Downloaded 05/06/24 to 73.242.15.166 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Towards Entity-Aware Conditional Variational Inference for Heterogeneous

Time-Series Prediction: An application to Hydrology

Rahul Ghosh* Arvind Renganathan*

Christopher Duffy!

Abstract

Many environmental systems (e.g., hydrology basins) can
be modeled as entity whose response (e.g., streamflow) de-
pends on drivers (e.g., weather) conditioned on their char-
acteristics (e.g., soil properties). We introduce Entity-aware
Conditional Variational Inference (EA-CVI), a novel prob-
abilistic inverse modeling approach, to deduce entity char-
acteristics from observed driver-response data. EA-CVTI in-
fers probabilistic latent representations that can accurately
predict response for diverse entities, particularly in out-of-
sample few-shot settings. EA-CVI’s latent embeddings en-
capsulate diverse entity characteristics within compact, low-
dimensional representations. EA-CVI proficiently identifies
dominant modes of variation in responses and offers the op-
portunity to infer a physical interpretation of the underly-
ing attributes that shape these responses. EA-CVI can also
generate new data samples by sampling from the learned
distribution, making it useful in zero-shot scenarios. EA-
CVI addresses the need for uncertainty estimation, particu-
larly during extreme events, rendering it essential for data-
driven decision-making in real-world applications. Extensive
evaluations on a renowned hydrology benchmark dataset,
CAMELS-GB, validate EA-CVT’s abilities.

Keywords: representation learning, meta-learning,
few-shot learning, zero-shot learning, environmental appli-
cations

1 Introduction

Across numerous scientific and environmental disci-
plines, researchers study how engineered and natural
systems/entities respond to external factors [12]. In hy-
drology, e.g., predicting the streamflow (response) of a
river basin/catchment (entity) due to external drivers
(meteorological data, e.g., air temperature and precip-
itation) is crucial to understanding hydrology cycles,
water management, flood mapping, and making opera-
tional decisions. An entity’s response to external drivers
is influenced by its inherent properties, referred to as en-
tity characteristics. For instance, the streamflow of two
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river basins can vary significantly in response to the
same amount of precipitation due to differences in their
land-cover types [25]. Despite increasing data availabil-
ity, in many of these applications, data seldom exist at
appropriate spatiotemporal resolution or coverage for
scientific studies or management decisions. Develop-
ing models that can transfer information from highly
observed systems to sparsely observed or unmonitored
systems is of interest in many environmental applica-
tions [32]. Traditionally, this transfer of information
has relied on the regionalization of process-based mod-
els (PBMs), particularly in hydrology [30, 15]. Region-
alization techniques require significant amounts of site-
specific data collection and computational power to re-
late the parameters of a PBM (that may already be
calibrated to the data of a monitored system) to the
inherent characteristics of a sparsely observed or un-
monitored system.

Machine learning (ML) models are increasingly be-
ing considered as an alternative to PBMs due to their
ability to benefit from training data from diverse enti-
ties [32], enabling them to transfer knowledge between
them. There are two primary methods of transferring
this knowledge. The first approach involves incorporat-
ing ancillary characteristics of the entities as features
(e.g., CTLSTM [20]) to account for their diversity and
effectively transfer information to both less-observed
(few-shot setting) and unobserved (zero-shot setting)
entities. However, these characteristics can be difficult
to measure accurately, leading to uncertainty or incom-
plete data. They may also be unknown, poorly under-
stood, or absent in available entity characteristics. The
second approach, termed inverse modeling, has been
used to infer time-invariant entity characteristics from
its driver-response data [11] in a deterministic fashion.
A prominent example of these methods, Knowledge-
Guided Self-supervised Learning (KGSSL) [11], offers
a solution for performing entity-specific modulation for
less-observed entities by conditioning the entity’s re-
sponse to external drivers on attributes inferred from
the available few-shot responses, without requiring en-
tity characteristics. They are shown to outperform the
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state-of-the-art forward model that uses the actual in-
complete characteristics in a few-shot setting [11].

This paper introduces a new approach called Entity-
aware Conditional Variational Inference (EA-CVI) for
probabilistic inverse modeling. EA-CVI infers entity-
specific attributes as a distribution over a latent space
from driver-response data. Compared to deterministic
models like KGSSL, EA-CVI has several advantages.
First, the latent representations are built probabilisti-
cally, which aligns well with Bayesian reasoning and al-
lows for principled approaches to tasks such as Bayesian
inference and posterior estimation. Second, EA-CVI
captures the inherent uncertainty associated with lim-
ited data, enabling more flexible generalization to new
entities. Third, EA-CVI can generate new data samples
by sampling from the learned distribution, thus render-
ing it useful even in a zero-shot setting. Fourth, the vari-
ational latent space of EA-CVI is parsimonious, with
most of the variability captured in a few latent dimen-
sions. Lastly, this latent space has a semantic mean-
ing that produces a coherent effect on the predicted
response, making the response generation mechanism
controllable with physical interpretability.

Next, we provide a brief overview of the key features
of our proposed model and discuss how these features
enable the advantages mentioned above. Specifically,
EA-CVI consists of an entity Encoder that uses the
driver and response of an entity to infer the data-driven
posterior distribution over a latent space, followed by a
response Decoder to perform the inference and genera-
tive steps (see Figure 1b). The latent space holds in-
formation about entity characteristics, and embeddings
sampled from this posterior distribution are used to pre-
dict responses. We derive the evidence lower bound
(ELBO) [18] of the loss function used to train EA-CVI.
The ELBO comprises two key components: prediction
error, which penalizes deviations between predicted re-
sponses and ground truth, and KL Divergence, which
regularizes the latent space.

The KL-divergence loss of the variational approach
shapes the latent space representation by aligning the
approximate posterior distribution (obtained from the
Encoder) with a predefined prior (e.g., a multivariate
Gaussian in our case). It offers a crucial advantage over
the deterministic KGSSL approach in its inherent em-
brace of variability and uncertainty within this space,
especially when dealing with limited data. By training
on extensive driver-response data from diverse entities,
EA-CVT’s adaptable yet structured latent space allows
the discovery of dominant modes within the entity dis-
tribution. Sampling the entity characteristics from this
latent space allows the model to generate responses for
unobserved entities in a zero-shot setting. In environ-
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mental science, the search for a deeper understanding
of how various entity physio-graphic factors influence
response generation mechanisms has long been a funda-
mental endeavor. Notably, EA-CVI introduces a novel
perspective in identifying the physical attributes asso-
ciated with different response variation modes, opening
the door to exploring entity responses under diverse bio-
geo-physical conditions. Associating physical attributes
with each response mode significantly enhances the in-
terpretability of variations in the output model.

Operational decisions (e.g., probabilistic character-
ization of design-relevant extremes) [2] often need to
consider relatively rare but high-impact events. A
principled method of managing this uncertainty during
regionally unprecedented events can improve trust in
data-driven decision-making from these methods. Deep
learning approaches to inverse problems [11, 26] can re-
turn high-quality point estimates but usually do not
provide uncertainty estimates, which are essential to aid
decision-makers. Although techniques such as Bayesian
Neural Networks [4, 31] focus on modeling uncertainty
in the predictions by treating the parameters of the neu-
ral network as random variables. EA-CVI implicitly
characterizes uncertainty within the latent space, mak-
ing it well-suited for representation learning in inverse
problems [5]. Our method provides better estimates of
uncertainty, particularly during periods of high stream-
flow response, rendering it essential for real-world ap-
plications.

We evaluate our proposed framework for predicting
streamflow using CAMELS-GB (Catchment Attributes
and MEteorology for Large-sample Studies) [7], a widely
used hydrology benchmark dataset, for understanding
the Earth’s interconnected ecosystems and how they
are impacted by humans and changing environment.
CAMELS input data are freely available on the website
of UK Centre for Ecology & Hydrology, and the code is
available at GitHub!.

2 Related Works

2.1 Few-Shot Learning Meta-learning [14] is a
widely used approach when few observation samples are
available for the out-of-sample entities. Meta-learning
methods leverage the shared structure between different
training tasks. This leads to better generalization and
adaptation for new entities when only a small number
of labels are available. Model Agnostic Meta-Learning
(MAML) [8] is a popular approach that learns a global
meta-model, which can then be easily adapted to cre-
ate personalized models for each entity using limited

Thttps://github.com/2021rahul/Towards-Entity-Aware-Co
nditional-Variational-Inference-for-Heterogeneous-Time
-Series-Prediction
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data. Along these lines several advancements [27, 33] of
MAML have been proposed that essentially tackle the
same problem. Another line of research is to encode
tasks into low-dimensional latent embeddings, which
will modulate the prediction function’s behavior for di-
verse entities [10]. The prediction function is condi-
tioned on entity observations using an inferred embed-
ding that is encoded from an entity’s input and output
pairs. Recently, Ghosh et al. [11] introduced KGSSL
which infers time-invariant entity characteristics from
its driver-response data. Similarly, Botterill et al. [6]
used an encoder-decoder structure to obtain learned
encodings similar to hydrological signatures. Further
advancements include using bootstrapping [22] to have
multiple latent embeddings or attention-based versions
of NP [17]. It is important to note that the encoder
in these approaches can be viewed as an inverse net-
work, where the objective is to infer task or context
characteristics from input and output pairs. Our work
proposes a variational approach to such encoder-based
inverse models and thus can be easily incorporated in
those approaches.

2.2 Uncertainty Quantification Many methods in
Bayesian deep learning have been developed to accu-
rately predict outcomes and provide estimates of uncer-
tainty. Monte Carlo Dropout [9] and weight perturba-
tion schemes [24] are examples of approximate Bayesian
inference when making predictions during the testing.
Variational inference is another technique used to im-
prove learning in Bayesian networks [4, 31]. Stochas-
tic variational inference is used to estimate predictive
uncertainty in Bayesian LSTM models. Mixture den-
sity networks [3] are used for multi-modal data where
each modality can be captured using mixing compo-
nents. [19] investigate using mixture density networks
and Monte Carlo Dropout to estimate the uncertainty in
streamflow predictions. Ensemble modeling, which in-
cludes techniques like variational mode decomposition
or data assimilation [1], is a popular approach to pre-
dicting uncertainty. However, to the best of our knowl-
edge, a variational inference framework has yet to be
explored for entity response prediction.

3 Methods

3.1 Problem Formulation This work focuses
on learning ML models for a set of entities.
For each entity i, we have access to multiple
driver/response pairs of time series sequences, as
{(=},y}), (x2,92),..., (x]%,y]")}, where elements of
x! are drivers, y! is a response, z} € RP=, y! € R, and
superscripts indicate time step indices. The objective is
to learn the mapping function from input time-varying

: t [l .2 t : t
drivers X7 = [x;,z,...,x;] to a target variable y;.
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In conventional supervised ML, we train a predictive
model py, (yf|X¥) by finding the parameters 6 that
maximize the likelihood of the observed data,

(3.1) 07 = arg maxlog po, (v | X7)-

Given sufficient training data for each entity, we can
train individual ML models that capture these inherent
biases in each entity within the learned parameters
07. However, this is not feasible as many entities lack
sufficient training data. Hence, we consider learning
a global model combining data from all the entities.
The major challenge in building this mapping is to
handle the heterogeneity across different sites ¢ €
{1,...,N} to achieve good performance over all the
entities. These entities’ behavior is often governed by
their inherent characteristics z;, i.e., the conditional
distribution is of the form py(y!|z;, X£), where 6 denotes
the function class shared by the target systems and z;
denotes entity-specific inherent characteristics. In many
scenarios, measurement of the entity characteristics
may be entirely unavailable. Without these entity
attributes, the global model cannot accurately predict
each entity’s response; thus, we present a variational
inference method to address this challenge in this paper.

3.2 Architecture Our proposed method infers la-
tent entity characteristics (z; € RP=) given the time-
varying drivers X; = [z},22,...,27]) and response
(Y; = [y}, 92,...,y}]) data and uses these latent charac-
teristics to predict an entity’s response from the drivers.
We use a temporal deep latent variable model (DLVM)
that comprises a sequence encoder (inference network)
and a decoder (generator network), as shown in Fig-
ure la. The inference network (g : RT*(P=t1)
RP=) is trained to encode entities into the latent space.
The generator network (pg : RT*(Pe+D:) — RTX1) g
trained to decode latent vectors and driver data into
the response space. During training, latent vectors are
encouraged to contain the minimum amount of infor-
mation needed to reconstruct the entity response from
latent vectors and drivers. In the following sections,
we describe the choice of neural network architectures.
Subsequently, we will describe the training process and
the novel loss function, focusing on how they facilitate
variational modeling.

3.2.1 Inference Network (Encoder) Because the
exact posterior inference is intractable, an inference
model, q,(2|[x*;y']1.7), that approximates the true
posterior, pg(z|[xt;y?]1.7), for variational inference [16]
is introduced. This can also be viewed as encoding
the driver and response data interaction for an entity
to learn an approximate posterior over latent variables
in these sequences. This distribution g4(z|[x*;y']1.7)
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Figure 1: (a) Graphical model of the proposed deep latent variable model (DLVM), (b) Architectural diagram of our proposed
method. We use a bidirectional-LSTM as encoder network and an LSTM as the conditional decoder.

is modeled using a neural network, where ¢ are the
related weight parameters (Figure 1a). We implement
this using a bidirectional RNN-based sequence encoder.
LSTM [13] is particularly suited for our task where
long-range temporal dependencies between driver and
response exist as they are designed to avoid exploding
and vanishing gradient problems. The final hidden
states for the forward (hys) and backward LSTM (hs)
are added to get the final embeddings h as shown in
Figure 1b. We define the posterior distribution as a
function of h, using multi-layer perceptrons (MLPs) to
infer the parameters (u,o?) of a multivariate normal
distribution with a diagonal covariance matrix, as

h = BiLSTM([z*; y']1.7; ¢n)
p = MLP(h; ¢,.)
o? = diag(exp(MLP(h; ¢52)))
g0 (z|[@*; 1) = N (2|p, 0?),

(3.2)

where the parameter set ¢ is divided into the LSTM
parameters (¢p) and the two MLP parameters (¢,, and
¢o2). To draw a sample of z, we use the reparam-
eterization trick [18], given as z = p + o2€, where

e ~N(0,1)Ve €e.

3.2.2 Generator Network (Decoder) The gener-
ator network allows for the conditional generation of
response data given the latent variable (z) from the
inference network and the driver data. The condi-
tional generative process of the model is given in Fig-
ure la as follows: for a given sequence of driver and
response data (X% and Y'?), z is drawn from the pos-
terior distribution g4(z|[X ;Y ®]), and the sequence of
response data for another time-period is generated from
the distribution pg(Y®|z, X?). Specifically, we con-
struct an LSTM-based conditional sequence generator
yt = LSTM (z,[z'%;0), where y' € Y® and =t € X°.

3.3 Learning Consider two time periods: a period
of known sequences X® and Y?, and a period where
the drivers X? are known, but the responses Y are
to be predicted. We assume that the entity attributes
do not change over time, which implies that the data
from each period contain similar information about the
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latent variables z. We train the framework to extract
these latent attributes by maximizing an ELBO on the
conditional log-likelihood pg(Y?|X?), given by

53 ELBO =E,, (z/y=, x*) [logpg(Yb|z,Xb)]
3.3
~ Dicr (a6(21Y*, X*)|Ipo(21X")) .

Equation (3.4) results in a training approach
wherein data from different periods are provided as in-
puts to the encoder and decoder. As suggested by [29],
we let the latent variables be independent of the drivers
so that the prior distribution becomes an unconditional
prior, i.e., pg(z|X?) = ps(z). We choose a multivariate
standard normal distribution prior, i.e. z ~ A(0,1).
Note that 3.3 differs from the standard CVAE [29] ob-
jective. Rather than maximizing the log-likelihood of
the observations given their corresponding drivers (as
proposed by CVAE), we maximize the conditional log-
likelihood of one set of observations, b, given other ob-
servations, a, and drivers for all observations.

Maximizing 3.3 increases the probability of training
data under the generative model and encourages the in-
ference model to be similar to the unknown exact pos-
terior distribution. When the inference process is am-
biguous, the inference model is incentivized to produce
a wide latent distribution such that all the latent en-
codings are needed for the generative model to produce
all possible responses. Thus, a wide range of possible
responses can be produced, and uncertainty in the re-
sponses can be expressed. Note that the approximate
posterior is for one period, and the true posterior is for
another. If the data from each period provided the same
information about the latent variables, then this term
would be zero for a perfect approximate distribution
4 (2i]Y%;, Xb;). Here we justify 3.3 by showing that it
still forms a valid ELBO.

THEOREM 3.1. With our parameterization of z, 3.3

s a valid lower bound of the conditional log-likelihood
po (Y| X?).

Proof. We seek to maximize the conditional likelihood
po(Y'?|X?®) of all response sequences in the training
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é Observed Basins
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Figure 2: Ezperimental setting followed in the paper for training
and testing of the ML models.

data, conditioned on their corresponding driver se-
quences. We can write the conditional log-likelihood
as

log pe (Y| X°)

=Eqyz1ve xe) [10gpe(Y"\X")

=By, 2y x| pie(w X )}
@ ’ pe(zl X*)
(34) Po Yb,z\X )go(2]Y %, X )
=Eq¢<z|Y‘1,X“> 1

(

® 4o (21, X*)po (= Y", X7)

po(Y?®, 2| X° )]
4 (=Y, X°)

+Dir (q¢<z|Y“,X“)Hpe(z\Y”,X”)) :

=Eq,(z1ve,x9) log

The second term is the KL divergence of the approxima-
tion to the posterior distribution from the true poste-
rior. Because the KL divergence is always non-negative,
it is valid to maximize the first term of 3.4 during
training because it is a lower bound on the conditional
log-likelihood, resulting in the ELBO expression shown
in 3.3.

Y?, 2| X?®
ELBO =E,, |y x) {bg 739(7%}

q6(2|Y%, X¢
:Eqd,(z\Ya,Xa) [logpg(Yb|z, Xb):|

po(2X") }
75(2|Y*, X%)

:]Eq(;)(z\Ya',Xa‘) [logpg(Yb|Z, Xb)]

—Dict (46(2Y ", X Ipa(21X") ).

(35) + ]Eqd)(z\Y“,Xa) |:log

0
4 Dataset and Baselines

CAMELS-GB (Catchment Attributes and MEteorology
for Large-sample Studies) [7] is part of a family of con-
tinental scale datasets that are used extensively by the
hydrology community to assess the quality of PBMs and
ML models [23]. CAMELS-GB provides daily meteoro-
logical forcing data (precipitation, evapotranspiration
and air temperature), daily streamflow observation, and
basin characteristics (refer to the code repository for the
complete set) for 671 basins in the UK. Our study uses
data for 376 basins (entities) from CAMELS from Oct
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Table 1: Mean R? values for streamflow modeling on CAMELS-
GB for EA-CVI and the baselines in a few-shot setting. The
amount of data (in years) used as few-shot are denoted as
column names. We exclude CTLSTM and MAMLcrr sty when
determining the best performing model because they require entity
characteristics which may not be available in this problem.

Few-Shot in years

MODELS 0 1 5 3
MAML sra | -2.313 | -0.823 | -0.625 | -0.288
KGSSL -1.352 | 0.523 | 0.540 | 0.599
KGSSLpayesian | 0.330 | 0.504 | 0.531 | 0.604
EA-CVI 0.443 | 0.580 | 0.607 | 0.628

| - CTLSTM | 0.339 | 0.339 | 0.339 | 0.339 |

MAMLerrsrar | 0451 | 0.532 | 0.554 | 0.578

01, 1989, to Sep 30, 2009. Data from 1989-1999 is used
for model training, and 1999-2009 is used for testing,
as shown in Figure 2. The basins are divided into two
subsets: in-sample basins, which are used to build and
train ML models, and out-of-sample basins, which are
not encountered during training.

We compare the performance of EA-CVI to state-of-
the-art methods in few-shot learning and inverse mod-
eling. MAMUL st trains a meta-LSTM base model
using model agnostic meta-learning (MAML) [8] ap-
proach for fast adaptation of the base LSTM model.
We use the streamflow from the out-of-sample basins
in a few-shot setting and five inner optimization steps
to finetune the meta-model. KGSSL is the state-of-
the-art purely deterministic inverse framework [11] for
few-shot settings to infer the entity attributes in the
form of embeddings and further use them to predict
the streamflow. KGSSLpayesian [28] further extends
the KGSSL framework by defining probability distribu-
tions for model weights using a Bayesian approach [4].
Lastly, for comparison only, we also present results using
CTLSTM [20] and MAMLcrLsTM, both of which
have access to the actual basin characteristics not used
in our proposed method.

We create input sequences of length 365 using a
stride of half the sequence length, i.e., 183. All LSTMs
used in the response predictor for EA-CVI (decoder)
and the baselines have one hidden layer with 128 units,
whereas the LSTMs used in the encoder of EA-CVI and
KGSSL have a hidden layer with 32 units. The feed-
forward network used to get the mean and standard
deviation also has one hidden layer with 32 units. In
our experiments, we perform extensive hyperparameter
search with the list provided in the code repository. To
reduce the randomness typically expected with network
initialization, we report the result of ensemble predic-
tion obtained by averaging predictions from five models
with different weight initializations.
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5 Experiment and Results

5.1 Predictive Performance In Table 1 we eval-
uate the performance in terms of mean coefficient
of determination (R?) for each streamflow prediction
method. Here we report the performance on the out-
of-sample basins (i.e., the training and testing data
are from different basins and different years) in a few-
shot setting by varying the amount of data available
as few-shots. We observe that MAML g7 has rela-
tively lower R? values, indicating poorer predictive per-
formance. This is because all model parameters are
adapted for each entity using a few shots during finetun-
ing, resulting in a suboptimal model. KGSSL performs
better than MAML g7y (with positive mean R? val-
ues across all the few-shot settings) due to efficient use
of the few-shot settings. Instead of adapting the whole
model parameter set, KGSSL infers the entity attributes
using the few-shot samples and uses them to modulate
the predictor model. KGSSL payesian performs similarly
to KGSSL, showing positive mean R? values, and the
performance tends to improve with more few-shot sam-
ples. EA-CVI outperforms the previous models, consis-
tently exhibiting the highest mean R? values across all
few-shot settings. This indicates that EA-CVTI is more
sample-efficient and effective at predicting streamflow
in a few-shot setting than KGSSL. Interestingly, when
more years of observation are available for the out-of-
sample entities, CTLSTM and MAMLc7 570 are out-
performed by the inverse modeling methods (KGSSL
and EA-CVI) that infer the characteristics from the
driver-response data. This shows that the known char-
acteristics present may be incomplete, and both in-
verse modeling methods infer the entire latent variable
space as the embeddings represent known and unknown
static attributes. The EA-CVI approach has the added
benefits of creating a semantically meaningful latent
space, zero-shot prediction, and uncertainty quantifica-
tion, which we discuss in the following sections.

5.2 Semantic Meaning of Latent Space This sec-
tion provides a semantic analysis of EA-CVI’s latent
embeddings. First, we demonstrate its effectiveness in
encapsulating diverse entity characteristics within com-
pact, low-dimensional representations. Second, we show
how different latent components affect the streamflow
generation, highlighting its ability to generate possi-
ble scenarios of entity response under different bio-geo-
physical conditions. Lastly, we provide a physical inter-
pretation of these latent dimensions with known physi-
cal characteristics of entities.

5.2.1 Efficient Latent Space To explore the latent
spaces learned by KGSSL and EA-CVI, we measure
the activity of each latent vector dimension, where a
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Table 2: Mean R? values for EA-CVI and KGSSL streamflow
modeling with decreasing number of latent dimensions for in-
sample basins in test years.

Method All Top 10 | Top5 | Top 2 | Top 1
EA-CVI | 0.7271 | 0.7182 | 0.7169 | 0.7010 | 0.6869
KGSSL | 0.6957 | 0.2713 | 0.1957 | 0.0741 | -0.4625

latent dimension’s activity is defined as its variance
over all the entities in the in-sample set. For both
methods, we analyze the information in each dimension
by gradually incorporating an increasing number of
these latent variables ordered by their activity. Table 2
shows the predictive performance on test years of the
in-sample entities for both the methods where we use
top-k most active latent dimensions with the remaining
dimensions replaced by zero values. The performance
drop in EA-CVI is significantly less than KGSSL with
fewer latent dimensions. This demonstrates EA-CVT’s
efficiency in encoding more information in the most
active latent dimensions. The latent dimensions are
thus analogous to principal component analysis (PCA),
as the most active latent variables can be viewed as the
dominant modes of variation in the response.

5.2.2 Coherent Streamflow Generation We ob-
serve independent modes of response variation under the
posterior distribution by changing one latent variable at
a time. In Figure 3, we tested the effect of the top two
most and least active latent variables on the output to
show how the EA-CVI inverse framework exposes modes
of variation in the output variable. We sweep these la-
tent variables’ values from —30 to 30 with a step of
0.250. Using these sweeps, we create the sets of predic-
tions shown in Figure 3. For example, the most active
latent component of EA-CVI (the top row of Figure 3)
captures high variation around peak streamflows. By
contrast, the second most active latent component con-
sistently affects the entire streamflow time series. We
also observe that less active dimensions have more com-
plex modes of variations, which supports our analogy
to PCA. For KGSSL, however, the most and least ac-
tive latent dimensions have similar effects on streamflow
prediction. In addition, changing the latent variables
in EA-CVI has a coherent effect on streamflow, i.e.,
the streamflow either increases or decreases consistently
throughout the time series. We do not observe such
a coherent effect in the plots of KGSSL. This further
shows that the information is encoded uniformly across
the dimensions of the latent vector in KGSSL and thus
lacks interpretability in inferring the dominant modes
of variation. In the following section we provide a phys-
ical interpretation of the effects of the latent variables
on streamflow by calculating the correlation of latent
vectors and basin characteristics over all the entities.

5.2.3 Correlation with Entity Characteristics
Figure 4 shows the correlations between each latent di-
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Figure 3: Streamflow profiles of a basin generated by increasing (blue plots) and decreasing (red plots) the value of the top two and
bottom two most active components of the latent vector for both EA-CVI and KGSSL.
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Figure 4: Correlation of each dimension of EA-CVI’s learned
embeddings with each physical characteristic.

mension and basin characteristics. The vertical axis
represents the actual entity characteristics, and the hor-
izontal axis shows the latent variables ranked from most
to least activity across entities. The most active latent
dimensions, which encode most of the entity-specific in-
formation, correlate most strongly to physical charac-
teristics. In particular, the most active latent variable
correlates with attributes like soil porosity (degree of
porosity of soil) and crop percentage (amount of vege-
tation), which are known to hydrologists to reduce the
streamflow for similar weather drivers. Similar conclu-
sions can be drawn for the other latent variables, thus
leading to a knowledge-guided exploration of the latent
space and providing explainability to the predictions.
Additionally, the correlations tend to decrease as activ-
ity decreases. This result illustrates that the most ac-
tive, information-dense latent dimensions correlate best
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Figure 5: Performance of models in zero-shot setting. Top fig-
ure shows the architectural setup. For a randomly chosen out-of-
sample basin, KGSSL (red) predictions using cluster centroids do
not match its observations. EA-CVI (blue) produces conditional
predictions using cluster centroids that contain the observations.

to physical properties.

5.3 Zero-Shot Streamflow Generation In many
situations, building a reliable model for response genera-
tion in out-of-sample entities in zero-shot settings is nec-
essary. The CTLSTM model cannot be used in this sce-
nario without entity characteristics, and KGSSL cannot
infer these characteristics without few-shot data. EA-
CVI allows us to generate conditional streamflow based
on the dominant modes of latent characteristics inferred
from the entities observed during training. Specifically,
we cluster the latent vectors of in-sample entities to
create categories of different types of entities based on
their inferred attributes. Given an out-of-sample en-
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Figure 6: Observed streamflow and 100 predicted stream-
flow realizations for EA-CVI (blue), KGSSLpayesian (Ted) and
CTLSTMpicp (orange) for a randomly chosen Out-of-Sample
basin.

tity, we obtain the centroid from each cluster of enti-
ties and use it in the decoder to provide conditional
streamflow prediction, as shown in Figure 5. In the fig-
ure, many generated streamflows from EA-CVI (blue
lines) overlap with the observed streamflow, showing
that the cluster centroids can be used for conditional
streamflow prediction as the embedding space of EA-
CVI is regularized. B, none of the generated streamflow
from KGSSL (red lines) lies on the observations. This is
because KGSSL, like other deterministic autoencoders,
has not been trained to use the latent space continu-
ously. Therefore, the decoder’s output for the cluster
centroids is not valid as these points in the latent space
have not been encountered during training.

5.4 Uncertainty Quantification In this section,
we aim to evaluate the uncertainty estimations of
EA-CVI and compare with the Monte Carlo Dropout
(MCD) [9] version of CTLSTM (CTLSTMcp) and
KGSSLBayesian- First, we visually compare the esti-
mated uncertainty from the two approaches. Second, we
quantitatively evaluate the estimated uncertainty dis-
tributions using commonly used metrics. We generate
multiple inferences by running the model 100 times.

5.4.1 Visualizing Predicted Uncertainty In Fig-
ure 6 we visually compare the predictions from EA-CVI,
KGSSLBayesian and CTLSTM;cp on a randomly se-
lected test basin during the test years. We observe
that EA-CVI produces high-resolution prediction with
uncertainty increasing during times with high stream-
flow response, whereas the predictions predicted by
KGSSLBayesian and CTLSTMp;cp are of lower reso-
lution with wide uncertainty bands at all times. In
addition, the uncertainty bands from EA-CVI better
capture the observations (especially during peak/major
events) denoting that EA-CVI better estimates uncer-
tainty while producing accurate predictions.
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Table 3: Resolution of the predictions from the two methods.

Metric CTLSTMuycp | KGSSLpayesian | EA-CVI | ALL Basins
Mean Absolute Deviation 0.2260 0.5207 0.1366 1.3408
Standard Deviation 0.2793 0.6422 0.1721 2.0294
Variance 0.1972 0.5907 0.0784 8.3943
Quantile Distance 0.75-0.25 0.3878 0.9008 0.2262 1.6446
Quantile Distance 0.9-0.1 0.7107 1.6548 0.4302 3.5870

CTLSTMpmcp
EA-CVI
KGSS LBayesr'an

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of predictions below observation

Figure 7: Probability plot to show the reliability of the predic-
tions. An optimal model’s plot lies near the 1:1 line, shown in
black.

5.4.2 Estimating Predicted Uncertainty We
also evaluate the predicted distributions from two per-
spectives: a) measures of dispersion and b) reliability of
the distributional predictions. Table 3 reports measures
of dispersion for the methods and the empirical distribu-
tion from the observations aggregated over all the basins
as a reference (“ALL Basins”). The “ALL Basins”
statistics should be used as a reference to contextual-
ize the statistics from the modeled distributions. The
table shows that EA-CVI predicts higher resolution dis-
tributions. Next, we use a probability plot [21] to evalu-
ate how well the distributions of predictions match the
true distributions of their corresponding observations.
We compute the fraction of corresponding predictions
that are less than the observation for each observation.
Those fractions will be distributed uniformly between
(0,1) if the prediction distribution matches the distribu-
tion of the observation. We evaluate whether the frac-
tions are uniformly distributed by ranking the fractions
from lowest to highest and plotting the normalized ranks
against the fractions. The plotted points fall close to the
1:1 line if the fractions are distributed uniformly. From
Figure 7, we can observe that the line corresponding to
EA-CVI lies closer to the 1:1 line than CTLSTM y;cp
and KGSSLpayesian- EA-CVI’s predicted probabilities
match the distribution of the observations better than
the baselines. The KGSSLpqyesian line lies below the
1:1 line, indicating a bias toward low values.

6 Conclusion

In this work, we presented a novel inverse model us-
ing the variational framework to infer the entity char-
acteristics in a latent space and leverage them for the
conditional prediction of responses given driver data.
Extensive experiments on a hydrological benchmark
dataset showed that in a few-shot setting, EA-CVI is
more sample-efficient and outperforms baseline mod-
els for less-observed entities (even models with access
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to the actual entity characteristics). EA-CVI’s abil-
ity to identify the physical attributes associated with
different response variation modes has the potential to
offer deeper insights. The proposed method can add
value in other applications in environmental sciences
where global models are to be learned for a diverse set
of entities. Our framework can further be extended
to handling missing observations in the driver or re-
sponse data. In its current form, EA-CVI does not
use known entity characteristics. Thus, incorporating
partially known or noisy basin characteristics as prior
knowledge to modulate the latent dimension is a di-
rection of further research. Additionally, the methods
presented here can be applied to other methods for task-
aware modulation in machine-learning and may be con-
sidered in future work.
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