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Abstract

Time series modeling, a crucial area in science, often
encounters challenges when training Machine Learning
(ML) models like Recurrent Neural Networks (RNNs)
using the conventional mini-batch training strategy
that assumes independent and identically distributed
(IID) samples and initializes RNNs with zero hidden
states. The IID assumption ignores temporal depen-
dencies among samples, resulting in poor performance.
This paper proposes the Message Propagation Through
Time (MPTT) algorithm to effectively incorporate long
temporal dependencies while preserving faster training
times relative to the stateful algorithms. MPTT utilizes
two memory modules to asynchronously manage initial
hidden states for RNNs, fostering seamless information
exchange between samples and allowing diverse mini-
batches throughout epochs. MPTT further implements
three policies to filter outdated and preserve essential
information in the hidden states to generate informa-
tive initial hidden states for RNNs, facilitating robust
training. Experimental results demonstrate that MPTT
outperforms seven strategies on four climate datasets
with varying levels of temporal dependencies.
Keywords: Time Series modeling, Long-Term Depen-
dencies, Neural Networks, Mini-Batch Training

1 Introduction

Machine learning (ML) models have achieved remark-
able success in commercial applications such as com-
puter vision and natural language processing, prompt-
ing the scientific community to consider them as viable
alternatives to physics-based models [1, 2]. Time se-
ries modeling, which seeks to uncover patterns, trends,
and complex relationships in time-based data, is criti-
cal to scientific discovery [3]. To train ML models on
long time series, a common practice is to divide the time
series into shorter sequence samples to reduce compu-
tational complexity and memory usage, and mitigate
vanishing/exploding gradient issues [4, 5].

However, the conventional random mini-batch algo-
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rithms treat these equal-sized sequences as IID and ini-
tialize RNNs with zero hidden states, leading to a loss
of dependencies between the sequences. As a result,
the trained RNNs cannot capture long-term temporal
dependencies across multiple sequences and thus have
limited performance for modeling long time series [6, 7].

State-based approaches have been proposed to use
hidden states to transfer temporal information across se-
quences. Stateful RNNs [8] pass hidden states between
mini-batches, but they treat sequences within each mini-
batch as independent, necessitating smaller mini-batch
sizes to maintain long-term dependencies [9, 10, 11].
This results in unstable training and extended training
time [12]. The Sequential Stateful RNNs [7] can pre-
serve long-term dependencies by passing hidden states
both within and between mini-batches. However, it re-
quires each sequence within the batch to be processed
sequentially, which makes it slow to train.

Response-based approaches use response values as
additional inputs to encode temporal dependencies be-
tween sequences [7, 13, 14]. These approaches are de-
rived from ideas in dynamical control theory to adap-
tively let RNNs estimate responses as the initial system
conditions for each sequence [13, 15, 16, 17, 18]. How-
ever, response-based approaches may suffer error accu-
mulation during inference, as they primarily focus on
learning responses’ local changes in each timestep, im-
peding the learning of accumulated changes over mul-
tiple steps [7]. Moreover, they may struggle when re-
sponses encode limited temporal information.

To address these challenges, we propose a novel al-
gorithm, Message Propagation Through Time (MPTT),
which preserves long-term temporal dependencies by
seamlessly transferring informative hidden states be-
tween sequences during training. First, MPTT utilizes
two memory modules to enable asynchronous commu-
nication of hidden states between sequences. This ap-
proach supports shuffled sequences and diverse mini-
batches across epochs, preserving long-term dependen-
cies while improving computational efficiency relative
to state-based approaches. Second, MPTT incorpo-
rates three policies to generate informative initial hid-
den states by filtering outdated information and retain-
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ing essential information in the hidden states through-
out epochs. This facilitates more robust training than
the stateful RNN approaches. Finally, MPTT addresses
the error accumulation issue found in response-based
approaches by utilizing informative hidden states, which
possess a greater capacity than response values to en-
code the temporal effects and learn cumulative changes
across timesteps. We highlight the advantage of these
components in modeling long time series across four cli-
mate datasets with diverse temporal dependency levels.
We have released our codes, datasets, pre-trained mod-
els, and appendix to include additional implementation
details needed to reproduce our results 1.

2 Background and Preliminaries

2.1 Problem Statement. The goal is to accurately
predict a sequence of outputs from the given time
series of inputs. We primarily focus on the many-
to-many prediction; however, the many-to-one is also
possible but entails higher computational overhead.
The overarching aim is to develop effective algorithms
to transfer information across sequences.

2.2 Independent training and inference.

Random Mini-Batches (RMB) training (Fig-
ure 1 plot A) is a common mini-batch gradient descent
method [19] for RNNs, which involves dividing longer
time series into shorter sequences and treating each se-
quence independently. In each epoch, RMB randomly
allocates sequences to multiple mini-batches, initializes
the hidden states to ~0 for each sequence, and trains the
models on each mini-batch until all mini-batches have
been processed.

Independent Inference (IIF) (Figure 1, plot F)
is the inference algorithm that considers each test se-
quence IID and makes predictions using ~0 as initial
states. The combination of RMB and IIF algorithms
represents a widely-used learning strategy in the ML
community. However, it neglects the interactions be-
tween sequences, potentially leading to suboptimal per-
formance in time series modeling. Both RMB and IIF
generate RNNs’ hidden states following the equation:

ht = f(xt, ht�1)

= f(xt, f(xt�1, f(xt�2, . . . f(x1,~0) . . . )))
(2.1)

where x denotes the input sequence, and xt and ht

denote the data and hidden state at the time step t of
the sequence, respectively. W denotes the length of the
sequence, and 0 < t < W . Next, we describe existing
strategies to incorporate temporal dependencies.

1https://github.com/XuShaoming/
Message-Propagation-Through-Time

2.3 State-based approaches aim to transfer tem-
poral information between sample sequences through
the initial hidden state h0 as follows:

ht = f(xt, ht�1)

= f(xt, f(xt�1, f(xt�2, . . . f(x1, h0) . . . )))
(2.2)

In equation 2.2, h0 is the hidden state one step before
the current input sequence x and is computed as the last
state of the previous sequence using the same model
f . In the implementation, h0 is detached from the
computational graph to prevent error backpropagation
over sequences and reduce computational cost. The
idea behind state-based approaches is that initial hidden
states can summarize the temporal effects of previous
sequences, thereby preserving sequence dependencies.

Stateful Mini-Batches (SMB) training (Figure
1 plot B) uses the last hidden states of RNN sequences
from a mini-batch to initialize the sequences in the
next mini-batch to train Stateful RNNs [8]. However,
SMB still treats each sequence within the mini-batch
as independent, limiting their ability to capture long-
term dependencies. Consequently, researchers often
have to compromise by using smaller mini-batch sizes
to link more sequences for applications with long-term
dependencies [9, 10, 11], which can result in a prolonged
and unstable training process [12].

Sequential Stateful Mini-Batches (SSMB)

training (Figure 1 plot C) can preserve long-term de-
pendencies while allowing model training on larger mini-
batches for stable training by passing hidden states both
within and between mini-batches. However, the fixed
sequence order required by both SMB and SSMB for
hidden state transmission can potentially lead to over-
fitting. Moreover, SSMB requires additional computa-
tional cost, as it processes each sequence individually to
pass hidden states sequentially [7].

Sequential Stateful inference (SSIF) (Figure 1,
plot G) serves as the default inference algorithm for the
state-based training algorithms. It passes hidden states
between test sequences according to their temporal
order to generate predictions in a single pass. As SSIF
prevents RNNs from reconstructing hidden states from
scratch for each sequence during inference, SSIF can also
improve the predictions of RMB-trained models [7].

2.4 Response-based approaches encode the tem-
poral relationship between sequences through response
variables, akin to ideas in dynamical control theory to
adaptively estimate responses as the system conditions
for predictions [13, 15, 16, 17, 18]. These approaches
employ previous response values as additional inputs,
aiding the model in learning temporal variations.

Teacher Forcing training (TF) (Figure 1, plot
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Independent inference (IIF)Plot F

Sequential Stateful inference (SSIF)Plot G
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Teacher Forcing inference (TFIF)Plot H

Sequential Conditional inference (SCIF)Plot I

Epoch i Epoch i

Conditional Mini-batch (CMB) trainingPlot 
E

Figure 1: The related training and inference algorithms feed forward information flow between sequences, while
backpropagation of losses across sequences is disallowed. For clarity, the sequence length is set to two, and inputs
and outputs are omitted in some plots.

D) utilizes the observed response value from the pre-
vious timestep as an additional input for the next
timestep, as shown in equation 2.3 [13]. TF uses the
initial response value y0 from the previous sequences to
maintain dependencies between the current and previ-
ous sequences. However, TF struggles with time-series
modeling because it focuses on learning local changes
relative to previous response values, leading to error ac-
cumulation in the inference phase [7].

Scheduled sampling (SSPL) training [14] mit-
igates the exposure bias of TF by incrementally replac-
ing the observed responses with the predictions as ad-
ditional inputs during training. However, SSPL does
not solve TF’s inability to learn accumulated changes
in time series modeling.

Teacher Forcing inference (TFIF) (Figure 1,
plot H) serves as the inference algorithm for TF and
SSPL trained RNNs. TFIF incorporates the previous
timestep’s predicted response as additional input for the
next timestep [13]. However, since TF and SSPL cannot
learn accumulated changes during training, any errors
made by TFIF during inference can accumulate over
time, leading to poor time-series predictions.

ht = f(xt, yt�1, ht�1) = f(xt, yt�1,

f(xt�1, yt�2, f(xt�2, yt�3, . . . f(x1, y0,~0) . . . )))
(2.3)

Conditional Mini-Batches (CMB) training

(Figure 1, plot E) mitigates the error accumulation
issue in TF and SSPL by using a single response value
as an initial condition for each sequence, specifically,

the response value one timestep before the start of
each training sequence. This initial response value is
replicated across the sequence, maintaining the input
vector’s dimensionality and offering the corresponding
RNN sequence a starting point to learn accumulated
changes over time (as shown in equation 2.4) [7]. CMB
is inspired by the multiple shooting method in control
theory, where the entire time series is divided into
sequences, and an initial condition is estimated for each
sequence[17, 18]. CMB can effectively train RNNs for
applications characterized by long-term dependencies,
as their responses encapsulate the temporal effects of
previous timesteps. However, for applications where
the response variables encapsulate limited temporal
information, CMB is not better than RMB [7].

Sequential conditional inference (SCIF) (Fig-
ure 1, plot I) serves as the inference algorithm for CMB.
SCIF maintains the temporal order of sequences and se-
quentially uses the initial response predicted from the
previous sequence as the additional input for CMB-
trained models at the current sequence to obtain all
predictions in one pass [7].

ht = f(xt, y0, ht�1) = f(xt, y0,

f(xt�1, y0, f(xt�2, y0, . . . f(x1, y0,~0) . . . )))
(2.4)

3 Proposed Approach

The primary objective of the MPTT algorithm is to
maintain the computational efficiency of mini-batch
training while enforcing temporal dependencies between

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited309

D
ow

nl
oa

de
d 

06
/0

3/
24

 to
 7

3.
24

2.
15

.1
66

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Mini-batch #1

Mini-batch #2

Message propagation through Time (MPTT) training

 

Epoch i-1

Mini-batch #1

Mini-batch #2

Epoch i

Write policyRead policy

Propagate policy

K

V

state-map

The        two-step
 sequence

K V

Key-map search

K V

key-map

Figure 2: The proposed Message Propagation through Time (MPTT) algorithm that designs two memory modules
and three policies to generate informative initial hidden states to facilitate seamless communication between RNN
sequences during training.

sequences. The core idea in MPTT is to use informative
hidden states, denoted as h̃0, as the messages to trans-
mit temporal information among sequences as follows:

ht = f(xt, ht�1)

= f(xt, f(xt�1, f(xt�2, . . . f(x1, h̃0) . . . )))
(3.5)

Next, we outline the memory modules and policies
that MPTT employs to manage message propagation
throughout the training procedure.

3.1 Memory modules In state-based approaches,
subsequent sequences must await the generation of hid-
den states from preceding ones to initiate training,
which dictates the sequential nature of the approaches
and can lead to overfitting and suboptimal training
[7, 8]. MPTT overcomes these issues by employing two
memory modules, key-map and state-map, to enable
asynchronous reading and writing of messages as the in-
formative initial hidden states for RNNs, as illustrated
in Figure 2. This facilitates seamless information shar-
ing between sequences, allowing for shuffled sequences
and diverse mini-batches to address overfitting and local
minima during mini-batch training.

Key-map. MPTT assigns each sequence S a
unique ID:{T}, where T denotes the initial step of S.
The initial step refers to the timestep one step before
S in the original time series. For instance, a sequence
with ID:{365} starts at timestep 366 in the time series.

The key-map comprises key-value pairs, where each
key corresponds to the ID of a specific sequence S, and
its value is a list of IDs representing the sequences whose

initial steps are covered in S. A smaller stride of the
sliding window can result in more overlapped sequences,
leading to longer lists in the key-map. The key-map can
be represented as follows:

key-map(IDi) = [IDj |8Tj , Ti < Tj  Ti +W ](3.6)

where W is the sequence length, and IDi and Ti

represent Si and its initial step, respectively.
Before starting the training process, a key-map is

initialized for each sequence using Equation 3.6 and
remains fixed without new training data. The key-map
serves as a mediator that enables a given sequence S

to identify other sequences that require its generated
hidden states for initializing their hidden states.

State-map. We can represent the state-map as

state-map(ID) = (µ0, h̄0, c),(3.7)

The state-map maintains three variables, (µ0, h̄0, c),
for each sequence S, which are used to generate the
initial message h̃0 for initializing the hidden states.
µ0 encapsulates information from a collection of initial
hidden states, h0’s, produced in prior epochs for a
sequence S. h̄0 represents a running average of h0’s
generated during the current epoch, while c denotes
the count of h0’s in the current epoch for S. Before
the start of training, a state-map is initialized for each
sequence using Equation 3.7, but with (~0,~0, 0) as the
assigned value. The state-map functions as a repository
for each sequence, storing pertinent information needed
to generate the messages h̃0’s as initial hidden states.
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3.2 Policies MPTT employs read, write, and prop-
agate policies to maintain the message h̃0 and its
{µ0, h̄0, c} for each sequence S during training. In each
epoch, MPTT randomly partitions the sequences into
multiple mini-batches without replacement. It then it-
erates through each mini-batch to train the model.

Read policy. For each sequence in a mini-batch,
MPTT reads its {µ0, h̄0, c} from the state-map and
generates h̃0 as follows:

h̃0 =

(
µ0 if � = 0, c = 0
�µ0+ch̄0

�+c Otherwise
(3.8)

The binary value � = {0, 1} is called the message keeper.
If � = 0, read policy will disregard µ0 as soon as h̄0

is updated in the current epoch. If h̄0 has not been
updated (c = 0), read policy will always utilize µ0 as the
initial hidden state for RNNs to generate the prediction
ŷ and hidden state h at each timestep of the sequence
S. The read policy sets initial hidden states for each
sequence at the beginning of the mini-batch.

Write Policy. After the optimization step, each
sequence S in the current mini-batch uses the key-
map to identify corresponding sequences that require
its generated hidden states for their state-map updates.
For a sequence IDj in the key-map of the sequence IDi,
the hidden state generated during the forward pass at
the Tj � Ti timestep of sequence IDi is used as h0 to
update the state-map for sequence IDj as follows:

µ0 = µ0, h̄0 =
ch̄0 + h0

c+ 1
, c = c+ 1(3.9)

Propagate policy. The Propagate Policy is ex-
ecuted at the end of each epoch, generating a new µ0

and resetting both h̄0 and c in the state-map for each
sequence as follows:

µ0 =
�µ0 + ch̄0

� + c
, h̄0 = ~0, c = 0(3.10)

If message keeper � = 0, propagate policy will disregard
µ0 derived from previous epochs and rely solely on h̄0

from the current epoch as the new µ0 to initialize hidden
states in the succeeding epoch.

3.3 Forgetting mechanism We can expand equa-
tion 3.10 and check the µ0 in each epoch E as follows:

µ0 =

8
><

>:

~0 if E = 1

h̄
<1>
0 if E = 2

�E�2h̄<1>
0

(�+c)E�2 +
PE

e=3
�E�ech̄<e�1>

0
(�+c)E�e+1 if E > 2

(3.11)

Where E > 2 case is summarized from this expanded
form:

µ0 =
�
E�2

h̄
<1>
0

(� + c)E�2
+

�
E�3

ch̄
<2>

(� + c)E�2
+

�
E�4

ch̄
<3>

(� + c)E�3
+ · · ·+ �ch̄

<E�2>

(� + c)2
+

ch̄
<E�1>

(� + c)

(3.12)

Here, h̄
<e>
0 is the average of h0’s, and c is the total

count of the h0’s generated at the end of the epoch e

for a sequence S. These equations reveal that MPTT
utilizes three types of forgetting mechanisms to control
the messages propagating over epochs.

Message keeper �. MPTT employs the message
keeper � = {0, 1} to control the amount of information
propagated. When � = 0, the read policy disregards µ0

as soon as h̄0 has been updated in the current epoch.
The propagate policy discards µ0 derived from previous
epochs and solely relies on h̄

<E�1>
0 as the new µ0 for

the epoch E.
Exponential decay. Conversely, when � = 1,

both the read and propagate policies utilize the full list
of h̄0’s generated from previous epochs to obtain h̃0 and
µ0. Equation 3.12 shows that this process is regulated
by exponential decay on the low-quality h̄0’s generated
by under-trained RNNs in early epochs, prioritizing
h̄0’s from more recent epochs to obtain new µ0 for the
subsequent epoch.

Auto-adjusted forgetting. Equation 3.12 shows
how the decay speed is automatically adjusted by the
value of c. At the end of each epoch, c corresponds to
the total number of h0’s generated for each sequence
S. A larger c indicates more overlapping sequences
and an augmented dataset for training the RNNs,
resulting in a wider array of h0’s that are generated and
aggregated to yield h̄0 with reduced variance in each
epoch. Consequently, MPTT employs equation 3.12 to
accelerate the decay process when c is larger, thereby
emphasizing the importance of recently generated h̄0’s
in producing new µ0.

4 Results and Discussion

We evaluate the performance of MPTT algorithms by
comparing them with RMB, state-based, and response-
based algorithms for training RNN models on four cli-
mate datasets. Combined with five inference algorithms
used during testing, this leads to nine learning strategies
for comparison.

4.1 Synthetic data experiments The Soil & Wa-
ter Assessment Tool (SWAT) is a river basin model for
simulating surface and groundwater dynamics in com-
plex watersheds and assessing climate change impacts
[20, 21]. In this experiment, we evaluate our algo-

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited311

D
ow

nl
oa

de
d 

06
/0

3/
24

 to
 7

3.
24

2.
15

.1
66

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Table 1: The table displays experiment results where the sequence length is fixed at 366 steps. Models are
trained using different percentages of the 500-year training set and evaluated on the testing set to measure their
relative performance in RMSE. The results indicate that, when provided with more data, MPTTs reach lower
RMSEs more quickly than other approaches, highlighting their ability to effectively leverage extra data for robust
time-series modeling.

Algo

Data
SWAT-SW SWAT-SNO SWAT-SF

Train Inference 2% 16% 32% 100% 2% 16% 32% 100% 2% 16% 32% 100%

RMB IIF 41.1± 0.8 36.9± 0.4 34.8± 0.4 32.8± 0.2 7.24± 0.38 4.15± 0.29 3.14± 0.15 2.57± 0.14 1.52± 0.07 0.89± 0.03 0.79± 0.02 0.66± 0.02
RMB SSIF 36.4± 1.5 27.3± 1.2 23.7± 1.6 20.1± 0.7 7.13± 0.36 3.75± 0.37 2.39± 0.21 1.67± 0.25 1.49± 0.08 0.81± 0.03 0.7± 0.03 0.53± 0.05
TF TFIF 35.4± 2.6 27.9± 5.4 26± 7.5 27.7± 7.0 6.58± 0.68⇤ 1.49± 0.23⇤ 1.22± 0.17⇤ 1.61± 0.86 1.63± 0.04 0.83± 0.04 0.81± 0.09 0.67± 0.04

SSPL TFIF 49.3± 8.4 34.8± 6.5 30± 5.7 34.1± 12.5 8.14± 1.41 1.76± 0.4 1.31± 0.23 1.06± 0.28 1.48± 0.08 0.83± 0.02 0.76± 0.06 0.61± 0.03
CMB SCIF 35.6± 0.9 23.1± 0.6 19.1± 0.8 16.4± 0.3 6.96± 0.27 2.61± 0.2 1.95± 0.12 1.07± 0.05 1.61± 0.04 0.9± 0.02 0.81± 0.02 0.68± 0.01
SMB SSIF 36± 1.6 27.2± 1.2 26.4± 0.5 18.2± 0.6 7.05± 0.23 3.73± 0.2 2.18± 0.24 1.4± 0.09 1.55± 0.06 0.86± 0.02 0.77± 0. 0.54± 0.06
SSMB SSIF 36.9± 1.2 22.6± 0.3⇤ 18.2± 1.1 14± 0.3 6.74± 0.23 3.25± 0.23 2.27± 0.22 1.39± 0.09 1.55± 0.06 0.77± 0.06 0.7± 0.08 0.49± 0.03

MPTT(� = 0) SSIF 35± 0.9⇤ 23.2± 1.3 17.2± 1.3 11.5± 0.6 7.19± 0.36 2.69± 0.24 1.91± 0.12 1.04± 0.1⇤ 1.51± 0.05 0.76± 0.05 0.65± 0.05 0.48± 0.07
MPTT(� = 1) SSIF 35.4± 0.7 22.8± 0.4 14.1± 0.8⇤ 10.9± 0.4⇤ 6.89± 0.33 2.62± 0.25 1.8± 0.18 1.12± 0.11 1.38± 0.02⇤ 0.71± 0.07⇤ 0.62± 0.06⇤ 0.44± 0.02⇤

Plot 
A

Plot 
B

Plot 
C

Figure 3: Comparisons between observed and predicted time series reveal algorithmic performance variations
across datasets with different temporal dependencies. SW exhibits long-term dependencies, SNO has seasonal
dependencies due to snowmelt, and SF features short-term dependencies driven by precipitation and snowmelt.
The performance gap narrows from the SW to the SF tasks, indicating that MPTT algorithms excel particularly
in scenarios with extended temporal dependencies.

rithms by training the Gated Recurrent Units (GRU)
models [22] as SWAT surrogate models. We generate
three 1000-year daily-scale time series datasets for a
Minnesota watershed using the SWAT model. These
datasets, SWAT-SW, SWAT-SNO, and SWAT-SF, rep-
resent soil water (SW), snowpack (SNO), and stream-
flow (SF) respectively. As Figure 3 shows, SW has
a long-term temporal dependency, reflecting soil water
content changes. SNO exhibits a seasonal dependency,
as snow typically melts by summer’s end. SF, with a
short-term temporal dependency, is mainly influenced
by precipitation and snowmelt events. These responses
depend on input weather drivers like precipitation, tem-
perature, solar radiation, wind speed, and relative hu-
midity (see appendix B.1).

Experimental Setup. We split the time series
into 500 years of training, 100 years of validation, and
400 years of testing sets in temporal order. The data

is Gaussian-normalized before being segmented into se-
quences, each with a length of 366 days. To evaluate
strategy stability, we use RMB-IIF optimized hyperpa-
rameters (Table 2) to train five GRUs separately for
each strategy. The performance is then evaluated based
on the mean RMSE of the five GRUs for each strategy.

Table 2: The RMB-IIF optimized hyperparameters.
Model loss H ⌘ optimizer B E dropout
GRU mse 32 0.01 Adam 64 500 0
LSTM mse 256 0.001 Adam 64 200 0.4
mse: mean square error H: hidden state size B: batch size
⌘: learning rate E: maximum epoch

Impact of temporal dependency. Table 1 and
Figure 3 show that the algorithms perform differently on
datasets with varying temporal dependencies. Among
response-based methods, TF and SSPL accumulate er-
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Plot 
A

Plot 
B

Plot 
C

Figure 4: This figure displays experiment results where the training data size is fixed at 160 years. Models are
trained with sequences having varying lengths (14, 30, 90, 180, 366 steps). Results indicate that all learning
strategies perform better on longer sequences that retain more temporal dependencies.

rors in SW inference as they rely on the previous
timestep response as input and only learn local changes
between timesteps. This makes them unable to correct
errors from earlier timesteps. They perform nicely on
SNO since complete snowmelt by summer’s end natu-
rally prevents error accumulation. CMB-SCIF performs
well on SW and SNO, as their initial responses pro-
vide a solid foundation for accumulating changes over
time. The three response-based approaches perform
similarly to basic RMB-IIF on SF, as its short tem-
poral dependency means responses carry limited infor-
mation. MPTT algorithms perform nicely in modeling
both SW and SF and reasonably well with SNO, largely
due to their efficient utilization of hidden states for mes-
sage generation. This avoids error accumulation issues
for variables with long-term dependencies and improves
predictions for variables with short-term dependencies,
where hidden states carry more information than re-
sponses.

Impact of training sequence length. Figure
4 suggests that all learning strategies yield improved
performance with longer sequences, which capture more
temporal dependencies. It further offers these insights:
(a) As temporal dependencies decrease (from SW to
SF), the performance gap among algorithms narrows,
underscoring our proposed strategies’ effectiveness in
utilizing temporal dependencies when present. (b) De-
spite using the same RMB-trained models, RMB-SSIF
consistently outperforms RMB-IIF, highlighting that
even models trained using IID assumption can bene-
fit from message passing between samples during infer-
ence. (c) The three response-based approaches exhibit
distinct performances. CMB-SCIF performs well on SW
and SNO. However, TF-TFIF and SSPL-TFIF perform
poorly on SW, regardless of sequence length, and only
perform well on SNO for longer sequences. All three
strategies show no difference from RMB-IIF on SF pre-

dictions because of weak temporal auto-correlation in
response values for streamflow. (d) In contrast, state-
based approaches, SMB-SSIF and SSMB-SSIF, perform
well on varying sequence lengths, as they use hidden
states during both training and inference phases, reduc-
ing the loss of temporal dependencies due to shorter
sequences. (e) MPTT algorithms consistently perform
the best across all three datasets, regardless of sequence
lengths, as they use high-quality hidden states and
train models on heterogeneous mini-batches compared
to state-based approaches.

Time efficiency. Table 3 presents the per-epoch
training time for various algorithms on the sequence
length of 366 on an NVIDIA A100 GPU. Results show
MPTT uses around 0.06 seconds/epoch, considerably
faster than SSMB and preserving full sample and tem-
poral dependencies. MPTT lags behind RMB by 0.04
seconds per epoch, a delay partly attributed to their
Python dictionary-based memory modules, indicating
room for optimization.
Table 3: Per-epoch training time for various algorithms.

RMB TF SSPL CMB SMB SSMB MPTT
sec/epoch 0.0172 0.0217 0.02 0.0151 0.0211 0.539 0.0614

4.2 Real world data experiments. CARAVAN, a
comprehensive global hydrology dataset, integrates data
from seven large-scale hydrology studies [23]. Long
Short-Term Memory (LSTM) models has outperformed
traditional models in rainfall-runoff predictions [24, 25].
In this paper, we use nine dynamic meteorological
forcings and 20 static basin characteristics to train
LSTMs for predicting streamflow across 191 Great
Britain (GB) basins in the CARAVAN dataset. Our
results affirm the efficacy of our algorithms in modeling
real-world complex systems.

Experimental Settings. We partition the time
series into training (1989/10/01-1997/09/30), validation
(1997/10/01-1999/09/30), and testing (1999/10/01-
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Table 4: The table displays the experiment results where each learning strategy is employed to train five separate
LSTMs, utilizing hyperparameters outlined in Table 2. The final prediction for each basin in the CARAVAN test
set is then obtained by averaging the predictions from these five LSTMs to evaluate the learning strategies.

RMB-IIF RMB-SSIF TF-TFIF SSPL-TFIF CMB-SCIF SMB-SSIF MPTT(� = 0)-SSIF MPTT(� = 1)-SSIF
RMSE 1.301± 0.817 1.285± 0.815 1.465± 1.000 1.273± 0.812 1.284± 0.822 1.368± 0.851 1.255± 0.814 1.255± 0.810⇤

R
2 0.674± 0.120 0.686± 0.112 0.482± 0.531 0.692± 0.113 0.692± 0.102 0.625± 0.153 0.705± 0.117⇤ 0.694± 0.166

2009/09/30) periods. Data is normalized using the
training set’s mean and variance and then segmented
into 365-day sequences with 183-day overlaps. Given
the substantial variation in streamflow scales across
basins, we use the Coefficient of Determination (R2)
in figures to evaluate predictions.

Top strategies for river basin streamflow pre-

diction. Table 4 reveals that MPTT algorithms yield
the best overall performance across all basins. Fig-
ure 5 Plot A specifically identifies the leading strat-
egy for each river basin, leading to these observations:
(a) RMB-IIF and RMB-SSIF only excel in two basins,
while SMB-SSIF performs well in four. Their subpar
performance underscores the importance of preserving
sequence and long-term temporal dependencies and the
need to avoid fixed mini-batches in training real-world
applications. (b) Response-based algorithms run rela-
tively well, with TF-TFIF and SSPL-TFIF achieving
the best predictions in 49 basins. (c) MPTT algo-
rithms excel in 113 out of 191 basins. Within MPTT
algorithms, MPTTs(delta=1) yield slightly more best-
predicted basins than MPTTs(delta=0).

A closer look at algorithm performance. Fig-
ure 5, Plot B, displays the ECDF curves for 191 basins
and offers the following observations: (a) Response-
based approaches exhibit varied results; TF-TFIF has
22 best-predicted basins, but its 40% basins have an
R

2 lower than 0.6, while SSPL-TFIF and CMB-SCIF
have only about 20% with R

2 lower than 0.6. This
suggests that TF-based algorithms have a large vari-
ance in their performance across 191 basins. (b) SSPL-
TFIF and CMB-SCIF display ECDF curves similar to
RMB-IIF and RMB-SSIF, indicating no significant im-
provement in predictions. (c) MPTT-based algorithms
outperform others, with almost 15% of basins having an
R

2 above 0.8, compared to approximately 10% for other
algorithms.

5 Limitations and Future Directions

The MPTT algorithm has some limitations. First,
MPTT is designed for state-based models; adapting it
to transformers may require incorporating state infor-
mation into the transformer architecture. While Trans-
formers are known for their ability to capture long-range
dependencies, they still consider each sequence sample
independent. MPTT may help Transformers capture

MPTT algorithms excel in 113 of 191 river basins

Plot 
A

Figure 5: Plot A identifies the top-performing strategy
for each basin. The results reveal that MPTT algo-
rithms are the leading choice in 113 out of 191 basins.
Plot B illustrates the empirical Cumulative Distribution
Function (ECDF) of R2 values. A curve leaning towards
one on this graph suggests the model’s effectiveness in
explaining data variance across 191 basins. The results
indicate that MPTT-based algorithms outperform their
counterparts: only around 10% of basins show an R

2

value below 0.6, compared to approximately 20% for
other algorithms.

relations between sequences. Second, while the fixed
� = 1 slightly outperforms � = 0 in experiments, the
optimal choice for MPTTmessage keeper � is still uncer-
tain, leaving room for future exploration. Third, MPTT
uses two memory modules, the key-map and state-map,
which result in an additional asymptotic space complex-
ity of ⇥(M(H + W

� )), where M is the total number
of sequences in the training set,H is hidden state size,
W is the sliding window size, and � is the stride size.
Fourth, MPTT is slower than RMB due to its frequent
interactions with the memory modules. Despite poten-
tial optimizations, the extra computational cost is in-
herent to MPTT’s design. Finally, this study highlights
MPTT’s strength in RNN training within environmen-
tal contexts. Future research could extend its applica-
bility to diverse state-based models like Graph Neural
Networks, aiming to improve optimization and informa-
tion quality. Additionally, exploring MPTT’s utility in

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited314

D
ow

nl
oa

de
d 

06
/0

3/
24

 to
 7

3.
24

2.
15

.1
66

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



sectors like healthcare, finance, and language processing
offers promising avenues for expansion.

6 Conclusion

This paper introduces novel MPTT algorithms designed
to effectively capture sample and temporal dependencies
when training sequential models for time series. MPTTs
design two memory modules and three policies to gener-
ate informative initial hidden states as messages and fa-
cilitate seamless message communication between RNN
sequences while allowing sample shuffling and diverse
mini-batches across epochs during training. Experimen-
tal results show MPTTs consistently outperforming var-
ious competing algorithms on four climate datasets with
multi-scale temporal dependencies, achieving the best
predictions for 113 of 191 Great Britain river basins,
demonstrating their effectiveness in modeling complex
real-world dynamical systems.
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