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Abstract—The maximal admissible set (MAS) of a stable
LTI system characterizes the set of all initial conditions
and constant inputs for which the output satisfies pre-
specified state/output constraints for all time. The MAS (or
its finitely-determined, polytopic approximations) is often
employed in set-theoretic methods in control and for con-
straint management, for example in the Reference Governor
(RG) algorithm. The existing MAS (and consequently RG)
formulations require a state-space model of the dynamics
to characterize the MAS. In this letter, we offer an alterna-
tive, data-driven perspective: we leverage output predictors
from the behavioral system theory and subspace predictive
control literature to formulate a data-driven version of the
MAS. As we show, the proposed set is polytopic and has
finite complexity, similar to its model-based counterpart,
but resides in a higher dimensional space and may have
higher complexity. We present the properties of the data-
driven MAS including its admissibility index, and compare
the data-driven MAS against its model-based formulation,
where we show that the two sets are related via a linear
map under mild assumptions. Finally, we use the data-
driven MAS to introduce a data-enabled RG for constraint
management of closed-loop control systems. Numerical
simulations are presented to illustrate the results.

Index Terms—Maximal admissible sets, reference gover-
nors, data-driven control, behavioral system theory.

I. INTRODUCTION

THE MAXIMAL admissible set (MAS)1 of a dynamical
system is a positively-invariant set that characterizes the

set of all initial conditions and constant inputs for which
the response satisfies pre-specified state/output constraints
for all time [1], [2]. For discrete-time linear time-invariant
systems subject to polytopic constraints, the MAS is polytopic,
though it may be of infinite complexity. The MAS (or its
finite-complexity, polytopic approximations) has been broadly
employed in the control literature, for example, as a terminal
constraint in the Model Predictive Control (MPC) optimization
problem to guarantee closed-loop stability [3], [4], or in the

Manuscript received 15 September 2023; accepted 23 October
2023. Date of publication 6 November 2023; date of current version
1 December 2023. This work was supported in part by NIST under Grant
70NANB21H133; in part by NASA under Grant VT-80NSSC20M0213;
and in part by NSF under Grant CMMI-2238424. Recommended by
Senior Editor S. Olaru.

The author is with the Electrical Engineering Program, University of
Vermont, Burlington, VT 05405 USA (e-mail: hossareh@uvm.edu).

Digital Object Identifier 10.1109/LCSYS.2023.3330386
1Also called the maximal output admissible set or maximal positively

invariant set.

analysis of constrained systems and in set-theoretic methods
in control, see, e.g., [5], [6]. It has also been employed
in constraint management algorithms such as the Reference
Governor (RG) to guarantee infinite-horizon constraint satis-
faction [7], [8].

The existing MAS formulations require a parametric
(i.e., state-space) model of the dynamics to form output
predictions and, thus, characterize the MAS. Motivated by the
recent trends in decision making for complex systems and in
data-driven control [9], this letter introduces an alternative,
data-driven formulation of the MAS. Specifically, we take
a representation-free and non-parametric perspective, and
define the MAS using data-driven predictors that map offline
input-output data directly onto online output predictions. Our
approach is grounded in Willem’s fundamental lemma [10] and
is inspired by the literature on behavioral system theory [11],
subspace methods [12], [13], and recent data-driven control
algorithms [14], [15]. As we show, similar to the model-based
MAS, the proposed data-driven MAS is positively invariant
and can be characterized by a polytope with finite complexity.
However, the data-driven MAS exists in a higher dimensional
space, may be of higher complexity, and may not be compact.
In this letter, we will assume that the offline input/output data
is noise-free, reserving the consideration of the noisy case for
future work.

Using this data-driven MAS, this letter then formulates a data-
enabled RG. Block diagrams of a closed-loop system controlled
by the traditional RG and the proposed data-enabled RG are
depicted in Fig. 1. In both cases, the RG modifies the reference
signal to the (pre-stabilized) closed-loop control system to
enforce pointwise-in-time constraints and, thus, decouples the
problem of tracking/stabilization and constraint management.
However, in contrast to the model-based RG, the proposed
data-enabled RG uses the data-driven version of the MAS and,
as such, it bypasses the system identification step and does not
require an observer. For this reason, it is simpler to implement
and provides an end-to-end solution to the practitioner. The
disadvantage as compared to the model-based RG is that it
may have a higher computational complexity, requires access
to clean data to construct the MAS, and can only be applied
to constrain the measured output, not the internal states. We
present numerical simulations to illustrate the results.

The notation throughout this letter is as follows. The sets
Z

+, R, Rn, and R
n×m denote the set of non-negative integers,

real numbers, n-dimensional vectors of real numbers, and n×m
matrices with real entries, respectively. For a set A, the interior
is denoted by Int(A). For a sequence of matrices X1, . . . , Xn
with the same number of columns, we denote [X�

1 , . . . , X�
n ]�
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Fig. 1. Model-based and data-enabled Reference Governor (RG) block
diagrams.

by col(X1, . . . , Xn). The vectors 1T and 0T denote vectors of
all ones and all zeros of length T , respectively, and we drop
the subscript if the dimensionality can be inferred from the
context. The matrix 0n×m is the n by m zero matrix. For a
signal u(t) ∈ R

m, t = 0, . . . , T − 1, we use boldface to
denote the signal as a vector over the horizon T , i.e., u =
col(u(0), u(1), . . . , u(T − 1)).

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider the top block diagram shown in Fig. 1, in which
the “closed-loop system” is described by the LTI model:

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t), (1)

where t ∈ Z
+ is the discrete time index, x(t) ∈ R

n, u(t) ∈
R

m, and y(t) ∈ R
p. In typical RG applications, u(t) represents

the reference command. The output, y(t), is to be constrained
as follows:

y(t) ∈ Y � {y:Sy ≤ s}, (2)

where S ∈ R
q×p and s ∈ R

q are given. Here, q is the number
of inequalities describing (2). In this letter, we assume that:

Assumption 1: System (1) is asymptotically stable (A is
Schur), controllable, and observable. Furthermore, the con-
straint set is compact and satisfies 0 ∈ Int(Y).

We first introduce the “maximal admissible set” (MAS),
denoted by O∞, which is the set of all states and constant
control inputs that satisfy (2) for all time:

O∞ = {(x0, u0) ∈ R
n × R

m: y(t) ∈ Y, ∀t ∈ Z
+}, (3)

where y(t) = CAtx0 + (C(I −At)(I −A)−1B+D)u0. This set is
generally not finitely determined, i.e., it cannot be described
by a finite number of inequalities. However, it is shown in [1]
that a finitely-determined inner approximation, denoted by ˜O∞
and with similar invariance properties, can be obtained by
imposing a tightened version of the constraint on the steady-
state output, that is:

˜O∞ = {(x0, u0): y(∞) ∈ (1 − ε)Y, y(t) ∈ Y,

t = 0, . . . , t∗
}

, (4)

where ε ∈ (0, 1) is a small number and y(∞) := P0u0, with
P0 being the DC gain matrix, i.e., P0 = C(I − A)−1B + D.
The admissibility index, t∗, is the smallest prediction horizon
to fully characterize ˜O∞, i.e., the inequalities corresponding
to y(t) ∈ Y are redundant for t > t∗. The set ˜O∞ is thus a
polytope of the form:
˜O∞ = {(x0, u0): SP0u0 ≤ (1 − ε)s, Hxx0 + Huu0 ≤ h}, (5)

where the i-th block rows of Hx, Hu, and h are, respectively,
given by SCAi−1, SC(I − Ai−1)(I − A)−1B + SD, and s.

The RG leverages ˜O∞ to find an optimal, constraint-
admissible value of u at every timestep. The update law of the
RG is as follows:

u(t) = u(t − 1) + κ(r(t) − u(t − 1)), (6)

where κ ∈ [0, 1] is obtained by solving the linear pro-
gram (LP)

maximize
κ∈[0,1]

κ

s.t. u0 = u(t − 1) + κ(r(t) − u(t − 1))

x0 = x(t)

(x0, u0) ∈ ˜O∞ (7)

If the reference r(t) is constraint-admissible, then κ = 1 and,
therefore, u(t) = r(t). Otherwise, u(t) will be closer to u(t−1).
Positive invariance of ˜O∞ implies that κ = 0 is always a
feasible solution of the above LP, as long as it is feasible at
the initial time.

Problem Statement: Consider now the bottom block diagram
shown in Fig. 1, where the closed-loop system is again
described by (1). Suppose that the matrices A, B, C, and D
are unavailable for the calculation of ˜O∞ or for the purpose
of RG design and implementation. However, suppose that M
length-T input-output, noise-free trajectories are available. Let
the i-th input and output trajectory be denoted by ud

i (t) and
yd

i (t), where t = 0, . . . , T − 1; i = 1, . . . , M. The superscript
d refers to “data”. In general, the M trajectories may come
from independent experiments. However, they can also be
different sections of the same, long trajectory, ud(t), yd(t). In
this situation, ud

i (t) and yd
i (t) could be chosen as: ud

k (i) =
ud(k + i) and yd

k (i) = yd(k + i) for all i ∈ {0, . . . , T − 1} and
k ∈ {1, . . . , M}.

The problem addressed in this letter is to characterize ˜O∞
using the input-output trajectories described above without
identifying a parametric model of the system, and to use this
data-driven ˜O∞ to formulate a data-enabled RG.

III. A DATA-DRIVEN FORMULATION OF THE

MAXIMAL ADMISSIBLE SET (MAS)
Eq. (4) shows that, to develop a data-driven version of

˜O∞, two key components are required: the output predictions,
y(t), and the steady-state output, y(∞). In this section, we
present mappings from the offline data onto y(t) and y(∞), and
formally introduce a data-driven version of the MAS, along
with its associated properties.

To begin, define the extended observability and convolu-
tion matrices:

Ot =

⎡

⎢

⎢

⎣

C
CA
...

CAt−1

⎤

⎥

⎥

⎦

, Ct =

⎡

⎢

⎢

⎢

⎢

⎣

D 0 · · · 0

CB D
... 0

...
. . .

. . .
...

CAt−2B · · · CB D

⎤

⎥

⎥

⎥

⎥

⎦

(8)

Let the integer L be any positive time horizon. Starting from
any initial condition, x0, and input sequence u ∈ R

mL over the
horizon L, the output of (1), y ∈ R

pL, over the same horizon
is given by:

y = OLx0 + CLu (9)

Here, boldface denotes the signal as a vector, consistent with
the notation in the Introduction. We introduce the following
definitions.

Definition 1: The lag (or observability index) of system (1),
denoted by �, is defined as the smallest integer such that O�

has rank n (i.e., full column rank), where n is the system order.
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Remark 1: � exists per Assumption 1.
Definition 2: For any positive integer L, we define the

“restricted behavior”, B L, of system (1) as

B L = {col(u, y) ∈ R
(m+p)L:∃ x0 ∈ R

n s.t. (9) holds}
Any length-L input-output sequence that satisfies col(u, y) ∈
B L is an “admissible trajectory” of system (1).

Remark 2: Suppose col(u, y) ∈ B L for some L > 0. The
initial condition x0 can be uniquely determined from (9) if
and only if L ≥ �. Proof of this fact follows from the definition
of �.

Now, consider the M length-T offline input-output trajecto-
ries introduced in the “Problem Statement” in Section II. Per
the literature of data-driven prediction in the Behavioral setting
(see [11] for an overview), we construct the “data matrix”,
H, whose columns consist of the input and output trajectories
stacked on top of one another:

H =
[Hu
Hy

]

∈ R
T(m+p)×M

where

Hu =
⎡

⎢

⎣

ud
1(0) ud

2(0) · · · ud
M(0)

...
...

. . .
...

ud
1(T − 1) ud

2(T − 1) · · · ud
M(T − 1)

⎤

⎥

⎦

and Hy can be similarly defined by replacing all instances of
u by y in the above.

If the data matrix satisfies the so-called “low-rank condi-
tion”, also called the “generalized persistency of excitation
condition” [16]:

rank(H) = mT + n, (10)

for T ≥ �, then any length-T admissible trajectory col(u, y) ∈
R

(m+p)T will belong to the column space of H. Said differ-
ently, there must exist a (non-unique) vector g, such that

Hg =
[

u
y

]

(11)

This idea has been used in the literature for the purpose of
data-driven simulation and prediction. This is typically done
by partitioning the output trajectory, y, into two parts, one with
a horizon length of Tini that serves to implicitly fix the initial
condition, and another of horizon length Tpred that serves as
the predicted output: y = col(yini, ypred), where yini ∈ R

pTini

and ypred ∈ R
pTpred , and Tini + Tpred = T . We will discuss

how to select Tini and Tpred later. Similarly, partition the input
as u = col(uini, upred), and accordingly the data matrix as
Hu = col(Up, Uf ) and Hy = col(Yp, Yf ). We can then
express (11) as:

⎡

⎢

⎣

Up
Uf
Yp
Yf

⎤

⎥

⎦
g =

⎡

⎢

⎣

uini
upred
yini

ypred

⎤

⎥

⎦
(12)

As discussed in Remark 2, if col(uini, yini) ∈ B Tini and Tini ≥
�, one can uniquely solve for the latent initial condition and,
thus, uniquely compute ypred. That being said, the solution for
g is generally not unique. To solve for ypred, the minimum-
norm solution to g is often chosen, which results in:

ypred = Yf

[

Up
Uf
Yp

]†[ uini
upred
yini

]

, (13)

where † is the Moore–Penrose pseudoinverse. These ideas
will now be leveraged to define and construct a data-driven

formulation of ˜O∞ defined in (4). As mentioned earlier,
the first component needed for doing so is a predictor for
y(t), t = 0, . . . , t∗, directly from data. To this end, we
choose Tpred > t∗ and, consistent with the definition of ˜O∞,
let u(t) be a constant over the horizon, that is u(t) = u0,
t = 0, . . . , Tpred − 1. We then form upred, a block vector with
blocks equal to u0, i.e., upred = 1Tpred ⊗ u0, where 1Tpred ∈
R

Tpred is a vector of all ones and ⊗ is the Kronecker product.
We then leverage Eq. (13) to find ypred:

ypred = Yf

[

Up
Uf
Yp

]†

︸ ︷︷ ︸

F

⎡

⎣

uini
1Tpred ⊗ u0

yini

⎤

⎦ (14)

Now, to simplify (14), we define three matrices Fu, Fy, and
F0 as follows: Fu is the first mTini columns of F , Fy is the
last pTini columns of F , and F0 is a matrix whose i-th column
is the sum of Tpred columns of F starting from column i and
skipping every m columns, that is:

F0 =
⎡

⎣

Tpred−1
∑

i=0

Fmi+1 . . .

Tpred−1
∑

i=0

Fmi+m

⎤

⎦,

where F j denotes the j-th column of F . With this nota-
tion, (14) can be conveniently expressed as:

ypred = Fuuini + Fyyini + F0u0 (15)

This equation provides predictions of the output, y(t) from
t = 0 to t = Tpred − 1 ≥ t∗, using the offline data (encoded
in the matrices Fu, Fy, and F0), data from the recent Tini
samples of the input and output (encoded in uini and yini), and
the constant input u0, without the use of a parametric model.
Finally, constraint (2) can be recast as a constraint on ypred:
˜Sypred ≤ 1Tpred ⊗ s, where ˜S ∈ R

(qTpred)×(pTpred) is a block
diagonal matrix with S on all the block diagonals. Replacing
ypred from (15) leads to

˜SFuuini +˜SFyyini +˜SF0u0 ≤ 1Tpred ⊗ s (16)

This inequality will be used to define the data-driven MAS.
As mentioned previously, the second component required

to define a data-driven MAS is the steady-state output,
i.e., y(∞) = P0u0, where P0 ∈ R

p×m is the DC gain matrix.
To find P0 using data, we leverage the fact that if the input
to an LTI system is constant and equal to ei, where ei is the
i-th column of the identity matrix, then the steady-state output
will be the i-th column of P0, denoted by Pi

0. We can use
this fact to compute the columns of P0 one by one directly
from data. Specifically, for each i, we set u(t) = ei and y(t) =
Pi

0 for t = 0, . . . , T − 1 to enforce steady-state. We then
form u = 1T ⊗ ei and y = 1T ⊗ Pi

0 and plug into Eq. (11)
to obtain:

[Hu
Hy

]

g =
[

1T ⊗ ei
1T ⊗ Pi

0

]

⇒
[Hu
Hy

]

G =
[

1T ⊗ Im
1T ⊗ P0

]

, (17)

where we have combined the m different equations into one,
with G = [g1 . . . gm]. This equation can be equivalently
expressed as:

[

0mT×p Hu
−1T ⊗ Ip Hy

][

P0
G

]

=
[

1T ⊗ Im
0pT×m

]

(18)

This equation has a unique solution for P0 (but not for G)
under the rank condition for H and T ≥ � + 1. Using the
minimum-norm solution given by the pseudoinverse, P0 can
be readily obtained:
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P0 = [

Ip 0p×M
]

[

0mT×p Hu
−1T ⊗ Ip Hy

]†[
1T ⊗ Im
0pT×m

]

(19)

The approach presented is similar to the one in [17] for
computing the frequency response. Note that, by construction,
P0 given by (19) coincides with C(I − A−1)B + D obtained
using a model.

Remark 3: In some applications, the DC gain may be
readily available (for example, when step response data has
been collected). For these applications, the empirical P0 can
be used instead of the one calculated using Eq. (19) to avoid
unnecessary computations.

We are now ready to explain why in this letter we present a
data-driven version of ˜O∞ in (4), not of O∞ in (3). Recall that
O∞ is, in general, not finitely determined. Thus, a data-driven
version of O∞ will necessitate Tpred = ∞, which calls for
an infinite amount of offline data and an infinite-dimensional
data matrix, neither of which is possible. Therefore, we instead
formulate a data-driven version of ˜O∞, as introduced next.

Definition 3: Let Tini ≥ � and Tpred > t∗. The data-driven
version of ˜O∞, denoted by ˜OD∞, is defined as the set of all
recent Tini inputs/outputs and future constant inputs such that
y(∞) ∈ (1 − ε)Y and y(t) ∈ Y, t = 0, . . . , Tpred − 1, that is:

˜OD∞ = {(uini, yini, u0) ∈ R
mTini × R

pTini × R
m:

y(∞) ∈ (1 − ε)Y, y(t) ∈ Y,

t = 0, . . . , Tpred − 1} (20)

Using (16) and (19), this set can be equivalently character-
ized as the following polytope:

˜OD∞ = {(uini, yini, u0):SP0u0 ≤ (1 − ε)s,
˜SFuuini +˜SFyyini +˜SF0u0 ≤ 1Tpred ⊗ s} (21)

Note that this set is not identical to ˜O∞. For one, it lives in
a higher dimensional space. This is because, in the data-driven
setting, uini and yini serve the role of the initial condition,
instead of x0. Less obviously, the (uini, yini) pair in (21) are not
required to satisfy col(uini, yini) ∈ B Tini , i.e., be admissible
trajectories of (1) (enforcing such condition will not allow
for a polytopic H-representation of ˜OD∞, which is suitable
for optimization-based control strategies; see Remark 4 for
details). The relationship between ˜O∞ and ˜OD∞ is further
elaborated in the following theorem.

Theorem 1: Consider system (1). If Tini ≥ �, Tpred > t∗,
and H satisfies (10) with T = Tini + Tpred, then ˜O∞ and ˜OD∞
are related as follows:

1) If (uini, yini, u0) ∈ ˜OD∞ and col(uini, yini) ∈ B Tini , then
there exists a unique x0 such that (x0, u0) ∈ ˜O∞.

2) If (x0, u0) ∈ ˜O∞, then there exist (non-unique)
uini and yini such that col(uini, yini) ∈ B Tini and
(uini, yini, u0) ∈ ˜OD∞.

3) If Tpred = t∗ + 1, then the vectors ˜SF0 and 1Tpred ⊗ s
in (21) are identical to Hu and h in (5).

Proof: Define the following matrices:

Mt =
[

Itm 0tm×n
Ct Ot

]

, Nt = [

At−1B · · · AB B
]

We begin by proving part 1. First, note that P0 obtained
using (19) is the exact DC gain matrix. Thus, the constraint
SP0u0 ≤ (1 − ε)s is common between the definitions
of ˜O∞ and ˜OD∞. Now, suppose (uini, yini, u0) ∈ ˜OD∞ and
col(uini, yini) ∈ B Tini . From (9) and Remark 2, there exists
an initial condition xini = x(−Tini) such that yini = OTinixini +
CTiniuini, which we can rewrite as:

col(uini, yini) = MTinicol(uini, xini) (22)

Fig. 2. ˜O∞ (left) and ˜OD∞ (right). The latter set is unbounded, for
example along the line defined by u0 = 0 and yini = −1.5uini.

Since Tini ≥ �, MTini has full column rank, and so we can
uniquely solve: col(uini, xini) = M†

Tini
col(uini, yini). Starting

from initial condition xini at time t = −Tini, one can solve for
the system state at time t = 0: x0 = ATinixini + NTiniuini, or

x0 = [

NTini ATini
]

M†
Tini

col(uini, yini), (23)

which is uniquely defined. The output predictions, y(t), starting
from this x0 and with constant input u0 are the same as those
obtained from (15). Since the data-driven predictions satisfy
the constraints by our assumption of inclusion in ˜OD∞, the
model-based ones do too, and so (x0, u0) must belong to ˜O∞.
This proves the first part.

To prove the second part, suppose (x0, u0) ∈ ˜O∞. Any
arbitrary col(uini, yini) ∈ B Tini consistent with (23) results in
the same initial state x0 and the same predictions over the
prediction horizon. This second statement thus follows.

To prove the third part, we note that the matrix Hu represents
the step response of the system with zero initial conditions,
and ˜SF0 represents the same. Furthermore, the two vectors
have the same number of elements, and thus are identical. The
equality of 1Tpred ⊗ s and h can be shown by comparing them
element-wise.

As seen from the proof of the theorem, if Tini ≥ �, Tpred >
t∗, and col(uini, yini) ∈ B Tini , then, for any u0, the slices of
˜O∞ and ˜OD∞ are related through (23), which is a linear map.

Remark 4: Without the condition col(uini, yini) ∈ B Tini in
Theorem 1, there is no direct relationship between ˜O∞ and
˜OD∞. However, in practice, uini and yini are data collected
from the system and thus represent admissible trajectories.
Hence, in a (noise-free) implementation setting, this condition
is fulfilled.

Remark 5: In the proof of Theorem 1, it is shown that
the (latent) initial condition, x0, can be recovered from
col(uini, yini) using the matrices Mt and Nt, which require the
knowledge of A, B, C, and D matrices. This makes sense
because, in order to determine x0, a coordinate system must
first be established, and the model realization through the
A, B, C, D matrices serves this purpose.

We now illustrate the above theorem and the properties
of ˜OD∞ using an example. Consider a first-order system with
matrices A = 0.5, B = 1, C = 1, D = 0.5, and
constraint −1 ≤ y(t) ≤ 1. We let ε = 0.01 and compute
˜O∞ using the method presented in [1]. For this system, � =
1 and t∗ = 0. To compute ˜OD∞, we collect offline input-
output data (with random noise as input), and form the data
matrix with Tini = Tpred = 1. For this first-order example, any
col(uini, yini) is admissible, so the assumptions in Theorem 1
are all fulfilled. Finally, we compute ˜OD∞ using (21). The
polytopes corresponding to ˜O∞ and ˜OD∞ are illustrated in
Fig. 2. As can be seen, ˜OD∞ lives in R

3 while ˜O∞ lives

Authorized licensed use limited to: Hamid-Reza Ossareh. Downloaded on June 04,2024 at 02:20:46 UTC from IEEE Xplore.  Restrictions apply. 



OSSAREH: DATA-DRIVEN FORMULATION OF THE MAS AND THE DATA-ENABLED RG 3469

in R
2. However, both sets are characterized by exactly four

inequalities (i.e., bounded by four facets). Thus, while ˜O∞ is
compact, ˜OD∞ is not. Moreover, Eq. (23) for this system can
be written as x0 = 0.75uini +0.5yini. That is, slices of ˜OD∞ for
constant u0 are related to those of ˜O∞ through multiplication
by the non-square matrix [0.75 0.5].

As shown above, unlike ˜O∞, ˜OD∞ is not compact. However,
as the following theorem shows, ˜OD∞ is positively invariant
and contains the origin in its interior – two properties that it
shares with ˜O∞. These properties allow us to leverage ˜OD∞
for constraint management over infinite horizon, for example
within the RG framework.

Theorem 2: Consider system (1). If Tini ≥ �, Tpred > t∗,
and H satisfies (10) with T = Tini + Tpred, then the set ˜OD∞ as
defined in (20) has the following properties:

1) 0 ∈ Int(˜OD∞);
2) Let t0 ∈ Z

+ and col(uini,yini) be input-output trajectories
collected from the immediate past (i.e., from time
t0 − Tini to time t0 − 1). If u(t) = u0,∀t ≥ t0,
where (uini, yini, u0) ∈ ˜OD∞, then y(t) ∈ Y, ∀t ≥ t0.
Furthermore, (ūini, ȳini, u0) ∈ ˜OD∞, where col(ūini,ȳini) is
the input-output trajectory from time t0 −Tini +1 to time
t0; that is, ˜OD∞ is positively invariant with respect to the
dynamics in (1).

Proof: Part 1 follows from the fact that ypred is linear in uini,
yini, and u0, and the fact that 0 ∈ Int(Y). To prove part 2, note
that since uini and yini are collected from the immediate past,
they are admissible trajectories. The result follows by invoking
part 1 of Theorem 1 and using the fact that the model-based
˜O∞ is positively invariant and constraint-admissible [1].

The above theorems assume that Tini ≥ � and Tpred >
t∗. The attentive reader may note that, without a model, the
system lag, �, and the admissibility index, t∗, may not be
known a priori, so these assumptions may appear difficult to
check. To overcome this challenge as it pertains to �, note that
� satisfies: � ≤ n, where n is the system order. Thus, if an
upper bound, n̄, on the system order is known, one can select
Tini = n̄, which satisfies Tini ≥ �.

Similarly, if an upper bound, t̄∗, on t∗ is available, Tpred can
be selected as Tpred = t̄∗ + 1. In many situations, however,
such upper bound is not available. As the following theorem
shows, even though t∗ may not be known, one can easily check
if Tpred has been chosen such that Tpred ≥ t∗ + 2.

Theorem 3: Consider system (1). Suppose Tini ≥ �, Tpred >
1, and H satisfies (10) with T = Tini + Tpred. If the last q
inequalities in (21) are all redundant (i.e., removing them does
not change the set), then Tpred ≥ t∗ + 2. Otherwise, Tpred ≤
t∗ + 1.

Proof: Recall from the definition of t∗ that, if y(∞) ∈ (1 −
ε)Y and y(t) ∈ Y for t = 0, . . . , t∗, then y(t) ∈ Y for all t > t∗,
i.e., the inequalities corresponding to y(t) ∈ Y are redundant
for all t ≥ t∗ + 1. An implication of this is that, if there exists
a t0 > 0 such that all the inequalities corresponding to y(t0) ∈
Y are redundant subject to y(∞) ∈ (1 − ε)Y and y(t) ∈ Y,
t = 0, . . . , t0 − 1, then t0 must satisfy t0 ≥ t∗ + 1; see [1] for
details. To employ this idea in the data-driven setting, we use
the fact that ypred defined in (15) provides output predictions
from time t = 0 up to t = Tpred − 1. Thus, if the last q
inequalities in (21) are all redundant, then Tpred must satisfy
Tpred ≥ t∗ + 2, which follows from the above by letting t0 =
Tpred − 1.

Note that if the last q inequalities, as described in the
Theorem, are not redundant, then Tpred ≤ t∗ + 1 and so it

is likely that Tpred ≤ t∗ as well. In this situation, one must
select a larger Tpred (for example double it), recreate the data
matrix, and repeat this process until redundancy is achieved,
as described in the theorem.

Note that the above does not check whether Tpred > t∗;
rather, it checks whether Tpred ≥ t∗+2. Thus, ˜OD∞ will contain
redundant inequalities, i.e., non-minimal complexity. However,
this can be alleviated as discussed in the following remark.

Remark 6: Choosing non-minimal values for Tini and Tpred
has negative computational consequences. If Tini is too large,
then ˜OD∞ lives in an unnecessarily high-dimensional space.
If Tpred is too large, then the set may have non-minimal
complexity (i.e., contain redundant inequalities). The latter
can be alleviated by removing redundant constraints after
constructing the set, using an algorithm similar to the one
presented in [1].

IV. DATA-ENABLED REFERENCE GOVERNOR (RG)
Here, we develop a data-enabled version of the RG, which

leverages ˜OD∞ instead of ˜O∞. The update law of the data-
enabled RG remains the same as (6), but κ ∈ [0, 1] is obtained
by solving the following linear program (compare with (7)):

maximize
κ∈[0,1]

κ

s.t. u0 = u(t − 1) + κ(r(t) − u(t − 1))

uini = col(u(t − Tini), . . . , u(t − 1))

yini = col(y(t − Tini), . . . , y(t − 1))

(uini, yini, u0) ∈ ˜OD∞ (24)

Assuming uini and yini are updated at every timestep using
the input-output data collected from the system, Theorem 1
can be invoked to show that the data-enabled RG is equivalent
to the standard, model-based RG; that is, it produces the
same output u(t) at every timestep. This RG, thus, inherits
the properties of the standard RG [7], as summarized in the
following theorem.

Theorem 4: The data-enabled RG enjoys the following
properties:

1) Suppose that (24) is feasible at t = 0. Then, (24) is
feasible for all t > 0.

2) The signal u(t) computed using (6), (24) is bounded.
3) For a constant r(t) = r, u(t) converges in finite time.

Moreover, if r(t) is steady-state constraint-admissible,
then u(t) converges to r(t).

The proposed data-enabled RG has several advantages over
its model-based counterpart, but also several disadvantages:

Pros: The data-enabled RG does not require a parametric
model. Thus, it does not require a system identification step,
nor does it require an observer for state estimation. For this
reason, it provides more flexibility and an end-to-end solution
to the practitioner.

Cons: First, only the measured output can be constrained,
whereas in the model-based RG, any linear combination of
the inputs and states can be constrained. Second, notice that
the data-enabled RG enforces the constraints starting at t = 0,
but requires online data from time t = −Tini to t = −1.
Thus, the constraints can only be enforced after a delay of
Tini at the system startup. Third, since the data-enabled RG
leverages a higher dimensional MAS, it requires more compute
power and memory to store the data/matrices as compared to
the model-based RG. To compare the memory usage, consider
the efficient case where instead of storing the entire matrices
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Fig. 3. Simulation results. In the top subplot, the solid black curve shows
the output of the system driven by the proposed data-driven RG, and
blue curve shows the response of the system without a reference gov-
ernor (i.e., with u(t)=r (t)). In the bottom figure, the governed reference
and the ungoverned reference are shown. See the bottom block diagram
of Fig. 1 for the signal details.

1Tpred ⊗ s in (21) and h in (5), we only store ε and s. The total
floating point numbers that must be stored in memory for the
model-based and data-driven formulations of MAS/RG are:

Model-based: q
(

(t∗ + 1)(n + m) + m + 1
) + 1

Data-enabled: q
(

Tpred((m + p)Tini + m) + m + 1
) + 1

Since Tpred ≥ t∗ + 1 and Tini ≥ �, the difference between the
two, in the best case scenario where Tpred = t∗+1 and Tini = �,
is q(t∗ + 1)((m + p)� − n), which is always strictly positive,
meaning the data-driven version requires more memory. Of
course, the standard RG requires an observer as well, which
adds to the memory and computational requirements. So, a fair
comparison can only be made on an application-to-application
basis.

To illustrate the data-enabled RG, consider a DC motor
described by P(s) = 1380

s(0.15s+1)
, which represents a Quanser

QUBE Servo 2 experiment. The input to this model is voltage
and the output is shaft angle. The goal is to design a closed-
loop controller to track the setpoint, u(t), and a data-enabled
RG to govern u(t) to enforce the constraint y(t) ≤ 45◦. To this
end, we discretize P(s) at Ts = 0.05s using the sample and
hold approach. We then choose a discrete PID controller with
gains Kp = 0.00755, Ki = 0.01, Kd = 0.000863, which result
in a rise time of 0.1s and phase margin of 60◦. The closed
loop system can be described by (1), where

A =
⎡

⎢

⎣

2.455 −2.233 0.927 −0.159
1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎥

⎦
, B =

⎡

⎢

⎣

1
0
0
0

⎤

⎥

⎦
,

C = [ 0.261 −0.2 −0.21 0.159 ], and D = 0. To design an RG,
we first choose ε = 0.02 and compute the model-based ˜O∞,
which has t∗ = 115. We then collect a single long sequence of
input-output offline data, by driving the system with random
noise sampled from the uniform distribution. We use this
input-output data to create the data matrix, H, with Tpred =
116 and Tini = 4 (for simplicity, we assume � and t∗ are
known here). The characterizations of ˜O∞ and ˜OD∞ require the
storage of 583 and 1047 floating point numbers, respectively.
We simulate the response of the closed-loop system to a
step change in r(t). The results are shown in Fig. 3. As
can be seen, the response satisfies the constraint for all time,
as desired.

V. CONCLUSION AND FUTURE WORK

This letter proposed a data-driven formulation of the maximal
admissible set (MAS) and the reference governor (RG). The
formulations leverage output predictors from the behavioral
system theory and subspace predictive control literature, and
rely on offline clean data instead of parametric models. We
presented the properties of the proposed data-driven MAS and
RG and compared them with their model-based counterparts.
Numerical simulations illustrated the results. Future work will
study the robust formulations of data-driven MAS and RG in
the case of systems affected by set-bounded disturbances and
measurement noise. We will also study the impact of noise in the
offline data, which degrades the performance of our data-driven
predictors. Finally, we will study the extension of the methods
herein to nonlinear and/or infinite dimensional LTI systems.
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