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ABSTRACT

The pervasive use of WiFi has driven the recent research in
WiFi sensing, converting communication tech into sensing
for applications such as activity recognition, user authenti-
cation, and vital sign monitoring. Despite the integration of
deep learning into WiFi sensing systems, potential security
vulnerabilities to adversarial attacks remain unexplored. This
paper introduces the first physical attack focusing on deep
learning-based WiFi sensing systems, demonstrating how
adversaries can subtly manipulate WiFi packet preambles to
affect channel state information (CSI), a critical feature in
such systems, and thereby influence underlying deep learn-
ing models without disrupting regular communication. To
realize the proposed attack in practical scenarios, we rigor-
ously analyze and derive the intricate relationship between
the pilot symbol and CSI. A novel mechanism is proposed
to facilitate quantitive control of receiver-side CSI through
minimal modifications to the pilot symbols of WiFi packets
at the transmitter. We further develop a perturbation opti-
mization method based on the Carlini &Wagner (CW) attack
and a penalty-based training process to ensure the attack’s
universal efficacy across various CSI responses and noise.
The physical attack is implemented and evaluated in two rep-
resentative WiFi sensing systems (i.e., activity recognition
and user authentication) with 35 participants over 3 months.
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Extensive experiments demonstrate the remarkable attack
success rates of 90.47% and 83.83% for activity recognition
and user authentication, respectively.
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1 INTRODUCTION

Being one of the most prevalent wireless communication
techniques, WiFi has gained considerable attention in recent
years due to its contactless sensing capabilities. Recent re-
search has shown the great potential ofWiFi sensing technol-
ogy when integrated with deep learning methodologies, pro-
viding exceptional precision in various applications (e.g., ac-
tivity recognition [16], user identification/authentication [37,
38], and vital sign monitoring [44]), providing the essen-
tial foundation for a more diverse range of applications, in-
cluding smart cities, healthcare innovation, and security for
homes and businesses.

While the advanced WiFi sensing technology empowered
by deep learning offers the potential of immense convenience,
it also creates opportunities for new attack vectors with se-
vere consequences. For instance, adversaries could exploit
these weaknesses to manipulate a smart entrance system
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that relies on WiFi user authentication, potentially breach-
ing the security of homes or offices. Additionally, adversaries
could tamper with WiFi-based elderly care systems, causing
them to wrongly categorize critical events like falls as regu-
lar activities such as watching TV. Furthermore, adversaries
could control a WiFi-based vital sign monitoring system to
generate falsified health data, leading to the omission of vi-
tal precautionary alerts and essential medical interventions.
In this work, we demonstrate the feasibility of launching
this attack in physical environments. We develop the first
physical adversarial attack on classification-based WiFi sens-
ing systems and uncover a surprising finding: By physically

tampering with the transmitted WiFi packets, adversaries can

covertly manipulate WiFi sensing systems into generating pre-

dictions aligned with their adversarial goals.

Our attack capitalizes on the predominant use of deep
learning in WiFi sensing systems for predictions. We find
that a few prior studies have conducted initial investigations
into adversarial attacks on WiFi and mmWave sensing sys-
tems [4, 48, 50]. These studies focus on digital attacks that
assume the receivedWiFi data can be directly modified. How-
ever, many receivers are users’ devices (e.g., smartphones,
wearables) that are hard to access. Instead of modifying the
received WiFi data, it is more feasible if the adversary can
physically alter the WiFi signals on the fly without accessing
the receiver. A few more recent studies [22, 25, 57] show the
potential of disrupting the wireless communication channel
to interfere with WiFi sensing. Such disruptions degrade the
communication quality (e.g., packet loss and signal-to-noise
ratio), making the attacks noticeable to users. In this paper,
we propose a more practical approach, an unnoticeable phys-
ical adversarial attack achievable through the transmitters in
WiFi sensing systems (e.g., access points). Our work reveals
that adversaries can covertly change the WiFi signals at the
receiver by altering the preamble, a pre-defined sequence
within the transmitted WiFi packets, which can potentially
threaten any WiFi sensing systems.

Toward this end, we develop an imperceptible adversarial
attack by optimizing the preamble, specifically the pilot sym-

bols (or the long training sequence in IEEE 802.11 [35]), as
illustrated in Figure 1. Our attack embodies two fundamental
characteristics: (i) Unnoticeability: Our attack is unnoticeable
to users as it has minimal impacts on the communication
quality. Executed viaWiFi transmitters, our attack enables re-
mote control over WiFi sensing systems across all connected
devices. (ii) Untargeted & Targeted Attack: Based on our the-
oretical exploration, we derive a quantitative relationship
between pilot symbol modifications and the corresponding
changes in received CSI, a measurement widely used in WiFi
sensing. Building upon this understanding, we design an
untargeted attack capable of disrupting WiFi sensing sys-
tems by inducing incorrect predictions. We further achieve

the targeted attack, which enables the manipulation of WiFi
sensing systems to provide adversary-specific predictions.
The targeted attack allows adversaries to perform more com-
plicated tasks, such as unauthorized access or triggering
specific functions (e.g., turning on the oven). Both attacks
raise serious security problems, particularly as WiFi sensing
gains prominence within current WiFi infrastructures.

To realize such an attack, we need to address several criti-
cal challenges. Achieving effective attacks requires precise
control over CSI. The relationship between the CSI responses
and the pilot symbols can be modeled as a multiplicative rela-
tionship [26]. Our attack utilizes this relationship to generate
adversarial perturbations, which can be precisely converted
into pilot symbols and replayed with WiFi transmitters. We
distinctively propose to generate optimal adversarial pertur-
bations as multiplicative factors upon CSI data by adapting
the Carlini &Wagner (C&W) attack [7]. In addition, enabling
a universally effective attack in different scenarios with di-
verse channel variations presents a significant challenge.
To overcome this problem, we optimize the pilot symbols
across a small set of channel variations via penalty-based
universal training [30]. This technique makes the generated
pilot symbols highly effective across diverse new channel
variations.

During the experiments of launching physical attacks with
the adversarial pilot symbols, we notice that environment
variations (e.g., interference of neighboring WiFi devices,
furniture placement differences) could degrade the attack’s
effectiveness. To address this challenge, we design a channel
augmentation technique that incorporates channel fading
effects across different environments, improving the robust-
ness of the attack. Furthermore, the inherent hardware im-
perfections induce unpredictable noises upon the received
CSI. For example, voltage fluctuations in the circuit board
may deviate WiFi signals passing the radio frequency front
end or the local oscillator, potentially distorting the CSI pat-
terns associated with the pilot symbols. To make the attack
realistic on commercial WiFi devices, we fine-tune the pilot
symbols by integrating synthesized hardware noises. We
summarize our main contributions as follows:
• We demonstrate the first physical, unnoticeable, and uni-
versal adversarial attacks targeting deep learning-empowered
WiFi sensing systems. Bymanipulating pilot symbolswithin
WiFi packets, our attack enables control over the underly-
ing models without disrupting regular communication.

• Wemodel the multiplicative relationship between the pilot
symbols in WiFi packets and received CSI to quantify how
altering pilot symbols influences the CSI. Extensive exper-
imental studies are conducted to confirm the effectiveness
of perturbation generated based on this modeling.

• We developed pilot symbol optimizationmethods to enable
both untargeted and targeted attacks by adapting the C&W
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Figure 1: Illustration of the proposed physical, unnoticeable, and universal adversarial attack against deep-learning-

based WiFi sensing system.

attack algorithm. We further design training techniques
to generate pilot symbols robust across diverse channel
variations and environments.

• We evaluate our attack by conducting extensive experi-
ments with two representative WiFi sensing systems (i.e.
activity recognition and user identification), involving 35
volunteers across three universities in a period of three
months. The results show that our attack can achieve over
85% untargeted attack success rates and 85% targeted at-
tack success rates.

2 BACKGROUND AND PRELIMINARIES

2.1 Wireless Sensing via Learning on
Channel State Information

CSI-enabled WiFi Sensing. WiFi communication relies on
orthogonal frequency division multiplexing (OFDM) tech-
niques, wheremultiple data streams are simultaneously trans-
mitted through a group of closely spaced narrow-band sub-
channels (subcarriers). For example, 802.11n 2.4GHz/5GHz
WiFi normally operates on a 20MHz bandwidth divided into
52 subcarriers. Along with OFDM, CSI is used to represent
how WiFi signals propagate at each subcarrier, which can
be denoted as:

𝐻 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ1,1 · · · ℎ1,𝑝 · · · ℎ1,𝑃
...

...
...

ℎ𝑘,1 · · · ℎ𝑘,𝑝 · · · ℎ𝑘,𝑃
...

...
...

ℎ52,1 · · · ℎ52,𝑝 · · · ℎ52,𝑃 ,

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

where 𝑘 and 𝑝 respectively represent the indices of the sub-
carrier and the WiFi packet, and ℎ𝑘,𝑝 is the complex coeffi-
cient representing the corresponding CSI. The CSI carries
rich and detailed information that reflects dynamic and static
characteristics of wireless channels, such as multipath fad-
ing, transmission loss, and Doppler effects. Therefore, it can
be leveraged to sense the changes in the surrounding envi-
ronment induced by the activities and behaviors of users.
Compared to sensing via cameras and motion sensors, sens-
ing with CSI reduces the risks of visual privacy as well as
removing the requirement of wearing on-body sensors.

Figure 2: Illustration of the pilot symbol (also known

as the long training sequence (LTS)) in the IEEE 802.11

b/g/n/ac frame structure [6].

Existing studies have shown that the CSI signals extracted
from regular communication ofWiFi can be utilized to achieve
various sensing capabilities, including activity recognition [45],
gesture recognition [33, 34] and user authentication [20].
These studies show that sensing capabilities can be seam-
lessly integrated into current WiFi communication systems,
and they can work simultaneously.

Deep Learning-empowered Applications. To facilitate
practical implementation, more and more research in WiFi
sensing has started to adopt deep learning models to enhance
accuracy and robustness. Unlike conventional machine learn-
ing models, deep learning models can establish intricate lin-
ear and nonlinear connections between input CSI data and
resulting labels, guaranteeing excellent WiFi sensing perfor-
mance. For instance, convolutional neural networks (CNNs)
are frequently employed in activity recognition for feature
extraction and classification [16, 37]. Beyond activity recogni-
tion, deep learning techniques have demonstrated consider-
able success in domains such as gesture recognition [33, 34],
human presence detection [14], vital sign monitoring [44],
and user authentication [37, 38]. In this study, we investigate
security vulnerabilities within deep learning-empowered
WiFi sensing systems in two representative domains: activ-
ity recognition and user identification. These WiFi sensing
technologies are essential elements across a wide range of
applications, such as smart entry systems, access controls
for smart homes/offices, and systems for elderly care.

2.2 CSI Computation on WiFi Systems

WiFi systems conform to IEEE 802.11 b/g/n/ac computes the
CSI based on the pilot symbols, also referred to as the long
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training sequence (LTS), of each received WiFi packet. As
shown in Figure 2, a WiFi packet contains four basic ele-
ments: a short preamble for onset detection, a long preamble
(containing the pilot symbols), a signal field with basic packet
information, and the data symbols containing the data. To
estimate the CSI, the WiFi system examines the differences
between the transmitted pilot symbols in the long preamble
and the proportion of received signals corresponding to the
pilot symbols. By denoting the transmitted signals of pilot
symbols as 𝑥𝐿 , we formulate the received signal as:

𝑦𝐿 = 𝐻𝑥𝐿 + 𝑛, (2)

where 𝐻 is the physical channel and 𝑛 denotes the noise. To
estimate 𝐻 representing the channel properties, channel es-
timation techniques could be employed, such as least square
(LS), minimummean square error, and linear minimummean
square error. Among them, LS is the most representative
algorithm, which is widely employed in commercial WiFi

systems. LS is designed to find a 𝐻̂ that minimizes the sum
of squares of errors between the 𝑦𝐿 and 𝑥𝐿 . It can be realized
by solving the following estimation problem [35]:

𝐻̂ = [(𝑥𝐿)
∗𝑥𝐿]

−1 (𝑥𝐿)
∗𝑦𝐿, (3)

where 𝐻̂ is the estimation of channel response. Note that the
signal template 𝑥𝐿 for CSI computation is pre-known to the
receiver, and it will not be affected by the signal 𝑥𝐿 .

3 THREAT MODEL

The adversary aims to transmit contaminated WiFi packets
with the adversarial pilot symbols to control users’WiFi sens-
ing systems. To achieve this goal, the adversary embeds the
pilot contaminationmechanism into the firmware of theWiFi
transmitter (e.g., access points, routers) through firmware
modifications. For example, The adversary can compromise
WiFi routers deployed in public places (e.g., office rooms,
university buildings, and hotel lobbies) via physical access
and install the malicious firmware. In addition, the adversary
can utilize online firmware update methods [11] to install the
malicious firmware: (i) An adversary could send a malicious
update with the pilot contamination mechanism through
the Internet to compromise a WiFi router [27]. Firmware up-
dates of many WiFi routers are not sufficiently protected by
proper authentication; (ii) The adversarymay also spreadma-
licious firmware updates to compromise some routers even if
they are protected by authentication (e.g., using the devices’
factory default login information); (iii) Furthermore, as open-
source WiFi platforms (e.g., OpenWRT [31], DD-WRT [12],
Tomato Firmware [40]) are gaining popularity, the malicious
firmware can be disguised as a customized online firmware
update of these platforms with new functionalities. Users
may install the firmware and unintentionally give control of
their WiFi devices to the adversary.

To generate the adversarial pilot symbols, an adversary
should have clean CSI data from public WiFi datasets or col-
lect the data using his/her own WiFi receiver in the target
environment. A similar strategy is adopted in the prior work
RAFA [25]. In addition, an adversary can apply gradient-
based adversarial machine learning algorithms to generate
adversarial examples for two types: (i) Untargeted attack that
aims to disable theWiFi sensing system by making the CSI at
the receiver-side misclassified as an incorrect activity or iden-
tity label; (ii) Targeted attack that is designed to change the
classification result to an adversary-desired activity/identity
label. To optimize the pilot symbols of untargeted and tar-
geted attacks, we consider the following two attack scenarios,
each associated with a practical strategy for acquiring the
model for optimization:

White-box Setting. The adversary utilizes a pre-trained

deep learning model to mirror the user’s model in archi-
tecture and weights. This assumption holds in real-world
scenarios since numerous WiFi sensing systems are con-
structed upon pre-trained deep learning models, which are
often accessible online (e.g., WiDar [33]). To generate the pi-
lot symbols, the adversary employs gradient-descent-based
optimization techniques on the pre-trained model.

Black-box Setting. In cases where the user’s pre-trained

model is inaccessible, the adversary can harness the transfer-
ability property of deep learning models [24] to craft the ad-
versarial pilot symbols. By exploiting the transferability, the
adversary can train a surrogate model with similar classifica-
tion objectives (e.g., activity or user identification) using their
own model architectures and CSI datasets. Deep learning
models exhibit similar inference capabilities despite differ-
ences in architectures or training datasets. So, the adversary
can use the surrogate model to train the pilot symbols.

4 ATTACK OVERVIEW

4.1 Problem Formulation

We aim to craft the adversarial pilot symbols that force the
deep learning model for WiFi sensing to produce adversary-
specified labels. We represent the deep learning model as a
function that takes a CSI sample as input and yields prob-

abilities over a set of predefined labels: 𝑧 = 𝑓 (𝐻̂ ), where 𝑧
denotes the label with the highest probability. The attack’s
goal is to generate contaminated pilot symbols resulting in

perturbed CSI 𝐻̂ ′ at the user’s devices, compelling the model

to produce a target label: 𝑧𝑡 = 𝑓 (𝐻̂ ′). The adversary must
address the following practical constraints:

Maintaining Regular Communication.Contamination of the

pilot symbols could induce undesired CSI perturbations 𝐻 ′,
which might degrade the WiFi communication quality on
user devices. In this work, we quantify the communication
quality with packet loss rate. The high loss rate will cause
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(a) CSI responses (subcarrier 14) un-

der different pilot symbol values

(b) Manipulating responses of CSI

across all 52 subcarriers

Figure 3: Illustration of CSI responses throughmanipu-

lation of pilot symbols in the transmitted WiFi packet.

slow network speeds and frequent disconnects, which could
alert users about potential attacks. Therefore, our attack
needs to minimize its negative effects on packet loss rate to
remain unnoticeable under regular communication.

Universal Applicability to Users’ Interactions. In most real-

world situations, the user’s activity and the altered pilot
symbols will influence the perturbed CSI 𝐻 ′. Given the un-
predictability of the user’s activity type in advance, the gen-
erated adversarial pilot symbols must be effective across
diverse user activities.

Robustness against Physical Distortions. To realize physi-

cal attacks with WiFi devices, the attack must be robust
against environmental distortions due to neighboring signal
interference and hardware internal noises (e.g., RF front ents,
local oscillator).

4.2 Theoretical Analysis on Pilot
Contamination and Verification

Theoretical Quantification of Pilot Symbol Modifica-

tion on CSI. Our adversarial attacks rely on adding pre-
cise perturbations to the CSI. Consequently, it becomes im-
perative to devise a novel approach that guarantees con-
cealed modifications at the subcarrier level of the CSI. Specif-
ically, our attack controls the transmitted signal 𝑥𝐿 by scal-
ing the pilot symbol values at the transmitter. The pilot se-
quence in IEEE 802.11 WiFi packet contains 𝐾 symbol values
𝐿 = [𝐿1, ..., 𝐿𝑘 , ..., 𝐿𝐾 ], each corresponding to a short signal
segment of the transmitted signal 𝑥𝐿 . We denote the transmit-

ted signals of the𝑘𝑡ℎ subcarrier as 𝑥 (𝑘 )𝐿 . By scaling the symbol
value with a coefficient 𝛼 , the strength of the transmitted
signal segment will also be scaled with the same coefficient

𝛼𝑥 (𝑘 )𝐿 . Considering the physical channel ℎ is consistent, the
signal of the pilot symbol received at the user’s device can
be modeled as being multiplied with the same coefficient,
equation 2 can be revised as follows:

𝛼 · 𝑦 (𝑘 )𝐿 ≈ 𝛼 · (ℎ𝑥 (𝑘 )𝐿 ) + 𝑛, (4)

where the noise term 𝑛 is usually ignored during CSI com-
putation. Given the scaled received signal, the CSI estimated
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Figure 4: Simulation of impact pilot symbol with dif-

ferent values of coefficient 𝛼 . By controlling 𝛼 , we can

reduce the negative impacts on the communication

caused by pilot symbol contamination.

at the user’ device can be reshaped based on LS method as:

ℎ̂𝑘
′
= 𝛼 · ℎ̂𝑘 = 𝛼 · [(𝑥 (𝑘 )𝐿 )∗𝑥 (𝑘 )𝐿 ]−1 (𝑥 (𝑘 )𝐿 )∗𝑦 (𝑘 )𝐿 , (5)

where ℎ̂𝑘
′
and ℎ̂𝑘 are the estimated CSI before and after the

pilot contamination. Note that the signal template 𝑥 (𝑘 )𝐿 for
CSI computation is pre-known to the receiver and will not
be impacted by the signal scaling at the transmitter. The
equation shows a multiplicative relationship between the
modification to the pilot symbol 𝐿𝑘 and the estimated CSI

ℎ̂𝑘
′
, which will be used as the foundation of our attack.
During the attack, the generated adversarial perturbation

is converted into an array of coefficient 𝛼 as a group of
contaminated pilot symbols. Once a malicious firmware is
installed to compromise the WiFi transmitter, the adversary
can inject contaminated pilot symbols into the transmitted
WiFi packets. The contaminated pilot symbols are an integral
part of the WiFi packet itself. Therefore, the synchronization
between contaminated pilot symbols and the packet is not
necessary. When these packets are received, the CSI com-
puted from these affected packets is inherently influenced
by contaminated pilot symbols.
Experimental Validation. We conduct experiments us-

ing two USRP devices to validate the multiplicative relation-
ship between the pilot symbols and CSI changes. Specifi-
cally, we use a B210 as the transmitter and a B205min as
the receiver. Both devices run GNU Radio and gr-ieee802-11
modules [5]. The CSI is computed at the receiver using the
WiFi_Decode_MAC module at GNU Radio.

To examine themultiplicative relationship, we try to change
the received CSI of subcarrier 14 (ℎ14) by scaling its symbol
value 𝐿14 with 𝛼 at the transmitter. Specifically, we vary 𝛼
from 0.5 to 3 in 6 consecutive 10-second time slots, with a
step of 0.5. The amplitude of the received CSI is shown in
Figure 3(a). We can find that the CSI amplitude increases
linearly with the changing 𝛼 . To further examine the CSI
amplitude changes induced by 𝛼 , we compute the average
CSI amplitude at each time slot. With an unaltered CSI am-
plitude of 1.1929, we observe that the CSI amplitude changes
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to 0.65, 1.71, 2.35, 2.96, 3.59 when the 𝛼 is set to 0.5, 1.5, 2,
2.5, 3, respectively. The relationship of CSI before and after
the modification approximates the coefficient 𝛼 , which is
aligned with our theoretical derivation in Equation 5. We
further study the feasibility of modifying CSI across different
individual subcarriers. We program to take turns to switch a
subcarrier for modification, where coefficient 𝛼 is configured
as 3 for each designated subcarrier to highlight the signifi-
cance of channel manipulation. In Figure 3(b), the channel
response extracted from the actual signal shows the change
in CSI amplitude corresponding to each subcarrier over time.
These results validate that the CSI amplitude can be multi-
plicatively manipulated based on the designated coefficient 𝛼 ,
which can be leveraged to construct complex perturbations.

We further investigate how the constraint on modification
coefficient 𝛼 limits its negative impacts on regular communi-
cation. Particularly, we quantify the communication quality
with packet error and bit error rates and study how they
change under different 𝛼 values. As shown in Figure 4, under
the same signal-to-noise ratio (SNR), both packet error rate
and bit error rate increase as 𝛼 decreases. These observa-
tions suggest the value of 𝛼 , which controls the magnitude
of the modified pilot symbols, should be controlled to reduce
the impact on communication. We study this problem and
design an innovative method to limit the magnitude of the
adversarial pilot symbols in our attack, which is explained
in Section 5.3.

4.3 Attack Flow

We design a suite of techniques to realize the proposed phys-
ical, unnoticeable, and universal adversarial attack against
twomost representative applications inWiFi sensing, human
activity recognition and user authentication. The attack flow
is illustrated in Figure 5.
Activity-agnostic Universal Training. Based on the

quantified multiplicative relationship between pilot sym-
bols and CSI (validated in Section 4.2), we design an attack
scheme that optimizes the perturbation as a multiplicative
factor upon CSI (𝑥 ′ = 𝑥 ·𝛿𝑚). We adopt the Carlini &Wagner
(C&W) attack scheme to craft the perturbation, which mini-
mizes the magnitude of CSI modification as well as the un-
targeted/target adversarial loss. To ensure the perturbation
is effective on various users’ activities, we employ penalty-
based universal training on a diverse set of CSI samples cor-
responding to different activities. Such a universal training
strategy makes the perturbation agnostic to users’ activities
and identities.

Perturbation Robustness Enhancement. To ensure the
effectiveness of physical attacks across varied conditions, we
introduce a channel augmentation technique that integrates
channel fading effects from diverse environments into the
perturbation training process. Furthermore, to enhance the

Figure 5: Flow of our physical adversarial attack target-

ing deep learning-empowered WiFi sensing systems.

robustness of our perturbations against noise distortions,
we incorporate hardware imperfections by simulating them
with Gaussian noises during training.

Adversarial Pilot Symbol Generation. In our inves-
tigation in Section 4.2, we find that a low 𝛼 may increase
the packet loss, potentially alerting users. To avoid such
disruptions, our attack suppresses such difference based on
perturbation-to-signal ratio (PSR), which sets boundaries of
the symbol value to limit the symbol distortions of the attack.
Finally, our attack embeds the perturbations in terms of pilot
symbol values of WiFi packets.

5 ATTACK DESIGN

5.1 Universal Perturbation Training

To ensure the viability of the proposed attack in real-world
scenarios, it is essential to develop a universal perturba-
tion capable of significantly influencing the received CSI.
This perturbation should lead the user’s model 𝑓 (·) to in-
correctly classify the received CSI, regardless of the initial
CSI patterns (e.g., any CSI linked to the preserved activi-
ties within the model). In this study, we explore untargeted
and targeted adversarial attacks. Given (𝑥,𝑦) ∈ D, where
D = {(𝑥1, 𝑦1) , . . . , (𝑥𝑚, 𝑦𝑚)} represents the training data
comprising CSI samples 𝑥 and corresponding ground-truth
labels 𝑦, we aim to induce misclassification in the untargeted
adversarial example such that 𝑓 (𝑥 + 𝛿) ≠ 𝑦. Conversely, the
targeted adversarial example is designed to manipulate the
model’s output to a predetermined target label, with the ob-
jective of achieving 𝑓 (𝑥 + 𝛿) = 𝑦𝑡 , where 𝑦𝑡 signifies the
target label and 𝛿 stands for the universal perturbation. To
achieve this, we frame the generation of perturbations for
the untargeted and targeted attacks as:

Untargeted Attack: argmin
𝛿

‖𝛿 ‖𝑝 s.t. 𝑓 (𝑥 + 𝛿) ≠ 𝑦, (6)

Targeted Attack: argmin
𝛿

‖𝛿 ‖𝑝 s.t. 𝑓 (𝑥 + 𝛿) = 𝑦𝑡 , (7)
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where ‖ · ‖𝑝 denotes the 𝐿𝑝 norm. The optimization stops
when it finds the optimal perturb adversarial sample 𝑥 ′ with
the minimal 𝛿 = 𝑥 ′ − 𝑥 .
In this study, we employ a similar approach to the C&W

attack [7] in order to solve the optimization problems out-
lined above. The C&W attack stands as a potent adversarial
technique widely employed for untargeted and targeted mis-
classification. Compared to other adversarial attack meth-
ods (e.g., FGSM [15] and DeepFool [28]), the C&W attack
demonstrates enhanced effectiveness and robustness against
established defense mechanisms, including defensive distil-
lation [32]. Based on the C&W attack, the optimization prob-
lem for the untargeted attack in Equation 6 is transformed
into the following equation:

minimize − (𝑐 · L𝑢 (𝑥
′)) + ‖𝛿 ‖𝑝 , (8)

More specifically, for the untargeted attack, the optimization
contains two terms: the first term encourages the model
to misclassify the perturbed input 𝑥 ′ into any class other
than the original ground-truth label 𝑦, and the second term
encourages the model to minimize the magnitude of the
perturbation (i.e., less detectable). The untargeted attack loss
function is shown in the following equation:

L𝑢 (𝑥
′) = max(𝑍 (𝑥 ′)𝑦 −max

𝑖≠𝑦
{𝑍 (𝑥 ′)𝑖 },−𝜉), (9)

where 𝑍 (·) is the logits (the output of the model 𝑓 (·) before
the softmax function), and 𝜉 is a constant that controls the
untargeted misclassification confidence.

The optimization problem for the targeted attack in Equa-
tion 7 is transformed into the following equation:

minimize 𝑐 · L𝑡 (𝑥
′) + ‖𝛿 ‖𝑝 . (10)

Similarly, for the targeted attack, the optimization also con-
tains two terms: the first term encourages the model to clas-
sify the perturbed input as the target label, and the second
term encourages the model to minimize the magnitude of
the perturbation. The targeted attack loss function is shown
in the following equation:

L𝑡 (𝑥
′) = max(max

𝑖≠𝑦𝑡
{𝑍 (𝑥 ′)𝑖 } − 𝑍 (𝑥

′)𝑦𝑡 ,−𝜉). (11)

Note that we adopt 𝐿2 norm and the best loss function men-
tioned in the original C&W attack scheme [7] to realize the
L𝑢 (·) and L𝑡 (·).
Unlike the original C&W attack using 0 ≤ 𝑥 + 𝛿 ≤ 1 as

a “box constraint” [7], we generate perturbations within a
positive and reasonable CSI amplitude range that can be
applied to OFDM transmission using the following equation:

𝑥 ′ = 𝜎 ·
1

2
(tanh(𝑤) + 1), (12)

where𝑤 is the variable to be optimized in tanh(·), 𝜎 is the
maximum value that we used to constrain the value of the

perturbation in our attack model. In our algorithm. we ini-
tially generate 𝑥 ′ using a given𝑤 = arctanh( 2𝑥𝜎 − 1). Then,
we employ Equation 8 or Equation 10 to update𝑤 and 𝑥 ′ at
each training epoch to iteratively find the optimal perturba-
tion.

To further preserve the concealed nature of the generated
universal adversarial perturbation, it is crucial to impose
a constraint on its magnitude, ensuring it remains smaller
than that of the WiFi signal. Specifically, we introduce the
perturbation-to-signal ratio (𝑃𝑆𝑅) as the following equation,
which quantifies the relative magnitude of the perturbation
with respect to the signal magnitude.

𝑃𝑆𝑅 =
‖𝛿 ‖2
‖𝑥 ‖2

, (13)

where 𝑥 represents the average magnitude of WiFi frames
from the legitimate transmitter. As the 𝑃𝑆𝑅 should be set as
low as possible to remain undetectable (i.e., 𝑃𝑆𝑅 	 1), we
adopt a threshold-based method to constrain the magnitude
of the perturbation when searching for the optimal pertur-
bation. In this work, we empirically determine a threshold
𝜏𝑃𝑆𝑅 = 0.05, which constrains the magnitude of the perturba-
tion to the minimum that can support high attack successful
rates based on our experimental results.

5.2 Robustness Enhancement

CSI is often susceptible to diverse environmental changes
and hardware-induced signal distortions [56]. Even slight
noise interference can potentially alter our perturbation and
disrupt its optimized pattern in practical environments. To
address this challenge, we collect clean CSI samples (i.e.,
without any people in the same environment) at different
times of a day, denoted as 𝑛̂ = [𝑛1, 𝑛2, ..., 𝑛𝑖 ]. By adding
these collected noises into the perturbation optimization
process, the loss function will augment the robustness of
the perturbation against various environment and hardware
noises. Building upon this design, we showcase enhancing
the robustness of targeted attack by revising Equation 10 as
follows:

minimize 𝑐 · L𝑡 (𝑥 + 𝛿) + ‖𝛿 ‖𝑝 , (14)

where 𝑥 is equal to 𝑥+𝑟𝑎𝑛𝑑 (𝑛̂). At each perturbation training
epoch, the sample 𝑥 will be affected by not only the pertur-
bation but also the noise randomly selected from 𝑛̂. Such a
process will enhance the robustness of our attack against
random signal variations in practical scenarios.

5.3 Adversarial Pilot Symbol Generation

The process of generating universal adversarial perturba-
tions described earlier assumes the incorporation of pertur-
bation 𝛿 into the benign sample through addition operations.
However, our findings in Section 4.2 indicate that the alter-
ation in CSI follows a linearly multiplicative pattern with the
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Algorithm 1: Targeted multiplicative universal ad-
versarial perturbation generation.

Input: Input dataset D, target class 𝑦𝑡 , target model
𝑓 , hyperparameters 𝜂.

Output: Multiplicative Universal Perturbation 𝛿𝑚 .
1 Initialize: Additive and Multiplicative Universal

Perturbation 𝛿 , 𝛿𝑚 .
2 while ASR(D) < 𝜏𝐴𝑆𝑅 do

3 for (𝑥,𝑦) ∈ D do

4 Initialize 𝑥 ← 𝑥 · 𝛿𝑚 , 𝑐𝑢𝑝𝑝𝑒𝑟 , 𝑐𝑙𝑜𝑤𝑒𝑟 ,𝑤 and

𝑐 = 𝑐𝑙𝑜𝑤𝑒𝑟 ;

5 for numbers of epochs do

6 𝑥 ′ = 𝜎 · 1
2 (tanh(𝑤) + 1);

7 𝛿 = 𝑥 ′ − 𝑥 ;
8 L𝑡𝑜𝑡𝑎𝑙 ← ‖𝛿 ‖2 + 𝑐 · L𝑡 (𝑥

′);

9 𝑤 = 𝑤 − 𝜂 · ∇𝑤L𝑡𝑜𝑡𝑎𝑙 ;

10 if L𝑡 (𝑥
′) > 0 then 𝑐𝑙𝑜𝑤𝑒𝑟 = 𝑐 ;

11 else 𝑐𝑢𝑝𝑝𝑒𝑟 = 𝑐 ;
12 𝑐 = (𝑐𝑢𝑝𝑝𝑒𝑟 + 𝑐𝑙𝑜𝑤𝑒𝑟 )/2;

13 end

14 if 𝑃𝑆𝑅 > 𝜏𝑃𝑆𝑅 then 𝛿 = 𝛿 ·𝜏𝑃𝑆𝑅
𝑃𝑆𝑅 ;

15 Update 𝛿𝑚 ← (𝑥 + 𝛿)/𝑥 ;

16 𝛿𝑚 =𝑚𝑎𝑥 (𝑚𝑖𝑛(𝛿𝑚, 𝛿𝑚𝑎𝑥
𝑚 ), 𝛿𝑚𝑖𝑛

𝑚 );

17 ASR(D) = 1
𝑚

∑𝑚
𝑖=1 1 (𝑓 (𝑥𝑖 · 𝛿𝑚) = 𝑦𝑡 );

18 end

19 end

coefficient 𝛼 when applied to adversarial pilot symbols. As a
result, it becomes essential to transform the universal adver-
sarial perturbation generation represented in Equation 14
into a multiplicative format to effectively execute the attack
on the physical channel. Specifically, we need to transform
the generated perturbation 𝛿 to a multiplicative perturbation
𝛿𝑚 through 𝛿𝑚 ← (𝑥 + 𝛿)/𝑥 .

In addition, it is essential to ensure that the values of 𝛿𝑚
maintain a reasonable magnitude, aligning with the ampli-
tude distribution of real CSI samples. For the lower bound
constraint of 𝛿𝑚 , we aim to retain the orthogonality of the
pilot symbols defined by OFDM (i.e., keep the positive and
negative signs of the pilot symbols unchanged). Given that
the perturbation is applied to the pilot symbol through mul-
tiplication, we must ensure the universal adversarial per-
turbation is non-negative. For the upper bound constraint
of 𝛿𝑚 , we aim to avoid excessive amplitude that may cause
failure in decoding and a substantial number of bit errors.
Such distortion in data communication can be easily detected.
Therefore, we empirically set the lower and upper bounds of
𝛿𝑚 as 𝛿𝑚𝑖𝑛

𝑚 = 0.5 and 𝛿𝑚𝑎𝑥
𝑚 = 3, respectively. The value of 𝛿𝑚

(a) unaffected CSI (b) Affected CSI

Figure 6: A comparison of the spectrograms of two CSI

time series unaffected and affected by the adversarial

perturbation generated by our attack.

will be adjusted to𝑚𝑎𝑥 (𝑚𝑖𝑛(𝛿𝑚, 𝛿
𝑚𝑎𝑥
𝑚 ), 𝛿𝑚𝑖𝑛

𝑚 ) after determin-
ing the optimal 𝛿𝑚 . Figure 6 presents a comparison of the
spectrograms of two CSI time series. One remains unaffected
by the adversarial pilot symbol injection (Figure 6(a)), while
the other reflects the impact of the adversarial pilot sym-
bol introduced around 44s (Figure 6(b)). The results indicate
that our method can successfully generate the adversarial
perturbations transferable to pilot symbols of WiFi packets
to control received CSI. The whole process of generating
targeted multiplicative universal adversarial perturbations is
depicted in Algorithm 1. Note that Algorithm 1 terminates
when the attack success rate (ASR) on the perturbed dataset
exceeds the preconfigured threshold 𝜏𝐴𝑆𝑅 .

6 EVALUATION

6.1 Experiment Setup

Hardware Setup. We deploy two USRP devices—B210 serv-
ing as the transmitter and B205 as the receiver—utilizing
the GNUradio platform [13] to broadcast an OFDM signal.
Both devices are configured to operate on WiFi Channel
100, which spans from 5.49 ∼ 5.51𝐺𝐻𝑧, using a central
frequency of 5.5𝐺𝐻𝑧. The transmission power is set at -
28.25dBm, equivalent to a normalized gain of 0.75 in the
GNUradio setup. The packet transmission rate is set at 50Hz.
Both transmitter and receiver are operated via laptops run-
ning Ubuntu 18.04. To filter out extraneous packets, we em-
ploy a MAC address filtering technique, ensuring only data
from our transmitter is considered. The receiver then gathers
CSI measurements across 52 subcarriers, which are used for
dataset construction.

TrainingCSIDataCollection.We evaluate the proposed
attack in three different environments: an apartment, a uni-
versity office, and a balcony with dimensions of 6.2𝑚 × 4.5𝑚,
5.3𝑚 × 5.0𝑚, and 4.1𝑚 × 6.0𝑚, respectively. Figure 7 illus-
trates the specific floorplans for these environments. Both
the transmitter and receiver are positioned 2m apart horizon-
tally and raised 1m above the ground.We enlist 35 volunteers
who perform a total of six activities, chosen based on typ-
ical indoor actions: kicking, pushing, raising arms, sitting,
squatting, and walking. Each of these activities takes place
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Figure 7: Experimental setup for physical attack in

three different room environments.

in all three environments. Raw CSI data from the receiver
is processed using a sliding window and short-time energy
(STE) method [38] to segment activity-based CSI samples.
In total, our dataset comprises 8,280 activity samples (per-
formed by 15 volunteers) from the apartment, 8,715 samples
(from another set of 15 volunteers) in the office, and 2,625
samples (conducted by 5 volunteers) from the balcony.
Training Deep Learning Models.We utilize the clean

CSI data from volunteers to train deep learning models
for two distinct CSI-based applications. For human activity
recognition, we employ a CNN + GRU architecture consist-
ing of three convolutional layers followed by an one-layer
Gated Recurrent Unit (GRU) [52]. Each activity is linked with
its corresponding CSI measurements, which are labeled as
activity profiles. For user authentication, we adopt a CNN
model as presented in existing literature [38]. Activities per-
formed by specific users are labeled as user profiles. In both
models, time-domain features are extracted from the CSI
measurements, and they are trained using a supervised learn-
ing approach. The models demonstrate robust performance,
with a classification accuracy of 96.57% for human activity
recognition and 94.85% for user authentication.

In this work, we define the baseline as the model’s misclas-
sification rate under the regular usage without attacks. The
collected CSI data already contains random background and
hardware noises, which distort the CSI pattern and cause mis-
classifications. For both untargeted and targeted attacks, we
compare the attack success rates with the baseline without
launching the attacks. For the untargeted attack, the attack
is considered successful if the WiFi samples are misclassified
(i.e., different from their ground-truth label). The percent-
ages of misclassifications for activity recognition and user
identification are 3% and 5% in our baseline, respectively. For
the targeted attack, the success rate is defined as the per-
centage of WiFi samples classified as an adversary-specified
target label. We take turns to set each activity/user label as
the target label to evaluate our attack. The average success

rates of baseline are 0.58% and 1.02% for activity recognition
and user identification, respectively.

AttackAlgorithmEvaluation.Our adversarial perturba-
tion generation is implemented using the Tensorflow frame-
work [1]. The digital perturbations were generated as de-
tailed in Section 5. For both target models, we execute our
attack algorithm to craft specific adversarial universal pertur-
bations for each target label. To assess the real-world efficacy
of our attack, we introduce the perturbation to the transmit-
ter, broadcasting the perturbed OFDM signal. This signal was
subsequently captured by the receiver while volunteers per-
formed the six activities. The perturbed CSI samples were
then extracted from the received packets to compile the
adversarial testing datasets. In total, we collected 1600 per-
turbed CSI samples for testing human activity recognition
and 1250 samples for user authentication. The data collection
procedures were approved by our university’s IRB.

Evaluation metrics. 1) Attack Success Rate: For attacking
model classification result, we define the twometrics to quan-
tify the attack effectiveness: untargeted attack success rate
(UASR) and targeted attack success rate (TASR). Untargeted
attack success rate is the probability that a contaminated pi-
lot symbol causes the model to produce false activity or user

label. It can be calculated as 𝑈𝐴𝑆𝑅 = 𝐴𝐶𝐶 − 𝑁𝑐𝑜𝑟𝑟𝑐𝑒𝑡
𝑁𝑡𝑜𝑡𝑎𝑙

, where

𝐴𝐶𝐶 is the recognition accuracy of the target model; 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

is the number of perturbed CSI sample be correctly classified;
𝑁𝑡𝑜𝑡𝑎𝑙 is the total number of perturbed CSI samples. Targeted
Attack success rate is the probability that a contaminated pi-
lot symbol causes the model to classify perturbed CSI sample
to the any label desired by the adversary. It can be calculated

as,𝑇𝐴𝑆𝑅 =
𝑁𝑡𝑎𝑟𝑔𝑒𝑡

𝑁𝑡𝑜𝑡𝑎𝑙
, where 𝑁𝑡𝑎𝑟𝑔𝑒𝑡 is the number of perturbed

CSI samples that are classified as the target activity or user.
2) Packet Loss Rate: In addition, we use packet loss rate (PLR)
to quantify the quality of data communication of the WiFi

link. It can be calculated as 𝑃𝐿𝑅 = 1 −
𝑁𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑁𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑
, where

𝑁𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 is the number of packet received, 𝑁𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 is the
number of packet transmitted. The smaller the packet loss
rate, the better the data communication quality.

6.2 Human Activity Recognition

6.2.1 Physical Attack Performance. We first evaluate the
effectiveness of our physical attack on human activity recog-
nition. As depicted in Figure 8(a), the targeted attack success
rate for human activity recognition is tested under three dis-
tinct environments: apartment, office, and balcony. Within
each environment, we assess the attack’s potency against 6
distinct activity classes. Our formulated attack registers an
average success rate of 90.47% across all activity categories
and throughout the three settings. This result significantly
outperforms the performance of the targeted attack base-
line, 0.58%. Notably, the office setting, though recording the
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(c) Confusion matrix for office
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Figure 8: Targeted attack success rate for activity recognition: (K)ick, (P)ush, (R)aise (A)rm, (S)i(T), (SQ)uat, (W)alk.
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Figure 9: Targeted attack success rate for user authen-

tication in different environments.

lowest average success rate, still achieves over 88%, under-
scoring the resilience of our attack across diverse environ-
ments. Detailed insights into the attack outcomes for each
environment are visualized in Figures 8(b), 8(c), and 8(d).
Intriguingly, in certain environments, like the apartment
and balcony, success rates for some specific true-predicted
combinations (such as squat-sit) dip marginally. This is at-
tributed to the pronounced resemblance between the native
and targeted CSI samples. Nevertheless, in the larger scheme,
our attack consistently posts commendable success averages
of 91.75%, 88.01%, and 91.67% for the three of environments.

6.2.2 Digital Attack Result. Figure 10 depicts the perfor-
mance for human activity recognition on the digital side.
In the scenario of an untargeted attack, the results show
the effectiveness of our perturbation generation algorithm,
achieving an overall 89.83% UASR across all three environ-
ments. This result shows that our attack is 83% better than
the baseline when against WiFi-based activity recognition.
With the perturbation’s influence, a mere average of 6.4% of
all perturbed samples get classified accurately, suggesting
that a significant proportion of the samples have their classes
altered from their original labels.
In the targeted attack setting, our approach consistently

show high performance, nearing a 100% success rate in all
three settings. Both Figure 12(a) and Figure 12(b) show the
effectiveness of our formulated perturbation across the spec-
trum of the 6 activity categories. It’s noteworthy to highlight
that, percentage-wise, TASR outperforms UASR. Given our
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UASR definition—which hinges on the differential between
the pristine model’s recognition accuracy and the propor-
tion of correct classifications. It is plausible for the UASR to
generally lag behind TASR, especially when the recognition
accuracy of the model reaches around 96%.

6.3 User Authentication

6.3.1 Physical Attack Result. We subsequently evaluate our
physical attack within the context of the user authentication.
Figure 9(a) and Figure 9(b) show the targeted attack success
rate on user authentication across different user identities.
Our attack achieves an average TASR of 83.83% throughout
all three settings. This result is 82% better than the targeted
attack baseline. In particular, for the apartment and office
settings, our approach yields TASRs of 84.56% and 89.03%
across the respective 15-user groups. Meanwhile, in the bal-
cony environment, a TASR of 77.9% is accomplished across
the 5 user labels. Note that some user labels exhibit relatively
low TASRs. For instance, in the apartment environment, the
targeted attack outcome for user label 7 barely achieves a
TASR of slightly over 60%. This discrepancy can be attributed
mainly to the fact that certain user labels inherently share
similar features, displaying limited variability in attributes
like body shape, height, and weight as manifested in CSI.
This overlap renders the attack less effective for specific in-
dividuals. Nonetheless, the attacks targeting the majority of
user labels consistently register TASRs equal to or exceeding
80% across all tested environments.
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Figure 12: Digital targeted attack for human activ-

ity recognition involving (K)ick, (P)ush, (R)aise (A)rm,

(S)i(T), (SQ)uat, (W)alk.
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Figure 13: Comparison of packet loss rate before and

after launching our physical attack.

6.3.2 Digital Attack Result. As shown in Figure 11, both the
untargeted and targeted attack success rates attain averages
of 86.33% UASR and 98.63% TASR, respectively. Compared
with the baseline,our attack can achieve 81% higher UASR
when against WiFi-based user authentication. The generated
perturbation effectively causes the expected misclassifica-
tions.

6.4 Impacts on Communication Quality

To assess the unnoticeability of our proposed attack, we con-
duct a case study comparing the average packet loss rate in
scenarios both with andwithout the attack over a fixed signal
transmission duration. Given the packet transmission rate of
50Hz as described in our hardware setup, we would theoret-
ically expect to receive 5000 packets over 100 seconds. We
determine the PLR for various activities based on the count
of packets lost during this transmission. As illustrated in
Figure 13, the average PLR stands at 14.24% in the absence of
an attack and slightly rises to 16.23% during an attack as CSI
is perturbed while users are engaged in their activities. This
minimal increase in PLR indicates the subtlety of our attack.
Such consistent communication quality underscores that our
approach not only ensures effective adversarial outcomes but
also remains discreet in the context of data communication,
reflected by the low packet loss rate.

6.5 Impacts of Attack Algorithms

To investigate the effects of varying attack algorithms, we
conducted experiments on human activity recognition with
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Figure 14: Comparisons of physical attack performance

with different attack algorithms and deep learning

models.

a group of five participants in an apartment setting. Both
FGSM [15] and C&W algorithms were adapted to our per-
turbation generation workflow. Figure 14(a) illustrates that
while the C&W algorithm yields a TASR of 93.45%, the FGSM
yields a mean TASR of 64.08% across all six activities.

It’s noteworthy that, with the exception of the SQ (squat)
activity, TASRs derived from the FGSM algorithm consis-
tently lag behind those procured via the C&W algorithm.
Although the FGSM-generated perturbation for the squat
activity boasts a TASR of 99.5%, such high-efficacy perturba-
tions are rarely produced by FGSM. This can be attributed to
the fact that the FGSM algorithm wasn’t originally crafted
for targeted adversarial attacks, whereas the C&W method
is more nuanced and aims at specific labels. Furthermore,
FGSM’s susceptibility to environmental nuances and its vul-
nerability tominor channel fluctuations become evident even
when channel augmentation strategies are in play.

Nevertheless, FGSM’s ability to surpass a TASR of 60% ac-
centuates the adaptability of our attack to a broader spectrum
of extant adversarial attack techniques, further emphasizing
its efficacy in perturbation generation.

6.6 Impacts of Deep Learning Models

To assess the viability of our proposed attack against various
existing deep learning architectures, we compare its effec-
tiveness on two target models: the Transformer and our CNN.
The evaluation focuses on the human activity recognition
task, involving a consistent group of 5 volunteers from the
apartment environment.
Figure 14(b) reveals that both the CNN and Transformer

models consistently achieve TASRs greater than 85% for the
majority of activities. More specifically, the attacks yield av-
erage TASRs of 93.45% for the CNN model and 86.81% for
the Transformer model. It’s also worth noting that, in the
absence of any adversarial attacks, both clean models main-
tain classification accuracies for human activity recognition
beyond 95%. These results collectively underscore the ver-
satility of our attack, highlighting its potential for targeting
an array of deep learning architectures.
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(b) Attack different CNN model
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(c) Attack transformer model
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Figure 15: Black-box attacks on human activity recog-

nition under different settings.

6.7 Black-box Attack

To further investigate the practicability of our attack, we
perform transfer-based black-box attack experiments under
two cases. In the first case, we use the same CNN model to
assess the impact of varying training sets on TASR during
black-box attacks. Specifically, we generate a perturbation
using a training set from a group of 8 individuals and direct
the attack towards a model trained with a dataset from 2 dif-
ferent individuals. In the second case, we examine the impact
of disparate model architectures on TASR under black-box
conditions. This case includes scenarios where the adversary,
unfamiliar with the exact architecture of the target model,
uses the initial model for his training set. We consider three
types of different model architectures: CNN, transformer and
LSTM. CNN, as a fundamental building block in diverse WiFi
sensing tasks, such as activity recognition, user authentica-
tion, and gesture recognition, is necessary to be considered
in black-box attack. Even through transformer and LSTM
are rarely used for WiFi sensing applications, they are inves-
tigated in prior studies of WiFi sensing [9, 54]. Therefore, we
also need to take them into the consideration. Firstly, we em-
ploy a CNN with 3 convolutional layers to train the dataset
and then initiate an attack on another CNNmodel consisting
of 2 convolutional layers. Then, we utilize the same adver-
sarial perturbation, which is trained by the CNN with 3
convolutional layers, to attack a transformer model and an
LSTM model separately. The results of these experiments
are presented in Figures 15(a), 15(b), 15(c) and 15(d). The
results reveal that the average TASR for black-box attacks

employing different training sets stands at 65.98%. Mean-
while, black-box attacks using the CNN with 3 convolutional
layers against the CNN with 2 convolutional layers achieve
an average TASR of 49.05%. In the case of attacking different
model architectures, the average TASR achieves 20.01% and
27.17% when against the transformer and LSTM model, re-
spectively. While these figures represent a drop from the 98%
TASR observed in prior white-box attacks, these cases still
surpass random guesses, which are statistically expected to
yield a mere 18%.

7 RELATED WORK

WiFi Sensing Systems. Existing CSI-based sensing systems
are mainly focused on activity and gesture recognition, user
authentication, and localization. Regarding activity recogni-
tion, Nakamura et al. [29] designed a CSI-based fall detec-
tion system using CNN with high accuracy across environ-
ments. Shalaby et al. [36] developed deep learning models on
CSI amplitude data for recognizing different types of activi-
ties. Wang et al. [42] enabled accurate human authentication
through a few-shot learning without requiring a large num-
ber of CSI data. Liu et al. [23] proposed tracking human vital
signs via the detection of CSI variations induced by breathing
and heartbeats. WiFi sensing has also been utilized for user
authentication tasks. For example, AR-Alarm [20] performs
real-time intrusion detection using CSI on commodity WiFi
devices. Furthermore, CSI-based sensing can be extended to
realize indoor locations [18].

Adversarial Attacks. Adversarial attacks aim to add im-
perceptible perturbations to original inputs, causing targeted
deep learning models to yield incorrect decisions. Particu-
larly, deep learning models are inherently susceptible to such
attacks in various applications. For example, in the image
and audio domains, most existing studies launched digital
adversarial attacks on video [7, 46, 47] and speech/speaker
recognition models [3, 10, 19, 30, 39, 41, 49], which feed
adversarial examples directly into the target model with-
out considering effects in real physical environments. Some
studies proposed over-the-air audio attacks [2, 8, 21, 51, 53],
focusing on modeling sound distortions during audio propa-
gation. With the proliferation of deep learning in wireless
sensing, wireless sensing systems also have security vulner-
ability to adversarial attacks [4, 17, 43, 48, 50]. For instance,
Wang et al. [43] showed the threat of digital adversarial at-
tacks through the manipulation of CSI data in a DNN-based
indoor localization system. WiCAM. [50] investigates a dig-
ital adversarial perturbation generation method to attack
a WiFi-based activity recognition system. However, these
studies manipulate digital WiFi data directly to compromise
the deep learning model at the receiver side without con-
sidering the practicability of establishing these attacks in
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real-world scenarios, in which receiver devices (e.g., laptops,
smartphones) are hard to access.

Recent studies have designed adversarial attacks using RF
signals to alter the decisions of deep learning models. For
example, WiAdv.[57] investigated adversarial signals against
the gesture recognition system by modifying the Doppler
shift of CSI with adversarial perturbations. Similarly, Liu et
al. [22] exploited a physical adversarial example as a jam-
ming signal to disrupt the behavior recognition system. Fur-
thermore, RAFA [25], which launches a physical adversarial
attack on a WiFi-based localization system, requires the at-
tack signal to be sustained for a duration exceeding that of
the preamble to be effective. However, these signal-based
attacks disrupt the wireless communication channel to inject
the adversarial perturbations. They compromise the packet’s
payload, leading to noticeable packet loss rates or data de-
coding errors for users. Such errors or delays can impact the
communication quality. In this paper, we show a practical at-
tack compatible with commercial WiFi devices while having
a negligible impact on WiFi communication quality.

8 DISCUSSION

Enhancement of Black-box Attack. For more practical
black-box attack scenarios, it is hard for the adversary to
acquire specific labels, model architecture, and parameters
for the target classification system. To enhance the trans-
ferability of black-box attacks, we could train adversarial
examples across diverse datasets and model architectures.
Besides, the adversary usually can only access part of the
training data for the target model. To address the lack of
information about the deep learning model, generative ad-
versarial networks (GANs) could be harnessed to synthesize
sufficient adversarial samples with the original training data.
Overall, these explorations have the potential to enhance the
practicality of black-box attacks in real environments.
Extending the Applicability and Robustness of Attacks.

Several potential areas can be explored in future work. First,
since our research did not fully utilize the highly sensitive
CSI phase data for human activity recognition, we could ex-
pand the utilization of CSI to incorporate phase information
within CSI, making it adaptable to a broader spectrum of
WiFi-based sensing systems. In addition, existing studies in
the image domain show that adversarial attacks have the
capability to attack image classification classifiers (i.e., Im-
ageNet) for over 1000 classes [55]. Our attack techniques
can be further generalized to models with more labels. To
enhance the robustness of perturbations in real physical en-
vironments, our proposed channel augmentation technique
could be further incorporated with simulated physical distor-
tions from ambient noise using specialized channel models.
These research avenues could provide valuable insights into

improving the applicability and robustness of attack methods
across various wireless sensing systems.

Countermeasures.Our proposed attack allows the adver-
sary to generate perturbations that are correctly decoded and
hardly perceived during wireless transmission through the
establishment of specific symbol value thresholds. Therefore,
a potential countermeasure is to detect adversarial examples
by analyzing differences between clean and perturbed CSI
data. Particularly, the alternations in pilot symbols in our
attack would introduce some fluctuations in the CSI phase
data. This could be due to the changes of 𝐼 and 𝑄 compo-
nents, a complex sample that is defined by each half of the
long training symbols. A value changes to a specific sub-
carrier also emits magnitude modification to either 𝐼 or 𝑄
component and further changes the complex number which
induces the phase shift. Such a phase shift may vary based
on different modulation modes in wireless transmission and
serve as a potential indicator for adversarial example de-
tection. This detection can be conducted by examining the
statistical characteristics or building a machine learning clas-
sifier (e.g., SVM). For instance, statistical measures such as
mean, variance, and skewness could help discern perturbed
CSI data associated with specific activities or users.

9 CONCLUSION

In this work, we investigate the security issues of WiFi sens-
ing systems through designing a physical, unnoticeable, and
universal adversarial attack. Our investigations revealed that
by tampering with the pilot symbols in transmitted WiFi
packets, adversaries can covertly manipulate the predictions
of deep learning models without disrupting regular commu-
nication. Through a rigorous theoretical analysis, we quanti-
fied the multiplicative relationship between the influence of
pilot modifications at the transmitter and the receiver-side
CSI. Based on this quantification, we designed an adapted
Carlini & Wagner attack scheme that optimizes adversarial
pilot symbols as multiplicative factors upon CSI, realizing
both untargeted and targeted attacks. In addition, we de-
veloped a penalty-based universal training approach that
optimize robust pilot symbols independent to users’ activ-
ities and identities. Furthermore, various channel interfer-
ence and hardware noises are considered to improve the
robustness of the pilot symbols under physical attacks. Ex-
tensive experiments against both activity recognition and
user identification models under various realistic scenarios
demonstrated the attack’s effectiveness.
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