

US Ninth Graders' Math Course Placement at the Intersection of Learning Disability Status, Race, and Socioeconomic Status

Dara Shifrer, Portland State University

Abstract: This study integrates an intersectional framework with data on 15,000 US ninth graders from the High School Longitudinal Study of 2009 to investigate differences in ninth grade math course placement at the intersection of adolescents' learning disability status, race, and socioeconomic status (SES). Descriptive results support an *increased liability* perspective, with the negative relationship between a learning disability and math course placement larger for adolescents more privileged in terms of their race and/or SES. Adjusted results suggest that the lower math course placements of youth with learning disabilities are *due to cumulative disadvantage rather than disability-related inequities in the transition to high school* for youth of diverse racial and socioeconomic backgrounds. In addition to demonstrating the importance of intersectional perspectives, this study provides a roadmap for future studies by introducing the new perspective of increased liability to be used in conjunction with the widely employed perspective of multiple marginalization.

Keywords: intersectional theory, disability, race, socioeconomic status, math

Accepted Version of Shifrer, Dara. 2023. "US Ninth Graders' Math Course Placement at the Intersection of Learning Disability Status, Race, and Socioeconomic Status." *AERA Open* 9(1):1-24. This research is supported by the National Science Foundation (DRL-1652279) and by the National Institutes of Health funded Build EXITO program at Portland State University (UL1GM118964). This research also benefits from suggestions from Linda Blum, Jamie Carroll, Paul Deppen, Angela Frederick, Lynn Fuchs, Eric Grodsky, Sarah Kyte Blanchard, Sarah Lubienski, Laura Mauldin, Karisma Morton, Chandra Muller, Jennifer Pearson, Carrie Shandra, Gwen Shusterman, and Alex Stepick.

US Ninth Graders' Math Course Placement at the Intersection of Learning Disability Status, Race, and Socioeconomic Status

Introduction

Learning disabilities are the most prevalent disability among K-12 youth, comprising around half of the special education population (McFarland et al., 2019). The learning disability classification is used for youth who struggle, despite an average or high IQ, with reading (dyslexia), numeric calculation (dyscalculia), and/or writing (dysgraphia) (Fletcher et al., 2005). Intersectionality prioritizes consideration of individuals' 'multiple social locations' (Collins, 2002). Youth classified with learning disabilities are disproportionately Black (Office of Special Education Programs, 2018), and sometimes disproportionately Latinx depending on the context (Klingner & Harry, 2006; Samson & Lesaux, 2009). Asian youth are underrepresented among youth with reported learning disabilities (Office of Special Education Programs, 2018). The population of youth classified with learning disabilities also has a much lower average socioeconomic status (SES) than the larger population (Shifrer, 2018; Zablotsky & Alford, 2020).

Disability, race, and SES intersect closely in the US, but we lack a real understanding of how that intersection looks in relation to important life course benchmarks (Maroto et al., 2019; Naples et al., 2019). Math course attainment by the end of high school not only has implications for educational and occupational outcomes in young adulthood, but even for financial and health outcomes in later life (Carroll et al., 2017; Long et al., 2012; Woods et al., 2018). Adolescents' eighth and ninth grade math course placements link closely to their end of high school math outcomes (Roderick et al., 2014). Understanding how certain status markers operate differently depending on a person's position along other axes of stratification is a primary aim of

intersectional approaches (Hancock, 2007), with the dominant expectation being that persons with multiple marginalizing statuses experience the poorest outcomes (Choo & Ferree, 2010; Collins, 2015).

I use data on around 15,000 US adolescents from the nationally representative High School Longitudinal Study of 2009 (HSLS) to, first, investigate whether unadjusted estimates of ninth graders' math course placement at the intersection of their learning disability status, race, and SES suggest multiple marginalization or increased liability. With multiple marginalization, the negative relationship between a learning disability and math course placement would be exacerbated for youth who are lower status in terms of their race and/or SES. With increased liability, a term used in this study as a counterpoint for multiple marginalization, the negative relationship of a learning disability would be exacerbated for youth who are higher status in terms of their race and/or SES. Second, this study investigates whether adjusted and intersectional estimates of ninth graders' math course placement suggest differences by disability status are attributable to cumulative disadvantage or to disability-related inequities in the transition to high school (e.g., math course placements that are inconsistent with adolescents' eighth grade math performance). Research along these status markers is essential as the US population diversifies (Kao & Thompson, 2003), childhood disabilities increase in prevalence (Visser et al., 2014), and inequalities in SES increase (McLanahan, 2004). Building on calls to integrate intersectional theory with quantitative methodology (Covarrubias & Vélez, 2013; McNair et al., 2020), this study's findings provide a foundation for investigations into patterns in educational outcomes at the intersection of other status markers, and into other outcomes at the intersection of disability, race, and SES.

Literature Review and Theoretical Framework

Marginalization within Math

Youth perceived to have a learning disability may first experience marginalization in math because of their lower average achievement. Youth with learning disabilities are likely to struggle in math, regardless of their specific disability. Not only are reading and writing typically integral aspects of math curricula (e.g., word problems), youth with dyslexia, for instance, confuse numbers as well as letters (Boets & Smedt, 2015). All struggling learners experience some degree of marginalization in schools (e.g., ability grouping, low-level coursework), marginalization that may serve to reproduce their disadvantages despite functional intentions (Gamoran, 2010). In addition to being a marker of individual difference, learning disabilities are a social location and an axis of inequality (Shifrer & Frederick, 2019), such that youth with learning disabilities may also experience marginalization in math because of disability-related inequities (Jimenez & Graf, 2008). Whereas the learning struggles of youth perceived to have no neurodevelopmental disability may be interpreted as within the control of students and teachers, the learning struggles of youth perceived to have a learning disability may be attributed to immutable neurological difference (Erevelles, 1996). Previous studies find that teachers hold lower expectations for youth with a disability classification, even when compared to youth with similar behaviors and achievement levels (Allday et al., 2011; Ohan et al., 2011; Shifrer, 2013). Biases related to ability may be especially virulent in math spaces because of the tendency in the US to perceive math aptitude as something innate rather than something attainable to all through hard work (Archer et al., 2010; Dweck, 2007). Youth with learning disabilities may end high school with poorer math outcomes than adolescents without a learning disability but similar levels of prior achievement (Shifrer, 2016; Shifrer et al., 2013), in part because of their marginalization within math.

Marginalization in academic spaces also occurs along the axes of SES and race (Kao & Thompson 2003). Children's family SES is a better predictor of their educational outcomes than any characteristics of their schools or teachers (Gamoran & Long, 2006; Hill, 2016). Lower SES youth are more often placed into lower level coursework that reproduces their disadvantages by limiting access to high-level curriculum, rigorous pedagogy, and engaged classmates (Desimone & Long, 2010; Mickelson, 2015). In addition to disadvantages related to their lower SES, Black and Latinx experience extra marginalization within schools based on negative stereotypes related to their intellectual ability and work ethic (Lewis & Diamond, 2015). Asian youth, in contrast, are stereotyped as smart and hard-working, particularly in math spaces (Martin, 2019), potentially eclipsing their experiences with racism and nativistic discrimination (Lee & Zhou, 2015). Asian youth, like White youth, are also much less likely to live in poverty than Latinx and Black youth (Wilson & Schieder, 2018).

These experiences of marginalization result in inequities by SES and race in math outcomes. Most studies focus on math course attainment by the end of high school, finding that lower SES students are less likely to complete Calculus than higher SES students (Domina & Saldana, 2012), or to be 'ready for college math' (Long et al., 2009). Similarly, Asian youth are much more likely to take Calculus than youth of other races (Domina & Saldana, 2012), and much higher shares of Asian and White youth are 'ready for college math' relative to Latinx and Black youth (2009). With disparities by SES and race in end of high school math attainment entirely explained by lower levels of preparation in middle and early high school (Tyson & Roksa, 2016), this study's focus on ninth grade math is important. More intersectional approaches show that social capital increases the likelihood of enrollment in algebra and advanced math for higher SES Latinx youth but not for lower SES Latinx youth (Valadez, 2002).

Yet, among students in advanced math courses, the math test scores of Latinx students benefit more from a higher family income than the scores of White students, net of prior achievement (Riegle-Crumb & Grodsky, 2010). No previous studies have considered math outcomes for youth with disabilities in intersection with their race and SES.

Multiple Marginalization

Multiple marginalization, a dominant perspective within intersectionality, predicts that the negative impacts of a low status marker will be multiplied for persons with another low status marker (Collins, 2015). For instance, prior research shows that the negative effect of learning disabilities appears to be larger for Black youth than for White youth in terms of restrictive placements (being educated in a separate classroom) and test scores (National Council on Disability, 2018; Schwartz et al., 2021). Black and Latinx youth with disabilities experience more exclusionary discipline (Annamma & Morrison, 2018; Cruz et al., 2021), and have poorer postsecondary educational and occupational outcomes than White youth with disabilities (Newman et al., 2011). Multiple marginalization is also evident at the intersection of disability and SES. Postsecondary outcomes of youth with disabilities are better for those with higher incomes than those with lower incomes (Newman et al., 2011). Because of stereotypes related to SES and academic potential (Cobb, 2017), educators may perceive a lower SES child reported to have a learning disability as less able, or as less amenable to intervention, than a higher SES child reported to have a learning disability. And then, with advantages in time and knowledge, higher SES parents may be better equipped to minimize the costs of special education and capitalize on the benefits (Lareau & Cox, 2011; Ong-Dean, 2009; Owens, 2020). From a *multiple marginalization* perspective, the negative relationship between a learning disability and math

course placement will be larger for adolescents who are lower status in terms of their race (i.e., Black, Latinx) and/or SES (i.e., lower SES).

Increased Liability

Rather than multiple marginalization, learning disabilities may represent, what I call, an *increased liability* for those advantaged along other status markers, such that the negative relationship between a learning disability and math course placement is larger for adolescents who are higher status in terms of their race and/or SES. In a potential example of increased liability, although being Asian is typically considered a high status marker in academic settings (Martin, 2019), a recent study finds that the negative relationship between a learning disability and test scores is larger for Asian youth than for White youth (Schwartz et al., 2021). This may be because disability is more stigmatized in Asian cultures (Bui & Turnbull, 2003; Chen et al., 2004), such that the classification is reserved for Asian youth with the most severe learning struggles, or that Asian youth and their parents experience more psychosocial angst related to the learning disability than others. In another potential example of increased liability, an attention-deficit/hyperactivity disorder (ADHD) classification relates negatively to children's externalizing behaviors and academic self-competence for middle and higher SES children but not for lower SES children (Owens, 2020). ADHD shares many of the 'symptoms' of learning disabilities, and many children are diagnosed with both (Connor et al., 2010). It is possible that disability is more of a liability in higher SES contexts because of heightened academic pressures and disability stigma (King et al., 2014; Owens, 2020, 2021). Similarly, despite the extra resources they can access, higher SES parents of children experience their children's 'invisible disabilities' as more stressful and burdensome than lower SES parents, because of pressures to maintain appearances and to ensure that their child meets the educational and occupational expectations of their social

class (Blum, 2015). From an increased liability perspective, the negative relationship between a learning disability and math course placement will be larger for adolescents who are White, Asian, and/or higher SES.

Purpose of Study

This study investigates the relationship between a learning disability and ninth grade math course placement, and whether that relationship varies depending on adolescents' race or SES. Unadjusted intersectional estimates focus on whether the negative relationship between a learning disability and math course placement is exacerbated for youth who are lower status in terms of their race and/or SES (i.e., consistent with *multiple marginalization* perspectives), or whether the negative relationship is exacerbated for youth who are higher status in terms of their race and/or SES (i.e., consistent with an *increased liability* perspective). These unadjusted results will reflect adolescents' individual differences and cumulative disadvantage related to those differences, including marginalization and related disability-inequities that occur before transitioning into high school. Yes, these results are a contribution because we know very little, even at a descriptive level, about students' outcomes at the intersection of disability, race, and SES.

I use adjusted estimates to investigate whether there is any evidence of potential disability-related inequities in the transition to high school, rather than the poorer ninth grade math outcomes of students with learning disabilities being entirely attributable to cumulative disadvantage. Cumulative disadvantage describes how early advantages or disadvantages are critical to how groups become differentiated over time (Dannefer, 1987; Ferraro & Kelley-Moore, 2003). As described by DiPrete & Eirich (2006), the Blau-Duncan approach to cumulative disadvantage complements multiple marginalization by highlighting persisting direct

and interaction effects of status markers. In the case of this study, a learning disability may represent a cumulative disadvantage because of both direct and indirect effects on outcomes across the life course. In an example of the indirect cumulative disadvantage of a learning disability, the benefits of a higher SES or being perceived as White may be reduced at multiple stages of life for youth with learning disabilities relative to youth without a disability. I attempt to identify evidence of potential disability-related inequities in the transition to high school by adjusting models for a multitude of confounders and pre-high-school mechanisms between adolescents' intersectional identities and math course outcomes (i.e., adolescents' outcomes that reflect prior opportunities to learn, adolescents' educational attitudes, high school context, family characteristics). My ability to narrow in on potential disability-related inequities is facilitated by the standardized sequencing of secondary level math coursework in the US, with students typically progressing from pre-Algebra into Algebra I into Geometry and so on (Riegle-Crumb, 2006). HSLS's rich measures enable me to control for adolescents' level of eighth math, and their performance in that course, which is key because equitable ninth grade math course placements should be consistent with these more objective indicators of student math potential and preparation. Ninth grade math course placements that are lower than those of other students with comparable levels of eighth grade math achievement raise the possibility of lowered expectations or marginalization related to students' learning disability classifications.

Data and Methods

The National Center for Education Statistics (NCES) administers the nationally representative HSLS, which focuses on a cohort of 21,444 US adolescents in the 9th grade in 2009. This dataset is the most recent large federal dataset focused on high school students and offers rich measures of disability and course-taking. I use base year data (2009) from the student

survey, parent survey, and math test, as well as transcript data collected by NCES in 2014. Retrospective questions in the student survey enable me to adjust estimates for a wide variety of mechanisms and confounders in the relationship between adolescents' intersectional identities and their ninth grade math course placement. After excluding 2,190¹ youth who were not White, Black, Latinx, or Asian; 1,320 with a neurodevelopmental disability other than a learning disability; 750 with an unspecified disability (more details below); and 1,640 youth missing on the dependent variable, my analytic sample includes 15,540 ninth graders. Most measures are missing for zero to ten percent of cases, except for higher rates of missingness on parents' educational expectations and reports of whether their child was born in the US (30%). I address missing values with multiple imputation by the MICE system of chained equations (White et al., 2011). Table 1 provides descriptive statistics on all variables used in the study.

Table 1 About Here

Dependent Variable

I use transcript data to construct a dichotomous measure of whether each ninth grader is in a *higher than normative math class* ('Geometry,' 'Analytic Geometry,' 'Integrated Math II,' 'Algebra II,' 'Trigonometry,' or 'Other advanced math course'). The reference group includes students in no math class, 'Pre-algebra,' 'Review or Remedial Math,' 'Other math course,' 'Algebra I,' 'Integrated Math I or above,' and 'Statistics.' Schools have recently begun to offer Integrated Math sequences (which combine algebra, geometry, and statistics) as an alternative to the traditional sequence, with freshmen typically enrolled in Integrated Math I and sophomores in Integrated Math II (Will, 2014), such that I classify the latter as higher than normative. I also confirm analytic decisions for course titles with less precedence in the previous literature (e.g.,

¹ NCES requires unweighted frequencies be rounded to nearest ten.

Statistics, Other math course) by comparing average math test scores for students in each level of math. High school math course-taking is hierarchical, such that high level math course attainment by the end of high school typically depends on the student being enrolled in math all four years of high school. In this way, no-math in the ninth grade should represent an academic disadvantage just as low-level math courses do, but it is possible that students are not enrolled in math in the ninth grade for reasons that actually reflect social/academic advantage such that these youth should not have been included in this variable's reference category. Sensitivity analyses suggest that not taking math does reflect social/academic disadvantage, with Latinx and Black ninth graders' higher likelihood to not be enrolled in a math course relative to White ninth graders largely attributable to their less socially privileged family backgrounds and then their lower levels of achievement in the eighth grade (Online Table 4). Additional related sensitivity analyses are summarized in the Results section.

Predictors of Interest

This study's dichotomous measure of *learning disability* is based on parents' base year reports of whether a doctor, health care provider, teacher, or school official ever told them their 9th grader has a learning disability. I exclude adolescents whose parent reported they have some other neurodevelopmental disability (n=1,320). NCES asked schools to report which students have an Individualized Education Program (i.e., IEP) but did not ask schools to report the qualifying disability. Because I cannot know whether the disability is a learning disability or not, I also exclude 750 students with an IEP but with no disability reported by their parent. HSLS's measure of *SES* combines information from the base year parent survey on the highest educational attainment of both parents, the occupational prestige score of both parents, and family income. HSLS's composite *race* variable is based on data from the base year student

survey, with missing values imputed by NCES using data from the sampling roster provided by schools or from the base year parent survey.

Covariates of Adolescents' Intersectional Identities and Math Course Outcomes

It is expected that the poorer ninth grade math course outcomes of ninth graders with learning disabilities are in large part a function of confounders, i.e., factors that relate both to their likelihood of being classified with a learning disability and their educational outcomes (e.g., family characteristics, high school context). The relative social disadvantage of youth with learning disabilities (i.e., lower average SES, more likely to be Black or Latinx), as well as the marginalization students experience in school as a result of being classified with a disability, will also influence their opportunities to learn prior to high school and their educational attitudes in ways that subsequently impact their ninth grade math course placement. To narrow in on potential disability-related inequities in the transition to high school, I also estimate regression models that are adjusted by these covariates that represent both confounders of, and mechanisms of, the relationship between adolescents' intersectional identities and math course outcomes. To capture *outcomes that reflect prior opportunities to learn*, I use a categorical measure of level of eighth grade math, a dichotomous indicator of whether the student's eighth grade science course is a core science, continuous measures of grade point average (GPA) in eighth grade math and science courses, and the theta score from the math test NCES administered to sampled ninth graders. I use the term 'outcomes that reflect opportunities to learn' rather than 'prior academic achievement,' because the former locates the accountability for achievement disparities in structural and systemic factors rather than on students from marginalized social groups (National Council on Disability, 2018; UCLA's Institute for Democracy, Education, & Access, 2022). To capture *adolescents' educational attitudes*, I include a categorical measure of their educational

expectations; continuous measures of their math interest, math self-efficacy, math identity, math utility value, and STEM attainment value; and a dichotomous measure of whether they expect a STEM occupation. To capture the high school context, I include categorical measures of the school's type (e.g., public, private), urbanicity, and region; the percents of students who are eligible for free lunch, Black, Hispanic, and Asian/Pacific Islander; and dichotomous indicators of whether the school offers Algebra II, advanced math (e.g., pre-Calculus), Calculus, or Advanced Placement / International Baccalaureate math. Finally, adolescents' family characteristics other than the predictors of interest (SES and race) are measured through dichotomous indicators of whether the student was not born in the United States or has a native language other than English, and a categorical measure of parents' educational expectations for their adolescent.

Analytic Plan

In addition to providing means and proportions detailing differences by learning disability status, SES, and race in all key study variables and covariates, I provide descriptives at the intersection of disability status, race, and SES to increase intersectional understanding of the sample. As specified in the HSLS users' guide (Duprey et al., 2018), I use Stata's survey procedure to apply the base year student analytic weight, account for HSLS's complex survey design, and adjust for the clustering of students within schools. Intersectionalists specifically call for statistical interactions to understand multiplicative effects (Choo & Ferree, 2010; Hancock, 2007). To investigate whether intersectional differences in math course placement seem to reflect multiple marginalization or increased liability (RQ1), I estimate models with three-way statistical interactions (1) to produce predicted probabilities of higher than normative math course placement at the intersection of disability, race, and SES. Additional models show whether the

relationship between a learning disability and math course outcomes differs significantly by race controlling on SES (2) or by SES within each racial group (3). I re-estimate model (2) three times, alternating the reference group each time, so as to not imply White youth are the default, ‘normal’ racial group. In equations (1), (2), and (3) below (unadjusted versions of the models), X_L represents the learning disability measure, X_S the socioeconomic status measure, and X_R the measure of each adolescent’s race.

$$\hat{y} = b_0 + b_1 X_L + b_2 X_S + b_3 X_R + b_4 X_L X_S + b_5 X_S X_R + b_6 X_L X_R + b_7 X_L X_S X_R + \varepsilon \quad (1)$$

$$\hat{y} = b_0 + b_1 X_L + b_2 X_R + b_3 X_L X_R + b_4 X_S + \varepsilon \quad (2)$$

$$\hat{y} = b_0 + b_1 X_L + b_2 X_S + b_3 X_L X_S + \varepsilon \quad (3)$$

To determine whether any disparities seem to be attributable to disability-related inequities during the transition to high school rather than cumulative disadvantage (RQ2), I include all covariates in model (1). I use propensity score techniques, which are considered a more apt way to address selection bias than standard regression techniques (Austin, 2011), to assess main results; this approach is detailed in Online Appendix B.

Results

Bivariate Analyses of Learning Disability, Race, and SES

Table 2 About Here

Table 2 shows unadjusted differences at the intersection of adolescents’ learning disability status, SES, and race. First, in differences by LD status, 0.38 of youth without a disability classification are placed into a higher than normative ninth grade math course, whereas ninth grade math courses are higher than normative for only 0.16 of youth reported to have a learning disability. Youth reported to have a learning disability also have a lower mean SES and are less likely to be White or Asian than youth without a learning disability. In terms of

differences by SES, higher SES ninth graders are more likely than lower SES ninth graders to be in a higher than normative math course (0.44 vs. 0.26), are less likely to be reported to have a learning disability (0.05 vs. 0.07), and are less likely to be Latinx or Black. In differences by race, Asian youth are the most likely to be placed in a higher than normative math course, 0.63 of Asian ninth graders in contrast to 0.42 of White, 0.28 of Latinx, and 0.27 of Black youth. Latinx and Black youth are the most likely to have been reported to have a learning disability (0.08 and 0.06), in contrast to 0.05 of White youth and 0.02 of Asian youth. Latinx (-0.64) and Black (-0.42) youth have lower average SES than Asian (0.23) and White (0.22) youth. Finally, descriptives at the intersection of disability status, race, and SES at the bottom of Table 2 show that Latinx and Black youth reported to have a learning disability have particularly low average SES, whereas Asian youth with a learning disability have a higher average SES than Latinx and Black youth without a learning disability. These estimates demonstrate the importance of intersectional analyses, with factors that are endogenous to ninth grade course placement (e.g., learning disability status, SES) also close covariates of each other.

Table 3 About Here

Table 3 shows differences by learning disability status and SES in the factors that are covariates of the relationship between adolescents' intersectional identities and their ninth grade math course placement. Relative to youth with no reported learning disability, youth with learning disabilities typically experience inequities in prior opportunities to learn and educational attitudes. They are more likely to attend public high schools and high schools with a higher share of students who are Black or who are eligible for free lunch. Their parents have lower educational expectations for them. Patterns are similar for lower SES youth relative to higher SES youth, except that lower SES youth are also less likely to attend suburban high schools but

are more likely to live in the West. Their high schools also serve larger shares of Hispanic students and are less likely to offer advanced math or Calculus. Finally, they are more likely to not have been born in the US and for English to not be their native language. Table 4 shows differences by race in covariates. Overall, Latinx and Black youth typically experience inequities relative to White and Asian youth in terms of prior opportunities to learn, high school context, and family characteristics that relate to educational outcomes. Differences by race in educational attitudes, though, are mixed. This study's multivariate estimates that are adjusted for these covariates attempt to shift focus from differences that reflect both cumulative disadvantage and disability-related inequities, to just disability-related inequities in the transition to high school.

Table 4 About Here

Math Course Outcomes at the Intersection of Disability, Race, and SES

To investigate if findings support multiple marginalization or increased liability, Figure 1 shows predicted probabilities that ninth graders' math course is higher than normative at the intersection of adolescents' learning disability status, race, and SES. Regardless of their race, adolescents with a learning disability have a lower predicted probability of being in a higher than normative math course than their same-race peers of comparable SES. The numbers in the brackets indicate the difference by disability status at each level of SES. For instance, among Latinx youth with an SES one SD lower than average, the predicted probability of a higher than normative ninth grade math course is 15 percentage points lower for Latinx youth with a learning disability than for Latinx youth with no reported disability. The base of Figure 1 shows that the average relationship between a learning disability and ninth grade math course placement is largest for Asian youth (-0.40). Because Martin (2019) describes a racialized math hierarchy in which Asian students are perceived to be even more capable than White students, these findings

suggest that youth advantaged in terms of their race appear to experience *increased liability* from a learning disability.

Figure 1 About Here

Figure 1 also shows differences by SES in the relationship between a learning disability and math course placement within racial groups. Among lower SES (-1 SD) White youth, the difference by disability status in the predicted probability of placement in a higher than normative math course is -0.16, whereas the difference by disability status for higher SES White youth (+1 SD) is -0.25. The table at the base of Figure 1 indicates that the interaction between learning disability and SES is statistically significant ($p\text{-value}<0.05$) for White youth. In other words, White youth's SES moderates how their disability status relates to their math course placement, with higher SES White youth experiencing a larger negative relationship than lower SES White youth. The pattern is identical for Latinx, Black, and Asian adolescents, although not statistically significant for Asian adolescents. This may reflect small cell sizes for Asian adolescents, as the three-way interaction (see Table 5) suggests that there are not significant racial differences in how SES moderates the relationship between reported learning disabilities and ninth grade math course placement. In all these findings also support the *increased liability* perspective. In sensitivity analyses that exclude ninth graders not in a math course (Online Table 5), results are substantively very similar.

Table 5 About Here

To investigate potential disability-related inequities in the transition to high school, Table 5 shows coefficients and standard errors from linear probability models predicting that ninth graders' math course is higher than normative. Model 1 includes main effects and statistical interactions between measures of adolescents' learning disability status, race, and SES. The main

effect for a learning disability is negative and statistically significant. Interactions between the learning disability and race measures, and the learning disability and SES measures, are not statistically significant, suggesting that this negative main relationship between a learning disability and ninth grade math course placement is experienced by youth of diverse racial and socioeconomic backgrounds. Yet, this unadjusted model reflects the contributions of cumulative disadvantage, and disability-related inequities that adolescents experienced both before and potentially in the transition to high school.

Model 2 in Table 5 narrows in on disability-related inequities in the transition to high school by controlling for multitudes of covariates that reflect cumulative disadvantage, including outcomes reflecting prior opportunities to learn, adolescents' educational attitudes, high school context, and family characteristics. In Model 2, the learning disability coefficient is only marginally significant, suggesting that the poorer ninth grade math course outcomes of youth with learning disabilities are *due to cumulative disadvantage rather than disability-related inequities in the transition to high school*. Because the interactions between the disability and race measures, and the disability and SES measures, are not statistically significant, results indicate that this finding is true for youth of diverse racial and socioeconomic backgrounds. In corroboration of the robustness of these findings, the learning disability coefficient in Model 3, which incorporates a propensity score weight, is not statistically significant at all, and the interactions with the disability measure remain not statistically significant. The coefficient for the main effect of SES is likely significant even with propensity score weighting because the propensity focused on selection into a learning disability rather than selection into a higher SES. Sensitivity analyses similar to these but excluding ninth graders not in a math course (Online Table 5) align with these results, with the coefficients for the main effect of a learning disability

not statistically significant in the model adjusted by covariates or the model adjusted by propensity score weighting.

Discussion

This study uses large nationally representative data to investigate ninth graders' math course placement at the intersection of learning disability status, race, and SES. First, descriptive results (i.e., unadjusted for covariates) are consistent with an *increased liability* perspective, with the negative relationship between a learning disability and math course placement typically larger for adolescents who are more privileged in terms of their race and/or SES. Adjusted results suggest that the poorer ninth grade math course outcomes of youth with learning disabilities are *due to cumulative disadvantage rather than disability-related inequities in the transition to high school* for youth of diverse racial and socioeconomic backgrounds. These findings demonstrate the importance of the regular integration of intersectional approaches in all investigations focused on stratification, despite added complexity. This study provides a roadmap for future studies to address this complexity by introducing the new perspective of increased liability to be used in conjunction with the widely employed perspective of multiple marginalization. This study also contributes to scholarly efforts to integrate intersectional frameworks with quantitative approaches, and expands the application of and understandings of intersectional theory to disability research.

Results suggest that disability in intersection with race and SES more often operates through *increased liability*, rather than multiple marginalization. More specifically, the negative relationship between a learning disability and math course placement is larger among higher SES youth than lower SES youth within each race group (although the difference is not statistically significant for Asian youth). Owens (2020) similarly finds that an ADHD classification relates

negatively to children's externalizing behaviors and academic self-competence for middle and higher SES children but not for lower SES children. Blum's (2015) study documents how children's 'invisible disabilities' cause more parental angst for higher SES families than for lower SES families, despite additional resources. Students who are advantaged in terms of their SES or race are more likely to attend high schools that serve similarly advantaged and higher achieving peers (Hanselman & Fiel, 2017). The likelihood of a struggling learner being classified as learning disabled is higher in higher SES or higher-achieving schools than in lower SES/achieving schools (Fish, 2019; Shifrer, 2018; Shifrer & Fish, 2020). Similarly, higher SES youth are more likely to use stimulants to address learning struggles (King et al., 2014), and are even more likely to commit suicide in some contexts (Mueller & Abrutyn, 2016). These scholars attribute these patterns to heightened expectations of self-control, academic excellence, and ensuring the continuation of family social privileges, all of which may increase the degree to which a learning disability is stigmatizing. From another perspective, though, this could be interpreted to mean that lower SES youth experience fewer detriments from a learning disability only because they experience low expectations and inequitable educational outcomes regardless of whether they are classified as disabled.

Similarly, this study finds that the negative relationship between a reported learning disability and math course placement is largest for Asian youth, who are perceived as particularly high status in math settings (Martin, 2019). This corresponds with Schwartz et al.'s (2021) recent finding that the negative relationship between a learning disability and test scores is larger for Asian youth than for White youth. These findings may reflect heightened disability stigma in Asian cultures (Bui & Turnbull, 2003; Choi & Lam, 2001), particularly for 'invisible' disabilities like learning disabilities (Chen et al., 2004). Asian youth are also much less likely to

have a reported learning disability than White, Latinx, or Black youth (Office of Special Education Programs, 2018). Overall, these findings demonstrate how US research on learning disabilities and math outcomes must more regularly incorporate consideration of this growing population.

Adjusted results suggest that the poorer ninth grade math course outcomes of youth with learning disabilities are *due to cumulative disadvantage rather than disability-related inequities in the transition to high school* for youth of diverse racial and socioeconomic backgrounds. While this is a positive finding in terms of the policies and processes guiding ninth grade course placements, it may also reflect the decreasing flexibility of the math course sequence as students progress into high school. In other words, by ninth grade, math course placements are so predicated on students' level of math in their prior year, and their performance in that course, that we can determine a students' end of high school math course attainment by their middle school math experiences (Roderick et al., 2014). Moreover, while there is no real evidence for disability-related inequities during the transition into high school, cumulative disadvantage, in this case, likely includes disability-related inequities youth experienced before transitioning into high school, with the previous literature documenting how a learning disability classification, which can bias teachers' perceptions of students' potential (Allday et al., 2011; Ohan et al., 2011; Shifrer et al., 2013), subsequently limiting their access to equitable opportunities to learn.

Some limitations merit mention. This study is focused on how learning disabilities relate to educational outcomes, but educational outcomes also predict being classified with a learning disability (Fletcher et al., 2005), threatening the internal validity of this study. Endogeneity is a common problem in research on inequality (Lynch & Brown, 2011). Randomized control trials (RCTs) are the gold standard for causal answers, but RCTs are often impossible or unethical,

especially for questions related to health (Sansom-Fisher et al., 2007). Yet, this study's unadjusted results are in themselves a contribution because of our lack of understanding of baseline differences in adolescents' outcomes at the intersection of disability, race, and SES. Although it is impossible to disentangle the source of these differences, I attempt to narrow the focus on potential disability-related inequities in the transition to high school first by using standard regression techniques, employing a wealth of covariates that relate to acquiring a learning disability classification (e.g., being a non-native English speaker), that capture the social implications of progressing through the education system with a learning disability classification (e.g., less access to opportunities to learn), and that are closely related to ninth grade math course placements (e.g., achievement in the eighth grade). Second, I re-estimate main analyses using propensity score techniques, which are thought to better address selection bias than standard regression techniques (Rosenbaum & Rubin, 1987).

Although intersectional ideas are widely applied in feminist theory and beyond, researchers do not agree on what constitutes intersectional methodology (MacKinnon, 2013). Qualitative approaches may be better suited to the more personal subjective aspects of intersectional theory, but intersectionalists increasingly recognize the value of integrating quantitative approaches with intersectional perspectives (Covarrubias & Vélez, 2013; Hancock, 2007b). US racial categories eclipse the heterogeneous origins, backgrounds, and cultures each represents (Cruz et al., 2021; Windchief & Brown, 2017), but intersectionalists call for the strategic use of imperfect categories in order to document inequalities (Hancock, 2007; McNair et al., 2020). Similarly, the definition, diagnosis of, and 'symptoms' of learning disabilities are variable (Shifrer & Fish, 2020), as partially evidenced in the different prevalence rates across racial and SES groups in this study. This study's intersectional approach not only 'controls' on

differences in adolescents' SES and race, but explicitly centers and examines differences by race and SES in how disability relates to math course placements. Moreover, unlike previous federal datasets, HSLS allows consideration of youth with reported learning disabilities who may not be in special education. These adolescents' disability status was measured in 2009—although rates of learning disability classifications have not increased as much as rates of autism and attention-deficit/hyperactivity disorder classifications in recent decades, these results should be replicated with a more recent dataset once it is available.

This study disrupts commonsense understandings of disparities in course outcomes as natural and inevitable for youth with learning struggles or differences. Intersectional theorists advocate for the recognition and inclusion of multiply marginalized identities, or for not allowing these identities to be subsumed by the experiences of persons who share in only some aspects of their marginalization (Collins, 2015; Crenshaw, 1989). Future research taking a less nuanced analytic approach might narrow in on specific subgroups, such as less prevalent racial minority groups, like Native American youth. Future research should also build on these findings to identify specific processes producing these disparities. This study advances knowledge through an intersectional theoretical and methodological approach, making it clear that considering individual status markers in isolation presents an incomplete and even inaccurate picture. This study answers multiple scholars' calls: the consideration of disability in intersectional work (Annamma et al., 2018), the application of intersectional approaches in research focused on math and science (Ireland et al., 2018; Saw et al., 2018), and the more thoughtful consideration of race in research on educational and math disparities in particular (Diamond, 2018; McNair et al., 2020). Just as Prins (2006, p. 278) pointed out that White women should not be the “exemplary victims” of sexism, nor Black men the “exemplary victims” of racism, we cannot assume the

experiences of all children with disabilities in the US mirror those of middle-class White children with disabilities.

References

Allday, R. A., Duhon, G. J., Blackburn-Ellis, S., & Dycke, J. L. V. (2011). The biasing effects of labels on direct observation by preservice teachers. *Teacher Education Quarterly*, 34(1), 52–58.

Annamma, S. A., Ferri, B. A., & Connor, D. J. (2018). Disability Critical Race Theory: Exploring the intersectional lineage, emergence, and potential futures of DisCrit in education. *Review of Research in Education*, 42(1), 46–71.

Annamma, S., & Morrison, D. (2018). Identifying dysfunctional education ecologies: A DisCrit analysis of bias in the classroom. *Equity & Excellence in Education*, 51(2), 114–131.

Archer, L., DeWitt, J., Osborne, J., Dillon, J., Willis, B., & Wong, B. (2010). “Doing” science versus “being” a scientist: Examining 10/11-year-old schoolchildren’s constructions of science through the lens of identity. *Science Education*, 94(4), 617–639.

Austin, P. C. (2011). An introduction to propensity score methods for reducing the effects of confounding in observational studies. *Multivariate Behavioral Research*, 46(3), 399–424.

Blum, L. M. (2015). *Raising generation Rx: Mothering kids with invisible disabilities in an age of inequality*. New York University Press.

Boets, B., & Smedt, B. D. (2015). Single-digit arithmetic in children with dyslexia. *Dyslexia*, 16(2), 183–191.

Bui, Y. N., & Turnbull, A. (2003). East meets west: Analysis of person-centered planning in the context of Asian American values. *Education and Training in Developmental Disabilities*, 18–31.

Carroll, J. M., Muller, C., Grodsky, E., & Warren, J. R. (2017). Tracking health inequalities from high school to midlife. *Social Forces*, 96(2), 591–628.

Chen, R. K., Jo, S.-J., & Donnell, C. M. (2004). Enhancing the rehabilitation counseling process: Understanding the obstacles to Asian Americans' utilization of services. *Journal of Applied Rehabilitation Counseling*, 35(1), 29–35.

Choi, G., & Lam, C. S. (2001). Korean students' differential attitudes toward people with disabilities: An acculturation perspective. *International Journal of Rehabilitation Research*, 24(1), 79–81.

Choo, H. Y., & Ferree, M. M. (2010). Practicing intersectionality in sociological research: A critical analysis of inclusions, interactions, and institutions in the study of inequalities. *Sociological Theory*, 28(2), 129–149.

Cobb, J. S. (2017). Inequality frames: How teachers inhabit color-blind ideology. *Sociology of Education*, 90(4), 315–332.

Collins, P. H. (2002). *Black feminist thought: Knowledge, consciousness, and the politics of empowerment*. Routledge.

Collins, P. H. (2015). Intersectionality's definitional dilemmas. *Annual Review of Sociology*, 41, 1–20.

Connor, D. F., Steeber, J., & McBurnett, K. (2010). A review of attention-deficit/hyperactivity disorder complicated by symptoms of oppositional defiant disorder or conduct disorder. *Journal of Developmental & Behavioral Pediatrics*, 31(5), 427–440.

Covarrubias, A., & Vélez, V. (2013). Critical race quantitative intersectionality: An anti-racist research paradigm that refuses to “let the numbers speak for themselves.” In M. Lynn & A. D. Dixson (Eds.), *Handbook of Critical Race Theory in Education* (1st edition). Routledge.

Crenshaw, K. W. (1989). Demarginalizing the intersection of race and sex: A Black feminist critique of antidiscrimination doctrine, feminist theory, and antiracist politics. *University of Chicago Legal Forum, 1989*, 139–167.

Cruz, R. A., Kulkarni, S. S., & Firestone, A. R. (2021). A QuantCrit analysis of context, discipline, special education, and disproportionality. *AERA Open, 7*(1), 1–16.

Dannefer, D. (1987). Aging as intracohort differentiation: Accentuation, the Matthew Effect, and the life course. *Sociological Forum, 2*, 211–236.

Desimone, L. M., & Long, D. (2010). Teacher effects and the achievement gap: Do teacher and teaching quality influence the achievement gap between black and white and high- and low-SES students in the early grades? *Teachers College Record, 112*(12), 3024–3073.

Diamond, J. B. (2018). Race and white supremacy in the sociology of education: Shifting the intellectual gaze. In J. Mehta & S. Davies (Eds.), *Education in a New Society: Renewing the Sociology of Education* (pp. 345–362). Chicago University Press.

DiPrete, T. A., & Eirich, G. M. (2006). Cumulative advantage as a mechanism for inequality: A review of theoretical and empirical developments. *Annual Review of Sociology, 32*, 271–297.

Domina, T., & Saldana, J. (2012). Does raising the bar level the playing field?: Mathematics curricular intensification and inequality in American high schools, 1982-2004. *American Educational Research Journal, 49*(4), 685–708.

Duprey, M. A., Pratt, D. J., Jewell, D. M., Cominole, M. B., Fritch, L. B., Ritchie, E. A., Rogers, J. E., Wescott, J. D., & Wilson, D. H. (2018). *High School Longitudinal Study of 2009 (HSLS:09) base-year to second follow-up data file documentation (NCES 2018-140)*.

National Center for Education Statistics, Institute of Education Sciences, U.S.

Department of Education.

Dweck, C. S. (2007). Is math a gift? Beliefs that put females at risk. In S. J. Ceci & W. Williams (Eds.), *Why Aren't More Women in Science? Top Researchers Debate the Evidence*.

American Psychological Association.

Erevelles, N. (1996). Disability and the dialectics of difference. *Disability & Society*, 11(4), 519–537.

Ferraro, K. F., & Kelley-Moore, J. A. (2003). Cumulative disadvantage and health: Long-term consequences of obesity? *American Sociological Review*, 68, 707–729.

Fish, R. E. (2019). Standing out and sorting in: Exploring the role of racial composition in racial disparities in special education. *American Educational Research Journal*, 56(6), 2573–2608.

Fletcher, J. M., Denton, C., & Francis, D. J. (2005). Validity of alternative approaches for the identification of learning disabilities: Operationalizing unexpected underachievement. *Journal of Learning Disabilities*, 38(6), 545–552.

Gamoran, A. (2010). Tracking and inequality: New directions for research and practice. In M. Apple, S. Ball, & L. A. Gandin (Eds.), *International Handbook of the Sociology of Education*. Routledge.

Gamoran, A., & Hannigan, E. C. (2000). Algebra for everyone? Benefits of college-preparatory mathematics for students with diverse abilities in early secondary school. *Educational Evaluation and Policy Analysis*, 22, 241–254.

Gamoran, A., & Long, D. A. (2006). *Equality of educational opportunity: A 40-year retrospective (WCER Working Paper No. 2006-9)*. University of Wisconsin-Madison.

Hancock, A.-M. (2007). When multiplication doesn't equal quick addition: Examining intersectionality as a research paradigm. *Perspectives on Politics*, 5(1), 63–79.

Hanselman, P., & Fiel, J. E. (2017). School opportunity hoarding? Racial segregation and access to high growth schools. *Social Forces*, 95(3), 1077–1104.

Hibel, J., Farkas, G., & Morgan, P. L. (2010). Who is placed into special education? *Sociology of Education*, 83(4), 312–332.

Hill, H. C. (2016). 50 years ago, one report introduced Americans to the black-white achievement gap. Here's what we've learned since. *Chalkbeat*.

Ireland, D. T., Freeman, K. E., Winston-Proctor, C. E., DeLaine, K. D., Lowe, S. M., & Woodson, K. M. (2018). (Un)hidden figures: A synthesis of research examining the intersectional experiences of Black women and girls in STEM education. *Review of Research in Education*, 42(1), 226–254.

Jimenez, T. C., & Graf, V. L. (2008). *Education For All: Critical Issues in the Education of Children and Youth with Disabilities*. Jossey-Bass, An Imprint of Wiley.

Kao, G., & Thompson, J. S. (2003). Racial and ethnic stratification in educational achievement and attainment. *Annual Review of Sociology*, 29, 417–442.

King, M. D., Jennings, J., & Fletcher, J. (2014). Medical adaptation to academic pressure: Schooling, stimulant use, and socioeconomic status. *American Sociological Review*, 79(6), 1039–1066.

Klingner, J. K., & Harry, B. (2006). The special education referral and decision-making process for English language learners: Child study team meetings and placement conferences. *Teachers College Record*, 108(11), 2247–2281.

Lareau, A., & Cox, A. (2011). Social class and the transition to adulthood: Differences in parents' interactions with institutions. In M. J. Carlson & P. England (Eds.), *Social class and changing families in an unequal America* (pp. 134–164). Stanford University Press.

Lee, J., & Zhou, M. (2015). *The Asian American achievement paradox*. Russell Sage Foundation.

Lewis, A. E., & Diamond, J. B. (2015). *Despite the best intentions: How racial inequality thrives in good schools*. Oxford University Press.

Long, M. C., Conger, D., & Iatarola, P. (2012). Effects of high school course-taking on secondary and postsecondary success. *American Educational Research Journal*, 49(2), 285–322.

Long, M. C., Iatarola, P., & Conger, D. (2009). Explaining gaps in readiness for college-level math: The role of high school courses. *Education Finance and Policy*, 41(1), 1–33.

Lynch, S. M., & Brown, J. S. (2011). Stratification and inequality over the life course. In L. George (Ed.), *Handbook of aging and the social sciences (seventh edition)*. Elsevier.

MacKinnon, C. A. (2013). Intersectionality as method: A note. *Intersectionality: Theorizing Power, Empowering Theory*, 38(4), 1019–1030.

Maroto, M., Pettinicchio, D., & Patterson, A. C. (2019). Hierarchies of categorical disadvantage: Economic insecurity at the intersection of disability, gender, and race. *Gender & Society*, 33(1), 64–93.

Martin, D. B. (2019). Equity, inclusion, and antiblackness in mathematics education. *Race Ethnicity and Education*, 22(4), 459–478.

Maxwell, L. A., & Shah, N. (2012). Evaluating ELLs for special needs a challenge. *Education Week*, 32(2).

McFarland, J., Hussar, B., Zhang, J., Wang, K., Hein, S., Diliberti, M., Cataldi, E. F., Mann, F. B., & Barmer, A. (2019). *The condition of education 2019 (NCES 2019-144)*. National Center for Education Statistics, U.S. Department of Education.

McLanahan, S. (2004). Diverging destinies: how children are faring under the second demographic transition. *Demography, 41*(4), 607–627.

McNair, T. B., Bensimon, E. M., & Malcom-Piqueux, L. (2020). *From equity talk to equity walk: Expanding practitioner knowledge for racial justice in higher education*. John Wiley & Sons, Inc.

Mickelson, R. (2015). Second-generation segregation for middle school achievement. *American Educational Research Journal, 52*(4), 657–692.

Morgan, P. L., Frisco, M., Farkas, G., & Hibel, J. (2010). A propensity score matching analysis of the effects of special education services. *The Journal of Special Education, 43*(4), 236–254.

Mueller, A. S., & Abrutyn, S. (2016). Adolescents under pressure: A new Durkheimian framework for understanding adolescent suicide in a cohesive community. *American Sociological Review, 81*(5), 877–899.

Naples, N. A., Mauldin, L., & Dillaway, H. (2019). From the guest editors: Gender, disability, and intersectionality. *Gender & Society, 33*(1), 5–18.

National Council on Disability. (2018). *Has the promise been kept? Federal enforcement on disability rights laws*. National Council on Disability.

Newman, L., Wagner, M., Knokey, A.-M., Marder, C., Nagle, K., Shaver, D., & Wei, X. (2011). *The post-high school outcomes of young adults with disabilities up to 8 years after high*

school: A report from the National Longitudinal Transition Study-2 (NLTS2) (NCSER 2011-3005). SRI International.

Office of Special Education Programs. (2018). *40th annual report to Congress on the implementation of the Individuals with Disabilities Education Act*. U.S. Department of Education, Office of Special Education and Rehabilitative Services.

Ohan, J. L., Visser, T. A. W., Strain, M. C., & Allen, L. (2011). Teachers' and education students' perceptions of and reactions to children with and without the diagnostic label "ADHD." *Journal of School Psychology*, 49(1), 81–105.

Ong-Dean, C. (2009). *Distinguishing disability: Parents, privilege, and special education*. University of Chicago Press.

Owens, J. (2020). Social class, diagnoses of attention-deficit/hyperactivity disorder, and child well-being. *Journal of Health and Social Behavior*, 61(2), 134–152.

Owens, J. (2021). Parental intervention in school, academic pressure, and childhood diagnoses of ADHD. *Social Science & Medicine*, 272(113746), 1–10.

Prins, B. (2006). Narrative accounts of origins. *European Journal of Women's Studies*, 13(3), 277–290.

Riegle-Crumb, C. (2006). The path through math: Course sequences and academic performance at the intersection of race-ethnicity and gender. *American Journal of Education*, 113(1), 101–122. Add Health/AHAA. <https://doi.org/10.1086/506495>

Riegle-Crumb, C., & Grodsky, E. (2010). Racial-ethnic differences at the intersection of math course-taking and achievement. *Sociology of Education*, 83(3), 248–270.

Roderick, M., Kelley-Kemple, T., Johnson, D. W., & Beechum, N. O. (2014). *Preventable failure: Improvements in long-term outcomes when high schools focused on the ninth grade year*. The University of Chicago Consortium on Chicago School Research.

Rosenbaum, P. R., & Rubin, D. B. (1987). Reducing bias in observational studies using subclassification on the propensity score. *Journal of the American Statistical Association*, 79, 516–524.

Samson, J. F., & Lesaux, N. K. (2009). Language-minority learners in special education: rates and predictors of identification for services. *Journal of Learning Disabilities*, 42(2), 148–162.

Sanson-Fisher, R. W., Bonevski, B., Green, L. W., & D'Este, C. (2007). Limitations of the randomized controlled trial in evaluation population-based health interventions. *American Journal of Preventive Medicine*, 33(2), 155–161.

Saw, G., Chang, C.-N., & Chan, H.-Y. (2018). Cross-sectional and longitudinal disparities in STEM career aspirations at the intersection of gender, race/ethnicity, and socioeconomic status. *Educational Researcher*, 47(8), 525–531.
<https://doi.org/10.3102/0013189X18787818>

Schwartz, A. E., Hopkins, B. G., & Stiefel, L. (2021). The effects of special education on the academic performance of students with learning disabilities. *Journal of Policy Analysis and Management*, 40, 480–520.

Shifrer, D. (2013). Stigma of a label: Educational expectations for high school students labeled with a learning disability. *Journal of Health and Social Behavior*, 54(4), 462–480.

Shifrer, D. (2016). Stigma and stratification limiting the math course progression of adolescents labeled with a learning disability. *Learning and Instruction*, 42(1), 47–57.

Shifrer, D. (2018). Clarification of the social roots of the disproportionate labeling of racial minorities and males with learning disabilities. *The Sociological Quarterly*, 59(3), 384–406.

Shifrer, D., Callahan, R., & Muller, C. (2013). Equity or marginalization? The high school course-taking of students labeled with a learning disability. *American Educational Research Journal*, 50(4), 656–682.

Shifrer, D., & Fish, R. E. (2020). Contextual reliability in the designation of cognitive health conditions among U.S. children. *Society and Mental Health*, 10(2), 180–197.

Shifrer, D., & Frederick, A. (2019). Disability at the intersections. *Sociology Compass*, *Published online first*.

Shifrer, D., Muller, C., & Callahan, R. (2011). Disproportionality and learning disabilities: parsing apart race, socioeconomic status, and language. *Journal of Learning Disabilities*, 44(3), 246–257.

Tyson, W., & Roksa, J. (2016). How schools structure opportunity: The role of curriculum and placement in math attainment. *Research in Social Stratification and Mobility*, 44(1), 124–135.

UCLA's Institute for Democracy, Education, & Access. (2022). Opportunity to Learn (OTL): Does California's school system measure up? *UCLA/IDEA*.

Valadez, J. R. (2002). The influence of social capital on mathematics course selection by Latino high school students. *Hispanic Journal of Behavioral Sciences*, 24(3), 319–339.

Visser, S. N., Danielson, M. L., Bitsko, R. H., Holbrook, J. R., Kogan, M. D., Ghandour, R. M., Perou, R., & Blumberg, S. J. (2014). Trends in the parent-report of health care provider-

diagnosed and medicated attention-deficit/hyperactivity disorder: United States, 2003–2011. *Journal of the American Academy of Child & Adolescent Psychiatry*, 53(1), 34–46.

White, I. R., Royston, P., & Wood, A. M. (2011). Multiple imputation using chained equations: issues and guidance for practice. *Statistics in Medicine*, 30(4), 377–399.

Will, M. (2014). In Transition to Common Core, Some High Schools Turn to “Integrated” Math. *Education Week*, 34(12).

Wilson, V., & Schieder, J. (2018). *The rise in child poverty reveals racial inequality, More than a failed war on poverty*. Economic Policy Institute.

Windchief, S., & Brown, B. (2017). Conceptualizing a mentoring program for American Indian/Alaska Native students in the STEM fields: A review of the literature. *Mentoring & Tutoring: Partnership in Learning*, 25(3), 329–345.

Woods, C. S., Park, T., Hu, S., & Jones, T. B. (2018). How high school coursework predicts introductory college-level course success. *Community College Review*, 46(2), 176–196.

Zablotsky, B., & Alford, J. M. (2020). *Racial and ethnic differences in the prevalence of attention-deficit/hyperactivity disorder and learning disabilities among U.S. children aged 3–17 years (NCHS Data Brief No. 358)*. National Center for Health Statistics, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services.

Online Appendix A: Survey Items Used to Construct Scales

Math Interest (alpha 0.77)

9th grader enjoying this class very much
9th grader is taking fall 2009 math b/c he/she really enjoys math
Plans to take more math courses because they enjoy studying math
Plans to take more math courses because he/she is good at math
9th grader thinks this class is boring
9th grader thinks this class is a waste of their time

Math Self-Efficacy (alpha 0.89)

9th grader certain that can master skills taught in course
9th grader certain that can understand most difficult material presented in textbook
9th grader confident that can do excellent job on tests in this course
9th grader confident that can do excellent job on assignments in this course
How often 9th grader thinks he/she really understands math assignments

Math Identity (alpha 0.84)

Others see 9th grader as math person
Sees self as math person

Math Utility Value (alpha 0.78)

What students learn in this course is useful for everyday life
What students learn in this course will be useful for college
What students learn in this course will be useful for a future career

STEM Attainment Value (personal importance of doing well) (alpha 0.75)

Time/effort in math/science means not enough time with friends (*reverse-coded*)
Time/effort in math/science means not enough time for extracurriculars (*reverse-coded*)
Time/effort in math/science means 9th grader won't be popular (*reverse-coded*)
Time/effort in math/science means people will make fun of 9th grader (*reverse-coded*)

Online Appendix B: Propensity Score Approach

HSLS's User's Guide (Duprey et al. 2018) advises analysts to use Stata's survey command to apply the base year student analytic weight, account for HSLS's complex survey design, and adjust for the clustering of students within schools. The survey command is only compatible with certain commands related to propensity score approaches (Garrido 2014). I employ propensity score weights rather than propensity score matching techniques to facilitate the use of Stata's survey command (DuGoff, Schuler, and Stuart 2014; Garrido 2014). Following statisticians' recommendations, I: 1) created a propensity score, including the HSLS survey weight as one of the covariates (Online Table 1); 2) assessed the propensity score's balance across treatment and comparison groups (Online Table 2); 3) weighted the treatment and comparison groups by the propensity score using the covariates chosen in the first two steps; 4) multiplied the propensity score weight by the survey weight; and 5) estimated main analyses survey-set by the new weight variable. To combine a propensity score approach with multiply imputed data, I use the 'within approach', which Mitra and Reiter (2016) and Granger et al. (2019) find produces less biased estimates than the 'across approach.' In the 'across approach,' the treatment effect using the propensity score is estimated within each multiply imputed data set and then the treatment effect estimates are averaged across the multiply imputed datasets. In the 'within approach,' the propensity scores for each case are estimated within each multiply imputed dataset and then averaged across the datasets, such that the treatment effects are estimated with the averaged propensity scores.

Relying on Stata's 'pscore' command, the models producing propensity scores (Online Table 1) include the measures available in HSLS that best capture factors that select youth into being classified with a learning disability (SES, race, whether the adolescent was born in the US,

whether their native language is English). Because school characteristics, and especially achievement levels, are highly determinant of which children are classified as learning disabled (Shifrer, 2018; Shifrer & Fish, 2020), I also include measures of eighth grade achievement and high school context even though they are probably measured after youth were classified with a disability (HSLS offers no earlier measures of these factors). These models are likely more robust than models with no measures of achievement or context, under the assumption that these more recent measures at least capture some aspect of youth's earlier academic careers, with special education shown to typically not improve students' achievement levels (Morgan et al., 2010; Shifrer, 2016; Shifrer et al., 2013). The models in Online Table 1 show that the likelihood of being classified with a learning disability are significantly lower for youth with higher levels of achievement, and for youth in Catholic schools or schools in the West or South, after adjusting for other factors. Corresponding with previous studies, with adjustments for differences in achievement, the likelihood of being classified with a learning disability is significantly lower for Black youth (Hibel et al., 2010; Shifrer, 2018; Shifrer et al., 2011), and for youth whose native language is not English (Maxwell & Shah, 2012).

Propensity score balance diagnostics are provided in Online Table 2. Balance is achieved when the difference in the mean level of the measure of interest is not statistically significant for treatment and control cases in the same block. Stata's 'pscore' command constructs enough blocks to ensure balanced propensity scores. From 95% to 100% of covariates are balanced within each block. The dependent variable, whether the ninth grader's math course is higher than normative, is balanced in every block but blocks 2 and 3. These blocks include control and treatment cases with the lowest propensity for being classified with a learning disability, namely, adolescents with higher levels of achievement. In addition to being indicative of the

inconsistencies and subjectivities of the learning disability classification process (Shifrer & Fish, 2020), the differences in the outcomes of treatment and control cases in these blocks present the possibility that a learning disability will have a large negative effect for youth who are higher-achieving (i.e., youth who are often also higher SES).

Table 1: Means and Proportions Describing all Variables Used in Study

<i>Dependent Variable:</i> Ninth grade math course higher than normative	0.37	Adolescent expects a STEM occupation	0.33
<i>Intersectional Identities</i>			
Learning disability	0.06	High school type:	
Race:		Public	0.92
White	0.56	Catholic	0.04
Latinx	0.25	Other private	0.04
Black	0.15	High school urbanicity:	
Asian	0.05	City	0.31
Socioeconomic status	-0.09 (1.02)	Suburb	0.34 0.12
		Town	
		Rural	0.24
<i>Outcomes Reflecting Prior Opportunities to Learn</i>			
Level of eighth grade math:		High school region:	
Lower than Algebra I	0.61	Northeast	0.18
Algebra I	0.35	Midwest	0.21
Higher than Algebra I	0.04	South	0.37
Eighth grade math grade point average	3.02 (0.93)	West	0.24
Enrolled in core eighth grade science	0.05	Percent students eligible for free lunch	38.72 (25.04)
Eighth grade science grade point average	3.12 (0.88)	Percent students Black	15.32 (18.11)
Ninth grade math test score	0.07 (0.92)	Percent students Hispanic	19.56 (20.28)
<i>Adolescent's Educational Attitudes</i>			
Adolescent's educational expectations:		Percent students Asian/Pacific Islander	4.43 (7.07)
High school or less	0.16	High school offers Algebra II	0.95
Some college	0.09	High school offers advanced math	0.86
Bachelor's degree	0.22	(e.g., pre-Calculus)	
Master's degree	0.27	High school offers Calculus	0.81
Higher than Master's	0.26	High school offers AP/IB math courses	0.90
Adolescent's math interest	0.01 (1.00)	<i>Family Characteristics</i>	
		Not born in United States	0.08
Adolescent's math self-efficacy	0.02 (0.95)	Native language is not English	0.21
		Parents' educ. expectations for adolescent:	
Adolescent's math identity	0.01 (0.98)	High school or less	0.08
		Some college	0.11
Adolescent's math utility value	0.02 (0.97)	Bachelor's degree	0.34
		Master's degree	0.23
Adolescent's STEM attainment value	0.06 (0.96)	Higher than Master's	0.24

Source: US Department of Education, National Center for Education Statistics, "The High School Longitudinal Study of 2009".

Note: Means and proportions adjusted to be population-estimates. Standard deviations provided in parentheses below means.

***p<0.001, **p<0.01, *p<0.05, +p<0.10.

Table 2: Differences by Learning Disability (LD) Status, Socioeconomic Status (SES), and Race in Key Variables

	Differences by LD Status			Differences by SES						
	No	Yes		Lower	Higher					
<i>Dependent Variable:</i> Ninth grade math course higher than normative	0.38	0.16	***	0.26	0.44	***				
<i>Intersectional Identities</i>										
Learning disability				0.07	0.05	***				
Socioeconomic status	-0.07	-0.47	***							
Race:										
White (ref)	0.55	0.45	-	0.33	0.67	-				
Latinx	0.25	0.37	**	0.44	0.15	***				
Black	0.14	0.17		0.20	0.12	***				
Asian	0.05	0.01	+	0.03	0.06					
Differences by Race										
	White (W)	Latinx (L)	Black (B)	Asian (A)	Wv.L	Wv.B	Wv.A	Lv.B	Lv.A	Bv.A
Ninth grade math course higher than normative	0.42	0.28	0.27	0.63	***	***	***		***	***
Learning disability	0.05	0.08	0.06	0.02	**		*		***	*
Socioeconomic status	0.22	-0.64	-0.42	0.23	***	***		***	***	***
Descriptives at the Intersection of Disability Status, Race, and SES										
	White		Latinx		Black		Asian			
	No LD	LD	No LD	LD	No LD	LD	No LD	LD		
Mean SES	0.24	-0.14	-0.61	-0.90	-0.39	-0.75	0.29	0.09		
Adolescents (n)	8,650	400	2,710	230	1,700	110	1,720	30		

Source: US Department of Education, National Center for Education Statistics, "The High School Longitudinal Study of 2009".

Note: Means and proportions adjusted to be population-estimates. The frequencies total more than the analytic sample (15,550 vs. 15,540) because NCES required unweighted frequencies be rounded to the nearest ten. Lower socioeconomic status (SES) includes adolescents whose family SES is in the bottom two quintiles, whereas higher SES includes adolescents with family SES in the 3rd through 5th quintiles.

***p<0.001, **p<0.01, *p<0.05, +p<0.10.

Table 3, Part 1 of 2: Means and Proportions Describing Differences by Learning Disability Status and Socioeconomic Status in Study Covariates

	Learning		Socioeconomic				
	Disability	No	Yes	Status			
<i>Outcomes Reflecting Prior Opportunities</i>							
Level of eighth grade math:							
Lower than Algebra I	0.59	0.80	**	0.71	0.55	***	
Algebra I (ref)	0.36	0.18	-	0.27	0.40	-	
Higher than Algebra I	0.04	0.02		0.02	0.05	***	
Eighth grade math grade point average	3.04	2.57	***	2.73	3.18	***	
Enrolled in core eighth grade science	0.05	0.04		0.04	0.05	+	
Eighth grade science grade point average	3.16	2.44	***	2.80	3.30	***	
Ninth grade math test score	0.12	-0.73	***	-0.33	0.29	***	
<i>Adolescent's Educational Attitudes</i>							
Adolescent's educational expectations:							
High school or less (ref)	0.15	0.42	-	0.26	0.11	-	
Some college	0.09	0.13	***	0.12	0.07	**	
Bachelor's degree	0.22	0.15	***	0.20	0.23	***	
Master's degree	0.28	0.18	***	0.22	0.30	***	
Higher than Master's	0.26	0.12	***	0.20	0.28	***	
Adolescent's math interest	0.02	-0.13	*	-0.08	0.06	***	
Adolescent's math self-efficacy	0.04	-0.29	+	-0.12	0.09	***	
Adolescent's math identity	0.02	-0.20	**	-0.13	0.08	***	
Adolescent's math utility value	0.01	0.08		0.10	-0.03	***	
Adolescent's STEM attainment value	0.07	-0.19	***	-0.02	0.10	**	
Adolescent expects a STEM occupation	0.34	0.21	***	0.30	0.35	**	
<i>High School Context</i>							
High school type:							
Public (ref)	0.92	0.96	-	0.98	0.88	-	
Catholic	0.04	0.02	**	0.01	0.06	***	
Other private	0.04	0.02	*	0.01	0.06	***	
High school urbanicity:							
City (ref)	0.31	0.32	-	0.37	0.28	-	
Suburb	0.34	0.37		0.29	0.38	***	
Town	0.11	0.10		0.13	0.10		
Rural	0.23	0.20		0.21	0.24	**	

Table 3, Part 2 of 2: Means and Proportions Describing Differences by Learning Disability Status and Socioeconomic Status in Study Covariates

	Learning		Socioeconomic			
	Disability		Status			
	No	Yes	Lower	Higher		
<i>High School Context, continued</i>						
High school region:						
Northeast (ref)	0.18	0.18	-	0.16	0.19	-
Midwest	0.21	0.20		0.18	0.23	
South	0.37	0.41		0.39	0.36	
West	0.24	0.21	+	0.27	0.22	+
Percent students eligible for free lunch	38.19	48.00	**	50.92	31.94	***
Percent students Black	15.13	18.74		19.11	13.21	***
Percent students Hispanic	19.29	24.29	*	26.43	15.74	***
Percent students Asian/Pacific Islander	4.51	3.09		4.11	4.61	+
High school offers Algebra II	0.95	0.94		0.94	0.95	
High school offers advanced math	0.86	0.85		0.84	0.88	*
High school offers Calculus	0.81	0.80		0.79	0.82	
High school offers Advanced Placement / International Baccalaureate math	0.90	0.89		0.88	0.90	
<i>Family Characteristics</i>						
Not born in United States	0.09	0.08		0.13	0.06	***
Native language is not English	0.21	0.26		0.35	0.13	***
Parents' educational expectations for adolescent:						
High school or less (ref)	0.07	0.23	-	0.14	0.05	-
Some college	0.10	0.18	*	0.15	0.09	***
Bachelor's degree	0.34	0.33	***	0.30	0.36	***
Master's degree	0.23	0.15	***	0.17	0.26	***
Higher than Master's	0.25	0.11	***	0.23	0.24	***

Source: US Department of Education, National Center for Education Statistics, "The High School Longitudinal Study of 2009".

Note: Means and proportions adjusted to be population-estimates. Lower socioeconomic status (SES) includes adolescents whose family SES is in the bottom two quintiles, whereas higher SES includes adolescents with family SES in the 3rd through 5th quintiles.

***p<0.001, **p<0.01, *p<0.05, +p<0.10.

Table 4, Part 1 of 2: Means and Proportions Describing Differences by Race in Study Covariates

	Student Race				Wv.	Wv.	Wv.	Lv.	Lv.	Bv.
	White (W)	Latinx (L)	Black (B)	Asian (A)	L	B	A	B	A	A
<i>Outcomes Reflecting Prior Opportunities to Learn</i>										
Level of eighth grade math:										
Lower than Algebra I	0.59	0.63	0.76	0.38		***	***	***	***	***
Algebra I (ref)	0.37	0.34	0.21	0.48	-	-	-	-	-	-
Higher than Algebra I	0.04	0.03	0.03	0.15		***		***	**	
Eighth grade math GPA	3.15	2.78	2.81	3.30	***	***	+	***	***	
Enrolled in core eighth grade science	0.05	0.05	0.06	0.07		*				
Eighth grade science GPA	3.26	2.81	2.88	3.38	***	***	+	***	***	
9th grade math test score	0.18	-0.17	-0.43	0.69	***	***	***	***	***	***
<i>Adolescent's Educational Attitudes</i>										
Adolescent's educational expectations:										
High school or less (ref)	0.15	0.25	0.19	0.08	-	-	-	-	-	-
Some college	0.09	0.10	0.06	0.09	**	**	+	**	**	
Bachelor's degree	0.24	0.21	0.18	0.19	***	**		**	**	
Master's degree	0.29	0.24	0.24	0.26	***	***	+	***	**	
Higher than Master's	0.23	0.20	0.33	0.38	***		***	***	***	***
Adolescent's math self-efficacy	0.06	-0.12	0.03	0.26	***		**	***	*	
Adolescent's math identity	0.03	-0.13	0.02	0.38	***		**	***	***	***
Adolescent's math interest	0.01	-0.07	0.05	0.27	+		**	*	***	*
Adolescent's math utility value	-0.09	0.07	0.29	0.09	***	***	***	***		**
Adolescent's STEM attainment value	0.07	-0.03	0.15	0.06	*			**		
Adolescent expects a STEM occupation	0.34	0.28	0.30	0.43	***		***	***	***	***
<i>High School Context</i>										
High school type:										
Public (ref)	0.89	0.96	0.96	0.91	-	-	-	-	-	-
Catholic	0.05	0.03	0.02	0.03	***	***	**			
Other private	0.05	0.02	0.02	0.06	***	***		***	***	

Table 4, Part 2 of 2: Means and Proportions Describing Differences by Race in all Study Covariates

	White (W)	Latinx (L)	Black (B)	Asian (A)	Wv.L	Wv.B	Wv.A	Lv.B	Lv.A	Bv.A
High school urbanicity:										
City (ref)	0.21	0.46	0.41	0.50	-	-	-	-	-	-
Suburb	0.35	0.32	0.30	0.35	***	***	**			
Town	0.15	0.07	0.10	0.04	***	**	***		+	
Rural	0.29	0.15	0.19	0.11	***	***	***		*	
High school region:										
Northeast (ref)	0.20	0.13	0.17	0.20	-	-	-	-	-	-
Midwest	0.29	0.09	0.18	0.15	***		**			
South	0.34	0.35	0.58	0.20	**	*	*	***	***	***
West	0.16	0.44	0.07	0.45	***	+	**	***	***	***
Percent eligible free lunch	30.34	50.33	52.35	32.02	***	***		***	***	***
Percent Black	9.86	13.41	40.21	11.56	***	***		***	***	***
Percent Hispanic	9.49	41.70	15.95	23.33	***	***	***	***	***	***
Percent Asian/PI	2.88	6.29	2.95	18.48	***		***	***	***	***
High school offers Alg II	0.95	0.94	0.95	0.95						
High school offers adv. math	0.89	0.82	0.82	0.92	*	*		**	**	
High school offers Calculus	0.82	0.79	0.82	0.82						
High school offers AP/IB math	0.87	0.91	0.92	0.96		+	***	*	+	
<i>Family Characteristics</i>										
Not born in United States	0.02	0.19	0.06	0.35	***	***	***	***	***	***
Native language not English	0.03	0.57	0.06	0.66	***	***	***	***	*	***
<i>Parent's educational expectations for adolescent:</i>										
High school or less	0.09	0.12	0.09	0.03	-	-	-	-	-	-
Some college	0.11	0.13	0.09	0.06						
Bachelor's degree	0.38	0.31	0.29	0.32	**		*	**	**	**
Master's degree	0.23	0.20	0.23	0.24	*	**	+	**	**	**
Higher than Master's	0.19	0.24	0.30	0.35	*	***	*	***	**	**

Source: US Dept. of Education, National Center for Education Statistics, "The High School Longitudinal Study of 2009".

***p<0.001, **p<0.01, *p<0.05, +p<0.10.

Table 5: Disability-Related Inequities in the Transition to High School? Linear Probability Models Predicting Ninth Graders' Math Course is Higher than Normative

	Model 1		Model 2		Model 3	
	Unadjusted		Adjusted by Covariates		Adjusted by Propensity Score Weight	
	B	(SE)	B	(SE)	B	(SE)
	-0.20 ***	(0.03)	-0.04 +	(0.02)	-0.07	(0.06)
Learning disability						
Race (ref=White):	-		-		-	
Latinx	-0.06 *	(0.03)	-0.03 +	(0.02)	-0.04	(0.08)
Black	-0.09 **	(0.03)	-0.01	(0.02)	-0.06	(0.09)
Asian	0.21 ***	(0.03)	0.05 *	(0.03)	0.22 +	(0.12)
Learning disability x Race (ref=White):						
Latinx	-0.03	(0.05)	0.01	(0.05)	-0.09	(0.11)
Black	0.04	(0.08)	0.01	(0.07)	-0.05	(0.19)
Asian	-0.20	(0.15)	-0.10	(0.08)	-0.24	(0.24)
Socioeconomic status (SES)	0.13 ***	(0.01)	0.03 ***	(0.01)	0.12 ***	(0.03)
Learning disability x SES	-0.04	(0.03)	-0.01	(0.02)	0.05	(0.05)
SES x Race (ref=White):						
Latinx	-0.06 **	(0.02)	-0.02	(0.01)	-0.03	(0.06)
Black	-0.05 *	(0.02)	-0.01	(0.02)	-0.01	(0.07)
Asian	-0.03	(0.03)	-0.01	(0.02)	-0.03	(0.11)
Learning disability x SES x Race (ref=White):						
Latinx	-0.04	(0.05)	-0.03	(0.04)	-0.13	(0.10)
Black	-0.08	(0.09)	-0.09	(0.08)	-0.18	(0.18)
Asian	0.02	(0.12)	0.02	(0.08)	-0.03	(0.14)
Constant	0.40 ***	(0.01)	0.57 ***	(0.09)	0.40 ***	(0.01)
Adolescents (n)	15,540		15,540		15,540	

Source: US Dept. of Education, National Center for Education Statistics, "The High School

Longitudinal Study of 2009". Coefficients and standard errors for all covariates in Model 2

available in Online Table 3.

***p<0.001, **p<0.01, *p<0.05, +p<0.10.

Online Table 1: Pscore Models to Produce Propensity Scores for Each Case Within Each Multiply Imputed Dataset

	Model 1		Model 2		Model 3		Model 4		Model 5	
	B	(SE)								
Socioeconomic status	-0.08	(0.07)	-0.03	(0.06)	-0.12 +	(0.06)	-0.22 **	(0.07)	-0.09	(0.07)
Race (ref=White):										
Latinx	0.23 +	(0.12)	0.33 **	(0.12)	0.21 +	(0.12)	0.10	(0.12)	0.28 *	(0.12)
Black	-0.30 *	(0.13)	-0.22 +	(0.13)	-0.25 +	(0.13)	-0.46 **	(0.14)	-0.40 **	(0.14)
Asian	-0.70 **	(0.23)	-0.26	(0.21)	-0.35 +	(0.20)	-0.38 +	(0.20)	-0.07	(0.20)
Not born in United States	-0.09	(0.16)	-0.31 +	(0.17)	-0.09	(0.16)	-0.21	(0.16)	-0.06	(0.16)
Native language is not English	-0.31 *	(0.13)	-0.32 *	(0.13)	-0.23 +	(0.13)	-0.29 *	(0.13)	-0.46 **	(0.14)
Eighth grade math GPA	0.11 *	(0.05)	0.06	(0.04)	0.12 *	(0.05)	0.07	(0.05)	0.08 +	(0.05)
Eighth grade science GPA	-0.36 ***	(0.05)	-0.38 ***	(0.05)	-0.32 ***	(0.05)	-0.39 ***	(0.05)	-0.38 ***	(0.05)
Ninth grade math test score	-0.85 ***	(0.05)	-0.73 ***	(0.05)	-0.84 ***	(0.05)	-0.77 ***	(0.05)	-0.76 ***	(0.05)
High school type (ref=Public):										
Catholic	-0.39 *	(0.18)	-0.58 **	(0.18)	-0.17	(0.17)	-0.31 +	(0.17)	-0.22	(0.17)
Other private	-0.01	(0.19)	-0.20	(0.20)	-0.07	(0.20)	-0.25	(0.20)	0.01	(0.20)
High school urbanicity (ref=City):										
Suburb	-0.08	(0.11)	-0.11	(0.10)	0.05	(0.10)	0.07	(0.10)	0.03	(0.11)
Town	-0.08	(0.14)	-0.29 *	(0.14)	-0.29 +	(0.15)	-0.25 +	(0.15)	-0.16	(0.15)
Rural	-0.04	(0.12)	-0.24 *	(0.12)	-0.04	(0.12)	-0.10	(0.12)	-0.07	(0.12)
High school region (ref=Northeast):										
Midwest	-0.37 **	(0.12)	-0.23 +	(0.12)	-0.21 +	(0.12)	-0.35 **	(0.12)	-0.18	(0.12)
South	-0.27 *	(0.11)	-0.26 *	(0.11)	-0.23 *	(0.11)	-0.29 **	(0.11)	-0.19	(0.12)
West	-0.57 ***	(0.14)	-0.53 ***	(0.14)	-0.46 **	(0.14)	-0.65 ***	(0.14)	-0.51 **	(0.15)
Pct. students eligible fr. lunch	0.00	(0.00)	0.00	(0.00)	0.00	(0.00)	-0.01 *	(0.00)	0.00	(0.00)
Pct. students Black	0.00	(0.00)	0.00	(0.00)	0.00	(0.00)	0.00	(0.00)	0.00	(0.00)
Pct. students Hispanic	0.00	(0.00)	0.00	(0.00)	0.00	(0.00)	0.01 **	(0.00)	0.00	(0.00)
Pct. students Asian/PI	0.00	(0.01)	-0.01	(0.01)	0.00	(0.01)	0.00	(0.01)	-0.01	(0.01)
Survey weight	0.00	(0.00)	0.00	(0.00)	0.00	(0.00)	0.00	(0.00)	0.00	(0.00)
Constant	-1.95 ***	(0.22)	-1.67 ***	(0.21)	-2.19 ***	(0.21)	-1.59 ***	(0.21)	-1.97 ***	(0.22)
Adolescents (n)	15,540		15,540		15,540		15,540		15,540	

Source: US Dept. of Education, National Center for Education Statistics, "The High School Longitudinal Study of 2009".

Note: Each model is a different multiple imputation. GPA=grade point average. Pct.=Percent. Fr.=free. PI=Pacific Islander.

***p<0.001, **p<0.01, *p<0.05, +p<0.10.

Online Table 2: Propensity Score Balance Diagnostics

	Number of Adolescents		Percent of Covariates in Each Block		
	No LD	LD	Balanced		
Block 1	2,150	10		98%	
Block 2	3,490	60		95%	
Block 3	3,690	120		100%	
Block 4	1,940	100		100%	
Block 5	1,010	90		100%	
Block 6	1,070	110		100%	
Block 7	1,030	170		100%	
Block 8	320	80		95%	
Block 9	60	30		99%	
Block 10	20	10		100%	
Propensity Score					
	No LD		LD		
	Mean	(SD)	Mean	(SD)	
Block 1	0.01	(0.00)	0.01	(0.00)	
Block 2	0.02	(0.00)	0.02	(0.00)	
Block 3	0.03	(0.01)	0.03	(0.01)	
Block 4	0.05	(0.01)	0.05	(0.01)	
Block 5	0.07	(0.02)	0.07	(0.01)	
Block 6	0.09	(0.03)	0.09	(0.01)	
Block 7	0.12	(0.08)	0.13	(0.02)	
Block 8	0.20	(0.00)	0.21	(0.04)	
Block 9	0.30	(0.00)	0.31	(0.05)	
Block 10	0.36	(0.01)	0.41	(0.06)	
Dependent Variable: Ninth Grade Math Higher than Normative					
	No LD		LD		
	Mean	(SD)	Mean	(SD)	
Block 1	0.83	(0.37)	0.67	(0.48)	
Block 2	0.56	(0.50)	0.40	(0.49)	*
Block 3	0.34	(0.48)	0.22	(0.42)	*
Block 4	0.23	(0.42)	0.20	(0.40)	
Block 5	0.17	(0.38)	0.19	(0.39)	
Block 6	0.16	(0.36)	0.12	(0.32)	
Block 7	0.16	(0.37)	0.11	(0.32)	
Block 8	0.10	(0.30)	0.09	(0.29)	
Block 9	0.17	(0.37)	0.13	(0.34)	
Block 10	0.08	(0.27)	0.25	(0.44)	

Source: US Dept. of Education, National Center for Education Statistics, "The High School Longitudinal Study of 2009".

Note: 'Balance' means the difference in the mean level of the measure of interest is not statistically significant for treatment and control cases in the same block. Stata's 'pscore' command constructs enough blocks to ensure balanced propensity scores.

***p<0.001, **p<0.01, *p<0.05, +p<0.10.

Online Table 3, Part 1 of 2: All Coefficients and Standard Errors from Linear Probability Model Predicting Ninth Grade Math Course is Higher Than Normative, Adjusted by All Covariates

	B	(SE)
Learning disability	-0.04 +	(0.02)
Race (ref=White):	-	
Latinx	-0.03 +	(0.02)
Black	-0.01	(0.02)
Asian	0.05 *	(0.03)
Learning disability x Race (ref=White):		
Latinx	0.01	(0.05)
Black	0.01	(0.07)
Asian	-0.10	(0.08)
Socioeconomic status (SES)	0.03 ***	(0.01)
Learning disability x SES	-0.01	(0.02)
SES x Race (ref=White):		
Latinx	-0.02	(0.01)
Black	-0.01	(0.02)
Asian	-0.01	(0.02)
Learning disability x SES x Race		
Latinx	-0.03	(0.04)
Black	-0.09	(0.08)
Asian	0.02	(0.08)
<i>Outcomes Reflecting Prior Opportunities to Learn</i>		
Level of eighth grade math:	-0.44 ***	(0.02)
Lower than Algebra I		
Algebra I (ref)		
Higher than Algebra I	0.06 *	(0.02)
Eighth grade math grade point average	0.03 **	(0.01)
Enrolled in core eighth grade science	0.04	(0.02)
Eighth grade science grade point average	0.03 ***	(0.01)
Ninth grade math test score	0.08 ***	(0.01)
<i>Adolescent's Educational Attitudes</i>		
Adolescent's educational expectations:		
High school or less (ref)		
Some college	0.00	(0.02)
Bachelor's degree	-0.01	(0.02)
Master's degree	-0.01	(0.02)
Higher than Master's	0.01	(0.02)
Adolescent's math interest	0.04 ***	(0.01)
Adolescent's math self-efficacy	-0.04 ***	(0.01)
Adolescent's math identity	0.01 +	(0.01)

Online Table 3, Part 2 of 2: All Coefficients and Standard Errors from Linear Probability Model Predicting Ninth Grade Math Course is Higher Than Normative, Adjusted by All Covariates

	B	(SE)
<i>Adolescent's Educational Attitudes, continued</i>		
Adolescent's math utility value	-0.03 ***	(0.01)
Adolescent's STEM attainment value	0.01	(0.01)
Adolescent expects a STEM occupation	0.01	(0.01)
<i>High School Context</i>		
High school type:		
Public (ref)		
Catholic	-0.22 ***	(0.03)
Other private	-0.02	(0.04)
High school urbanicity:		
City (ref)		
Suburb	0.02	(0.02)
Town	0.07 +	(0.04)
Rural	0.00	(0.02)
High school region:		
Northeast (ref)		
Midwest	-0.03	(0.03)
South	0.03	(0.03)
West	0.02	(0.03)
Percent students eligible for free lunch	0.00	(0.00)
Percent students Black	0.00	(0.00)
Percent students Hispanic	0.00	(0.00)
Percent students Asian/Pacific Islander	0.00	(0.00)
High school offers Algebra II	-0.11 +	(0.07)
High school offers advanced math	0.01	(0.02)
High school offers Calculus	-0.03	(0.03)
High school offers Advanced Placement / International Baccalaureate math	0.01	(0.03)
<i>Family Characteristics</i>		
Not born in United States	0.02	(0.02)
Native language is not English	0.01	(0.02)
Parents' educational expectations for adolescent:		
High school or less (ref)	-	
Some college	-0.04	(0.03)
Bachelor's degree	-0.01	(0.02)
Master's degree	0.00	(0.02)
Higher than Master's	0.02	(0.03)
Constant	0.57 ***	(0.09)

Source: US Dept. of Education, National Center for Education Statistics, "The High School Longitudinal Study of 2009".

***p<0.001, **p<0.01, *p<0.05, +p<0.10.

Online Table 4: Sensitivity Analyses to Assess Inclusion of No-Math in Reference Category of Dependent Variable - Linear Probability Models Predicting No Ninth Grade Math Course

	Model 1		Model 3		Model 3	
	B	(SE)	B	(SE)	B	(SE)
Race:						
White (ref)	-		-		-	
Latinx	0.06 ***	(0.01)	0.04 **	(0.01)	0.01	(0.01)
Black	0.04 **	(0.01)	0.02	(0.01)	-0.01	(0.01)
Asian	-0.01	(0.01)	0.00	(0.01)	0.02 +	(0.01)
Not born in United States			-0.01	(0.02)	-0.01	(0.02)
Native language is not English			-0.01	(0.02)	-0.01	(0.01)
Socioeconomic status			-0.03 ***	(0.00)	-0.01 **	(0.00)
Level of eighth grade math:						
Lower than Algebra I					-0.01	(0.01)
Algebra I (ref)					-	
Higher than Algebra I					0.02 *	(0.01)
Eighth grade math grade point average					-0.03 ***	(0.01)
Enrolled in core eighth grade science					-0.01	(0.01)
Eighth grade science grade point average					-0.02 ***	(0.00)
Ninth grade math test score					-0.02 ***	(0.00)
High school type:						
Public (ref)					-	
Catholic					0.00	(0.01)
Other private					0.00	(0.01)
High school urbanicity:						
City (ref)					-	
Suburb					0.00	(0.01)
Town					0.01	(0.01)
Rural					0.01	(0.01)
High school region:						
Northeast (ref)					-	
Midwest					-0.02 ***	(0.01)
South					-0.02 *	(0.01)
West					-0.01	(0.01)
Percent students eligible for free lunch					0.00	(0.00)
Percent students Black					0.00 +	(0.00)
Percent students Hispanic					0.00	(0.00)
Percent students Asian/Pacific Islander					0.00 **	(0.00)
Constant	0.03 ***	(0.00)	0.04 ***	(0.00)	0.21 ***	(0.02)

Source: US Department of Education, National Center for Education Statistics, "The High School Longitudinal Study of 2009".

***p<0.001, **p<0.01, *p<0.05, +p<0.10.

Online Table 5: Sensitivity Analyses to Assess Inclusion of No-Math in Reference Category of Dependent Variable - Multiple Marginalization or Increased Liability? Predicted Probability Ninth Graders' Math Course is Higher than Normative at the Intersection of Adolescents' Learning Disability Status, Socioeconomic Status (SES), and Race

		No-Math Included			No-Math Excluded			Method Diff. ^b
		No disability	Learning disability	Diff. ^a	No disability	Learning disability	Diff. ^a	
-1 SD		0.27	0.11	-0.16	0.28	0.12	-0.16	0.00
Average SES	White	0.40	0.20	-0.20	0.41	0.21	-0.20	0.00
+1 SD		0.53	0.29	-0.24	0.54	0.30	-0.24	0.00
-1 SD		0.26	0.11	-0.15	0.29	0.14	-0.15	0.00
Average SES	Latinx	0.34	0.11	-0.23	0.36	0.13	-0.23	0.00
+1 SD		0.42	0.10	-0.31	0.43	0.12	-0.31	0.01
-1 SD		0.22	0.18	-0.04	0.24	0.22	-0.02	0.02
Average SES	Black	0.31	0.15	-0.16	0.32	0.16	-0.16	0.00
+1 SD		0.39	0.11	-0.28	0.40	0.10	-0.30	-0.02
-1 SD		0.50	0.13	-0.37	0.53	0.13	-0.40	-0.02
Average SES	Asian	0.61	0.21	-0.40	0.63	0.21	-0.41	-0.02
+1 SD		0.72	0.29	-0.42	0.72	0.29	-0.43	-0.01

Source: US Department of Education, National Center for Education Statistics, "The High School Longitudinal Study of 2009". The statistical significance estimates reference interactions between race and SES.

a-The difference in the predicted probability of a higher than normative ninth grade math class for youth with and without a learning disability within each race-socioeconomic status (SES) group.

b-The difference in the relationship between a learning disability and math course placement ('Diff') in estimates that do and do not include ninth graders not in a math class (respectively, the left and right sides of the table).

***p<0.001, **p<0.01, *p<0.05, +p<0.10.

Online Table 6: Sensitivity Analyses to Assess Inclusion of No-Math in Reference Category of Dependent Variable - Disability-Related Inequities in the Transition to High School? Linear Probability Models Predicting Ninth Graders' Math Course is Higher than Normative

	No-Math Included				No-Math Excluded			
	Model 1		Model 2		Model 3		Model 4	
	Adjusted by Covariates		Adjusted by Propensity Score		Adjusted by Covariates		Adjusted by Propensity Score	
	B	(SE)	B	(SE)	B	(SE)	B	(SE)
Learning disability	-0.04 +	(0.02)	-0.07	(0.06)	-0.03	(0.03)	-0.07	(0.06)
Race (ref=White):	-		-					
Latinx	-0.03 +	(0.02)	-0.04	(0.08)	-0.03 +	(0.02)	-0.05	(0.03)
Black	-0.01	(0.02)	-0.06	(0.09)	-0.01	(0.02)	-0.12 ***	(0.03)
Asian	0.05 *	(0.03)	0.22 +	(0.12)	0.05 +	(0.03)	0.26 ***	(0.03)
Learning disability x Race (ref=White):								
Latinx	0.01	(0.05)	-0.09	(0.11)	-0.02	(0.05)	-0.07	(0.12)
Black	0.01	(0.07)	-0.05	(0.19)	0.01	(0.08)	-0.16 +	(0.09)
Asian	-0.10	(0.08)	-0.24	(0.24)	-0.12	(0.08)	-0.25	(0.27)
Socioeconomic status (SES)	0.03 ***	(0.01)	0.12 ***	(0.03)	0.02 ***	(0.01)	0.13 ***	(0.01)
Learning disability x SES	-0.01	(0.02)	0.05	(0.05)	-0.01	(0.02)	0.05	(0.05)
SES x Race (ref=White):								
Latinx	-0.02	(0.01)	-0.03	(0.06)	-0.02	(0.01)	-0.07 *	(0.03)
Black	-0.01	(0.02)	-0.01	(0.07)	0.00	(0.02)	-0.05 +	(0.02)
Asian	-0.01	(0.02)	-0.03	(0.11)	-0.01	(0.02)	-0.06 *	(0.03)
Learning disability x SES x Race (ref=White):								
Latinx	-0.03	(0.04)	-0.13	(0.10)	-0.04	(0.04)	-0.15	(0.10)
Black	-0.09	(0.08)	-0.18	(0.18)	-0.13	(0.09)	-0.21 *	(0.10)
Asian	0.02	(0.08)	-0.03	(0.14)	0.02	(0.08)	-0.07	(0.16)
Constant	0.57 ***	(0.09)	0.40 ***	(0.01)	0.60 ***	(0.09)	0.42 ***	(0.02)
Adolescents (n)	15,540		15,540		15,540		15,540	

Source: US Dept. of Education, National Center for Education Statistics, "The High School Longitudinal Study of 2009".

***p<0.001, **p<0.01, *p<0.05, +p<0.10.