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The existing nonparametric frequency response estimation methods suffer from leakage. Because of
this, these methods do not yield the correct result in case of exact data of a linear time-invariant
system. Our main contribution is a time-domain direct data-driven nonparameteric frequency response
estimation method that, in case of exact data satisfying standard persistency of excitation condition,
eliminates the leakage and has infinite frequency resolution. The method is derived in the behavioral
setting. It requires solving a system of linear equations and has no hyper-parameters. In case of
noisy data, a modification of the method with preprocessing with low-rank approximation results
in a subspace-type method for frequency response estimation.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Nonparametric frequency response estimation is a classical
system identification problem, see Ljung (1999, Chapter 6). The
basic solution, referred to as the empirical transfer-function es-
timate computes the discrete-time Fourier transforms (DTFT) of
the given time-domain input/output data sequences and divides
per frequency the Fourier transform of the output by the Fourier
transform of the input. The resulting method is frequency-domain
direct data-driven. It is conceptually simple, computationally ef-
ficient, thanks to the fast Fourier transform (FFT), and easy to
use. Even with exact finite-length data, however, the empirical
transfer-function estimate is not guaranteed to deliver the exact
frequency response because of leakage errors.

From a system-theoretic perspective, the leakage error is the
effect of the ignored initial conditions and the resulting transient
response (Pintelon & Schoukens, 2012, Section 6.3.2). From a
signal processing perspective, the leakage error is the effect of
the windowing of the data. Numerous modifications of the basic
empirical transfer-function method aim to reduce the errors due
to the leakage, see, e.g., Gevers, Pintelon, and Schoukens (2011),
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Kay (1988) and Stoica and Moses (2005). The state-of-the-art
methods are based on pre-processing of the data by filtering,
which often involve hyper-parameters whose tuning requires
user expertise and prior knowledge about the system. Thus, al-
though nonparametric frequency response estimation methods
have been developed for many years, the fundamental problem
of leakage remains open. It should be noted that this problem
can be resolved in the parametric setting using classical iden-
tification methods. The parametric approach, however, leads to
indirect data-driven methods. Moreover, the parametric meth-
ods use prior knowledge about the model structure, which the
nonparametric methods do not use.

Our objective is to develop a direct data-driven nonparametric
method that resolves the leakage problems in the case of exact
(noise free) data. The basic problem, referred to as frequency
response evaluation, is: Given an exact finite-length time-domain
input/output trajectory of a finite-order deterministic linear time-
invariant system and a set of frequencies, find the frequency
response of the system at the given frequencies. Contrary to the
existing nonparameteric methods that convert the data to the
frequency-domain, the method proposed here operates directly
on the time-domain data. The method has no hyper-parameters
and is provably correct under a standard persistency of excitation
condition on the data. In case of inexact (noisy) data, we propose
a modification of the method based on low-rank approximation,
which has as a hyper-parameter the order of the system. The
resulting subspace-type estimation method is computationally
cheap but suboptimal. Currently, it lacks theoretical performance
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guarantees, however, empirical results show that it works well in
practice.

The derivation of the method is done in the behavioral setting,
which views a dynamical system as a set of trajectories. The key
tool at the heart of the data-driven method proposed in the pa-
per is a time-domain nonparametric representation of the finite
horizon behavior of the system. The result that gives conditions
for validity of the data-driven representation became known as
the fundamental lemma (Willems, Rapisarda, Markovsky, & De
Moor, 2005). The data-driven representation was effectively used
in Markovsky and Rapisarda (2008) for solving simulation and
tracking control problems. The methods were originally devel-
oped for exact data but were subsequently generalized to noisy
data and some classes of nonlinear time-varying systems, see
the overviews (Markovsky & Dorfler, 2021; Markovsky, Huang, &
Dorfler, 2023). The necessary background is given in Section 2.
Section 3.1 presents to solution in case of exact data and Sec-
tion 3.2 presents the modification of the method for the case of
noisy data. The method is illustrated and validated in Section 4.

2. Preliminaries and problem statement

Let (C9)N be the set of g-variate complex-valued signals with
time-axis the natural numbers N (i.e., vector sequences). In the
behavioral approach to systems theory (Polderman & Willems,
1998; Willems, 1986, 1997), a dynamical system is defined as a
set of trajectories # C (C?)N. The important difference from the
classical approach is the distinction of the system (set of trajec-
tories) from its representations (algebraic/difference/differential
equations).

Note 1 (Complex-valued Signals and Systems). In the system iden-
tification and data-driven signal processing and control literature
using the behavioral approach, trajectories and behaviors have
traditionally been real-valued. In this paper, we extend the meth-
ods to complex-valued signals w and correspondingly define the
system 2 as a subset of (C9)N. In practice, however, the response
to a real-valued input and real-valued initial condition is a real-
valued signal. With some abuse of notation, we call systems with
such property real-valued. The response y = Yreal + iyimag Of @
real-valued system % to a complex-valued input ¥ = U +
illinag and/or complex-valued initial condition is complex-valued.
However, wreg = [y ] and wimag = [;::Eﬁ] are decoupled,
ie., two independent real-valued trajectories are formally put
together in one complex-valued trajectory. This formalism is used
in Section 3, where we consider complex exponentials instead of
sine and cosine trajectories. O

We use the behavioral approach because of its relevance to
the data-driven methods in signal processing and control. For
example, it allows us to use the short-hand notation w € £ for
“the signal w is a trajectory of the system 2. Since we consider
finite signals we use the following notation for restricting the
time axis to a finite interval: wlr = (w(1),...,w(T)) is the
restriction of w to the interval [1,T] and #|r C (R?)T is the
restriction of % to [1, T].

A linear time-invariant system 4% is a shift-invariant subspace
of the space of trajectories (RY)Y. The number of inputs m, lag
£, and order n of # are invariant of its representations and are
therefore properties of % (Willems, 1986). The restricted behavior
2| for T > ¢ admits a representation

wq(1) wq(2) wy(Tg — T+ 1)
wa(2) wq(3) wy(Tg — T +2)

B|r = image : : ) , (1)
wo(T)  wa(T +1) wa(Ty)

Fr(wq)
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by a trajectory wq € %y, of length Ty that satisfies the generalized
persistency of excitation condition (Markovsky & Darfler, 2023)

rank 4 (wq) = mT +n. (2)

The matrix s4(wq) € RY*Ta=T+1) js the Hankel matrix with
depth T constructed from the data wq. Note that (2) is verifiable
from the data wq and the prior knowledge of the system’s number
of inputs and order.

Note 2. The data-driven representation (1) and the generalized
persistency of excitation condition (2) are derived for real-valued
systems and signals. The derivation, however, is also valid in the
complex-valued case. If # is real-valued as defined in Note 1,
it is sufficient to use a real-valued trajectory wy that satisfies
(2). Complex-valued trajectories are represented then by linear
combination of the columns of % (wq) with complex-valued
coefficients. O

Consider a linear time-invariant system % with an input/
output partitioning of the variables w = [}]. Let #(H) be the
transfer function representation of the controllable part of 4,
corresponding to the input/output partitioning w = [;}] The
data-driven frequency response evaluation problem considered is
defined as follows.

Problem 1 (Data-driven Frequency Response evaluation). Given a
finite input/output trajectory (ug, yq) of a linear time-invariant
system % and a frequency w € [0, ), find the frequency response
H(e'®) of # at the frequency w.

Trivial generalizations of the problem are to have as data
multiple trajectories {w], ..., w) }, where w} e (R9)T (this is
achieved by using a mosaic Hankel matrix Markovsky, 2014)
and to aim at evaluation of the frequency response at multiple
frequencies £2 := { w1, ..., wg }. Nontrivial generalizations are to
consider noisy data in the errors-in-variables and output error se-
tups as well as nonlinear systems. We will address this extension
in Section 3.2.

3. The proposed method

Section 3.1 presents a solution of the data-driven frequency
response evaluation problem (i.e., assuming exact data wgy) that
uses the data-driven representation (1) as the main tool. Sec-
tion 3.2 presents a modification of the solution for inexact case,
i.e,, noisy data and/or data from a nonlinear system, based on
preprocessing of the data matrix 7 (wq4) with low-rank approxi-
mation (Markovsky, 2019).

3.1. Solution of Problem 1

We consider general multivariable linear time-invariant sys-
tem % with an input/output partitioning w = (u,y) and a
corresponding transfer function H. Our main result is stated in
the following theorem.

Theorem 2. For exact data wq = (uq, ya) € %z, satisfying (2),
T > ¢+ 1, and z € C that is not a pole of H, the system of linear

equations
0mT><p %(ud) Hz — Z®1m (3)
_Z®Ip <%(Yd) G 0pT><m ’

where ® is the Kronecker product and z := [z' ... z']" has a

unique solution for H,, such that H, = H(z).
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Proof. Using the data-driven representation, first, we describe
the m complex exponential responses of the system to complex
exponential inputs applied separately on the m input channels.
Then, we show that the m vector-valued trajectories are com-
pactly described as a matrix valued trajectory. Let e; € R™ be the
ith unit vector (ith column of the m x m identity matrix I,;) and
exp,(t) := z' be the complex exponential function with z € C.
From the behavioral point of view, H(z) describes the subbehavior
of # spanned by

fori=1,...,m
andz € C, z ¢ M), (4)

wi = (e,' exp,, hzjexPz)’

where A(#) denotes the set of poles of . The input of wj; is the
complex exponential e; exp, and the output is a scaled version of
the input h; ; exp,, where the scaling factor h;; is the ith column
of H, := H(z). The w!, ..., w™ can be written as a matrix-valued
trajectory

W = (Inexp,, H;exp,), forzeC,z ¢ M%) (5)

Using the data-driven representation (1) for (5) with length T >
£ + 1, we obtain the following system of equations

.'}ﬁ‘(”d) G = Z®Im
Hr(ya) | |Z®H |’

where G € RTa-T+Dxm Rewritten in the standard form of a
system of linear equations, this gives us Eq. (3). O

The result stated in Theorem 2 is constructive and leads to
a method for direct data-driven frequency response estimation.
Indeed, the parameter of interest H, can be computed by solving
(3) for the unknowns H, and G. Note that the solution based on (3)
allows us to evaluate the transfer function H(z) at any complex
number z, not only at z on the unit circle ¢,

Note 3 (No Hyper-parameters). Although the conditions of Theo-
rem 2 require the lag £ and the order n of the system to be known,
the method itself does not use them. Without prior knowledge
of ¢, the parameter T should be chosen as the maximum value
for which s#(wq) has at least as many columns as rows, i.e.,
T =Tnax = L(Td + 1)/(‘1 + I)J

3.2. Modification for inexact data

One way of modifying the method presented in Section 3.1 for
the case of noisy data is to first preprocess the data, aiming to ap-
proximate the exact noise-free data, and then apply the method
on the preprocessed data. A popular preprocessing heuristic is
unstructured low-rank approximation of the data matrix 4 (wq)
enforcing the prior knowledge that rank % (wq) = mT + n. If
the model order is known, the rank mT + n approximation can
be obtained by truncation of the singular value decomposition of
H4(wq), with T = n + 1 (since n > £). If the model order is not
known, it can be estimated from the decay of the singular values,
by visual inspection or by a range of rank estimation heuristics.

The method with the low-rank approximation preprocessing is
summarized in Algorithm 1. Its Matlab implementation, available
from https://imarkovs.github.io/frest, is essentially five lines of
code. Moreover, it applies to general multivariable systems and
can use data from multiple trajectories {w/,..., w}} as well
as estimate the transfer function at multiple points in the com-
plex plane. In the next section, the implementation dd_frest
of Algorithm 1 is tested on simulated data and is compared
with alternative direct and indirect frequency response estima-
tion methods.
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Algorithm 1 Data-driven frequency response estimation.

Input: Trajectory (uq, yq), z € C, and order n.
1: LetT:=n+1.

2: Compute the singular value decomposition
[ 4 (uq)

_ T ey 1 -
_ff%(J’d)] =UXV' andlet P:=U(:;,1:mT +n).

3: Solve the system

[ Omep P Hz _ Z®Im
L —Z®1p G| 0pT><m '

Output: H, = H(z)

4. Numerical examples

This section illustrates and empirically validates the proposed
method—Algorithm 1, implemented in the function dd_frest—
in case of exact and noisy data obtained in the errors-in-variables
setup. An alternative nonparameteric frequency response method,
used for comparison with dd_frest is the spectral analysis
estimator spa with the Welch method to calculate spectral den-
sities (Stoica & Moses, 2005). Both non-parametric methods—
dd_frest and spa-—are referenced against the theoretical
optimal performance achieved by the maximum-likelihood esti-
mator ident (Markovsky, 2013) in the errors-in-variables setup.
Note that ident implements an indirect parametric method
based on local optimization. In the case of noisy data both dd_frest
and ident use the correct order n of the data-generating system
as prior knowledge.

In the simulation, we use the benchmark of Landau, Rey,
Karimi, Voda, and Franco (1995), which is a 4th order single-input
single-output system £ defined by the transfer function

_ 0.28267 + 0.5067z*
T 1—1.4183z + 1.58942z2 — 1.316123 + 0.8864z%°

The data is obtained in the errors-in-variables setting (Soder-
strom, 2007), ie., wqg = Wg + Wq, Where Wy € Blr, is the
true value and wq is a zero mean white Gaussian noise with
variance s°.

Fig. 1 shows the frequency response estimates by the three
methods—dd_frest, ident, and spa—in an experiment with
Tq4 = 1000 samples and noise level s = 10% (i.e., signal-to-
noise ratio 10 dB). On the resolution of the figure, the amplitude
estimates of dd_frest and ident are indistinguishable and are
close to the true value. The spa method is less accurate.

Next, we show the relative percentage estimation errors
eq = 100%M and e, = 100%@,

| z z

H(z)

where ﬁz is the estimated frequency response and H, the true
frequency response, averaged over 100 trials of the simulation
experiment with different realization of the measurement noise.
The frequency response is estimated at w = 7 /4. Fig. 2 shows
the relative averaged estimation errors e, and e, as a function of
the noise level in an experiment with T4 = 500 data samples and
Fig. 3 shows the relative averaged estimation errors e, and e, as
a function of the number of samples Ty for noise level s = 5%.
For exact data (zero noise level) the proposed method and the
maximume-likelihood method give exact result (zero errors) and
for increasing noise levels the increase of the errors. The fact that
the proposed method given the correct result for exact data is
an empirical confirmation of Theorem 2. The gap between the
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Fig. 1. Frequency response estimates in an experiment with 1000 samples
and 10% noise level. The amplitude estimates of the proposed method are
nearly identical to the one of the maximum-likelihood method. The classical
nonparametric method is less accurate.

error of the proposed method and the errors of the maximum-
likelihood method quantifies the sub-optimality of the proposed
method due to the low-rank approximation heuristic. The errors
of the classical nonparameteric method are much higher.

Note 4 (Indirect Time-domain Nonparametric Approach). An alter-
native indirect time-domain nonparametric approach is to (1)
compute the impulse response and (2) convert it to the fre-
quency response. A nonparametric impulse response estimation
method that for exact data delivers the exact impulse response
is proposed in Markovsky and Rapisarda (2008, Section 4.5). The
conversion from time-domain to frequency-domain on step 2
can be done by the discrete Fourier transform. This computation,
however, involves an error due to the finite number of samples
of the impulse response. In addition, classical nonparametric im-
pulse response estimation methods, such as the one implemented
in the function impulseest from the System Identification Tool-
box of Matlab, involve an additional error in the computation
of the impulse response. We illustrate this point on a numerical
example:

hh = freqresp(impulseest (iddata(yd0, ud0)), ...
Omega) ;
e =norm(h0(:) - hh(:)) / norm(h0(:)) 7/ ->0.1918

Although the data is exact, the time-domain nonparameteric
indirect frequency response method, based on impulseest, re-
sults in 19% error. Using the noisy data in the errors-in-variables
setup with 10% noise level

hh = freqresp(impulseest(iddata(yd, ud)), ...
Omega) ;
e =norm(h0(:) - hh(:)) / norm(h0(:)) 7 -> 0.2150
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Fig. 2. The relative averaged estimation errors e, and e, as a function of the
noise level show that for exact data (zero noise level) the proposed method
and the maximum-likelihood method give exact result (zero errors) and for
increasing noise levels the increase of the errors. The gap between the error
of the proposed method and the errors of the maximum-likelihood method
quantifies the lack of efficiency of the proposed method due to the low-rank
approximation heuristic. The errors of the classical nonparameteric method are
much higher.
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Fig. 3. Relative averaged estimation errors e, and e, as a function of the
number of samples Ty. The errors of both the proposed method and the
maximum-likelihood method show the typical 1/+/Tq convergence rate. Again
the gap between the error of the proposed method and the errors of the
maximum-likelihood method quantifies the lack of efficiency of the proposed
method due to the low-rank approximation heuristic. The errors of the classical
nonparameteric method are much higher.
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the estimation error is 21%. Using the method proposed in the
paper with the low-rank approximation modification for dealing
with the noise

hh = dd_frest(ud, yd, exp(i * Omega), n);
e =norm(h0(:) - hh(:)) /norm(h0(:)) 7 -> 0.0823

the estimation error is 8%.

5. Conclusions and perspectives

We proposed a direct data-driven method for frequency re-
sponse evaluation and estimation that does not suffer from leak-
age errors and has unlimited frequency resolution. The assump-
tion for exact evaluation in case of noise free data is standard
persistency of excitation condition on the data. The resulting
algorithm has no hyper-parameters and requires solution of a
system of linear equations only. In the noise-free setting, the
proposed method can be viewed akin to the two-step, indirect
frequency response evaluation method consisting of the identi-
fication of an overparametrized ARX model as the first step and
the evaluation of the frequency response using this model as the
second step.

In case of noisy data obtained in the errors-in-variables set-
ting, we propose a modification of the method that has a pre-
processing step by low-rank approximation, using knowledge
of the model order. Empirical results show that the modified
method is more accurate than state-of-the-art nonparameteric
frequency response evaluation methods. The advantages are par-
ticularly pronounced for short data records, lightly damped sys-
tems, and low noise level. In particular, the method is appli-
cable to marginally stable and unstable systems. Future work
includes uncertainty quantification of the method as well as other
modifications for noisy data.
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