q

]
pp′

M2
Q

TABLE V. Leading orders of the angular-momentum coeffi-

cients, aL , in evaluating the traces for the noninteracting (second

column) and interacting (third and fourth columns) part of the dif-

ferent mesonic channels specified in the first column.

�³ G0 trace a0(p, p′) a1(p, p′)

S 2
p2

M2
Q

O
(
p4/M4

Q

)
22

pp′

M2
Q

+ O
(
p4/M4

Q

)

PS 2 + O
(
p2/M2

Q

)
22 + O

(
p2/M2

Q

)
O

(
p2/M2

Q

)

V 6 + O
(
p2/M2

Q

)
26 + O

(
p2/M2

Q

)
O

(
p2/M2

Q

)

AV 4
p2

M2
Q

O
(
p4/M4

Q

)
24

pp′

M2
Q

+ O
(
p4/M4

Q

)

T 4
p2

M2
Q

O
(
p4/M4

Q

)
24

pp′

M2
Q

+ O
(
p4/M4

Q

)

where the subscript ³ denotes the different meson channels.

B. Heavy-quarkonium spectra in vacuum

We are now in position to investigate the quantitative

consequences of the spin-dependent interactions and the

scalar-vector mixing effect in the confining potential on

the charmonium and bottomonium spectroscopy in vacuum.

In practice, we adopt a value for the HQ width of �Q =
20 MeV which is small enough to not affect the vacuum

masses but large enough to allow for straightforward nu-

merical computations and plotting. Our fit procedure is as

follows: For a given mixing coefficient, Ç , we adjust the

bare-quark masses M0
c (M0

b ) to find the best fit for all the

masses of charmonium (bottomonium) states given by the

Particle Data Group [38] using a Ç2 statistical test. In prin-

ciple we could optimize the value for the mixing coefficient,

Ç , by strictly minimizing the variance of the fit. However,

in practice we found that Ç = 0.6 already provides most of

the improvement in the mass splittings compared to Ç = 1,

while for still smaller values the constituent quark masses

become rather large producing uncomfortably large bind-

ing energies; in addition, a more precise evaluation of the

quarkonium masses near the open heavy-flavor threshold

would also require the inclusion of hadronic loop corrections.

In particular, we do not pursue here more extreme scenar-

ios, as proposed, e.g., in Refs. [26,27] where optimized fits

with Ç = 21 were found (implying a negative string tension

for the scalar term, counteracted by a twice larger vector

component).

We start by displaying the comparison of charmonium

spectral functions between purely scalar (Ç = 1) and mixed

(Ç = 0.6) confining potential for all states below the DD̄

threshold in Fig. 4 (we only plot the interacting parts of

spectral functions since the free part does not affect the

bound-state locations). The various peaks in each quantum-

number channel are readily assigned as S: Çc0(1P); PS:

·c(1S) and ·c(2S); V: J/�(1S) and �(2S); AV1: hc(1P);

AV2: Çc1(1P); and T: Çc2(1P). The masses extracted from

the pole positions are listed in Table VI and compared to

the experimental values. The potential with mixing effect

generates more attraction from the additional relativistic cor-

rections [recall Eq. (13)], thus requiring a larger HQ mass

044906-6



SPIN-DEPENDENT INTERACTIONS AND HEAVY-QUARK … PHYSICAL REVIEW C 108, 044906 (2023)

FIG. 4. The vacuum charmonium spectral functions (interacting

parts) in S, PS, V, AV, and T channels with mixing coefficient Ç = 1

(upper panel) and Ç = 0.6 (lower panel).

for Ç = 0.6 as quoted in Table VI. For Ç = 1, neither the

S- nor P-wave mass splittings are well reproduced; the re-

sults are much improved by introducing the mixing effect

with Ç = 0.6.

To better understand the impact of the mixing effect, it

is useful to summarize the expectation values for 〈L · S〉,
〈S1 · S2〉, and 〈S12〉 in Table VII. We take the mass splitting

between PS and V channels, where only spin-spin interac-

tion are operative, as an example. For simplicity, we will

TABLE VI. Experimental and theoretical values for charmonium

masses (in GeV) with the mixing coefficient Ç = 1 and Ç = 0.6;

M0
c and Mc are the bare and constituent charm-quark masses,

respectively.

Th. Th.

Ç = 1 Ç = 0.6

M0
c = 1.352 M0

c = 1.359

Channel Particle Exp. Mc = 1.872 Mc = 1.916

S Çc0(1P) 3.415 3.498 3.448

PS ·c(1S) 2.984 3.079 3.022

·c(2S) 3.638 3.624 3.600

V J/�(1S) 3.097 3.120 3.104

�(2S) 3.686 3.650 3.650

AV1 hc(1P) 3.525 3.518 3.500

AV2 Çc1(1P) 3.511 3.519 3.499

T Çc2(1P) 3.556 3.519 3.544

TABLE VII. Couplings of LS, SS, and T interactions for differ-

ent quarkonium channels.

Channel 〈L · S〉 〈S1 · S2〉 〈S12〉

S 22 1/4 24

PS 0 23/4 0

V 0 1/4 0

AV1 0 23/4 0

AV2 21 1/4 2

T 1 1/4 22/5

use the Cornell potential in Eq. (12) to make the argument.

According to Eq. (15), the spin-spin interaction is V SS (r) >
〈S1 · S2〉�V vec(r) = 〈S1 · S2〉[ 16Ã³s

3
·(r) + (1 2 Ç ) 2Ã

r
]. Since

the quantity in the bracket is positive, the negative (positive)

value for 〈S1 · S2〉 gives a more attractive (repulsive) interac-

tions, which is the origin of the J/�-·c (i.e., V-PS) splitting.

The mixing with Ç < 1 obviously enhances this effect. Sim-

ilar arguments can be made for the spin-orbit, V LS (r) >
〈L · S〉[ 4³s

r3 + (3 2 4Ç ) Ã
r

], and tensor, V LS (r) > 〈S12〉[ 4³s

r3 +
(1 2 Ç ) Ã

r
], interactions; i.e., the strength of V LS , V SS , and

V T are all enhanced by introducing a vector component in

the confining potential, thereby improving the splittings in

comparison to experiment.

We have carried out a similar analysis for bottomonium

spectral functions. In Fig. 5 bound-state spectral functions

between Ç = 1 and 0.6 are compared. We identify the

peaks in each channel as follows [not all of which have

an experimental counterpart (yet)]: S: Çb0(1P) and Çb0(2P);

PS: ·b(1S), ·b(2S), and ·b(3S); V: Ó(1S), Ó(2S), and

FIG. 5. The vacuum bottomonium spectral functions (interacting

parts) in S, PS, V, AV, and T channels with mixing coefficient Ç = 1

(upper panel) and Ç = 0.6 (lower panel). The spectral functions in S,

AV, and T channels are multiplied by a factor of 4 for better visibility.
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TABLE VIII. Experimental and theoretical bottomonium spec-

troscopy with the mixing coefficient Ç = 1 and Ç = 0.6 (in GeV).

M0
b and Mb are the bare and constituent masses for bottom quark,

respectively.

Th. Th.

Ç = 1 Ç = 0.6

M0
b = 4.681 M0

b = 4.681

Channel Particle Exp. Mb = 5.247 Mb = 5.266

S Çb0(1P) 9.859 9.871 9.864

Çb0(2P) 10.233 10.227 10.220

PS ·b(1S) 9.399 9.496 9.470

Ó(1S) 9.460 9.520 9.500

V Ó(2S) 10.023 9.999 9.994

Ó(3S) 10.355 10.345 10.324

AV1 hb(1P) 9.899 9.896 9.893

Çb1(1P) 9.893 9.894 9.877

AV2 Çb1(2P) 10.255 10.248 10.243

Çb1(3P) 10.513 10.520 10.500

T Çb2(1P) 9.912 9.897 9.899

Çb2(2P) 10.269 10.249 10.249

Ó(3S); AV1: hb(1P), hb(2P), and hb(3P); AV2: Çb1(1P),

Çb1(2P), and Çb1(3P); T: Çb2(1P), Çb2(2P), and Çb2(3P).

The comparison between the experimental values and the

masses extracted from spectral functions is compiled in

Table VIII. Also here an improvement in the mass splittings

is found by introducing the vector confining potential, but

it is not as significant as the charmonium sector, primar-

ily due to the larger 1/Mb suppression for the spin-induced

forces.

Finally, we have evaluated the spin-induced interactions

in the heavy-light sector, which is the key ingredient to cal-

culating the heavy-quark transport coefficients discussed in

Sec. VI. Specifically, in the S-wave color-singlet D-meson

channel, the mass splitting between the pseudoscalar D-meson

and the vector D7-meson improves from 30 MeV for Ç = 1 to

120 MeV for Ç = 0.6.

V. IN-MEDIUM POTENTIAL

AND SELF-CONSISTENT QGP

In this section, we briefly introduce (and carry out) the

framework for determining the medium modifications to the

potential and its application to the EoS and spectral func-

tions of the QGP within a self-consistent quantum many-body

approach [28]. In a nutshell the procedure consists of two self-

consistency loops as follows. First, the in-medium potential

will be constrained through calculating the HQ free energies

from the T matrix and fitting it to pertinent lQCD data. The

key fit parameters in this step are the screening masses, md

and ms, of the color-Coulomb and string interactions. The

in-medium potentials are then applied in a self-consistent

2-PI scheme to compute the EoS of the QGP and fit those

results to pertinent lQCD data as well. The main parame-

ters in this step are the in-medium light-quark and gluon

masses, but the EoS is computed including the full off-shell

properties of the one-body spectral functions and two-body

scattering amplitudes. Since the parton self-energies are com-

puted from their T matrices, this forms a self-consistency

problem which is solved by numerical iteration. However, the

calculation of the HQ free energy also requires the spectral

functions (self-energies) of the heavy quarks, calculated from

heavy-light T matrices closed off with thermal parton spectral

functions. Thus, after constraining the light sector with the

EoS, the in-medium HQ spectral functions are recalculated

and inserted into the computation of the HQ free energies.

Refitting the screening masses to the lQCD data, a refinement

of the in-medium two-body potential is obtained which is

then reprocessed in a new fit to the EoS. This constitutes

the second (“outer”) iteration loop which is also iterated

numerically.

In the remainder of this section, we first introduce the the

main equations to compute the HQ free energy (Sec. V A) and

the EoS (Sec. V B) and then discuss the numerical results with

the updated in-medium potential (Sec. V C).

A. Static HQ free energy

Our starting point is an ansatz for the medium modifi-

cations of the potential; following previous studies [28] we

employ

ṼC (r) = 2
4

3
³s

e2md r

r
2

4

3
³smd

ṼS (r) = 2
Ãe2msr2(cbmsr)2

ms

+
Ã

ms

, (28)

where md and ms are the respective Debye screening masses

for Coulomb and confining potentials, related by ms =
(csm

2
dÃ/³s)1/4 [28]. The quadratic term in the exponential,

2(cbmsr)2, accelerates the suppression of the long-range part

of the confining potential to simulate string breaking. In the

limit of vanishing screening masses the vacuum potential of

Eq. (12) is recovered.

The HQ free energy, FQQ̄(r, T ), is defined as the difference

between the free energies of the QGP without and with a

static quark and antiquark (not counting their infinite masses)

separated by a distance r (see, e.g., Ref. [39]),

FQQ̄(r, T ) = 2
1

³
ln[G>

QQ̄
(2i³, r)], (29)

where G>
QQ̄

(2iÇ, r) is the Euclidean time Green function and

³ = 1/T the inverse temperature. In the vacuum, this simply

corresponds to the potential between Q and Q̄, cf. Sec. III.

In medium, the free energy and the potential are no longer

identical to each other due to the presence of entropy con-

tributions resulting from medium effects encoded in the HQ

self-energies (which we calculate from the in-medium heavy-

light T matrix) and the potential. In Ref. [28] a compact form

of the free energy has been derived as

FQQ̄(r, T ) = 2
1

³
ln

[
2

∫ >

2>

dE

Ã
e2³E

× Im

[
1

E + iε 2 Ṽ (r) 2 �QQ̄(E + iε)

]]
,

(30)
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with the color-singlet potential Ṽ (r) (color-flavor indices are

suppressed for simplicity) from Eq. (28). The relationship

between the two-body self-energy, �QQ̄(z), and the two-body

propagator, G0
QQ̄

(z), is [28]

[
G0

QQ̄
(z)

]21 = z 2 2�MQ 2 �QQ̄(z), (31)

with a Fock mass term for each quark, �MQ = Ṽ (>)/2. In

the static limit, G0
QQ̄

(z) reduces to

G0
QQ̄

(z) =
∫ >

2>
dË1dË2

ÃQ(Ë1)ÃQ̄(Ë2)

z 2 Ë1 2 Ë2

, (32)

where ÃQ/Q̄(Ë) = 2 1
Ã

Im GQ/Q̄(Ë + iε) are the single-particle

spectral functions with propagators GQ/Q̄(z) = 1
z2MQ/Q̄2�Q/Q̄ (z)

in the static limit. Then the single-particle self-energy, �Q(z),

can be solved self-consistently by combining the T matrix

and the self-energy equations. By taking the heavy-light T

matrix from Eq. (2) in the “half-static” limit, where the p1

dependence is suppressed due to the infinite static-quark mass,

Eq. (7) takes the form

�Q(z) =
∫

d3p2

(2Ã )3

∫ >

2>
dË2

dE

Ã

21

z + Ë2 2 E

1

dQ

∑

a, j

dQ j
s dQ j

a

× T a
Q j (E , p2 | p2)Ã j (Ë2, p2)n j (Ë2). (33)

The center-of-mass transformation in Eq. (9) reduces to

Ec.m. = Ë1 + Ë2, pc.m. = p2, cos (»c.m.) = cos(» ),

(34)

with Ë1 + Ë2 � |p1 + p2|. The resulting single-particle self-

energy, �Q(z), is inserted into Eq. (32) to obtain the QQ̄

propagator, and Eq. (31) yields the two-body self-energy,

�QQ̄(z).

Interference effects lead to a suppression of the imaginary

part of the two-body self-energy (relative to the sum of the

single-particle absorptive parts), which is sometimes referred

to as “imaginary part of the potential” (it is, in fact, an

r-dependent suppression of the imaginary part) [40]. In the

T -matrix formalism this amounts to three-body diagrams

which are rather challenging to compute explicitly [28].

Instead, the interference effects are implemented through an

r-dependent suppression factor [28] with a functional form

guided by perturbative results [41] using a factorized ansatz,

�QQ̄(z, r) = �QQ̄(z)Ç(r), where the function Ç(r) is part of

the constraints from the lQCD data for static HQ free energies

at each temperature. The interference effect is mostly relevant

for deeply bound heavy quarkonia, where, in the color singlet

channel, the imaginary part should vanish in the limit of r ³ 0

(corresponding to a color-neutral object). This is a central

ingredient to quantum transport approaches (see Ref. [41]

for a recent review), but it also plays a significant role in the

quantitative description of the quarkonium spectral functions

computed within the T -matrix approach, especially when

fitting lQCD data for euclidean quarkonium correlators [28].

B. Equation of state

The equation of state of a many-body system is encoded

in the pressure, P(T, ¿), as a function of temperature and

chemical potential. The EoS is driven by the dominant degrees

of freedom in the medium and is therefore sensitive to their

spectral properties, including their masses. For a homoge-

neous grand-canonical ensemble, the relationship between the

EoS and the grand potential per unit volume is given by � =
2P. We adopt the Luttinger-Ward-Baym formalism which

provides a diagrammatic and thermodynamically consistent

quantum approach that allows to incorporate the off-shell

dynamics of the one- and two-body correlation functions.

Quantum effects are expected to become particularly impor-

tant for a strongly coupled system with large scattering rates

(widths) [42–44]. One has

� = 3
21

³

∑

n

Tr{ln(2G21) + [(G0)21 2 G21]G} ± �,

(35)

where “Tr” denotes the trace over spin, color, flavor, and

3-momentum,
∑

n the Matsubara frequency sum, and the G0

and G are the free and fully dressed single-particle Green’s

function. The two-body interaction contribution is encoded in

the Luttinger-Ward functional (LWF), � =
∑>

v=1 �v , where

�v =
21

³

∑

n

Tr

{
1

2v

(
21

³

)
v

[(2³ )v�v (G)]G

}
(36)

with

�v (G) =
∫

d p̃
[
V G0

(2)V G0
(2) · · ·V

]
G, (37)

using the notation
∫

d p̃ c 2³21
∑

n

∫
d3p/(2Ã )3 with p̃ c

(iËn, p). The Ç¿ correspond to the “skeleton diagrams” of the

¿th order in the potential expansion. To account for possible

bound-states formation and their contribution to the pressure,

one has to resum the skeleton series. For nonseparable in-

teractions this has been achieved through a matrix-logarithm

resummation technique in Refs. [28,45,46], resulting in a

structure similar to the T -matrix resummation in Eq. (7):

� =
∑

j

3d j

∫
d p̃

{
ln

(
2G j ( p̃)21

)

+
[
� j ( p̃) 2

1

2
log � j ( p̃)

]
G j ( p̃)

}
(38)

with

log �i(z, p1) =
∫

d3p2

(2Ã )3

∫ >

2>
dË2

dE

Ã

21

z + Ë2 2 E

×
1

di

∑

a, j

d i j
s d i j

a

× Im
[

log T a
i j (E , p1, p2 | p1, p2)

]

× Ã j (Ë2, p2)[n j (Ë2) 3 ni j (E )]. (39)
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FIG. 6. Left and middle panels: The in-medium HQ free energies (blue) and potentials (orange) for Ç = 0.6 (solid) and 1 (dashed) at

different temperatures in comparison to lQCD data for the HQ free energies from Ref. [47] for N f = 2 + 1 light flavors (black dots). The right

panel shows the temperature dependence of the screening masses, md (blue) and ms (orange), for Ç = 0.6 (solid) and 1 (dashed) as resulting

from our fit. The Ç = 1 results are taken from Ref. [28].

The transformation of the T matrices in Eq. (39) between the

thermal and center-of-mass frame is given by Eq. (9). The

grand potential can then be obtained after carrying out the sum

over Matsubara frequencies in Eq. (38).

C. Self-consistent in-medium results

We now turn to the self-consistent in-medium results at

four temperatures, T = 0.194, 0.258, 0.320, and 0.400 GeV,

constrained by the lQCD data for static HQ free energies

(Sec. V C 1) and QGP EoS (Sec. V C 2). All in-medium calcu-

lations are carried out with the mixing coefficient for Ç = 0.6

and 1 in this study, but we do not yet incorporate the spin-

dependent corrections. In particular in the light sector, i.e.,

for the QGP EoS, their effect can be rather significant and

deserves a separate study (some compensatory effects are

expected due to both attractive and repulsive contributions).

Nevertheless, we want to ensure that the medium within which

the heavy quarks are embedded satisfies basic constraints

from lQCD.

1. Static HQ free energies

Recalling Eq. (30), the HQ free energy, FQQ̄(r, T ),

is a functional of the potential, Ṽ (r), and the two-body

self-energy, �QQ̄(E + iε). Note that FQQ̄(r, T ) increases with

increasing Ṽ (r) but with decreasing |�Q(E + iε)|. A larger

Debye screening mass, md and/or ms, suppresses Ṽ (r) so

that the partons become more weakly coupled, which in

turn lowers FQQ̄(r, T ); at the same time, a larger md reduces

|�Q(E + iε)| in medium, which in turn enhances FQQ̄(r, T ). It

is this competition between Ṽ (r) and |�Q(E + iε)| that leads

to a nonmonotonic behavior of FQQ̄(r, T, md ) with md . Since

md is directly related to the free energy at infinite distance

(cf. Sec. V A), we define a function Ftrial(r ³ >, T, md )

calculated from our many-body approach which we require to

be equal to the lQCD value, FlQCD(r ³ >, T ). We typically

find two solutions for md for any fixed parameter set provided

the maximum of the trial free energy lies above the lQCD

value. We denote the solutions with the smaller and the larger

md as strongly coupled solution (SCS) and weakly coupled

solution (WCS), respectively (in analogy to the two solutions

which were found in Ref. [28]). Here we only focus on the

SCS which results in transport parameters in much better

agreement with heavy-ion phenomenology (i.e., a liquidlike

behavior with interaction energies comparable to the parton

masses, as well as HQ transport parameters) than the

WCS [28].

The resulting potentials and fits to lQCD results [47] for the

HQ free energies with cb = 1.55 (1.3) and cs = 0.06 (0.01)

for Ç = 0.6 (1) at different temperatures are shown in Fig. 6.

As found in earlier studies, large HQ widths lead to a sub-

stantial enhancement of the potential over the free energies;

in particular, at the lowest temperature of 0.194 GeV, the

potential is close to the vacuum one, but becomes notably

suppressed at higher T . Consequently, the screening masses

for Coulomb (md ) and confining (ms) potentials, shown in

the right panel of Fig. 6, have rather small values at low

T , with the string interaction exhibiting a weaker screening

with increasing T . This implies that remnants of the confin-

ing force survive in the QGP well above the critical region.

The potential with mixed confining interaction (Ç = 0.6) is

enhanced by the extra relativistic corrections [cf. Eq. (13)],

requiring a stronger screening to fit the lQCD free-energy
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FIG. 7. The pressure (normalized by T 4) in comparison to the

lQCD data (black dots) from Ref. [34] (upper panel), and the in-

medium light-quark and gluon masses as a function of temperature

(lower panel). The Ç = 1 results are taken from Ref. [28].

data. Therefore, the screening masses for confining potential

for Ç = 0.6 are larger than those for Ç = 1, see the right panel

of Fig. 6. However, note that the Ç = 0.6 solution generates

a stronger force at relatively small distances, a feature that

will figure importantly in the QGP structure and HQ transport

properties.

2. Equation of state

In Fig. 7 we display the pressure together with the fitted

light-parton masses for Ç = 0.6 and 1, which allow for a good

reproduction of the lQCD data. However, while the parton

masses are effective in achieving a quantitative agreement

with the lQCD results, the underlying quark and gluon

spectral functions for Ç = 0.6 and 1 both feature large self-

energies, especially imaginary parts which, at low momentum

and temperatures, are comparable to, or even larger, than

the parton masses, cf. the spectral function widths in Fig. 8

(first and second rows). The large scattering rates are mostly

driven by dynamical resonance formation in the underlying

T matrices (which in turn are generated by resumming the

strong potential). These resonances contribute through the

resummed LWF functional � > 1/2log�G introduced in

Sec. V B, whose contribution for Ç = 0.6 and 1 is displayed

in Fig. 7. The increasing proportion of LWF contribution

with decreasing temperature indicates the onset of a change

in the degrees of freedom. Specifically, the LWF parts make

up more than 70(50)% of the pressure at T = 0.194 GeV

for Ç = 0.6(1). While the spectral functions for Ç = 0.6

generally share the main features with those for Ç = 1 at low

momenta, a notable quantitative difference is that the widths

for Ç = 0.6 do not fall off with momentum as much as those

for Ç = 1. In the former case, this is a consequence of the

3-momentum dependence of the confining interaction whose

vector component, through relativistic effects, generates

additional interaction strength and thus larger scattering rates

at larger momenta relative to the Ç = 1 case.

VI. CHARM-QUARK TRANSPORT COEFFICIENTS

With the parameters of the interaction potential and par-

ton masses fixed with the aid of lQCD data, we can now

investigate the effect of the mixed potential on charm-quark

transport properties in the QGP. As elaborated in Ref. [19]

it is important to account for the off-shell properties of both

charm quarks and thermal partons in the evaluation of the

transport coefficient, especially due to the formation of near-

threshold bound states which only provide limited phase for

quasiparticle (on-shell) scattering. This point is further cor-

roborated on inspecting the equilibrium spectral functions,

Ãq,g,c, of the partons displayed in Fig. 8, exhibiting large

widths of j0.6 GeV or so at low momentum. As already

mentioned in Sec. V C 2, the main difference between Ç =
0.6 and 1 is that the widths for Ç = 0.6 do not fall off

with momentum as much as those for Ç = 1. This feature

persists in the heavy-light scattering amplitudes, which are

the main ingredient to the charm-quark transport coefficients

discussed below, see Fig. 9. At T = 0.194 GeV, the peak

value of the imaginary part of the S-wave color-singlet heavy-

light scattering amplitude for Ç = 0.6 still shows a rather

marked decrease with increasing center-of-mass mass mo-

mentum of the colliding partons, but it is significantly weaker

than for Ç = 1 with a purely scalar confining potential; e.g.,

the peak reduction from the pc.m. = 0 to pc.m. = 0.5 GeV

case is almost a factor 3 for the latter but only j1.5 for

Ç = 0.6. This trend continues to higher temperatures; at T =
0.400 GeV, the peak reduction from pc.m. = 0 to pc.m. =
0.6 GeV is essentially absent for Ç = 0.6, while it is still a

factor of 1.6 for the purely scalar confining potential. The

T -matrix amplitudes for Ç = 0.6 are smaller than that for

Ç = 1 at low momenta due to its stronger screening in con-

fining potential (recall its larger Debye screening masses in

the right panel of Fig. 6); however, they exceed the ones for

Ç = 1 for pc.m. � 0.5 GeV due to the harder 3-momentum

dependence of confining potential through relativistic effects.

The T matrices for other partial waves and color chan-

nels share similar features, and thus we do not reproduce

therm here.

Turning now to the HQ transport coefficients in the QGP,

we adopt their standard definition through a Fokker-Planck

equation where they amount to the first and second momen-

tum of the momentum transfer of the heavy-light scattering

amplitude squared, integrated over the thermal-parton distri-

butions (one could also employ a Kubo-type formula via the

zero-mode contribution to the charmonium spectral function

in the vector channel, see, e.g., Ref. [48]). At this level,

off-shell effects can be readily implemented by an additional
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FIG. 8. Single-parton spectral functions for light quarks (first row), gluons (second row), and charm quarks (third row) with Ç = 0.6 (solid)

and 1 (dashed) as a function of energy for various 3-momenta in each panel. From left to right, the four columns correspond to temperatures

of T = 194, 258, 320, and 400 MeV, respectively. The Ç = 1 results are taken from Ref. [28].

energy convolution over the light-parton spectral functions.

However, since also charm quarks acquire widths which

are not small, the inclusion of their spectral width is also

warranted. This has been worked out in Ref. [19] employing

the Kadanoff-Baym equations, resulting in the following

expression for the HQ friction coefficient (or relaxation

FIG. 9. The imaginary part of the S-wave charm-light T matrices in the color-singlet channel at different temperatures. The T matrix is

displayed for four different values of the center-of-mass momentum (pc.m.) in each panel. The Ç = 1 results are taken from Ref. [28].
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rate):

A(p) =
∑

i

1

2·c(p)

∫
dË′d3p′

(2Ã )32·c(p′)

d¿d3q

(2Ã )32·i(q)

×
d¿ ′d3q′

(2Ã )32·i(q′)
·(4) (2Ã )4

dc

×
∑

a,l,s

|M|2Ãc(Ë′, p′)Ãi(¿, q)Ãi(¿
′, q′)

× [1 2 nc(Ë′)]ni(¿)[1 ± ni(¿
′)]

(
1 2

p · p′

p2

)
. (40)

As before (recall Sec. II), ·i/c, Ãi/c, and ni/c are the dispersion

relations, spectral, and thermal-distribution functions for

partons i/c, respectively, ·(4) is a short-hand notation for

the energy-momentum conserving · function in the 2 ³ 2

scattering process, and dc = 6 the spin-color degeneracy of

charm quarks. The summation
∑

i is over all light-flavor

quarks and gluons, i = u, ū, d, d̄, s, s̄, g, where the masses

for light and strange quarks are assumed to be the same.

In the above expression, the quasiparticle approximation

is only applied to the incoming charm quark by assigning

it a sharp energy ·c(p) at momentum p, while all other

partons are treated via off-shell integrations. We expect this

approximation to be reasonable for charm-quark widths that

can be larger than the temperature but are still smaller than the

charm-quark on-shell energy, which is in practice the case for

the interactions considered here. The heavy-light scattering

matrix elements, |M|2, in Eq. (40) are related to the T matrix

in the center-of-mass frame by
∑

a,L,s

|M|2 = 16·c(pc.m.)·i(pc.m.)·c

(
p′

c.m.

)
·i

(
p′

c.m.

)
dci

s

×
∑

a

dci
a

∣∣∣∣∣4Ã
∑

L

(2L + 1)T a,L
ci

× (Ec.m., pc.m., p′
c.m.)PL(x)

∣∣∣∣∣

2

(41)

with the color and spin degeneracies of the two-body system,

dci
a,s. The heavy-light T matrix, T a,L

ci (Ec.m., pc.m., p′
c.m.),

is calculated in the center-of-mass frame in all possible

two-body color channels, a, and partial-wave channels,

L (expanded up to L = 8 to ensure convergence at high

momenta). The center-of-mass energy, Ec.m., incoming

center-of-mass momentum, pc.m., outgoing center-of-mass

momentum, p′
c.m., and scattering angle, x = cos »c.m.,

are expressed as functions of E , p, q, p′, q′, through the

transformation in Eq. (9). Instead of only the moduli of pc.m.

and p′
c.m., their explicit vector form is required here [19]:

pc.m.‖ =
·p2

p1‖ 2 ·p1
p2‖:

son

, pc.m.§ =
p1 p2‖ 2 p2 p1‖

|p1 + p2|
, (42)

with ‖ and § indicating parallel and perpendicular to

the relative velocity, respectively, and likewise for the

outgoing (primed) momenta. In Fig. 10 we plot our results

for the friction coefficient A(p) with the mixed confining

potential (Ç = 0.6) in comparison to the results with a purely

FIG. 10. The charm-quark friction coefficient at different tem-

peratures for Ç = 0.6 (solid) and 1 (dashed). The Ç = 1 results are

taken from Ref. [19].

scalar confining potential (Ç = 1). We stipulate that both

calculations are carried out for a thermal QGP medium which

satisfies the constraints from the EoS and HQ free energy.

With the vector component in the confining potential, the

low-momentum values of the relaxation rate are enhanced

by several tens of percentages, but the more significant effect

is the increase at higher momenta, for the same reasons as

discussed above in the context of the single-parton spectral

functions and their scattering amplitudes. For example, for a

charm-quark momentum of 4 GeV, the enhancement is about

a factor 2.6, while at momenta of 10 GeV it reaches an even

larger factor of j3.5 at the lowest temperature. However,

at the latter momentum, radiative contributions are expected

to be large. At first sight it might be surprising that the

enhancement due to the vector component in the confining

potential also transpires at low momenta although the perti-

nent T -matrix amplitudes are smaller than those with purely

scalar confining potential at low center-of-mass momenta

(cf. Fig. 9). To some extent this can be understood due to

the fact that even at vanishing HQ momentum the thermal

motion of the surrounding medium partons creates a finite

momentum in the center of mass, but there is also a nontrivial

interference effect in the expression (41) that plays a role.

To scrutinize different contributions, we take the charm-

light contribution (cq̄) for A(p = 0) at T = 194 MeV as an

example and collect in Table IX partial-wave components of

the collision rate [obtained by replacing (1 2 p·p′

p2 ) by 1 in

Eq. (40)] and relaxation rate up to angular momenta of 2 (note

that for the collision rate the interference contributions should

TABLE IX. The contributions of various partial-wave compo-

nents (specified in the first row) of the cq̄ scattering amplitude

to the c-quark collision rate (lines 1 and 2) and relaxation rate

(lines 3 and 4) for p = 0 at T = 194 MeV (in units of fm21).

LL′ 00 11 22 01 = 10 12 = 21

Ç = 1 0.8058 0.3321 0.0678 0.0038 0.0016

Ç = 0.6 0.7308 0.2943 0.0533 0.0022 0.0014

Ç = 1 0.1501 0.1138 0.0354 20.0521 20.0306

Ç = 0.6 0.1522 0.1313 0.0359 20.0322 20.0305
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FIG. 11. The charm-quark spatial diffusion coefficient for Ç =
0.6 (solid) and 1 (dashed). The Ç = 1 results are taken from

Ref. [19].

vanish, whereby the small numerical values quoted in the

table, which are of the order of one to two permille of the total,

are an indication of our numerical accuracy). We denote by

“LL′” the terms >T L(T L′
)7 = ReT LReT L′ + ImT LImT L′ +

i(2ReT LImT L′ + ImT LReT L′
) in Eq. (41), where the imagi-

nary part vanishes by definition since T L(T L′
)7 + (T L )7T L′ =

2(ReT LReT L′ + ImT LImT L′
). In accord with the T -matrix

behavior at low momenta in Fig. 9, the collision rate for

Ç = 1 is larger than that for Ç = 0.6 for each partial-wave

component, leading to a larger total collision rate at low mo-

mentum. The situation is more involved for the relaxation rate:

The diagonal partial-wave components (L = L′) for Ç = 1

are smaller than those for Ç = 0.6, and one also notices the

relatively more important role of the higher partial waves

compared to the collision rate (which is dominated by the

S-wave contribution). In addition, the presence of the p · p′

term, together with the Legendre polynomials, causes negative

interference components (L �= L′), and their absolute values

are larger for Ç = 1. On adding the diagonal and interference

components the relaxation rate for Ç = 0.6 becomes larger.

The widely discussed spatial diffusion coefficient, Ds =
T/[McA(p = 0)], is related to the relaxation time, Çc =
1/A(p = 0), at vanishing 3-momentum of the heavy quark. It

is commonly scaled by the inverse thermal wavelength, 2ÃT ,

to render a dimensionless quantity for which we display our

results in Fig. 11 as a function of temperature. The Ç = 0.6

result shows a mild reduction relative to the Ç = 1 one, which

is again caused by the larger average momenta of the thermal

partons probed by the charm quark.

The increase in the elastic charm-quark friction coefficient,

and in particular its harder 3-momentum dependence, found

here could have significant ramifications for the phenomenol-

ogy of open HF probes in URHICs. In a recent work [49] a

good description of D, Ds, and 
c observables in heavy-ion

collisions has been achieved using the T -matrix-based trans-

port coefficients from Refs. [17,50], which are based on the

internal energy (U ) as a potential proxy but with an extra K

factor of about 1.6. The pertinent results for A(p, T ) (with

K = 1.6) are slightly larger than the ones from the SCS with

Ç = 1 at low momentum but much larger at higher momenta.

However, with our new Ç = 0.6 results, the low-momentum

deficit can be overcome, while they still fall below the high-

momentum results of the U potential with K = 1.6. Yet the

inclusion of radiative processes, as computed within the T -

matrix approach in Ref. [51] could result in a total transport

coefficients that are quite comparable to the one employed

in Ref. [49], without the need of any phenomenological

adjustments.

VII. CONCLUSIONS

We have augmented the thermodynamic T -matrix ap-

proach to include the effects of spin-dependent interactions

between heavy quarks, including spin-orbital, spin-spin, and

tensor contributions, as part of the more general objective to

assess 1/MQ corrections. Toward this end we have utilized

the Breit-Fermi Hamiltonian to derive these interactions in

the context of the Cornell potential as the two-body interac-

tion kernel for the T -matrix equation. When benchmarking

these interactions using the experimentally observed split-

tings in vacuum quarkonium spectroscopy, we have found

that, in accordance with previous studies, a moderate ad-

mixture of a Lorentz-vector component in the confining

potential allows for a much improved description especially

in the charmonium sector. We have then implemented the

amended interaction kernel into our quantum many-body ap-

proach for the QGP. While the spin-dependent interactions

themselves are expected to be of minor importance (and

therefore have been neglected), the vector component of the

confining potential turns out to be rather significant. After

self-consistently refitting the in-medium HQ free energies

and the QGP EoS under the inclusion of the vector compo-

nent, quantitative modifications of the QGP properties toward

shorter distances (larger momenta) were found. A strong

broadening of the thermal-parton spectral functions persists

to higher 3-momenta as a consequence of an increased in-

teraction strength in the thermodynamic two-body scattering

amplitudes at larger momenta. The harder amplitudes and

spectral functions are a consequence of the relativistic correc-

tions induced by the vector part of the confining interaction,

as opposed to a purely scalar interaction. This suggests that

the nature of the confining force in the QCD vacuum has

an impact on the properties of the strongly coupled QGP,

with liquid properties that extend to higher resolution scales

compared to a purely scalar confining force. Finally, we have

applied the modified setup to calculate the friction coefficient

of charm quarks. As compared to the results with a purely

scalar string potential, a slightly larger relaxation rate is found

at small momentum (and a pertinent decrease in the diffusion

coefficient), but a much larger increase of a factor of j223

(or more) at momenta of around 5 GeV (and above). These

are promising features to make a significant step forward in

achieving a quantitative description of HF diffusion in heavy-

ion collisions at RHIC and the LHC based on microscopically

and nonperturbatively calculated transport coefficients. Work

in this direction is in progress.

ACKNOWLEDGMENTS

This work has been supported by the U.S. National Sci-

ence Foundation under Grants No. PHY-1913286 and No.

044906-14



SPIN-DEPENDENT INTERACTIONS AND HEAVY-QUARK … PHYSICAL REVIEW C 108, 044906 (2023)

PHY-2209335 and by the U.S. Department of Energy, Office

of Science, Office of Nuclear Physics through the Topical

Collaboration in Nuclear Theory on Heavy-Flavor Theory

(HEFTY) for QCD Matter under Award No. DE-SC0023547.

[1] N. Brambilla et al. (Quarkonium Working Group) (2005),

CERN, Geneva, arXiv:hep-ph/0412158.

[2] R. Rapp, D. Blaschke, and P. Crochet, Prog. Part. Nucl. Phys.

65, 209 (2010).

[3] L. Kluberg and H. Satz, in Relativistic Heavy Ion Physics, edited

by R. Stock, Landolt-Börnstein–Group I Elementary Particles,

Nuclei and Atoms 23 (Springer-Verlag, Berlin, Heidelberg,

2010), pp. 373–423.

[4] P. Braun-Munzinger and J. Stachel, Landolt-Bornstein 23, 424

(2010).

[5] X. Du, S. Y. F. Liu, and R. Rapp, Phys. Lett. B 796, 20

(2019).

[6] P. Petreczky and D. Teaney, Phys. Rev. D 73, 014508 (2006).

[7] P. Petreczky, K. Petrov, D. Teaney, and A. Velytsky, PoS L

AT2005, 185 (2006).

[8] P. Petreczky, Eur. Phys. J. C 62, 85 (2009).

[9] H. T. Ding, A. Francis, O. Kaczmarek, F. Karsch, H. Satz, and

W. Soeldner, Phys. Rev. D 86, 014509 (2012).

[10] R. Rapp and H. van Hees, Quark-Gluon Plasma 4, 111 (2010).

[11] A. Mocsy, P. Petreczky, and M. Strickland, Int. J. Mod. Phys. A

28, 1340012 (2013).

[12] M. He, H. van Hees, and R. Rapp, Prog. Part. Nucl. Phys. 130,

104020 (2023).

[13] F. Prino and R. Rapp, J. Phys. G 43, 093002 (2016).

[14] A. Beraudo et al., Nucl. Phys. A 979, 21 (2018).

[15] X. Dong and V. Greco, Prog. Part. Nucl. Phys. 104, 97 (2019).

[16] D. Cabrera and R. Rapp, Phys. Rev. D 76, 114506 (2007).

[17] F. Riek and R. Rapp, Phys. Rev. C 82, 035201 (2010).

[18] M. Mannarelli and R. Rapp, Phys. Rev. C 72, 064905 (2005).

[19] S. Y. F. Liu, M. He, and R. Rapp, Phys. Rev. C 99, 055201

(2019).

[20] V. D. Mur, V. S. Popov, Y. A. Simonov, and V. P. Yurov, J. Exp.

Theor. Phys. 78, 1 (1994).

[21] W. Lucha, F. F. Schoberl, and D. Gromes, Phys. Rept. 200, 127

(1991).

[22] W. Buchmuller, Phys. Lett. B 112, 479 (1982).

[23] N. Brambilla and A. Vairo, Phys. Rev. D 55, 3974 (1997).

[24] N. Brambilla and A. Vairo, Phys. Lett. B 407, 167 (1997).

[25] A. P. Szczepaniak and E. S. Swanson, Phys. Rev. D 55, 3987

(1997).

[26] D. Ebert, V. O. Galkin, and R. N. Faustov, Phys. Rev. D 57,

5663 (1998); 59, 019902 (1998).

[27] D. Ebert, R. N. Faustov, and V. O. Galkin, Phys. Rev. D 67,

014027 (2003).

[28] S. Y. F. Liu and R. Rapp, Phys. Rev. C 97, 034918 (2018).

[29] R. Brockmann and R. Machleidt, Int. Rev. Nucl. Phys. 8, 121

(1999).

[30] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-

Particle Systems (Courier Corporation, New York, 2012).

[31] M. Cheng et al., Phys. Rev. D 77, 014511 (2008).

[32] P. Petreczky, J. Phys. G 37, 094009 (2010).

[33] A. Bazavov, Y. Burnier, and P. Petreczky, Nucl. Phys. A 932,

117 (2014).

[34] A. Bazavov et al. (HotQCD), Phys. Rev. D 90, 094503 (2014).

[35] A. Bazavov, N. Brambilla, P. Petreczky, A. Vairo, and J. H.

Weber (TUMQCD), Phys. Rev. D 98, 054511 (2018).

[36] W. Lucha and F. F. Schoberl, in International Summer School

for Students on Development in Nuclear Theory and Particle

Physics (1995).

[37] K.-H. Hong, H.-C. Kim, and U. Yakhshiev, Progr. Theor. Exp.

Phys. (2022) 103D02.

[38] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,

030001 (2018).

[39] A. Beraudo, J. P. Blaizot, and C. Ratti, Nucl. Phys. A 806, 312

(2008).

[40] M. Laine, O. Philipsen, P. Romatschke, and M. Tassler, J. High

Energy Phys. 03 (2007) 054.

[41] Y. Akamatsu, Prog. Part. Nucl. Phys. 123, 103932 (2022).

[42] J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).

[43] G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).

[44] G. Baym, Phys. Rev. 127, 1391 (1962).

[45] S. Y. F. Liu and R. Rapp, J. Phys.: Conf. Ser. 779, 012034

(2017).

[46] S. Y. F. Liu and R. Rapp, Eur. Phys. J. A 56, 44 (2020).

[47] A. Bazavov and P. Petreczky, J. Phys.: Conf. Ser. 432, 012003

(2013).

[48] F. Riek and R. Rapp, New J. Phys. 13, 045007 (2011).

[49] M. He and R. Rapp, Phys. Rev. Lett. 124, 042301 (2020).

[50] K. Huggins and R. Rapp, Nucl. Phys. A 896, 24 (2012).

[51] S. Y. F. Liu and R. Rapp, J. High Energy Phys. 08 (2020) 168.

044906-15


