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Abstract—In this letter, we revisit the classical problem
of estimating the frequency response of an LTI system
from noisy, non-periodic input-output data. Existing solu-
tions fall into two categories: indirect methods, which
compute the frequency response using identified mod-
els, and direct methods, which estimate the response
directly from data. Direct methods bypass system iden-
tification, but have challenges when applied to noisy,
finite-length datasets with unknown initial conditions. This
letter proposes a new direct method that addresses these
challenges, and provides an explicit formula for computing
the frequency response. To develop this method, this letter
leverages ideas from behavioral system theory and poses
the problem as an optimization problem, whose objective
is to minimize the projection of the solution onto the
nullspace of an input-output data matrix. This letter also
offers an alternative derivation of the formula, based on
identifying an ARX model, thereby bridging the gap with
classical indirect approaches. The proposed method is
applied to experimental data collected from a DC motor,
where we show that the proposed method outperforms
other direct approaches based on Fourier transforms and
low-rank approximations, and performs equally as good as
direct subspace identification methods, even though no
model class is prescribed.

Index Terms—Frequency response estimation, non-
parametric methods, subspace methods, behavioral
system theory.

I. INTRODUCTION

T
HE ESTIMATION of frequency response from noisy and
non-periodic input-output data is a well-known problem

in the field of system identification [1] and in applications [2].
Existing solutions can be classified as either parametric or
non-parametric. Parametric methods identify a model, such
as a state-space or transfer function model, and then use the
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identified model to indirectly compute the frequency response.
As such, we refer to these methods as “indirect”. Non-
parametric methods, on the other hand, are “direct” in the
sense that they estimate the frequency response directly from
data. Non-parametric methods bypass system identification
and do not require explicit model order selection. As such,
they simplify the overall identification process and provide
an end-to-end solution to the practitioner. However, they face
challenges when dealing with noisy, non-periodic, and finite-
length data, and with non-zero initial conditions [3], [4], [5],
[6]. Even in the absence of noise, the finite nature of the data
results in the so-called “leakage errors” due to windowing,
which distorts the estimated spectrum.

The recent work in [7] introduced a new direct method
that addresses the leakage problem in the case of exact,
noise-free data. The method was developed in the behavioral
setting (see [8], [9], [10] for an overview), which thanks to
the fundamental lemma [8], [11], [12], allows a harmonic
output of an LTI system to be expressed as a function of
offline, persistently exciting input-output data. In the case
of inexact (i.e., noisy) data, [7] proposed a pre-processing
heuristic to denoise the data matrix using low-rank approx-
imation (LRA) to enforce the rank condition required by
the fundamental lemma. We recently applied the method
presented in [7] to experimental data collected from a real
DC motor. The method performed poorly out of the box,
which motivated further investigation that culminated in this
letter.

As such, this letter introduces a new direct method, as
well as an explicit formula, for computing the frequency
response of LTI systems from noisy, non-periodic input-output
datasets. The formula does not require any hyper-parameter
tuning and, in the case of noise-free data, provides the
exact frequency response, even when applied to finite-length
datasets with non-zero, unknown initial conditions. We offer
two different derivations of this formula. The first one builds
upon the results in [7], where we take a representation-
free and non-parametric perspective, but unlike the LRA
heuristic in [7], we pose the estimation problem as an
optimization problem, whose objective is to minimize the
projection of the solution onto the nullspace of the input-output
data matrix. This approach is inspired by the recent data-
driven control literature (see [8], [13], [14], [15], [16], [17],
specifically [14], [15], [16]). The second derivation is based
on identifying an ARX model by minimizing a least-square
prediction criterion, and computing the frequency response
using this model. Thus, the two derivations provide a bridge
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between direct and indirect approaches. We apply the proposed
formula to experimental data collected from a DC motor,
where we show that the proposed method outperforms other
direct approaches based on LRA (as proposed in [7]) and
Fourier transforms, and performs equally as good as direct
subspace identification methods, even though no model class
is prescribed.

This letter is organized as follows. Preliminaries are pro-
vided in Section II. The main results are reported in Section III.
Application to a DC motor is provided in Section IV.
Conclusions and future work are reported in Section V.

The notation throughout this letter is as follows. The sets R,
R

n, Rn×n, and C denote the set of real numbers, n-dimensional
vectors of real numbers, n × n matrices with real entries,
and complex numbers, respectively. The variable j denotes
the imaginary unit: j =

√
−1. We use the integer variable

t to denote the discrete time index. For a discrete-time LTI
system with discrete transfer function P(z), its frequency
response is defined as P(ejω), where ω ∈ R. For a matrix A,
A† denotes its Moore–Penrose pseudoinverse and ‖A‖F its
Frobenius norm. For a sequence of matrices X1, . . . , Xn with
the same number of columns, we use the col operator to denote
col(X1, . . . , Xn) = [X�

1 , . . . , X�
n ]�.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Model- & Data-Based Representations of LTI
Systems

Consider a discrete-time, SISO,1 LTI, and bounded-input-
bounded-output stable system with input u(t) ∈ R, output
y(t) ∈ R, and represented by the disturbance-free ARX model

y(t) = G

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(t − n)
...

u(t)

y(t − n)

...
y(t − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where G ∈ R
1×(2n−1) collects the ARX coefficients. For now,

we assume that G is known, but will eventually estimate it
from (noisy) data in Section III-B. Eq. (1) is often posed in an
n-dimensional state-space form. Both are parametric models.

Suppose that the model parameters are unknown, but a
single input-output trajectory from the system is available. Let
the trajectory be denoted by ud(t) and yd(t), t = 0, . . . , Td −1,
where Td ≥ 1 is the length of the data, and d in the subscript
and superscript stands for “data”. Given a fixed T ≥ 1, we
define the “Hankel data matrix” of order T as follows:

H =
[
Hu

Hy

]
∈ R

2T×M

where M = Td − T + 1,

Hu =

⎡
⎢⎢⎢⎣

ud(0) ud(1) · · · ud(Td − T)

ud(1) ud(2) · · · ud(Td − T + 1)
...

...
. . .

...

ud(T − 1) ud(T) · · · ud(Td − 1)

⎤
⎥⎥⎥⎦,

and Hy can be similarly defined by replacing all instances
of u by y in the above. All of our subsequent developments

1For the sake of clarity, this letter considers single-input, single-output
(SISO) systems. The multi-input, multi-output case can be handled similarly
by applying our methods to all permutations of the input and output channels.

also hold for a more general matrix data structure, where
the columns of Hu and Hy may comprise of M different,
possibly independent, trajectories, as discussed in [8]. We will
not pursue the general case in this letter.

In the case of exact data, any combination of the columns
of H will be a valid length-T trajectory of system (1). The
converse result is true as well under certain conditions: the
column span of the data matrix H spans the entire set of
length-T trajectories if and only if the data matrix satisfies the
low-rank condition2

rank(H) = T + n, (2)

for T ≥ n. This result is known as the “generalized persistency
of excitation” condition [18, Corollary 21]. Said differently,
under condition (2), for any length-T input sequence u and
corresponding output y, where u = [u(0), u(1), . . . , u(T−1)]�

and y = [y(0), y(1), . . . , y(T−1)]�, there exists a (non-unique)
vector g such that

Hg =
[

u
y

]
(3)

For later use, we define YP as the first T − 1 rows of Hy

and YF as the last row of Hy, so that

H =
[
Hu

Hy

]
=

⎡
⎣
Hu

YP

YF

⎤
⎦. (4)

In the case of exact data, a persistently exciting input, and
for T = n + 1, the matrix col(Hu, YP) has full row rank
[16, Remark 3]. In case of a persistently exciting input and
noisy output measurements, this matrix also has full row rank
almost surely; see [16, Lemma 3]. In either case, the matrix is
right-invertible. We thus make the following assumption for
the rest of this letter:

Assumption 1: The matrix col(Hu, YP) has full row rank.

B. Frequency Response Estimation Problem

Let the transfer function of (1) be denoted by P(z). Recall
that its frequency response for a frequency ω ∈ R is defined
as P(ejω), which is a complex number. Its magnitude and
phase can be used to construct the Bode plot, which famously
underlies numerous analysis and synthesis concepts.3

If the model parameters are known, P(ejω) can be readily
computed. Without a model, P(ejω) can be obtained “exper-
imentally” (at least conceptually for a stable system) by
applying a complex exponential input signal u(t) = ejωt,
which is a continuous and periodic function of time with
frequency ω, and collecting the associated output signal. The
output at steady-state (i.e., after all transients have decayed),
is given by y(t) = P(ejω)ejωt, another complex exponential of
frequency ω.

In the same manner, the frequency response P(ejω) can be
obtained from a finite length-T input-output dataset. Namely,
let u = z := [ejω ej2ω · · · ejTω]� be a harmonic input
signal of frequency ω and length T > n, where the notation u
is consistent with (3). If the associated length-T output signal
y were equal to zPω, i.e., harmonic with frequency ω and

2From an input-design perspective, the low-rank condition (2) is met if the

system is controllable and the input data, ud , is a single long persistently

exciting time series. This is known as the fundamental lemma [11].
3We acknowledge that synthesis methods that leverage the frequency

response are more widely used in continuous time or in discrete-time scenarios
when the desired cross-over frequency is sufficiently below the Nyquist rate.
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scaled by a complex Pω ∈ C, then Pω is the sought frequency
response, i.e., Pω = P(ejω) [7].

Define z̃ := [ejω ej2ω · · · ej(T−1)ω]�, which has one
less element than z defined earlier but is otherwise the same.
In a model-based setting and for T = n + 1, we may readily
insert the signals u = z and y = zPω into (1), and leverage
the notation z̃, to obtain:

ejTωPω = G

[
z

z̃Pω

]
(5)

and solve equation (5) for the sought frequency response Pω.
In a data-driven setting, the above principle has been

successfully used in [7] for arbitrary T > n. Specifically,
suppose the data matrix H has been populated with the offline
input-output data. Then, by substituting u = z and y = zPω

into (3) (parameterizing all length-T trajectories) we obtain

Hg =
[

z

zPω

]
, (6)

where the unknowns are now g ∈ C
M×1 and Pω ∈ C. The

system of equations (6) can be equivalently written in the
following standard form:

[[
0

−z

]
H

][
Pω

g

]
=

[
z

0

]
(7)

If H satisfies (2) and T > n, then (7) has a unique solution for
Pω (but not g) [7]. Of practical relevance is the case of inexact
data, where the trajectories in H are corrupted by measurement
noise, process disturbances, or nonlinearities. In this case, H
will have full row rank (instead of rank T + n) and so Pω is
not unique. To address this, [7] proposed a heuristic based
on unstructured low-rank approximation (LRA) to “denoise”
the data matrix before using it in Eq. (7). This was achieved
by computing the singular value decomposition of H: H =
U�V� and replacing H in (7) with the first T + n columns
of U, which guarantees that the rank condition in (2) is met.

However, LRA provides no guarantees of accuracy and,
in fact, it may perform poorly in practice, as we show in
Section IV. The main reason for this poor performance is that
LRA merely enforces the rank condition as required by the
fundamental lemma. In the process, it removes the Hankel
structure of the matrix (which encodes time-invariance of the
underlying system), and modifies both Hu and Hy parts of H,
even though only Hy is corrupted by noise. Furthermore, LRA
disregards the interplay between g and Pω.

The main goal of this letter is to propose a new direct data-
driven approach to robustly (and uniquely) compute Pω from
noisy data.

III. MAIN RESULTS

In this section, we present our main result, namely an
explicit formula to compute Pω from noisy data. We offer
two derivations of this formula: one in the non-parametric
setting by leveraging (7), and one in the parametric setting by
leveraging (5).

A. The Non-Parametric Perspective

To begin, note that (6) can be equivalently expressed as

[
Hu

YP

YF

]
g =

⎡
⎣

z

z̃Pω

ejTωPω

⎤
⎦, (8)

where YP and YF are defined in (4), and z̃ is as defined
above Eq. (5). In the noise-free case, the semantics of (8)
are as follows: Pω must be chosen so that the right-hand side
of (8) is in the image of the matrix H on the left-hand side.
According to (2), H is of low-rank and admits a null-space (of
considerable size for large M) and thus a non-unique solution
for g, but any of these solutions lead to the same frequency
response Pω. In case of inexact data, H is likely of full row
rank and thus any frequency response Pω is compatible with
the data. This incompatibility with the ground-truth system is
clearly undesired and can only be poorly mitigated by LRA,
as will be shown in Section IV.

Instead, contemporary data-driven predictors assure a robust
prediction by biasing the solution g, e.g., by searching for a
g of small 2-norm ‖g‖2 or of small 1-norm ‖g‖1 (i.e., high
sparsity), which serve as surrogates for noise robustness and
low rank of H, respectively; see [19] for a discussion and
survey. One particular solution for g is

g ⊥ kernel

[
Hu

YP

]
, (9)

i.e., g is orthogonal to the nullspace of the first two block-
equations in (8). This choice of g is related to a least-square
estimate of an ARX model, as shown in the next subsection.

The unique solution of (8) subject to the orthogonality (9)
can be formulated by minimizing the projection of g onto the
nullspace of the (first two blocks of the) data matrix H, i.e.,

min
g,Pω

‖(I − �)g‖2
2 (10)

subject to (8)

where � ∈ R
M×M is the projector assuring (9):

� =
[
Hu

YP

]†[
Hu

YP

]
.

To solve (10) explicitly, note that (9) is equivalent to
requiring that g belongs to the image of col(Hu, YP)�, i.e.,
g = col(Hu, YP)�α for some α ∈ C

2T−1. Substituting this
into (8) yields the following two equations:

[
Hu

YP

][
Hu

YP

]T

α =
[

z

z̃Pω

]

YF

[
Hu

YP

]T

α = ejTωPω

or, by leveraging Assumption 1,

YF

[
Hu

YP

]T
([

Hu

YP

][
Hu

YP

]T
)−1[

z

z̃Pω

]
= ejTωPω (11)

Now, define the matrix X ∈ R
1×(2T−1) as follows:

X = YF

[
Hu

YP

]T
([

Hu

YP

][
Hu

YP

]T
)−1

As we will show in the next subsection, X corresponds to the
least-square estimate of the ARX model coefficients G in (1).
Finally, we break up

[
z

z̃Pω

]
=

[
z

0

]
+

[
0
z̃

]
Pω
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and solve (11) for Pω, which yields the following formula for
computing the frequency response directly from data (encoded
in X ):

Pω =
X

[
z

0

]

ejωT − X

[
0
z̃

] . (12)

Equation (12) is the main result of this letter. Specifically, if
the data satisfies Assumption 1, we can use (12) to compute
the frequency response of the system at frequency ω, without
identifying a parametric model. To use this formula to generate
the Bode plot, we compute Pω using (12) on a frequency grid,
one frequency at a time. Note that the matrix X needs to be
computed only once.

Remark 1: Formula (12) can be further leveraged for down-
stream analysis and synthesis tasks, e.g., to evaluate the H2 and
H∞ norms of the system directly from data. Specifically, the

H2 norm can be computed as the square root of 1
π

∫ π

0 |Pω|2dω
through numerical integration, and the H∞ norm can be com-
puted as maxω∈[0,π ] |Pω|, which can be obtained by finding

the analytical expression for
d|Pω|

dω
and computing its roots. We

will not pursue these further here.
Remark 2: Although condition (2) requires the order, n, of

the system to be known, the method itself does not use it.
Without prior knowledge of n, the parameter T can be chosen
as the maximum value for which H has at least as many
columns as rows.

B. Bridging the Gap With Parametric Approaches

In what follows, we show how to equivalently derive
the frequency response formula (12) in an indirect setting,
i.e., based on a parametric model identified from data.
Consider the offline input-output data stored in ud(t) and yd(t).
We know that for any t ∈ {n, . . . , Td − 1}, the output, y(t),
must satisfy the ARX model (1). The coefficients G of the
model in (1) can thus be estimated according to the following
least-squares criterion

G
� = argminG

Td−1∑

t=n

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

yd(t) − G

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ud(t − n)
...

ud(t)

yd(t − n)

...

yd(t − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

By selecting T = n + 1 and forming the Hankel data
matrix H with this T , the above optimization problem can be
equivalently expressed in terms of H and explicitly solved,
as follows:

G
� = argminG

∥∥∥∥YF − G

[
Hu

YP

]∥∥∥∥
2

F

= YF

[
Hu

YP

]†

, (13)

where this is the unique solution, thanks to Assumption 1.
Next, following the certainty-equivalence paradigm, the

above solution G� can be used to calculate the frequency
response Pω, as in the model-based setting (5). Formally,
this sequential procedure can be posed as the following bi-
level problem:

Find Pω

such that ejTωPω = G
�

[
z

z̃Pω

]

where G
� = argminG

∥∥∥∥YF − G

[
Hu

YP

]∥∥∥∥
2

F

. (14)

It turns out that the certainty-equivalent model-based
approach (14) also results in the previously derived frequency
response formula (12). Namely, upon inserting the explicit
least-squares solution (13) into (14), we arrive at the equation

ejTωPω = YF

[
Hu

YP

]†[
z

z̃Pω

]

which coincides with (11) based on which the frequency
response formula (12) was derived. The attentive reader may
note that X in (12) equals the model estimate G� in (13).

Remark 3 (Contextualization of Our Approach): We con-
clude with a few remarks on this model-based perspective
on the frequency response formula (12). First, we relate our
results to the subspace literature: the vector of optimal ARX
coefficients G� (or equivalently, X ) in (13) is also known as
the (single-step) subspace predictive control model [20]. It is
known that in the presence of noise, this predictor has accuracy

1/
√

M, where M is the number of columns in the data matrix
H; see [16, Th. 2] for details. In the equivalent derivation
in the previous subsection, the objective (10) is also known
as the certainty-equivalence regularizer in data-driven control
approaches [14], [15]. Last, an instrumental variable scheme
can also be used to derive the predictor (13) (suitably adapted
to the instrument) [21].

Now we take the perspective of prediction error methods
minimizing the least square prediction loss. In the noisy case,
the optimal estimate G� in (13) is likely dense, in which
case the estimated model has relative degree zero. Further, the
derivations in this subsection rely on the data-window length
T = n + 1. In general, n is unknown and thus one may opt
for a sufficiently large T , i.e., a possibly over-parameterized
model. As our numerical studies show (e.g., see next section),
this class of (possibly over-parameterized and relative-degree
zero) models performs well in experimental case studies.

IV. EXPERIMENTAL RESULTS

We use an experimental setup comprising a Quanser QUBE
Servo 2 DC motor interfaced with a laptop computer running
MATLAB/Simulink 2020b. The manipulated variable (input)
is the voltage applied to the DC motor and the measured
variable (output) is the motor speed. This is a single-input
single-output, stable system.

First, a sequence of quasi-random steps are applied to
the motor, as shown in the top subplot of Fig. 1. The
resulting output, collected at Ts = 2 ms, is shown in the
bottom subplot. This data is used to obtain a model of the
system using subspace identification (n4sid command in
MATLAB). Since the dynamics appear linear and first order,
the order of the model is selected to be n = 1. The identified
transfer function is 21.71

z−0.9837
, which will serve as benchmark

comparison later on. The output of the model, driven by
the same input as shown in the top subplot of Fig. 1, is
superimposed in the bottom subplot (red curve). Clearly, the
identified first-order model captures the dynamics accurately,
though there is visible measurement noise and quantization
errors, as well as nonlinear effects (e.g., around 3 seconds).

Authorized licensed use limited to: Hamid-Reza Ossareh. Downloaded on June 04,2024 at 02:07:50 UTC from IEEE Xplore.  Restrictions apply. 



OSSAREH AND DÖRFLER: FORMULA FOR ESTIMATING THE FREQUENCY RESPONSE OF LTI SYSTEMS 3685

Fig. 1. Input-output data ud (t) and yd (t) collected from the DC motor
experiment.

Fig. 2. The Bode plots obtained by applying LRA pre-processing and
solving (7), with various values of horizon T , on the dataset shown
in Fig. 1. The Bode plot generated using model-based estimation
technique (n4sid) and the actual, empirical frequency response are
also plotted.

The Bode plot of this model, generated using MATLAB’s
bode command, is shown in Fig. 2 (solid blue line). Note that
in this figure, and in all the remaining Bode plots in this letter,
we plot P(ej�Ts) as a function of � instead of P(ejω), where
Ts is the sampling period with which the input and output data
are collected, and � is the continuous-time frequency in the
units of radians per second. Recall that the continuous-time
and discrete-time frequencies are related through ω = �Ts.

To determine the accuracy of the model-based Bode plot,
a sequence of sinusoidal inputs u(t) = sin(ωt), with ω ∈
{0.1, 1, 3, 5, 10, 100}, are applied to the motor input and the
output is collected. The magnitude and phase shift of the
output sinusoid are then visually obtained and are used to
empirically calculate the Bode plot. The results are superim-
posed in Fig. 2 (red curve). As can be seen, the model-based
Bode plot is highly accurate.

Next, the same input-output data is used to generate
the Bode plot using the LRA-based data-driven approach
presented in [7] and reviewed in Section II. To this end, the
prediction horizon T is varied from 2 to 8 (T = 2 is the
theoretical minimum for a first order system). For each T , we
construct the Hankel matrix H, which has dimension 2T ×
(5001 − T), and use the LRA heuristic to denoise it, as
reviewed in Section II-B. Finally, we use (7) to compute the
frequency response. The resulting “data-driven Bode plots” are
superimposed over the model-based one in Fig. 2. As can be
seen, the LRA-based data-driven approach cannot accurately
estimate the frequency response. Interestingly, LRA exhibits a
bias at low frequencies for lower values of T . This observation
may have important ramifications in the context of certain

Fig. 3. Bode plot obtained using (12). The model-based Bode plot
obtained using n4sid is also plotted.

data-driven control schemes such as the DeePC [13]. Indeed,
if LRA-based data-driven predictors are used to compute
optimal control commands to track constant references, the
bias in the predictor at low frequencies may lead to poor
tracking performance. Also interestingly, Fig. 2 shows that
LRA performance improves with T . A plausible reasoning
for this observation is that condition (6) – encoding that
the response to a sinusoidal input is a sinusoid of the same
frequency – is increasingly hard to be met (for larger T) for
a system inconsistent with the data.

Next, we use the proposed data-driven approach to generate
the Bode plot. To this end, we use the dataset shown in Fig. 1
to form the Hankel matrix with T = 2 without any LRA pre-
processing, and compute Pω on a logarithmic frequency grid
using (12). The resulting Bode plot is shown in Fig. 3. As
can be seen, the estimation performance has greatly improved.
In fact, the accuracy is the same as the indirect method of
obtaining a state-space model using subspace identification via
the n4sid routine followed by evaluation of the frequency
response using the identified model. Note that, unlike the
indirect method, (12) gives the frequency response in one-
shot and does not require explicit model order selection (recall
Remark 2).

Finally, we study the effects of dataset size (i.e., window-
ing) and compare the performance of the proposed approach
with common frequency response estimation methods. To
this end, we window (i.e., truncate) the time series data
in Fig. 1 with Ts = 6ms from t = 0 to t = L − 1,
where L is varied from 50 timesteps (i.e., 300ms) to 1600
(i.e., 9.6 s). For each L, we form the Hankel data matrix
with T = 2, and compute Pω on a frequency grid using
the LRA-based approach and also using Eq. (12). Note that
regardless of L, the resulting Hankel matrix has 4 rows, but
the number of columns will be larger for larger values of L
(i.e., the larger the L, the wider the matrix). As a point of
comparison, we also use the following routines in MATLAB
to obtain the Bode plots: n4sid (subspace method), arx
(least-squares method), spafdr (spectral method), and etfe
(also spectral). The first two are parametric and the latter two
are non-parametric. In n4sid, as before, we assume system
order of n = 1. In arx, we regularize the problem using
the squared exponential kernel with hyperparameters that are
tuned optimally using arxRegul, and assume n = 2. This
combination of regularization and order resulted in the best
estimation performance with this method. For the spectral
methods, we do not apply any window functions to the data.

To quantify the performance, we compute the error at
the six frequencies where the empirical frequency response
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Fig. 4. Comparison of the proposed method (Eq. (12)) with n4sid,
LRA, spafdr, etfe, and arx for varying window sizes (i.e., dataset
size). Smaller MAPE is better.

(i.e., “the ground truth”) is available: 0.1, 1, 3, 5, 10, and 100
rad/s. For this quantification, we define the mean absolute
percentage error (MAPE) for each Bode plot as: MAPEx =
1
6

∑6
i=1 |memp(ωi)−mx(ωi)

memp(ωi)
| × 100, where ωi take values in

{0.1, 1, 3, 5, 10, 100}, memp(ωi) is the empirical Bode mag-
nitude at frequency ωi in dB, subscript x takes values from
the set {Eq. (12), n4sid, LRA, spafdr, etfe, arx}, and mx is the
Bode magnitude in dB, estimated using method x. The MAPE
values as a function of dataset size are plotted in Fig. 4. The
following conclusions can be made:

• The proposed method performs well, even on small
datasets. In fact, it results in similar performance as
subspace identification (n4sid) and least-squares (arx),
independent of the window size and despite it being direct
and not imposing any model parametrization.

• The LRA-based estimation performance is poor, though it
improves with dataset size. Interestingly, the LRA method
performs worse than spafdr and etfe on this dataset.

• The estimation accuracy of all methods reaches a plateau
and remains flat. This can be attributed to bias errors
resulting from quantization errors, sampling, and nonlin-
earities such as nonlinear friction, as well as the fact that
the empirical frequency response itself may contain small
errors.

As a final note, we emphasize that this letter does not claim
superiority over either time-domain or frequency-domain
identification methods. We merely claim that the proposed
formula (12) can achieve similar performance as indirect
parametric methods (in either domain) without explicitly
assuming a model structure.

V. CONCLUSION

This letter provided an explicit formula to compute the
frequency response of LTI systems directly from finite-length
input-output, possibly-noisy time-domain data. The formula
is derived in two settings: the behavioral setting, where the
estimation problem is formulated as an optimization problem,
whose objective is to minimize the projection of the solution
onto the nullspace of the input-output data matrix; and the
indirect model-based setting, where we show that the proposed

formula is equivalent to first identifying a model through
a certainty-equivalent ARX predictor and then obtaining the
frequency response from the model.

We applied the proposed method to experimental data
collected from a DC motor and showed that the proposed
method outperforms other direct approaches based on Fourier
transforms and low-rank approximations, and performs similar
to direct methods based on subspace identification, even
though no model class is assumed. Future work will investigate
reducing bias errors caused by nonlinearities and quantization
effects, as well as applying the proposed method to other
practical experiments. We will also compare the proposed
method against other parametric and non-parametric identifica-
tion techniques. Finally, we will study the statistical properties
of the proposed estimator.
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