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1. Introduction to regularity theory

In complex analysis we learn that functions from C to C with one complex
derivative must have derivatives of all orders. They are in fact analytic. This
remarkable property of solutions to the Cauchy–Riemann equations is the first
instance of regularity theory that many of us encounter: certain partial differential
equations admit only smooth solutions, even though the equation only requires a
few derivatives to make sense. The goal of regularity theory is to determine whether
the same result holds for a given PDE, and if not, to what extent it fails.

Answering such questions can have deep and far-reaching consequences. It is
known, for example, that the Navier–Stokes equations and the Hamilton–Ricci
flow, two nonlinear systems of PDEs, admit solutions that are smooth for a short
time with appropriate assumptions on the initial data. However, it is possible that
after some time, the smoothness property fails and the solutions develop singular-
ities. In the case of the Hamilton–Ricci flow it is well known that this happens.
Nonetheless, it turns out that (in low dimensions) there is a good understanding
of the possible singularities. This was the key to resolving the Poincaré conjec-
ture from topology. For the Navier–Stokes equations, it remains unknown whether
singularites happen. A negative answer would, e.g., imply uniqueness of solutions.
This would be desirable not only mathematically, but also philosophically in view
of the fact that the Navier–Stokes equations model the behavior of a huge number
of particles evolving by the laws of classical physics. An answer in either direction
could also deepen our understanding of turbulence and aid in the design of more
reliable numerical approximations of fluid behavior.

Not all important PDEs admit only regular solutions. For example, the two-
variable wave equation uxy = 0 has a general solution of the form f(x) + g(y),
where f and g are arbitrary (and, in particular, need not be smooth). The issue
is that this equation is hyperbolic, not elliptic. We delay stating precise definitions
of ellipticity to later. For now we will mention several ways of understanding what
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ellipticity means intuitively, in the context of the Laplace equation

(1) ∆u =
n∑

i=1

uii = 0,

where u is a function on a domain in Rn.
The first is based on the fact that ∆u(x) measures how much, infinitesimally,

u(x) deviates from its average near x:

∆u(x) = lim
r→0+

cn

r2|Br|

∫

Br(x)
(u(y) − u(x)) dy,

for some dimensional constant cn. Harmonic functions are, in fact, characterized
by the property that their average in a ball agrees with the value at the center.
Since averaging adds derivatives, it stands to reason that harmonic functions are
smooth.

The second is variational. Harmonic functions are minimizers of the Dirichlet
integral ∫

|∇u|2,

subject to their own boundary data. Since | · |2 is convex, its average value on some
set is larger than its value at the center of mass. In view of this observation we
do not expect ∇u to oscillate wildly, otherwise we could smooth u out (average its
gradient) and get a function with smaller Dirichlet integral.

The last is the maximum principle. Equation (1) says that, near any point,
the graph of u bends upwards in some direction as much as it bends downwards
in another. The solution thus has no interior maxima or minima. Because the
derivatives of u are also harmonic, they obey the same principle. In particular,
if the solution is smooth in a neighborhood of the boundary of some region, one
gets derivative bounds of all orders inside. One can, in fact, do much better (get
interior derivative bounds of all orders depending only on how much u oscillates on
the boundary) using more sophisticated reasoning based on the same idea.

The last two viewpoints on regularity are useful for studying nonlinear elliptic
PDEs. There are two very important classes of such equations. The first class
consists of the Euler–Lagrange equations of functionals of the form

(2)

∫
F (∇u),

where F is convex. Examples include the minimal surface equation and its variants.
This class of equations was the topic of Hilbert’s 19th problem, stated in 1900, which
spurred tremendous advances such as the theorem of De Giorgi and Nash on the
continuity of solutions to linear PDEs in divergence form with rough coefficients
[10], [41]. Unsurprisingly, variational techniques are well suited to deal with such
equations. The second class consists of fully nonlinear equations of the form

(3) G(D2u) = 0,

where G is a function on the space of n×n symmetric matrices. Examples include
the Monge–Ampère and special Lagrangian equations. The breakthroughs giving a
satisfactory theory of such equations were due to Krylov–Safonov [28], Evans [12],
and Krylov [27] in the 1980s. Fully nonlinear PDEs are studied using primarily
maximum principle techniques.
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Regularity theory for nonlinear elliptic PDEs (with both variational and non-
variational structure) remains an extremely active field of study. It has deep con-
nections to elasticity, differential geometry, and fluid mechanics, among other areas,
and many interesting questions remain unsolved. Below we will dive a little deeper
into this story, and discuss how the book Regularity Theory for Elliptic PDE, by
Fernández-Real and Ros-Oton, fits into the picture. We stress that this is not meant
to be an exhaustive overview. The topics we discuss below reflect those appearing
in the book, as well as our own research directions and tastes.

2. Hilbert’s 19th problem

In the statement of Hilbert’s 19th problem it is noted that several important
PDEs have the same property as the Cauchy–Riemann equations: all solutions are
analytic. It is also remarked that these PDEs tend to arise as Euler–Lagrange
equations of integrals of the form (2), which can be written

(4) div(∇F (∇u)) = Fij(∇u)uij = 0.

Finally, it is conjectured that solutions to all such Euler–Lagrange equations are
analytic, provided F is analytic and locally uniformly convex.

Under appropriate assumptions, e.g., on boundary data, it is not hard to produce
Lipschitz functions that solve the equation (4) in a weak sense. By the 1930s, work
of Bernstein, Hopf, Schauder, and others reduced Hilbert’s problem to proving
that these solutions are in fact C1 (see, e.g., the classical reference [34, Chapter
5], and the references therein). To understand why, it is useful to consider the
nondivergence form Fij(∇u)uij = 0 of the equation. When ∇u is continuous, the
coefficients Fij(∇u) are nearly constant on small scales, thus the solution resembles
a harmonic function.

This left the problem of filling the gap from Lipschitz to C1 regularity. To that
end it is natural to look at the equation that derivatives of u satisfy. Differentiating
the equation once in direction e gives

∂i(Fij(∇u)(ue)j) = 0.

Immediately we see why going from Lipschitz to C1 is challenging: because we only
know that u is Lipschitz, the coefficients Fij(∇u) are just bounded and measurable,
so we cannot expect that ue resembles a harmonic function at any scale. Nonethe-
less, it can be shown that solutions to such equations are continuous. This was
accomplished by Morrey in two dimensions [36], and by De Giorgi [10] and Nash
[41] in higher dimensions, completing the solution to Hilbert’s problem.

Variants of Hilbert’s problem continue to have a profound impact. One such
variant is to consider vector-valued maps u from domains in Rn to Rm which are
critical points of functionals of the form (2), where F is a smooth, uniformly convex
function with bounded Hessian on the space of m × n matrices and m ≥ 2. The
components of such maps solve a system of PDEs. Systems are harder due to the loss
of maximum principle techniques, and perhaps more fundamentally, because they
model the complex behaviors we see, e.g., in fluid motion and materials science.
Morrey proved that solutions are smooth if n = 2 and m is arbitrary [33], [35],
and Uhlenbeck proved regularity for arbitrary n, m when F (M) depends only on
|M | [56]. In general, counterexamples in [42], [52], [53], and most recently in [31]
show that regularity fails when n ≥ 3 and m ≥ 2. The best one can get is partial
regularity: solutions are smooth away from a small singular set of n−2-dimensional
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measure zero [19], [17]. The counterexamples show that the best one can hope for
is that the singular set has dimension n − 3, but this remains open.

Another important point is that when m ≥ 2, the natural restriction on F to
prove the existence of minimizers is not convexity, but a weaker condition known as
quasiconvexity. In this case, minimizing (2) and being a critical point are different
(they are equivalent when F is convex). Partial regularity is known for minimizers
of quasiconvex functionals [14], but it turns out that critical points can be terribly
behaved, e.g., Lipschitz but nowhere C1 [37], [54]. These counterexamples were
constructed using a method known as convex integration, which has its origins in
the study of isometric embeddings [40] and more recently has been used to construct
wild solutions to fluid equations and solve Onsager’s conjecture [24].

Since counterexamples abound in the systems case, an important future direction
is to identify structure conditions on F that guarantee regularity. A recent result
in this direction is [23], which proves the smoothness of Lipschitz critical points of
the area functional (an important quasiconvex functional) when n = 2 and m is
arbitrary. Another interesting direction which is difficult even in the scalar case
m = 1 is to consider convex integrands F that are not smooth and uniformly
convex. A basic example is the p-Laplace energy density F (x) = |x|p, p %= 2.
More complex examples arise, e.g., in the study of random surfaces coming from
statistical mechanics [26]. Heuristics suggest that solutions are C1 provided F
is strictly convex. It is useful to assume in addition that D2F is positive and
bounded away from some small “degeneracy set” D. The C1 regularity of solutions
was confirmed in two dimensions by De Silva and Savin when D is finite [11]. In
[30] this result is extended to higher dimensions provided D is finite and contained
in a 2-plane, and the C1 regularity of solutions is shown to be false for general
strictly convex F (the example is in four dimensions, and D is the Clifford torus).
It remains open what happens for general strictly convex F in two dimensions, or
if D is finite in dimension three or higher. For the latter problem, evidence towards
a negative result is presented in [30]. More precisely, a concrete counterexample is
proposed in R3 with D consisting of four (necessarily) noncoplanar points.

3. Fully Nonlinear Elliptic PDE

Fully nonlinear elliptic equations of the form (3), which in general do not have
a variational structure, are also ubiquitous in applications. Examples include the
Bellman and Isaacs equations from economics, the Monge–Ampère equation from
optimal transport, and the σk and special Lagrangian equations from differential
geometry. In this context, ellipticity means that Gij(M) := ∂G

∂Mij
is a positive

matrix for all M . This enables the use of the maximum principle.
The first situation to attack is the one analogous to Hilbert’s 19th problem. That

is, assume that G is smooth and uniformly elliptic (the eigenvalues of Gij(M) are
bounded between fixed positive constants, independent of M). It is not hard to re-
duce the regularity problem to proving that solutions are C2. Indeed, differentiating
the equation once gives

Gij(D
2u)(uk)ij = 0,

and the coefficients are nearly constant on small scales when u is C2. In two
dimensions the regularity problem was solved by Nirenberg [43] in the 1950s. The
idea is that D2u is a quasiconformal map into the surface {G = 0}, and such maps
are known to be continuous. The first major breakthrough on this problem in higher
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dimensions was due to Krylov–Safonov in 1980 [28]. They proved the continuity of
solutions to linear elliptic equations in non-divergence form with rough coefficients
(the nondivergence analogue of the De Giorgi–Nash theorem). However, this is
only enough to ensure the continuity of one derivative of a solution to (3). One
might hope to differentiate the equation once more and apply the Krylov–Safonov
theorem again, but the resulting equation for the second derivatives of u involves
a term quadratic in third derivatives that is unclear how to handle. A key point is
that this term has a sign if G is convex or concave. This was leveraged by Evans
[12] and Krylov [27] to make the next major breakthrough, getting full regularity
of solutions when G is convex or concave and uniformly elliptic.

It remained open for a long time whether one can relax the concavity assump-
tion on G. This was only solved in the last 10–15 years, when Nadirashvili–Vlăduţ
produced a series of spectacular counterexamples in progressively smaller dimen-
sion, culminating in examples in dimension n ≥ 5 [39]. Remarkably, the regularity
question for general uniformly elliptic equations remains open in dimensions 3 and
4. There is some evidence that a positive result may hold in these cases [38].

With the counterexamples in hand, a natural question is what structural con-
ditions, apart from concavity, will guarantee regularity. Some interesting works in
this direction include positive results for the three operator Isaacs equation ([2]),
the case that {G = 0} has only one negative principal curvature [6], and the case
that G is the sum of a convex and a concave operator [9]. It is also known that in
dimension n, solutions to (3) are smooth away from a small closed singular set of
dimension slightly smaller than n [45], [1]. The examples suggest that one might
be able to prove that the singular set has dimension n− 5, but there is only minor
progress towards closing this gap (see, e.g., [29]).

Finally, it must be noted that in most applications, the uniform ellipticity con-
dition is not satisfied. This is the case for the Monge–Ampère (σn), σk, and spe-
cial Lagrangian equations. Work on the regularity theory for these equations re-
mains extremely active. The σk equation is concave, but well-known examples
of Pogorelov [44] and Urbas [57] show that regularity cannot be expected when
k ≥ 3. It remains a remarkable open problem whether solutions to σ2(D2u) = 1
are smooth. This problem was only recently solved in dimension n ≤ 4 [50]. The
special Lagrangian equation is not concave in general, and when this is the case,
very little is known. The interest in the equation stems from the fact that smooth
solutions have volume-minimizing gradient graph [21]. The existence of viscosity
solutions to the Dirichlet problem is known [22], and one might hope that these
viscosity solutions also have minimal gradient graph. This was recently shown to be
false in [31], where examples of non-C1 viscosity solutions to the special Lagrangian
equation with non-minimal gradient graph were constructed in three dimensions. A
beautiful open problem for the special Lagrangian equation is to determine whether
there exist solutions that are homogeneous of degree two but not quadratic (that
is, whether there exist non-flat graphical special Lagrangian cones).

4. Free boundary problems

A final class of problems that is central in elliptic PDE theory consists of prob-
lems in which a function solves a PDE on some region, but the boundary of this
region is not a fixed part of the problem. Typically, the solution satisfies some
overdetermined condition on this “free boundary.” Among the most well-studied
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examples is the obstacle problem, in which an elastic membrane is stretched over
fixed obstacle. The height of the membrane solves a PDE (e.g., the minimal surface
equation or the Laplace equation) where the membrane lies above the obstacle, and
the boundary of this region is the free boundary. The overdetermined condition
on the free boundary is that the solution and the obstacle match up to order one.
After subtracting the height of the obstacle, the simplest version of this problem is

(5) ∆u = χ{u>0} in B1 ⊂ Rn, u ≥ 0,

and the goal is to understand the regularity of the solution u and the free boundary
∂{u > 0}.

It turns out that the techniques developed to deal with the classes of PDEs
discussed above, along with ideas from the theory of minimal surfaces, are extremely
useful to study the properties of the solution and its free boundary. In many ways,
the regularity theory parallels that from the theory of minimal surfaces. Namely,
one can “blow up” (perform a sequence of rescalings that zoom in infinitely close)
at points on the free boundary. Monotonicity formulae and PDE arguments permit
a classification of the possible blow-up limits, analogues of tangent cones in minimal
surface theory. When a blow-up limit at a free boundary point is (up to a rotation)
the function (max{x1, 0})2/2 (analogous to a flat tangent cone), the point is called
a “regular point.” Otherwise, the point is called a “singular point.”

The optimal regularity of the solution u (namely, C1, 1) was established in [16]. In
Caffarelli’s seminal 1977 work on the topic [4], the smoothness of the free boundary
in a neighborhood of any regular point is proven. This result can be regarded
as an analogue of the De Giorgi–Allard ε-regularity theorem for minimal surfaces.
Caffarelli also showed that the collection of singular points is locally contained in a
C1 hypersurface [3]. Examples show that this cannot be improved in general [49].
However, this does not rule out the possibility that making tiny perturbations of
the boundary data of u can make the free boundary smooth everywhere. In other
words, that singular points are nongeneric. This was conjectured to be true by
Schaeffer in 1974 [48]. Schaeffer’s conjecture has been confirmed up to dimension
n = 4 only recently [15], but it remains open in higher dimensions. This closely
parallels recent developments in the theory of minimal hypersurfaces. Indeed, in [7],
[8] it is shown that small boundary perturbations remove singularities in solutions
to the Plateau problem in ambient dimensions up to 10.

The subject of free boundary problems continues to flourish, and to find appli-
cations in surprising areas. Examples include problems involving many interacting
membranes [46], which arise naturally in min-max procedures in differential ge-
ometry [58], [59], and problems involving different operators (e.g., fully nonlinear
operators) for which monotonicity formulae are not available [47]. Moreover, al-
though it is well understood that minimal surfaces and free boundary problems can
be approached in similar ways, it remains an intriguing and mysterious task to find
explicit connections between the subjects. Some beautiful progress in this direction
can be found in [55] and [25], in low dimensions.

5. Book review

The book Regularity Theory for Elliptic PDE by Ros-Oton and Fernández-Real
offers a readable and self-contained introduction to the topics discussed above,
beginning with harmonic functions and Schauder estimates, proceeding to Hilbert’s
19th problem and the De Giorgi–Nash–Moser theorem, continuing with the theory
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of fully nonlinear elliptic equations (including a complete discussion of the two-
dimensional case and touching on the theory in higher dimensions), and concluding
with a thorough treatment of the obstacle problem.

There is a welcome difference in both presentation and choice of topics than in
books on the same subject such as those of Gilbarg and Trudinger [18], Han and
Lin [20], and Caffarelli and Cabré [5]. We highlight some of these here. First, the
Schauder estimates are treated in several ways, including via the blow-up method
of Simon [51], which is a clean and conceptually compelling approach. In addition,
the Schauder estimates for equations in both divergence form and non-divergence
form are included, giving both variational and non-variational viewpoints a chance
to shine. Second, a proof of the existence of viscosity solutions to the Dirichlet
problem for fully nonlinear elliptic PDEs via Perron’s method is presented. This
fills a notable gap in the treatment of fully nonlinear PDEs in other references.
Third, the obstacle problem is discussed at length, and complete, concise, and self-
contained proofs of the most important results are presented, including Caffarelli’s
celebrated results on the smoothness of the free boundary near regular points.
Previously, this topic was left to more specialized works. Finally, at the end of the
chapters on nonlinear PDEs and on the obstacle problem, the current state of the
topic and outstanding open questions (including some of those mentioned above)
are presented, giving the reader a glimpse of the vitality of the subject. This is a
real achievement, given that the book starts with the very basics.

Readers hoping to learn other central topics such as the Calderón-Zygmund W 2, p

estimates, the theory of fully nonlinear elliptic PDEs in higher dimensions (e.g., the
Evans–Krylov estimate), or the minimal surface and Monge–Ampère equations, will
have to look elsewhere (e.g., in the books of Gilbarg and Trudinger or Caffarelli and
Cabré). Nonetheless, this book covers a lot of ground and can serve as the basis for
a year-long graduate course on elliptic PDEs at a similar level to the book of Han
and Lin. It is appropriate for students with some exposure to PDEs, e.g., from the
book of Evans [13]. This book can moreover serve as a reference for researchers
hoping to rapidly to get up to speed on the theory of the obstacle problem. As
such, I warmly recommend it to all serious students and researchers in applied
mathematics, geometry, and PDE. It will be a valuable addition to your bookshelf.
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Comm. Pure Appl. Math. 6 (1953), 103–156; addendum, 395, DOI 10.1002/cpa.3160060105.
MR64986

[44] A. V. Pogorelov, The regularity of the generalized solutions of the equation
det(∂2u/∂xi∂xj) = ϕ(x1, x2, . . . , xn) > 0 (Russian), Dokl. Akad. Nauk SSSR 200 (1971),
534–537. MR293227

[45] Ovidiu Savin, Small perturbation solutions for elliptic equations, Comm. Partial Differential
Equations 32 (2007), no. 4-6, 557–578, DOI 10.1080/03605300500394405. MR2334822

[46] Ovidiu Savin and Hui Yu, On the multiple membranes problem, J. Funct. Anal. 277 (2019),
no. 6, 1581–1602, DOI 10.1016/j.jfa.2019.06.003. MR3985514

[47] Ovidiu Savin and Hui Yu, Regularity of the singular set in the fully nonlinear obstacle
problem, J. Eur. Math. Soc. (JEMS) 25 (2023), no. 2, 571–610, DOI 10.4171/jems/1182.
MR4556790

[48] David G. Schaeffer, An example of generic regularity for a non-linear elliptic equation, Arch.
Rational Mech. Anal. 57 (1975), 134–141, DOI 10.1007/BF00248415. MR387810

[49] D. G. Schaeffer, Some examples of singularities in a free boundary, Ann. Scuola Norm. Sup.
Pisa Cl. Sci. 4 (1977), 133–144.

[50] R. Shankar and Y. Yuan, Hessian estimates for the sigma-2 equation in dimension four,
Preprint, arXiv:2305.12587, 2023.

[51] Leon Simon, Schauder estimates by scaling, Calc. Var. Partial Differential Equations 5 (1997),
no. 5, 391–407, DOI 10.1007/s005260050072. MR1459795

https://mathscinet.ams.org/mathscinet-getitem?mr=4079759
https://arxiv.org/abs/2303.14282
https://mathscinet.ams.org/mathscinet-getitem?mr=3483890
https://mathscinet.ams.org/mathscinet-getitem?mr=2473
https://mathscinet.ams.org/mathscinet-getitem?mr=202511
https://mathscinet.ams.org/mathscinet-getitem?mr=0011537
https://mathscinet.ams.org/mathscinet-getitem?mr=1501936
https://mathscinet.ams.org/mathscinet-getitem?mr=1983780
https://mathscinet.ams.org/mathscinet-getitem?mr=3084701
https://mathscinet.ams.org/mathscinet-getitem?mr=3125267
https://mathscinet.ams.org/mathscinet-getitem?mr=65993
https://mathscinet.ams.org/mathscinet-getitem?mr=100158
https://mathscinet.ams.org/mathscinet-getitem?mr=509483
https://mathscinet.ams.org/mathscinet-getitem?mr=64986
https://mathscinet.ams.org/mathscinet-getitem?mr=293227
https://mathscinet.ams.org/mathscinet-getitem?mr=2334822
https://mathscinet.ams.org/mathscinet-getitem?mr=3985514
https://mathscinet.ams.org/mathscinet-getitem?mr=4556790
https://mathscinet.ams.org/mathscinet-getitem?mr=387810
https://arxiv.org/abs/2305.12587
https://mathscinet.ams.org/mathscinet-getitem?mr=1459795


524 BOOK REVIEWS
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