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a b s t r a c t

The existing nonparametric frequency response estimation methods suffer from leakage. Because of
this, these methods do not yield the correct result in case of exact data of a linear time-invariant
system. Our main contribution is a time-domain direct data-driven nonparameteric frequency response
estimation method that, in case of exact data satisfying standard persistency of excitation condition,
eliminates the leakage and has infinite frequency resolution. The method is derived in the behavioral
setting. It requires solving a system of linear equations and has no hyper-parameters. In case of
noisy data, a modification of the method with preprocessing with low-rank approximation results
in a subspace-type method for frequency response estimation.

© 2023 Elsevier Ltd. All rights reserved.
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1. Introduction

Nonparametric frequency response estimation is a classical
ystem identification problem, see Ljung (1999, Chapter 6). The
asic solution, referred to as the empirical transfer-function es-
imate computes the discrete-time Fourier transforms (DTFT) of
the given time-domain input/output data sequences and divides
per frequency the Fourier transform of the output by the Fourier
transform of the input. The resulting method is frequency-domain
direct data-driven. It is conceptually simple, computationally ef-
ficient, thanks to the fast Fourier transform (FFT), and easy to
use. Even with exact finite-length data, however, the empirical
transfer-function estimate is not guaranteed to deliver the exact
frequency response because of leakage errors.

From a system-theoretic perspective, the leakage error is the
ffect of the ignored initial conditions and the resulting transient
esponse (Pintelon & Schoukens, 2012, Section 6.3.2). From a
ignal processing perspective, the leakage error is the effect of
he windowing of the data. Numerous modifications of the basic
mpirical transfer-function method aim to reduce the errors due
o the leakage, see, e.g., Gevers, Pintelon, and Schoukens (2011),
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was recommended for publication in revised form by Associate Editor A. Pedro
Aguiar under the direction of Editor André Tits.

∗ Corresponding author at: Catalan Institution for Research and Advanced
tudies (ICREA), Pg. Lluis Companys 23, Barcelona, Spain.

E-mail addresses: imarkovsky@cimne.upc.edu (I. Markovsky),
amid.Ossareh@uvm.edu (H. Ossareh).
ttps://doi.org/10.1016/j.automatica.2023.111351
005-1098/© 2023 Elsevier Ltd. All rights reserved.
Kay (1988) and Stoica and Moses (2005). The state-of-the-art
methods are based on pre-processing of the data by filtering,
which often involve hyper-parameters whose tuning requires
user expertise and prior knowledge about the system. Thus, al-
though nonparametric frequency response estimation methods
have been developed for many years, the fundamental problem
of leakage remains open. It should be noted that this problem
can be resolved in the parametric setting using classical iden-
tification methods. The parametric approach, however, leads to
indirect data-driven methods. Moreover, the parametric meth-
ods use prior knowledge about the model structure, which the
nonparametric methods do not use.

Our objective is to develop a direct data-driven nonparametric
method that resolves the leakage problems in the case of exact
(noise free) data. The basic problem, referred to as frequency
esponse evaluation, is: Given an exact finite-length time-domain
nput/output trajectory of a finite-order deterministic linear time-
nvariant system and a set of frequencies, find the frequency
esponse of the system at the given frequencies. Contrary to the
xisting nonparameteric methods that convert the data to the
requency-domain, the method proposed here operates directly
n the time-domain data. The method has no hyper-parameters
nd is provably correct under a standard persistency of excitation
ondition on the data. In case of inexact (noisy) data, we propose
modification of the method based on low-rank approximation,
hich has as a hyper-parameter the order of the system. The
esulting subspace-type estimation method is computationally
heap but suboptimal. Currently, it lacks theoretical performance
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uarantees, however, empirical results show that it works well in
ractice.
The derivation of the method is done in the behavioral setting,

hich views a dynamical system as a set of trajectories. The key
ool at the heart of the data-driven method proposed in the pa-
er is a time-domain nonparametric representation of the finite
orizon behavior of the system. The result that gives conditions
or validity of the data-driven representation became known as
he fundamental lemma (Willems, Rapisarda, Markovsky, & De
oor, 2005). The data-driven representation was effectively used

n Markovsky and Rapisarda (2008) for solving simulation and
racking control problems. The methods were originally devel-
ped for exact data but were subsequently generalized to noisy
ata and some classes of nonlinear time-varying systems, see
he overviews (Markovsky & Dörfler, 2021; Markovsky, Huang, &
örfler, 2023). The necessary background is given in Section 2.
ection 3.1 presents to solution in case of exact data and Sec-
ion 3.2 presents the modification of the method for the case of
oisy data. The method is illustrated and validated in Section 4.

. Preliminaries and problem statement

Let (Cq)N be the set of q-variate complex-valued signals with
time-axis the natural numbers N (i.e., vector sequences). In the
behavioral approach to systems theory (Polderman & Willems,
1998; Willems, 1986, 1997), a dynamical system is defined as a
set of trajectories B ⊂ (Cq)N. The important difference from the
classical approach is the distinction of the system (set of trajec-
tories) from its representations (algebraic/difference/differential
equations).

Note 1 (Complex-valued Signals and Systems). In the system iden-
tification and data-driven signal processing and control literature
using the behavioral approach, trajectories and behaviors have
traditionally been real-valued. In this paper, we extend the meth-
ods to complex-valued signals w and correspondingly define the
system B as a subset of (Cq)N. In practice, however, the response
to a real-valued input and real-valued initial condition is a real-
valued signal. With some abuse of notation, we call systems with
such property real-valued. The response y = yreal + iyimag of a
real-valued system B to a complex-valued input u = ureal +

iuimag and/or complex-valued initial condition is complex-valued.
However, wreal =

[ ureal
yreal

]
and wimag =

[ uimag
yimag

]
are decoupled,

i.e., two independent real-valued trajectories are formally put
together in one complex-valued trajectory. This formalism is used
in Section 3, where we consider complex exponentials instead of
sine and cosine trajectories. □

We use the behavioral approach because of its relevance to
the data-driven methods in signal processing and control. For
example, it allows us to use the short-hand notation w ∈ B for
‘‘the signal w is a trajectory of the system B’’. Since we consider
finite signals we use the following notation for restricting the
time axis to a finite interval: w|T :=

(
w(1), . . . , w(T )

)
is the

restriction of w to the interval [1, T ] and B|T ⊂ (Rq)T is the
estriction of B to [1, T ].

A linear time-invariant system B is a shift-invariant subspace
f the space of trajectories (Rq)N. The number of inputs m, lag
, and order n of B are invariant of its representations and are
herefore properties of B (Willems, 1986). The restricted behavior
|T for T ≥ ℓ admits a representation

|T = image

⎡⎢⎢⎣
wd(1) wd(2) · · · wd(Td − T + 1)
wd(2) wd(3) · · · wd(Td − T + 2)

...
...

...

wd(T ) wd(T + 1) · · · wd(Td)

⎤⎥⎥⎦
  

, (1)
HT (wd)

2

y a trajectory wd ∈ B|Td of length Td that satisfies the generalized
persistency of excitation condition (Markovsky & Dörfler, 2023)

rank HT (wd) = mT + n. (2)

The matrix HT (wd) ∈ RqT×(Td−T+1) is the Hankel matrix with
depth T constructed from the data wd. Note that (2) is verifiable
from the data wd and the prior knowledge of the system’s number
of inputs and order.

Note 2. The data-driven representation (1) and the generalized
persistency of excitation condition (2) are derived for real-valued
systems and signals. The derivation, however, is also valid in the
complex-valued case. If B is real-valued as defined in Note 1,
it is sufficient to use a real-valued trajectory wd that satisfies
(2). Complex-valued trajectories are represented then by linear
combination of the columns of HT (wd) with complex-valued
coefficients. □

Consider a linear time-invariant system B with an input/
output partitioning of the variables w =

[ u
y
]
. Let B(H) be the

transfer function representation of the controllable part of B,
corresponding to the input/output partitioning w =

[ u
y
]
. The

data-driven frequency response evaluation problem considered is
defined as follows.

Problem 1 (Data-driven Frequency Response evaluation). Given a
finite input/output trajectory (ud, yd) of a linear time-invariant
system B and a frequency ω ∈ [0, π ), find the frequency response
H(eiω) of B at the frequency ω.

Trivial generalizations of the problem are to have as data
ultiple trajectories { w1

d, . . . , w
N
d }, where wi

d ∈ (Rq)Ti (this is
chieved by using a mosaic Hankel matrix Markovsky, 2014)
nd to aim at evaluation of the frequency response at multiple
requencies Ω := { ω1, . . . , ωK }. Nontrivial generalizations are to
onsider noisy data in the errors-in-variables and output error se-
ups as well as nonlinear systems. We will address this extension
n Section 3.2.

. The proposed method

Section 3.1 presents a solution of the data-driven frequency
esponse evaluation problem (i.e., assuming exact data wd) that
ses the data-driven representation (1) as the main tool. Sec-
ion 3.2 presents a modification of the solution for inexact case,
.e., noisy data and/or data from a nonlinear system, based on
reprocessing of the data matrix HL(wd) with low-rank approxi-
ation (Markovsky, 2019).

.1. Solution of Problem 1

We consider general multivariable linear time-invariant sys-
em B with an input/output partitioning w = (u, y) and a
orresponding transfer function H . Our main result is stated in
he following theorem.

heorem 2. For exact data wd = (ud, yd) ∈ B|Td satisfying (2),
≥ ℓ + 1, and z ∈ C that is not a pole of H, the system of linear

quations

0mT×p HT (ud)
−z ⊗ Ip HT (yd)

][
Hz
G

]
=

[
z ⊗ Im
0pT×m

]
, (3)

here ⊗ is the Kronecker product and z := [z1 . . . zT ]⊤ has a
nique solution for H , such that H = H(z).
z z
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roof. Using the data-driven representation, first, we describe
the m complex exponential responses of the system to complex
exponential inputs applied separately on the m input channels.
hen, we show that the m vector-valued trajectories are com-
actly described as a matrix valued trajectory. Let ei ∈ Rm be the
th unit vector (ith column of the m × m identity matrix Im) and
xpz(t) := zt be the complex exponential function with z ∈ C.
rom the behavioral point of view, H(z) describes the subbehavior
f B spanned by
i
=

(
ei expz, hz,i expz

)
, for i = 1, . . . ,m

and z ∈ C , z /∈ λ(B), (4)

where λ(B) denotes the set of poles of B. The input of wi is the
complex exponential ei expz and the output is a scaled version of
the input hz,i expz , where the scaling factor hz,i is the ith column
of Hz := H(z). The w1, . . . , wm can be written as a matrix-valued
trajectory

W =
(
Im expz, Hz expz

)
, for z ∈ C, z /∈ λ(B). (5)

Using the data-driven representation (1) for (5) with length T ≥

ℓ + 1, we obtain the following system of equations[
HT (ud)
HT (yd)

]
G =

[
z ⊗ Im
z ⊗ Hz

]
,

where G ∈ R(Td−T+1)×m. Rewritten in the standard form of a
system of linear equations, this gives us Eq. (3). □

The result stated in Theorem 2 is constructive and leads to
a method for direct data-driven frequency response estimation.
Indeed, the parameter of interest Hz can be computed by solving
(3) for the unknowns Hz and G. Note that the solution based on (3)
allows us to evaluate the transfer function H(z) at any complex
number z, not only at z on the unit circle eiω .

Note 3 (No Hyper-parameters). Although the conditions of Theo-
rem 2 require the lag ℓ and the order n of the system to be known,
the method itself does not use them. Without prior knowledge
of ℓ, the parameter T should be chosen as the maximum value
for which HT (wd) has at least as many columns as rows, i.e.,
T = Tmax = ⌊(Td + 1)/(q + 1)⌋.

3.2. Modification for inexact data

One way of modifying the method presented in Section 3.1 for
the case of noisy data is to first preprocess the data, aiming to ap-
proximate the exact noise-free data, and then apply the method
on the preprocessed data. A popular preprocessing heuristic is
unstructured low-rank approximation of the data matrix HT (wd)
enforcing the prior knowledge that rank HT (wd) = mT + n. If
the model order is known, the rank mT + n approximation can
be obtained by truncation of the singular value decomposition of
HT (wd), with T = n + 1 (since n ≥ ℓ). If the model order is not
known, it can be estimated from the decay of the singular values,
by visual inspection or by a range of rank estimation heuristics.

The method with the low-rank approximation preprocessing is
summarized in Algorithm 1. Its Matlab implementation, available
from https://imarkovs.github.io/frest, is essentially five lines of
code. Moreover, it applies to general multivariable systems and
can use data from multiple trajectories { w1

d, . . . , w
N
d } as well

as estimate the transfer function at multiple points in the com-
plex plane. In the next section, the implementation dd_frest
of Algorithm 1 is tested on simulated data and is compared
with alternative direct and indirect frequency response estima-

tion methods.

3

Algorithm 1 Data-driven frequency response estimation.

Input: Trajectory (ud, yd), z ∈ C, and order n.
1: Let T := n + 1.
2: Compute the singular value decomposition[

HT (ud)
HT (yd)

]
= UΣV⊤ and let P := U(:, 1 : mT + n).

3: Solve the system[[
0mT×p

−z ⊗ Ip

]
P
][

Hz
G

]
=

[
z ⊗ Im
0pT×m

]
.

Output: Hz = H(z)

4. Numerical examples

This section illustrates and empirically validates the proposed
method—Algorithm 1, implemented in the function dd_frest—
in case of exact and noisy data obtained in the errors-in-variables
setup. An alternative nonparameteric frequency response method,
used for comparison with dd_frest is the spectral analysis
estimator spa with the Welch method to calculate spectral den-
sities (Stoica & Moses, 2005). Both non-parametric methods—
dd_frest and spa—are referenced against the theoretical
optimal performance achieved by the maximum-likelihood esti-
mator ident (Markovsky, 2013) in the errors-in-variables setup.
Note that ident implements an indirect parametric method
based on local optimization. In the case of noisy data both dd_fres
and ident use the correct order n of the data-generating system
as prior knowledge.

In the simulation, we use the benchmark of Landau, Rey,
Karimi, Voda, and Franco (1995), which is a 4th order single-input
single-output system B defined by the transfer function

H(z) =
0.2826z + 0.5067z2

1 − 1.4183z + 1.5894z2 − 1.3161z3 + 0.8864z4
.

The data is obtained in the errors-in-variables setting (Söder-
ström, 2007), i.e., wd = wd + w̃d, where wd ∈ B|Td is the
true value and w̃d is a zero mean white Gaussian noise with
variance s2.

Fig. 1 shows the frequency response estimates by the three
methods—dd_frest, ident, and spa—in an experiment with
Td = 1000 samples and noise level s = 10% (i.e., signal-to-
noise ratio 10 dB). On the resolution of the figure, the amplitude
estimates of dd_frest and ident are indistinguishable and are
lose to the true value. The spa method is less accurate.
Next, we show the relative percentage estimation errors

a := 100%
||Hz | − |Ĥz ||

|Hz |
and ep := 100%

|̸ Hz − ̸ Ĥz |

̸ Hz
,

where Ĥz is the estimated frequency response and Hz the true
requency response, averaged over 100 trials of the simulation
xperiment with different realization of the measurement noise.
he frequency response is estimated at ω = π/4. Fig. 2 shows
he relative averaged estimation errors ea and ep as a function of
he noise level in an experiment with Td = 500 data samples and
ig. 3 shows the relative averaged estimation errors ea and ep as
function of the number of samples Td for noise level s = 5%.
For exact data (zero noise level) the proposed method and the

aximum-likelihood method give exact result (zero errors) and
or increasing noise levels the increase of the errors. The fact that
he proposed method given the correct result for exact data is
n empirical confirmation of Theorem 2. The gap between the

https://imarkovs.github.io/frest
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Fig. 1. Frequency response estimates in an experiment with 1000 samples
nd 10% noise level. The amplitude estimates of the proposed method are
early identical to the one of the maximum-likelihood method. The classical
onparametric method is less accurate.

rror of the proposed method and the errors of the maximum-
ikelihood method quantifies the sub-optimality of the proposed
ethod due to the low-rank approximation heuristic. The errors
f the classical nonparameteric method are much higher.

ote 4 (Indirect Time-domain Nonparametric Approach). An alter-
ative indirect time-domain nonparametric approach is to (1)
ompute the impulse response and (2) convert it to the fre-
uency response. A nonparametric impulse response estimation
ethod that for exact data delivers the exact impulse response

s proposed in Markovsky and Rapisarda (2008, Section 4.5). The
onversion from time-domain to frequency-domain on step 2
an be done by the discrete Fourier transform. This computation,
owever, involves an error due to the finite number of samples
f the impulse response. In addition, classical nonparametric im-
ulse response estimation methods, such as the one implemented
n the function impulseest from the System Identification Tool-
ox of Matlab, involve an additional error in the computation
f the impulse response. We illustrate this point on a numerical
xample:

h = freqresp(impulseest(iddata(yd0, ud0)), ...
Omega);

= norm(h0(:) - hh(:)) / norm(h0(:)) % -> 0.1918

Although the data is exact, the time-domain nonparameteric
ndirect frequency response method, based on impulseest, re-
ults in 19% error. Using the noisy data in the errors-in-variables
etup with 10% noise level

h = freqresp(impulseest(iddata(yd, ud)), ...
Omega);

= norm(h0(:) - hh(:)) / norm(h0(:)) % -> 0.2150
4

Fig. 2. The relative averaged estimation errors ea and ep as a function of the
noise level show that for exact data (zero noise level) the proposed method
and the maximum-likelihood method give exact result (zero errors) and for
increasing noise levels the increase of the errors. The gap between the error
of the proposed method and the errors of the maximum-likelihood method
quantifies the lack of efficiency of the proposed method due to the low-rank
approximation heuristic. The errors of the classical nonparameteric method are
much higher.

Fig. 3. Relative averaged estimation errors ea and ep as a function of the
number of samples Td . The errors of both the proposed method and the
maximum-likelihood method show the typical 1/

√
Td convergence rate. Again

the gap between the error of the proposed method and the errors of the
maximum-likelihood method quantifies the lack of efficiency of the proposed
method due to the low-rank approximation heuristic. The errors of the classical
nonparameteric method are much higher.



I. Markovsky and H. Ossareh Automatica 159 (2024) 111351

t
p
w

h
e

t

5

s
a
t
p
a
s
p
f
f
t
s

t
p
o
m
f
t
t
c
i
m

A

S
f
i

L
M

M

M

M

P

P

S

S
W

he estimation error is 21%. Using the method proposed in the
aper with the low-rank approximation modification for dealing
ith the noise

h = dd_frest(ud, yd, exp(i * Omega), n);
= norm(h0(:) - hh(:)) / norm(h0(:)) % -> 0.0823

he estimation error is 8%.

. Conclusions and perspectives

We proposed a direct data-driven method for frequency re-
ponse evaluation and estimation that does not suffer from leak-
ge errors and has unlimited frequency resolution. The assump-
ion for exact evaluation in case of noise free data is standard
ersistency of excitation condition on the data. The resulting
lgorithm has no hyper-parameters and requires solution of a
ystem of linear equations only. In the noise-free setting, the
roposed method can be viewed akin to the two-step, indirect
requency response evaluation method consisting of the identi-
ication of an overparametrized ARX model as the first step and
he evaluation of the frequency response using this model as the
econd step.
In case of noisy data obtained in the errors-in-variables set-

ing, we propose a modification of the method that has a pre-
rocessing step by low-rank approximation, using knowledge
f the model order. Empirical results show that the modified
ethod is more accurate than state-of-the-art nonparameteric

requency response evaluation methods. The advantages are par-
icularly pronounced for short data records, lightly damped sys-
ems, and low noise level. In particular, the method is appli-
able to marginally stable and unstable systems. Future work
ncludes uncertainty quantification of the method as well as other
odifications for noisy data.
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