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Abstract
In recent years, the increasing threat of devastating wildfires
has underscored the need for effective prescribed fire man-
agement. Process-based computer simulations have tradi-
tionally been employed to plan prescribed fires for wildfire
prevention. However, even simplified process models are too
compute-intensive to be used for real-time decision-making.
Traditional ML methods used for fire modeling offer com-
putational speedup but struggle with physically inconsistent
predictions, biased predictions due to class imbalance, bi-
ased estimates for fire spread metrics (e.g., burned area, rate
of spread), and limited generalizability in out-of-distribution
wind conditions. This paper introduces a novel machine
learning (ML) framework that enables rapid emulation of
prescribed fires while addressing these concerns. To over-
come these challenges, the framework incorporates domain
knowledge in the form of physical constraints, a hierarchi-
cal modeling structure to capture the interdependence among
variables of interest, and also leverages pre-existing source
domain data to augment training data and learn the spread
of fire more effectively. Notably, improvement in fire met-
ric (e.g., burned area) estimates offered by our framework
makes it useful for fire managers, who often rely on these
estimates to make decisions about prescribed burn manage-
ment. Furthermore, our framework exhibits better general-
ization capabilities than the other ML-based fire modeling
methods across diverse wind conditions and ignition pat-
terns.

Keywords— prescribed fire modeling, knowledge guided ma-
chine learning, probabilistic graphical model, surrogate model

1 Introduction
Thousands of wildfires engulf millions of acres in the United
States each year alone [1]. These fires threaten wildlife and
human lives and destroy personal property. Fire managers
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(also known as burn bosses) use prescribed fires, the inten-
tional and controlled lighting of fire, to reduce the fuel that
feeds extreme fires and help improve forest health by recy-
cling soil nutrients [38; 19]. Prescribed fires are generally
ignited only when specific conditions are met, such as lower
wind speed conditions. Otherwise, lighting of prescribed
burns is likely to jeopardize the fire crew’s safety and cause
collateral damage, similar to the prescribed fire that led to
wildfire in Santa Fe National Forest in 2022 [11]. To min-
imize the risk of wildfires, fire managers use process-based
models to simulate underlying physical processes in a fire
system to identify areas that may burn under given weather
conditions (such as wind speed and direction), fuel density,
and pre-decided ignition pattern. Fire crew use these mod-
els to decide if a prescribed fire can be started under ex-
pected wind conditions. Among the process-based fire mod-
els, QUIC-Fire (QF) is the only process model specifically
designed for prescribed fire simulation [28]. QF has been
used collaboratively with prescribed fire managers to plan
prescribed burns and to better understand the impact of dif-
fering weather and ignition conditions on the outcome of
a burn. While QF provides significant speedup over other
models [16], its computation time still limits its usability for
real-time decision-making.

A prescribed fire modeling framework that can emulate
the fuel density behavior as exhibited by QF, with a shorter
computation time, will be useful to fire managers to ensure
the safe lighting of prescribed fires. Such a framework will
be useful since the weather conditions can change quickly
(from the forecasted scenario), and the crew has to decide
if the risk of a wildland fire starting is big enough to call
off the burn. Under such rapidly changing situations, ML
models can be used as faster alternatives.

ML models have emerged as fast and efficient alterna-
tives to process-based models [39]. While there has been
some work on ML-based wildfire modeling, there is little
work that can be used in the context of prescribed fire mod-
eling. To model wildfires, CNN [4; 40; 29; 35], ConvLSTM
[10; 21] and UNet [21; 43] models have been used. How-
ever, due to several differences in the exogenous variables,
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ignition conditions, and fire spread mechanisms, methods
developed for wildfires are not suitable for modeling pre-
scribed fires (more details in related work). For prescribed
fires modeling, a CNN-based model [12] has been proposed
that has limited utility since it requires simulated outputs
from QUIC-Fire to make forecasts.

Furthermore, the aforementioned ML methods are un-
able to accurately model the complex nonlinear interaction
among physical processes in a prescribed fire system. These
methods face three major challenges. First, the predicted fuel
density distribution from such ML models has physical in-
consistencies, such as inaccurate fuel transportation and in-
consistent contraction of burned area. The second challenge
is the class imbalance problem. In prescribed fire model-
ing, predictions from ML models suffer from class imbal-
ance problems where the majority class of unburned pixels
bias the fuel predictions, translating into an overestimation
of fuel in burned regions, especially in more extreme wind
conditions. The third challenge in using an ML model is the
inaccurate estimation of summary statistics used by fire man-
agers in operational settings. One such metric is the burned
area or number of burned pixels that enables an improved
understanding of the burn severity. However, when the ML
model inaccurately predicts the fuel density spatial distribu-
tion, the number of burned cells is often underestimated.

To overcome the above challenges, we propose using
a physics-guided spatiotemporal ML model that addresses
the complexities of emulating prescribed fire evolution. In
our framework, we propose integrating known physical con-
straints and domain knowledge in the model to enable
the ML model to learn physically consistent values [39].
To overcome the second challenge, we leverage preexisting
source domain data to accurately learn the spread of fire be-
yond the ignited cells. This domain adaptation mechanism
allows us to transfer knowledge for a given ignition pattern
from lower wind speed settings to scenarios with a higher
wind speed. To address the third challenge, we integrate a
probabilistic graphical structure to model the interdepen-
dence between fuel density and the number of burned cells.
This ensures that we can incorporate prior knowledge about
these quantities and that the learned embeddings can cap-
ture the hierarchical relationship between the two quantities.
The probabilistic graphical modeling and the physics-guided
learning ensure that the summary statistics, like the number
of burned cells, are estimated accurately. The proposed ML-
based emulator provides speedup over QUIC-Fire and can
be used for faster than real-time prescribed fire forecasting1.
We have released our code in a GitHub repository link. The
summary of contributions of this work is provided next.

• To the best of our knowledge, we propose the first pre-

1An example of “faster than real-time prediction” would be generating
forecasts for the next 10 minutes in less than 10 minutes.

scribed fire ML-based emulator to predict fuel density
evolution from initial wind conditions and ignition pat-
terns. The proposed model improves the MSE in fuel
density predictions by 55% over data-driven ML mod-
els and reduces the inference time by 69% over QF.

• The framework leverages domain knowledge, data aug-
mentation from the use of source domain data, and a
hierarchical modeling scheme to capture the interde-
pendence between fuel density and burned area to over-
come physical inconsistencies in prediction, improving
generalization and estimates for fire spread metrics.

• Extensive experiments demonstrate that our approach
performs better than other fire modeling ML methods in
terms of both prediction performance and physical con-
sistency of the outputs. Measuring success in many sci-
entific domains, including fire modeling, is hard to cap-
ture via standard performance metrics commonly used
in ML model design. We propose new loss functions
and evaluation metrics to evaluate the physical consis-
tency of the outputs from ML models.

2 Related Work
Traditional fire behavior simulator models [13; 27; 37; 36;
17] have been used for simulating wildfires [23; 33; 18;
24]. Though researchers have attempted to adapt some
of these models to simulate prescribed fire behavior, the
models often make assumptions that may not be suitable for
prescribed fire modeling and overlook the fire suppression
behavior specific to prescribed fires. Additionally, their
computational cost hinders their practical implementation
for real-time operational decision-making [31; 14]. QUIC-
Fire [28] overcomes some of these challenges and offers
faster runtime compared to other process-based models.

ML models have demonstrated success in various wild-
fire modeling tasks [22; 42; 41; 4; 40; 29; 35; 10; 21; 43].
While physics-guided ML has also been used in wildfire
modeling, the physical assumptions made by current meth-
ods are not suitable for prescribed fire modeling and may
suffer from numeric instability [5; 9]. Additionally, meth-
ods developed for wildfire modeling may not generalize to
prescribed fire modeling [19; 15; 20; 12; 28]. Wildfires are
unplanned and may be caused by natural or accidental igni-
tions. Prescribed fires are planned to meet management ob-
jectives and are ignited under pre-determined environmental
conditions. In terms of ignition conditions, wildfires are of-
ten modeled as a single ignition point. In contrast, prescribed
fires are ignited at several ignition points, often in terms of
several fire lines. This creates a more complex interaction
among the fire ignited at different points, leading to fire sup-
pression. Wildfire modeling often also looks at fires that
have been burning for days, while prescribed fires projects
are short-term. Due to differences in time scales, wildfires
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are more heavily impacted by moisture content in the atmo-
sphere and weather patterns over several days, while the ef-
fect of these exogenous variables may not be that prominent
for prescribed fires. This leads to a difference in fire behavior
in a wildfire and a prescribed fire [19; 20; 15].

Moreover, previous ML-based studies in prescribed fire
modeling have not extensively explored the specific problem
of prescribed fire evolution modeling based on initial envi-
ronmental conditions [12; 3; 2; 30]. This capability is cru-
cial for effective prescribed fire planning. By addressing this
gap, our framework fills an important need in the existing
ML literature. Relevant ML methods for prescribed fire and
wildfire forecasting include CNN [12; 4; 40; 29; 35], Con-
vLSTM [10; 21], and UNet [21; 43] models. We also show
a comparison with these methods in the paper.

3 Problem Setting
In this work, we study the evolution of fuel density, the
mass of fire fuel per unit volume, as prescribed fire spreads.
We use N simulation runs from the QUIC-Fire model as
training examples to learn a data-driven emulator of QUIC-
Fire. Our framework leverages simulations from QUIC-Fire,
enabling the learning of the two-way interaction between
environmental conditions and fire behavior without making
strong assumptions. The input tensor for training example, i,
can be represented as Xi ∈ Rn×M×P×C , where n is the
number of time steps in the sequence, M and P are the
number of rows and columns of cells forming the spatial grid
and C is the number of input channels. In our experiments,
C includes initial wind speed, initial wind direction, ignition
pattern, and source domain fuel density maps. Similarly,
the fuel density output for the model can be represented
as Yi ∈ Rn×M×P×1. The initial wind speed and wind
direction are static channels - available only for the first
time step and repeated throughout the grid and the sequence
to obtain the embeddings that are used as inputs to the
emulator, whereas ignition patterns and source domain maps
are dynamic inputs. This setup allows us to study the driver-
response relation in prescribed fire system. Each simulation
run represents different initial wind conditions and ignition
patterns. For each simulation run i, Xi = [x1i , x

2
i , ..., x

n
i ]

represent the spatiotemporal drivers, where xti ∈ RM×P×C .
Similarly, the response in a simulation run i at time step t
can be represented as yti ∈ RM×P×1 .

4 Methods
This section details the proposed framework (Fig. 1) for fuel
density prediction. Section 4.1 introduces the backbone spa-
tiotemporal model. Section 4.2 outlines the source domain
data used for data augmentation. Section 4.3 introduces the
physical constraints used to improve the physical consis-
tency of predictions. In Section 4.4, we outline the proba-
bilistic graphical modeling structure.

Figure 1: Physics-guided Emulator for fuel density estima-
tion. Inputs include source fuel density, ignition pattern, ini-
tial wind speed, and initial wind direction.

4.1 Spatiotemporal Model In this work, convLSTM [32]
models are used to leverage both spatial correlations among
the cells in a spatial grid and temporal relation in time-series
measurements for each cell. Our spatiotemporal model
uses ConvLSTM layers to encode information in the three-
dimensional domain - time, height (rows of cells), and width
(columns of cells). The ConvLSTM uses the following set
of equations to generate embeddings for a sequence,

it = σ(Wi

[
[xt];ht−1; ct−1

]
+ bi),

ft = σ(Wf

[
[xt];ht−1; ct−1

]
+ bf ),

gt = tanh(Wg

[
[xt];ht−1

]
+ bg),

ct = ft ⊙ ct−1 + it ⊙ gt,

ot = σ(Wo

[
[xt];ht−1; ct

]
+ bo),

ht = ot ⊙ tanh (ct).

(4.1)

Here, inputs xt, cell states ct, hidden states ht and gates it,
ot, f t are 3D tensors. Similar to standard LSTM cell, ConvL-
STM cells contain a cell state ct that preserves the memory
from the past. The forget gate f t filters the information ob-
tained from ct−1, and the input gate filters information from
the cell state. The new cell state and hidden state are com-
puted as ct and ht. Predicted fuel density is estimated from
the hidden units as ŷ = Wyh

t. Therefore, each hidden state
ht is obtained from hidden and cell states from the prior time
step as ht−1 and ct−1. These ConvLSTM layers are used as
building blocks to model complex, non-linear interactions in
the data. In our model, we stacked several sets of ConvL-
STMs and batch normalization layers with ReLU activation.
The output layer is a convolution layer that outputs a 3D ten-
sor with one channel for fuel density.

4.2 Transferring Knowledge from Source Domain In a
prescribed fire system, the complex interaction of fire lines
is challenging to model, especially under extreme wind con-
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ditions, which make the dynamics of the fire spread more
chaotic. Under this challenging setup, conventional ML
model predictions are biased towards the unburned class,
leading to an overestimation of fuel in burned regions. In ad-
dition to the asymmetric loss formulation (discussed in sec-
tion 4.3), we propose data augmentation using pre-existing
source domain data to address the class imbalance bias. In
our framework, the source and target domains are fuel den-
sity data where similar ignition patterns are used for lighting
the prescribed fires. However, the environmental conditions,
including wind speed and direction, may differ. To maintain
a realistic operational setting, we use the same source maps
during inference as well. In our experiments, to study the
impact of source data on training, we evaluate the model per-
formance with different source data scenarios: (a) no source
data, and (b) source fuel density generated with an initial
wind speed of 1 m/s and wind direction 230◦ (standard set-
ting, Appendix, Fig. 5b). While source maps with higher
wind speeds and disparate wind conditions were also ex-
plored, the standard source maps resulted in the most skillful
prediction model (Appx. Fig. 10). Since higher wind speeds
accelerate the spread of fire and cause complex interactions
between fire and atmosphere, other source settings increased
uncertainty and added bias toward the over-burning of fuel.
Notably, since we use one source setting for training, predict-
ing all the target fuel densities with higher wind speeds and
disparate wind directions involves overcoming distributional
shifts. Next, to overcome the problem of physically incon-
sistent predictions, we integrate known physical constraints
in the modeling framework.

4.3 Integrating Knowledge

4.3.1 Transferring knowledge from the physics-based
model: The problem of fuel transport

DEFINITION 1. (FUEL TRANSPORT) This problem relates to
the transportation of fuel by wind from one location to another. For
fuel density yt,s at location s and time step t, fuel transportation
results in yt,s = f(yt−1,s) + ρyt,s′ , where f represents the non-
linear effect of other physical processes on fuel density, ρ refers to
the fraction of fuel that is transported from location s′ to s. Thus,
the probability of fuel increasing in an ignited cell s is non-zero,
P (yt,s > yt−1,s) > δ where δ ∈ [0, 1].

Fuel transport is more common in the case of wildfires
that generally spread under higher wind speeds. Since pre-
scribed fires are lit under very specific wind conditions (low
wind speed), fuel transportation is unlikely. This assumption
is encoded in the QUIC-Fire model. In simulations generated
by QUIC-Fire with a homogenous initial fuel profile, this
helps avoid any uncharacteristic expansion and contraction
of burned fuel density arising from fuel transportation from
observed or unobserved regions. To emulate this behavior,
we incorporate the assumption that a cell’s fuel density can-

not increase over time by fuel transportation. Therefore, we
penalize those predictions that have an uncharacteristic in-
crease in fuel density over time, given as,

(4.2) LFT =

∑
t ||Yt − Ŷt|| ⊙ 1((Ŷt − Ŷt−1) > ϵ)

T
.

To put a soft constraint, ϵ, a non-negative value, is used to
set the tolerance for what will be defined as a significant
increase in fuel density over two consecutive time steps. T
is the number of time steps

4.3.2 Spread Consistency Fire managers often rely on
estimates of fire spread metrics like rate of spread and burned
area indices to understand how the fire is going to spread.
Since these quantities are estimated from fuel density, we
regularize those fuel density predictions that lead to higher
errors in estimates for the fire spread metrics. We, therefore,
ensure the spread consistency by estimating the average rate
of spread and burned area percentage from the predicted
fuel density and minimizing the difference with the estimates
from the QUIC-Fire simulations.

DEFINITION 2. (RATE OF SPREAD) Average rate of spread
is computed as the distance traveled by fire over the time
spent from the initial time step to time t [34], ROS(Yt) =
Distance/Time Taken = (η(Yt)− η(Yt0))/(t− t0). Here, t0 is
the initial time step, and η(.) estimates the number of columns im-
pacted by the fire.

Here, Yt0 refers to where the fire is ignited. In the
dataset, the wind generally starts from the west and blows
toward the east. This allows us to estimate a unilateral rate
of spread based on how many columns of cells are impacted
by the fire, enabling us to reduce the number of FLOPS for
ROS estimation in the loss computation. Rate of Spread
(ROS) loss is the mean squared error in the rate of the
spread between predicted and observed fuel density values
is minimized as part of the loss, as

(4.3) LROS =

∑
t(ROS(Yt)−ROS(Ŷt))2

T
.

DEFINITION 3. (BURNED AREA PERCENTAGE)
Burned area percentage refers to the percentage of
cells burned in the whole grid at time t, BA(Yt) =
(
∑M
i

∑P
j 1(Yi,j,t < ϵb)× 100)/(M × P ).

Burned Area (BA) Percentage loss is the mean squared
error between the predicted and observed burned area metric
is minimized, as

(4.4) LBA =

∑
t(BA(Yt)− BA(Ŷt))2

T
.

Incorporating LFM = λFM (LROS + LBA) ensures
that the statistical properties of the predicted fuel density
match the ones of the QUIC-Fire simulations.
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4.3.3 Burn Regularization To overcome the class imbal-
ance problem, we can penalize the over-estimation of fuel in
burned regions in the loss term by including a weighted loss
on the burned cells. The burned loss is given as follows,

(4.5) LBurned =

∑
t ||Yt − Ŷt|| ⊙ 1((Yt) < ϵb)

T
,

Similarly, to address the model bias towards lower fuel
density values under high wind speeds, we can add weighted
loss to regularize the over-burning behavior in unburned
area. The unburned loss is given as follows,

(4.6) LUnburned =

∑
t ||Yt − Ŷt|| ⊙ 1((Yt) > ϵu)

T
.

To enforce these physical constraints, we formulate the
physics-guided loss function as,

L =||Y − Ŷ ||+ λFTLFT + LFM

+λBurnedLBurned + λUnburnedLUnburned
(4.7)

More details on the choice of loss penalty coefficient
terms λ are provided in the results section.

4.4 Probabilistic Graphical Modeling (PGM) To inte-
grate prior knowledge about the physical processes, we in-
corporate a probabilistic graphical modeling structure in our
framework. This enables us to represent different variables
of interest at multiple levels of abstraction, allowing us to
leverage the interdependence among these variables for bet-
ter fuel density estimation. Scientific problems like pre-
scribed fire modeling have a high degree of complexity aris-
ing from the interaction of different physical processes. In
our case, we model two quantities - fuel density and number
of ignited cells. Modeling of the number of ignited cells cap-
tures more global similarities in the observed and predicted
values, whereas fuel density modeling focuses more on local
similarities in the observed and predicted values.

We incorporate mixture density modeling [7] to factor-
ize the effect of these multiple physical modalities in the
latent space and improve response posterior estimation of
fuel density. We model fuel density as a mixture of Gaus-
sian components in our framework. Additionally, incorpo-
rating prior knowledge about burned area estimation can also
improve fuel density modeling. Drawing inspiration from
epidemic modeling [26] and wildfire modeling [25], where
Poisson distribution is used to model count datasets with ex-
treme values, we use Poisson priors to estimate the number
of ignited cells in the grid at each time t.

4.4.1 Gaussian Mixture Density Networks To model the
response as a mixture of Gaussian components, we esti-
mate the parametric distributions Cj and membership of
each component represented by the mixing parameter, πj ,
based on the parameter vector learned by the neural net-
work ϕ(x). The fuel density response can be represented
as, ŷ = π1(ϕ(x))C1(y|ϕ(x)) + π2(ϕ(x))C2(y|ϕ(x)) where

componentCj can be represented as realizations from a Nor-
mal distribution as, Cj ∼ N(θ(x)). For each Gaussian com-
ponent j, parameters θ = {µ, σ} and π are learned as outputs
of the neural network ϕ(x). The parameters can be estimated
by minimizing the negative logarithm of likelihood [7],

(4.8) LMDN = −
∑
i

log(
∑
j

πj(ϕ(xi))Cj(Yi|ϕ(xi)))

4.4.2 Burned Area Estimation from Poisson Processes
We also consider the point pattern of fire ignitions as a
realization of a Poisson process. For a random count measure
ψ that represents the number of cells that are ignited in a
grid at time t, we model the rate function as λ(y|x, t) =

E(ψ) = E
∑ψ
i 1(yi|xi ∈ I), where I represents the Borel

set representing the ignited cells in the observed region
at time t. Poisson processes characterize the number of
ignited cells as estimated from fuel density predictions, ψ ∼
Pois(λ(y|x, t)). We employ the variational free energy
function to estimate ψ as,

(4.9) LPP = KL(q(ψ)||p(ψ))− Eq(ψ)[logP (D|Φψ)]
The KL term ensures that the posterior q learned for

ψ is parsimonious to maintain similarity with the prior
p(ψ). The negative log-likelihood cost helps ensure that
appropriate λ is learned to fit framework Φψ to our dataset
D. To incorporate the probabilistic graphical structure in the
framework, the loss function can be modified from Eq. 4.7
to Eq. 4.10. A perceptual model for the PGM is given in
Figure 6 in Appendix.

L =LMDN + λFTLFT + LFM

+λBurnedLBurned + λUnburnedLUnburned
+λPPLPP

(4.10)

The framework is summarized in Algorithm 1 in Ap-
pendix. In each training step, we first estimate the latent
representations learned from the spatiotemporal model ϕ(x)
for each batch. These representations are further used to es-
timate the Gaussian mixture model components to compute
the fuel density ŷi. ψ is sampled from Pois(λ) where λ de-
pends on the learned conditional response distribution y|x at
each time t. To update all the parameters in the model Φ,
compute gradient with respect to the loss function given in
Eq. 4.10 and update all the parameters. The model with-
out the graphical model component is called PGCL (loss
Eq. 4.7), while the one with the graphical modeling com-
ponent is called PGCL+ (loss Eq. 4.10).

5 Results
5.1 Experimental Setup
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5.1.1 Baselines We compare the proposed models in the
methods section with other baselines in wildfire and pre-
scribed fire modeling. We compare our results with CNN
[12; 4; 40; 29; 35], ConvLSTM (CL) [10; 21] and UNet [21;
43]. We also include Firefront UNet model [8] that learns
representation for fire state, spatial forcing and weather in
separate encoders. We include a CL-GL model that further
modifies the CL model with Gram loss-based regularization
to match the statistical similarities between the predicted and
observed fuel density. Additionally, we include the Match
baselines that uses historical fuel maps as prediction for how
fuel may change in the future. To estimate fuel in the test
set, we consider two baselines - Match ignition baseline and
Match wind baseline. Match ignition baseline looks at the
first fuel map in the historical data with the closest ignition
pattern - while the wind conditions may vary. Match wind
looks at the first fuel map in the historical data with the clos-
est wind conditions - while the ignition pattern may vary.

5.1.2 Dataset and Experimental Details We use simu-
lation runs from the QUIC-Fire model 1 to learn the pre-
scribed fire emulator. To test generalization under different
environmental factors, the simulation runs include 5 differ-
ent ignition patterns, 7 wind speeds, and 11 wind directions.
The simulation runs are for grasslands with two-dimensional
evolution of fires captured in 300 x 300 cells grid over n
time steps at 1 second time intervals. Each cell is at a 2m
x 2m resolution. In the experimental setup, we randomly
split the 100 runs and put 50% of the data into training and
the rest into test dataset, with each comprising 50 samples.
Therefore, each of the datasets has input data with dimen-
sionality 50 simulation runs × 50 time steps × 300 rows ×
300 columns × 4 features . Features are standardized using
min-max scaling. With batch size 1 and using the Adam
optimization method for gradient estimation, we train each
model for 250 epochs 1. The code is implemented using Ten-
sorflow 2.0 and NVIDIA A40 GPU. Hyperparameters, in-
cluding penalty coefficients in the loss terms, are fine-tuned
using random grid search in the models. Learning rate is
0.001, λFT , λBurned = 0.001, λUnburned, λFM = 0.0001.
In the experiments, we use ϵ = 0.001 for the physical con-
straint loss masking. More details on the selection of hyper-
parameters and an ablation study are given in the appendix.
We also use ϵb =0.1 and ϵu =0.65 for the burned and un-
burned loss masking, respectively. In the generalization re-
sults, we sample test runs into different datasets with dif-
ferent physical properties. Description on test datasets is
given as follows: DLow Wind : initial wind speed < 10m/s
and DHigh Wind : initial wind speed ≥ 10m/s. DNW Wind :
initial wind direction : from northwest, and DSW Wind : ini-

1Simulation runs can be generated using the code provided in this
GitHub repository

1Code link provided here

tial wind direction: from southwest. DAerial, DOutward,
DStrip South, DInward and DStrip North datasets include samples
with different ignition patterns for igniting the fire.

5.1.3 Metrics Measuring success in many scientific do-
mains, including fire modeling, is hard to capture via stan-
dard performance metrics commonly used in ML model
design. We propose new loss functions and evaluation
metrics to evaluate the physical consistency of the outputs
from ML models. We evaluate MSE, burned area MSE,
unburned area MSE and fire metric MSE (ROS MSE +
BA MSE) on test set. We formulate a metric, Dynamic
MSE (DMSE), that evaluates model performance based on
rate of change in fuel density. For time steps with big-
ger change in the observed fuel density, we ensure that
the error in predictions are penalized more, DMSE =
(
∑
N (Yt − Yt−1) · (||Ŷt − Yt||))/(

∑
N (Yt − Yt−1)). We

further validate the physical consistency of the predictions.
We consider cells to either be unburned (U), burning (B) or
completely burned (C). MFT is the percentage of cells that
do not follow the fuel transport constraint in the predicted
values. MU-C is the percentage of unburned cells that are
predicted to be burned. MU-B is the percentage of unburned
cells predicted as burning. MB-C is the percentage of cells
that reached burned stage too early. MB-U is the percentage
of burning cells that are predicted to be unburned.

5.2 Results and Discussion Table 1 reports results on the
impact of source domain data. Furthermore, we show the
impact of including physics (PGCL) and including both
physics and probabilistic graphical modeling (PGCL+) in
Table 2. We further present results on physical consistency
of predictions, inference time for models, and generalization
under varying environmental conditions. Results on ablation
study, data sparse scenarios and temporal evolution of MSE
are presented in the Appendix.

5.2.1 Spatiotemporal Modeling Table 1 compares CNN,
UNet, CL, CL-GL, and Firefront models in learning fire be-
havior. Among the models, the CL model captures the spa-
tiotemporal changes in fuel density and has the highest pre-
dictive skill, suggesting that including temporal information
is important for skillful prediction of fuel density. In CL-GL,
enforcing the statistical information between the observed
and predicted fuel density to be similar is not helpful in cap-
turing the evolution of fire. In contrast, enforcing a more
physically meaningful similarity measure, such as in the case
of the fire spread metric loss, improves model performance
(see ablation study in Appendix).

5.2.2 Source Domain Data The MSE values in Table 1
reflect that by including the source fuel density sequence
data as one of the input channels, all the models overcome
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Figure 2: Predicted fuel density by different models. s: initial wind speed, d: initial wind direction, ip: ignition pattern.
QUIC-Fire (QF) Fuel density is the ground truth we are emulating.

the bias towards over-estimation of fuel. We see the biggest
improvement in CNN model performance. Since CNN
and U-Net are unable to capture the temporal information,
including source domain data is able to significantly reduce
the overestimation bias. CL, FireFront, UNet, and CL-GL
leverage both spatial and temporal information, resulting
in lower MSE before the addition of source domain data
compared to CNN while adding the source domain data helps
all the frameworks. For further experiments, we explore CL
model (with source domain data) for physics-guided learning
since it achieves the best prediction skill.

Table 1: Test set model performance. CL with source domain input
data outperforms other methods.

Method Source Overall Unburned Burned Fire Metrics DMSE(↓)
Domain MSE (↓) MSE(↓) MSE(↓) MSE(↓)

CNN w/o 4.9809 4.9808 9.9618 4.9809 0.0003
U-Net w/o 2.9754 2.9754 5.9508 3.1712 0.0002
CL w/o 1.1745 1.1745 2.3490 1.1745 0.0003
FireFront w/o 1.6238 1.6238 3.2476 2.6008 0.0013
CL-GL w/o 1.7971 1.7971 3.5943 1.7982 0.0004
CNN w 0.0294 0.0294 0.0594 0.0748 0.0001
U-Net w 0.0352 0.0352 0.0704 0.0354 0.0002
CL w 0.0282 0.0282 0.0416 0.0209 0.0001
FireFront w 0.0293 0.0293 0.0586 0.0745 0.0001
CL-GL w 0.2336 0.2336 0.4672 0.2342 0.0002

5.2.3 Integrating Knowledge We investigate the effect
of incorporating physical constraints (PGCL) and graphical

Table 2: Test set model performance. Physics-guided ConvLSTM
model (PGCL) and Physics-guided ConvLSTM model + PGM
(PGCL+) outperform other methods.

Method Overall Unburned Burned Fire Metrics DMSE (↓)
MSE (↓) MSE (↓) MSE (↓) MSE (↓)

CL 0.0282 0.0282 0.0416 0.0209 0.0001
PGCL 0.0157 0.0157 0.0312 0.0307 0.0002
PGCL+ 0.0126 0.0126 0.0252 0.0127 0.0001
Match Ignition 0.0275 0.0275 0.0265 0.0279 0.0051
Match Wind 0.0490 0.0490 0.0403 0.0352 0.0048

structure (PGCL+) on prescribed fire emulation in terms of
the test set evaluation metrics in Table 2. The physics-
guided models outperform other baseline models. PGCL and
PGCL+ also show a reduction in fire metric MSE values,
suggesting that the overall rate of spread and burned area
percentage in predictions is similar to the observed values.
PGCL+ also improves the fire metric estimation over PGCL
and other methods since it captures the interdependence
between fuel density values and burned area estimates.

5.2.4 Evaluating Beyond MSE Apart from MSE, evalu-
ating burned and fire metric MSE helps improve our under-
standing of how well the models are handling the class im-
balance problem and the estimation of fire metrics (rate of
spread and burned area). Due to the imbalance in the num-
ber of burned and unburned cells, unburned cell MSEs have
a bigger influence on the overall MSE score. This is reflected
in similar values of MSE and unburned MSE (difference seen
in 6th decimal place). Moreover, the impact of class imbal-
ance problem is seen in the higher MSE in the burned cells.
The addition of source domain data, physical constraints, and
graphical structure lead to improvement in estimates for fuel
density in burned region and estimate for fire metrics as well,
as evident in Table 1 and 2.

5.2.5 Qualitative Evaluation While the MSE values are
useful for evaluating the average model performance, in-
vestigating individual prediction examples can be useful to
ensure generalization under different distributional settings.
Figure 2 shows the individual predictions at the 50th second
and also outlines the test sample attributes for comparison.
We compare the PGCL+, PGCL, CL, CNN, UNet, and Fire-
Front models. We notice that the physics-guided model has
the most stable predictions, while other methods are under-
burning burned areas (class imbalance problem) and over-
burning unburned cells. In models that are not informed by
physical constraints in the loss term, we also notice physi-
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Figure 3: Average MSE by wind conditions for CL and
PGCL+. Color represents the MSE values.

cal inconsistencies, such as higher fuel density predictions
in cells surrounding the fire perimeter. This behavior arises
due to complex wind dynamics in that region that is not be-
ing captured by these models. Without physics guidance, the
standard ML models inaccurately predict that region’s fuel
density. Furthermore, in the cells predicted to be burned,
the physics-guided model accurately predicts the lower fuel
density values. The physics-guided model achieves the most
accurate predictions for fuel density.

5.2.6 Physical Consistency This is further evident in Ta-
ble 3 that summarizes the physical consistency metrics for
test samples. The results suggest that the physics-guided
models achieve better physical consistency in the predic-
tions. The physics-guided models have a lower proportion
of cells where the fuel transport constraint is not met (MFT),
have a lower proportion of falsely predicted burned cells
(MU-C) and have a lower proportion of unburned cells that
are predicted as burning (MU-B). Lower values of MB-C and
MB-U suggest more accurate estimation of burn severity and
rate of change in fuel density.

Table 3: Physical consistency evaluations metric for test samples.

Sample FT (↓) U-C (↓) U-B (↓) B-C (↓) B-U (↓)

CL 0.07 20.30 57.51 20.21 50.03
PGCL 0.03 2.59 1.79 2.63 38.55

PGCL+ 0.01 0.12 0.44 0.18 33.02

Table 4: Model inference time for predicting test sequence with 50
time steps (in seconds) averaged over 10 repetitions

QUIC-Fire PGCL+ PGCL CL CNN UNET

Minimum 16 s 8 s 6 s 24 s 12 s 16 s
Mean 42 s 13 s 12 s 16 s 13 s 17 s
Maximum 116 s 20 s 17 s 27 s 16 s 19 s

5.2.7 Inference Time In Table 4, we also compare the
proposed framework with QUIC-Fire in terms of inference
time for predicting 50 seconds of fuel density. We see that
PGCL+ achieves 3 to 5.8 times speedup compared to QUIC-
Fire, and PGCL achieves 4 to 6.8 times speedup when using

CPU.
Table 5: Generalization under different physical conditions.

Category Data PGCL+ PGCL CL

Wind Speed DLow Speed 0.0073 0.0115 0.0103
DHigh Speed 0.0177 0.0317 0.1142

Wind Direction DNW Wind 0.0290 0.0293 0.0302
DSW Wind 0.0042 0.0010 0.0172

Ignition Pattern

DAerial 0.0054 0.0194 0.0411
DOutward 0.0028 0.0065 0.0419
DStrip South 0.0014 0.0608 0.0180
DInward 0.0301 0.0091 0.0122
DStrip North 0.0022 0.0637 0.0077

5.2.8 Generalization under Different Environmental
Conditions Figure 3 summarizes test set MSE values by
the initial wind direction and wind speed conditions. The
physics-guided model achieves better generalization com-
pared to data-driven spatiotemporal model, especially un-
der higher wind speed conditions and under wind direction
greater than 280◦. This is because higher wind speeds intro-
duce increased uncertainty and complexity into fire behav-
ior prediction. This is further evident in Table 5, where we
report the test MSE values by different wind speeds, wind
directions, and ignition patterns to evaluate the generaliza-
tion under different environmental conditions. Model per-
formance for test samples with wind originating from NW is
lower due to the distributional shift between the target and
the source maps since standard source maps include only
winds originating from SW.

6 Conclusion
This work proposes a novel knowledge-guided ML model
that integrates physical knowledge, models interdependence
of fuel density and burned area, and leverages source domain
fuel maps to improve emulation of the fuel density changes.
Our approach reduces different physical inconsistencies in
predictions, including fuel transport, over-burning in un-
burned areas, and class imbalance problem. Since the frame-
work achieves faster-than-real-time inference, it provides av-
enues for fire managers to adapt their plans to achieve a
burn’s intended objective with changing environmental con-
ditions. Our framework can be extended to other spatiotem-
poral models for learning physically consistent fuel densi-
ties. Several future directions can be explored. The proposed
method can be modified to include other physical constraints.
We will extend the study to longer time series where a big-
ger improvement in inference time can be highly useful to
fire managers in operational decision-making.
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