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Abstract. We prove that the nonvarying strata of abelian and quadratic dif-

ferentials in [CM1, CM2] have trivial tautological rings and are affine varieties.
We also prove that strata of k-differentials of infinite area are affine varieties

for all k. Vanishing of homology in degree higher than the complex dimension

follows as a consequence for these affine strata. Moreover we prove that the
stratification of the Hodge bundle for abelian and quadratic differentials of fi-

nite area is extremal in the sense that merging two zeros in each stratum leads

to an extremal effective divisor in the boundary. A common feature through-
out these results is a relation of divisor classes in strata of differentials as well

as its incarnation in Teichmüller dynamics.
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1. Introduction

For µ = (m1, . . . ,mn) with
∑n

i=1mi = k(2g− 2), let Pk
g (µ) be the projectivized

stratum of k-differentials ω on smooth and connected complex curves of genus g
that have labeled zeros and poles whose orders are specified by µ. Equivalently,
Pk
g (µ) parameterizes k-canonical divisors of prescribed type µ.
The study of differentials is important in surface dynamics and moduli theory.

We refer to [Zo, W, C2] for an introduction to this subject. Despite various known
results, the global geometry of Pk

g (µ) remains quite mysterious, e.g., the full struc-

ture of the tautological ring of Pk
g (µ) is largely unknown. Moreover, it is generally

unclear whether the underlying coarse moduli space of Pk
g (µ) is an affine variety.

The birational geometry of Pk
g (µ) is also less studied. Such questions are mean-

ingful for understanding a moduli space, e.g., many exciting ideas and results have
been discovered in the study of these questions for the moduli space Mg of curves
of genus g.
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There has been some expectation among experts that the (rational) Picard group
of Pk

g (µ) should behave similarly comparing to that of Mg, which is of rank one
(for g ≥ 3) generated by the tautological divisor class λ. However, our result below
shows that such an expectation should at least exclude the strata whose Teichmüller
curves have nonvarying sums of Lyapunov exponents (as listed in [CM1, CM2] for
about 30 of them). For simplicity we call them nonvarying strata. Note that a
stratum can be disconnected due to spin and hyperelliptic structures ([KZ, L]).
Since different connected components can have distinct properties, when speaking
of a stratum we mean a specific connected component according to the hyperelliptic
and spin parity labelings.

The tautological ring of a stratum is defined in [C4] to be generated by the tau-
tological classes pulled back from Mg,n together with the tautological line bundle
class of the projectivized Hodge bundle. We say that the tautological ring of a
stratum is trivial if it is isomorphic to Q generated by the fundamental class, i.e.,
if every tautological class of positive codimension is zero over Q. Here a cycle class
on a stratum is treated in the stacky sense when we perform intersection calcula-
tions, just like doing calculations on Mg,n as a moduli stack. In contrast, when
speaking of affine, birational, or topological properties, we refer to the underlying
coarse moduli space of a stratum.

Theorem 1.1. The nonvarying strata of abelian and quadratic differentials listed
in [CM1, CM2] have trivial tautological rings and their coarse moduli spaces are
affine varieties.

In contrast if a stratum is varying, then the tautological classes should not be
all trivial (see Remarks 3.1 and 3.2).

Next we consider k-differentials of infinite area, i.e., when µ contains at least one
entry ≤ −k (see [BCGGM2] for an introduction to k-differentials).

Theorem 1.2. The coarse moduli spaces of strata of k-differentials of infinite area
are affine varieties.

Affine varieties are Stein spaces in analytic geometry. By [AF, N] we thus obtain
the following result about the homology of an affine stratum of differentials.

Corollary 1.3. Let Pk
g (µ) be one of the above affine strata of differentials. Then

Hd(Pk
g (µ),Z) = 0 if d > dimC Pk

g (µ) and Hd(Pk
g (µ),Z) is torsion free if d =

dimC Pk
g (µ).

Remark 1.4. For strata of holomorphic differentials with µ = (m1, . . . ,mn) and
mi ≥ 0 for all i, a (strongly) (g+1)-convex exhaustion function was constructed on
P1
g (µ) by using the area and length functions on flat surfaces (see [M, Proposition

3.17]), i.e., P1
g (µ) is a (g+1)-complete complex space. It follows that Hd(P1

g (µ),Z)
is torsion and Hd(P1

g (µ),C) = 0 for d > dimC P1
g (µ) + g = 3g − 2 + n (see [BB,

Theorem 0.3]).1

In general little is known about the homology of strata of differentials (never-
theless see [CMZ] for computing the Euler characteristics and [Zy] for the L∞-
isodelaunay decomposition). Even if one is interested in strata of holomorphic
differentials in high genus, differentials in low genus and meromorphic differentials

1Note that the q-complete index is defined in [M] one higher than in [BB].
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naturally appear in the boundary of compactified strata ([BCGGM1, BCGGM3]).
Therefore, we expect that the above results can be useful for inductively computing
the homology of strata of differentials.

Finally we turn to the stratification of the (ordinary) Hodge bundle of holomor-
phic differentials (up to scale) as the disjoint union of P1

g{µ}, where µ runs over
all partitions of 2g − 2 and {µ} denotes the version of strata with unlabeled zeros.
Note that P1

g{µ} is a finite quotient of P1
g (µ) under the group action permuting the

zeros that have the same order. We also denote by P1

g{µ} the closure of P1
g{µ} in

the extended Hodge bundle over the Deligne–Mumford moduli space Mg of stable
curves. We use similar notations for the stratification of the (quadratic) Hodge
bundle of quadratic differentials with at worst simple poles and the extension over
Mg,s, where s is a given number of simple poles to start with.

Theorem 1.5. Let µ = (m1, . . . ,mn) be a signature of abelian differentials with

mi ≥ 1 for all i, and let µ′ = (m1 +m2,m3, . . . ,mn). Then the stratum P1

g{µ′} is

an extremal effective divisor in P1

g{µ}.
Let µ = (m1, . . . ,mn) be a signature of quadratic differentials with mi ≥ −1 for

all i, and let µ′ = (m1 +m2,m3, . . . ,mn), where at least one of m1,m2 is positive.

Then the stratum P2

g{µ′} is an extremal effective divisor in P2

g{µ}.

Differentials of type µ′ as degeneration of differentials of type µ can be realized
geometrically by merging the two zeros of order m1 and m2. Theorem 1.5 thus has
an amusing interpretation that the stratification of the Hodge bundle (for abelian
and quadratic differentials of finite area) is extremal, where merging two zeros leads
to an extremal effective divisor in the boundary. We remark that if a stratum of
type µ is disconnected, then Theorem 1.5 holds for each connected component of
type µ and the component of type µ′ obtained by merging the zeros in the prescribed
component of type µ.

Strategies of the proofs. To prove Theorem 1.1 we show that the nonvarying
property yields an extra relation between tautological divisor classes which forces
them to be trivial. To prove Theorem 1.2 we observe the sign change of mi + k for
entries mi ≤ −k and mi > −k in µ, and use it to exhibit an ample divisor class
which is trivial on strata of k-differentials of infinite area. To prove Theorem 1.5
we show that Teichmüller curves contained in Pk

g {µ′} have negative intersection

numbers with the divisor class of Pk

g{µ′} in Pk

g{µ} for k = 1, 2.

Related works. Previously in [C3] the author showed that the nonvarying strata
of abelian differentials for µ = (4)odd, (3, 1), (2, 2)odd, and (6)even are affine by
using the geometry of canonical curves in low genus (see also [LM] for a related
discussion). This is now completed for all known nonvarying strata (including for
quadratic differentials). Moreover in [C3] the author also showed that there is no
complete curve in any stratum of k-differentials of infinite area, which now follows
from Theorem 1.2. Note that in general the implication does not work the other way
around, e.g., A2 removing a point contains no complete curves but it is not affine.
For unprojectivized strata of holomorphic differentials, nonexistence of complete
curves was shown in [Ge] and [C5]. Finally the beginning case of Theorem 1.5 for
the principal strata, i.e., for all zeros equal to one, was previously established in
[Gh]. Now this extremal behavior is shown to hold for all zero types. Therefore,
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our current results can further enhance the understanding of the tautological ring,
affine geometry, topology, and birational geometry of the strata. We hope that the
ideas employed in this paper can shed some light on related questions.

Acknowledgements. The author would like to thank Frederik Benirschke, Matteo
Costantini, Iulia Gheorghita, Samuel Grushevsky, Richard Hain, Martin Möller,
Gabriele Mondello, and Scott Mullane for helpful discussions on relevant topics.
The author also sincerely thanks the referee for very useful comments.

2. Triviality criteria

Marking the zeros and poles of differentials, Pk
g (µ) can be viewed as a subvariety

in the moduli space Mg,n of curves of genus g with n marked points. We introduce
the following tautological divisor classes that will be used throughout the paper.
Let η be the first Chern class of the tautological line bundle O(−1) on Pk

g (µ) whose
fibers are spanned by the underlying k-differentials ω. Let λ be the first Chern
class of the Hodge bundle, κ be the Miller–Morita–Mumford class, and ψi be the
cotangent line bundle class associated to the i-th marked point. When mi ̸= −k
for all i, we will often use the following quantity

κµ =
1

k
(2g − 2 + n)−

n∑
i=1

1

mi + k
.

Recall that the tautological ring of Pk
g (µ) is defined to be generated by the

tautological classes pulled back from Mg,n together with η. If µ does not contain
−k as an entry, then it was shown in [C4, Theorem 1.1] that in this case η can
generate the entire tautological ring of Pk

g (µ).

Proposition 2.1. Suppose mi ̸= −k for all the entries of µ. Let D be an effective
divisor in Mg,n with divisor class aλ+

∑n
i=1 biψi. Then the pullback of D to Pk

g (µ)
has divisor class

1

12

( (2g − 2 + n)a

k
+

n∑
i=1

12bi − a

mi + k

)
η.

Moreover if the above coefficient of η is nonzero and if D and Pk
g (µ) are disjoint,

then η is trivial on Pk
g (µ) and the tautological ring of Pk

g (µ) is trivial.

For the nonvarying strata of abelian and quadratic differentials, the desired di-
visors D in Proposition 2.1 arise from those used in [CM1, CM2] which are disjoint
from the respective strata. Occasionally we will use some variants ofMg,n by mark-
ing fewer points or lifting to the spin moduli spaces, for which the above reasoning
still works as we only consider the interior of these moduli spaces.

Proof. The following relations hold on Pk
g (µ) (see [C4, Proposition 2.1]):

η = (mi + k)ψi, 12λ = κ = κµη.

Then the claim on the pullback divisor class follows from these relations.
For the other claim, we only need to show that in this case η being trivial implies

that the tautological ring of Pk
g (µ) is trivial, which indeed follows from the fact that

η generates the tautological ring when µ contains no entries equal to −k (see [C4,
Theorem 1.1]). □
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Proposition 2.2. If all tautological divisor classes are trivial on Pk
g (µ), then the

coarse moduli space of Pk
g (µ) is an affine variety.

Proof. The tautological divisor class κ+
∑n

i=1 ψi is ample on Mg,n (see [Co, Theo-
rem (2.2)]) and is trivial on Pk

g (µ) by the assumption. Let δ be the total boundary

of Mg,n and 0 < ϵ≪ 1. The divisor class κ+
∑n

i=1 ψi + ϵδ remains ample and its
restriction to the closure of Pk

g (µ) can be represented by a divisor fully supported
on the boundary. This proves the claim. □

3. Nonvarying strata

In this section we prove Theorem 1.1. We use the effective divisors described in
[CM1, CM2] and then apply Propositions 2.1 and 2.2.

3.1. The hyperelliptic strata. Note that λ is trivial on the hyperelliptic locus
(see [CH]), which implies that the hyperelliptic strata have trivial tautological rings
and are affine varieties.

3.2. P1
3 (4)

odd and P1
3 (3, 1). The divisor H parameterizing hyperelliptic curves in

M3 is disjoint from these strata and has divisor class 9λ (see [CM1, Section 2.5,
Equation (1)]).

3.3. P1
3 (2, 2)

odd. For (X, p1, p2) ∈ P1
3 (2, 2)

odd, by definition p1+p2 is an odd theta
characteristic, which maps P1

3 (2, 2)
odd to the odd spin moduli space S−

3 . The divisor
Z3 in S−

3 parameterizes odd theta characteristics with a double zero. It is disjoint
from P1

3 (2, 2)
odd and has divisor class 11λ (see [CM1, Section 5.3]).

3.4. P1
3 (2, 1, 1). Marking the first two zeros maps P1

3 (2, 1, 1) to M3,2. The Brill–
Noether divisor BN1

3,(1,2) in M3,2 parameterizes curves that admit a g13 given by

p1 + 2p2. It is disjoint from P1
3 (2, 1, 1) and has divisor class −λ + ψ1 + 3ψ2 (see

[CM1, Section 2.5, Equation (5)]).

3.5. P1
4 (6)

even. For (X, p) ∈ P1
4 (6)

even, by definition 3p is an even theta character-
istic. The theta-null divisor Θ4 in M4,1 parameterizes curves that admit an odd
theta characteristic whose support contains the marked point. It is disjoint from
P1
4 (6)

even and has divisor class 30λ+ 60ψ1 (see [CM1, Section 2.5, Equation (3)]).

3.6. P1
4 (6)

odd and P1
4 (5, 1). Marking the zero of the largest order, these strata

map to M4,1. The Brill–Noether divisor BN1
3,(2) in M4,1 parameterizes curves

that admit a g13 ramified at the marked point. It is disjoint from both strata and
has divisor class 8λ+ 4ψ1 (see [CM1, Section 2.5, Equation (7)]).

3.7. P1
4 (3, 3)

nonhyp. The divisor Lin13 in M3,2 parameterizes curves that admit a g13
with a fiber containing both marked points. It is disjoint from P1

4 (3, 3)
nonhyp and

has divisor class 8λ− ψ1 − ψ2 (see [CM1, Section 2.5, Equation (8)]).

3.8. P1
4 (2, 2, 2)

odd. For (X, p1, p2, p3) ∈ P1
4 (2, 2, 2)

odd, by definition p1 + p2 + p3
is an odd theta characteristic. The divisor Z4 in the odd spin moduli space S−

4

parameterizes odd theta characteristics with a double zero. It is disjoint from
P1
4 (2, 2, 2)

odd and has divisor class 12λ (see [CM1, Section 5.3]).
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3.9. P1
4 (3, 2, 1). The Brill–Noether divisor BN1

4,(1,1,2) inM4,3 parameterizes curves

that admit a g14 given by p1+p2+2p3. It is disjoint from P1
4 (3, 2, 1) and has divisor

class −λ+ ψ1 + ψ2 + 3ψ3 (see [CM1, Section 2.5, Equation (6)]).

3.10. P1
5 (8)

even. The Brill–Noether divisor BN1
3 inM5,1 parameterizes curves with

a g13 . It is disjoint from P1
5 (8)

even and has divisor class 8λ (see [CM1, Section 2.5,
Equation (4)]).

3.11. P1
5 (8)

odd. The divisor Nfold15,4(1) in M5,1 parameterizes curves that admit

a g14 with a fiber containing 3p. It is disjoint from P1
5 (8)

odd and has divisor class
7λ+ 15ψ1 (see [CM1, Section 2.5, Equation (9)]).

3.12. P1
5 (5, 3). The Brill–Noether divisor BN1

4,(1,2) in M5,2 parameterizes curves

that admit a g14 with a fiber containing p1 + 2p2. It is disjoint from P1
5 (5, 3) and

has divisor class 7λ+ 7ψ1 + 2ψ2 (see [CM1, Section 2.5, Equation (10)]).

3.13. P1
4 (4, 2)

even, P1
4 (4, 2)

odd, and P1
5 (6, 2)

odd. The nonvarying property of these
strata was proved in [YZ] by using the Harder–Narasimhan filtration of the Hodge
bundle (see also [CM2, Appendix A]). Note that the filtration holds not only on a
Teichmüller curve but also on (the interior of) each stratum. Let Lµ be the sum of
(nonnegative) Lyapunov exponents which satisfies that λ = Lµη from the Harder–
Narasimhan filtration on these strata. In these cases we know that Lµ ̸= κµ/12.
Then the triviality of η on these strata follows from the two distinct relations
λ = (κµ/12)η and λ = Lµη.

3.14. Nonvarying strata of quadratic differentials in genus one and two.
Strata in genus ≤ 2 can be generally dealt with as in Sections 4.2 and 4.3 below.

3.15. P2
3 (9,−1)irr. This stratum is disjoint from the hyperelliptic divisor H in M3

whose divisor class is 9λ (see [CM2, Section 3.1, Equation (6)]).

3.16. P2
3 (8), P2

3 (7, 1), P2
3 (8, 1,−1), P2

3 (10,−1,−1)nonhyp, and P2
3 (9,−1)reg. Mark-

ing the zero of the largest order, these strata map to M3,1. The divisorW of Weier-
strass points in M3,1 is disjoint from these strata and has divisor class −λ + 6ψ1

(see [CM2, Section 3, Equation (5)]).

3.17. P2
3 (6, 2)

nonhyp, P2
3 (6, 1, 1)

nonhyp, P2
3 (5, 3), P2

3 (5, 2, 1), P2
3 (4, 4), P2

3 (4, 3, 1),
P2
3 (5, 4,−1), P2

3 (5, 3, 1,−1), P2
3 (7, 2,−1), P2

3 (7, 3,−1,−1), and P2
3 (6, 3,−1)reg.

Marking the first two zeros, these strata map to M3,2. The Brill–Noether divisor
BN1

3,(2,1) in M3,2 parameterizes curves that admit a g13 given by 2p1 + p2. It is

disjoint from these strata and has divisor class −λ + 3ψ1 + ψ2 (see [CM2, Section
3.1, Equation (8)]).

3.18. P2
3 (4, 2, 2), P2

3 (3, 3, 2)
nonhyp, P2

3 (4, 3, 2,−1), P2
3 (3, 2, 2, 1), P2

3 (3, 3, 1, 1)
nonhyp,

and P2
3 (3, 3, 3,−1)reg. Marking the first three zeros, these strata map to M3,3.

The Brill–Noether divisor BN1
3,(1,1,1) in M3,3 parameterizes curves that admit a

g13 given by p1 + p2 + p3. It is disjoint from these strata and has divisor class
−λ+ ψ1 + ψ2 + ψ3 (see [CM2, Section 3.1, Equation (7)]).

3.19. P2
4 (13,−1), P2

4 (11, 1), and P2
4 (12)

reg. Marking the zero of the largest order,
these strata map to M4,1. The divisor W of Weierstrass points in M4,1 is disjoint
from these strata and has divisor class −λ+ 10ψ1 (see [CM2, Lemma 3.2]).
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3.20. P2
4 (10, 2)

nonhyp, P2
4 (8, 4), P2

4 (8, 3, 1), and P2
4 (9, 3)

reg. Marking the first two
zeros, these strata map to M4,2. The Brill–Noether divisor BN1

4,(3,1) in M4,2

parameterizes curves that admit a g14 given by 3p1 + p2. It is disjoint from these
strata and has divisor class −λ+ 6ψ1 + ψ2 (see [CM2, Lemma 3.2]).

3.21. P2
4 (7, 5) and P2

4 (6, 6)
reg. The Brill–Noether divisor BN1

4,(2,2) in M4,2 pa-

rameterizes curves that admit a g14 given by 2p1 + 2p2. It is disjoint from these
strata and has divisor class −λ+ 3ψ1 + 3ψ2 (see [CM2, Lemma 3.2]).

3.22. P2
4 (7, 3, 2), P2

4 (5, 4, 3), and P2
4 (6, 3, 3)

reg. The Brill–Noether divisorBN1
4,(2,1,1)

in M4,3 parameterizes curves that admit a g14 given by 2p1 + p2 + p3. It is disjoint
from these strata and has divisor class −λ+3ψ1+ψ2+ψ3 (see [CM2, Lemma 3.2]).

3.23. P2
4 (3, 3, 3, 3)

reg. It is disjoint from the Brill–Noether divisor BN1
4,(1,1,1,1) in

M4,4 whose divisor class is −λ+ ψ1 + ψ2 + ψ3 + ψ4 (see [CM2, Lemma 3.2]).

3.24. P2
3 (6, 3,−1)irr, P2

4 (12)
irr, and P2

4 (9, 3)
irr. We can use the Harder–Narasimhan

filtration of the quadratic Hodge bundle for these strata (see [CM2, Appendix A]
and [CY, Section 4.2]) and argue as in Section 3.13.

Remark 3.1. We say that a stratum of abelian differentials P1
g (µ) is varying, if

it contains two Teichmüller curves that have distinct sums of Lyapunov exponents.
In this case we claim that η is nontrivial on P1

g (µ).
To see this, let ∆0 be the locus of stable differentials of type µ on curves with sep-

arating nodes only, where the differentials have simple poles with opposite residues
at the nodes. If P1

g (µ) is irreducible, then ∆0 is also irreducible and modeled on

P1
g−1(µ, {−1,−1}). Moreover, every Teichmüller curve in P1

g (µ) only intersects ∆0

in the boundary (see [CM1, Corollary 3.2]).
Suppose that η is trivial on P1

g (µ). Then η = eδ0 on the partial compactification

P1
g (µ) ∪ ∆0 for some constant e. Since λ = (κµ/12)η on P1

g (µ), we have λ = ℓδ0
on P1

g (µ) ∪ ∆0 for some constant ℓ. Then the sum of Lyapunov exponents of a
Teichmüller curve C is given by (λ · C)/(η · C) = ℓ/e which is independent of C,
contradicting that P1

g (µ) is a varying stratum.
Note that the above criterion is practically checkable for arithmetic Teichmüller

curves generated by square-tiled surfaces by using the combinatorial description of
area Siegel–Veech constants and sums of Lyapunov exponents (see [EKZ, Section
2.5.1] and also [C1, Theorem 1.8] for the relation with slopes of Teichmüller curves).

The same conclusion would hold for a varying stratum of quadratic differentials,
assuming that all Teichmüller curves contained in the stratum intersect only one
irreducible boundary divisor (see [CM2, Remark 4.7] for this assumption).

Remark 3.2. We speculate that the rational Picard group (and the rational second
cohomology group) of any varying stratum of holomorphic differentials P1

g (µ) should
be of rank one generated by η.

4. Differentials of infinite area

In this section we prove Theorem 1.2 for strata of k-differentials of infinite area.
For completeness we also include the discussion for some strata in low genus.
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4.1. Strata in genus zero. Every stratum in genus zero is isomorphic to the
corresponding moduli space of pointed smooth rational curves, which has a trivial
Chow ring and is affine.

4.2. Strata in genus one. Since ψi = 0 on M1,n for all i (see [AC, Theorem 2.2
c)]), every stratum Pk

1 (µ) in genus one (including the case of some mi = −k in
µ) has a trivial tautological ring and is affine by Proposition 2.2. The affinity also
follows from the fact that the ambient space M1,n is affine (see [C3, Theorem 3.1]).

4.3. Strata in genus two. Since λ is trivial on M2, every stratum Pk
2 (µ) in

genus two with mi ̸= −k for all i has a trivial tautological ring and is affine by
Proposition 2.2.

4.4. Strata with poles of order ≤ −k. Suppose m1 ≤ −k. By the relations
η = (mi + k)ψi for all i and (2g − 2)η = kκ−

∑n
i=1miψi, we obtain that

k
(
κ+

n∑
i=1

ψi

)
= (2g − 2 + n)η

= (2g − 2 + n)(m1 + k)ψ1.

It implies that κ+
∑n

i=1 ψi+aψ1 is trivial on Pk
g (µ) where a = −(2g−2+n)(m1+

k)/k ≥ 0. Since κ+
∑n

i=1 ψi + aψ1 (as ample plus nef) remains ample on Mg,n, it
follows that Pk

g (µ) is affine and Theorem 1.2 is justified.

5. Extremal stratification of the Hodge bundle

In this section we prove Theorem 1.5. Recall the notation µ = (m1, . . . ,mn),
µ′ = (m1 + m2,m3, . . . ,mn), and we work with unordered zeros. The idea is to
show that Teichmüller curves in Pk

g {µ′} has negative intersection numbers with the

divisor class of Pk

g{µ′} in Pk

g{µ} for k = 1, 2. In order to verify that, we make
use of the aforementioned fact that degenerate differentials in the boundary of a
Teichmüller curve can have only simple polar nodes (after taking a local square
root in the case of quadratic differentials).

Proof of Theorem 1.5. First consider the case of abelian differentials. The following

relation of divisor classes holds on P1

g{µ}:

12λ−Dh − κµη = (m1 +m2 + 1)
(
1− 1

m1 + 1
− 1

m2 + 1
+

1

m1 +m2 + 1

)
P1

g{µ′}

modulo the other boundary divisors, where Dh is the boundary divisor generically
parameterizing stable differentials with simple polar nodes. This relation follows

from [CCM, Proposition 6.3], where P1

g{µ} can be identified with the boundary
divisor DΓ having Γ⊥ as a rational vertex containing the two merged zeros and
ℓΓ = m1 + m2 + 1 therein. Note that the coefficient on the right of the above
equality is positive for m1,m2 ≥ 1.



9

Let C be the closure of a Teichmüller curve in P1
g{µ′}. Since C does not intersect

the part of the boundary of P1

g{µ} away from Dh and P1

g{µ′}, we obtain

(12λ−Dh − κµη) · C
η · C

= κµ′ − κµ

= −1 +
1

m1 + 1
+

1

m2 + 1
− 1

m1 +m2 + 1
,

where 12λ−Dh = κµ′η holds on the stratum P1

g{µ′} (modulo the other irrelevant

boundary divisors of P1

g{µ′} which do not meet C). Consequently, this implies

C · P1

g{µ′}
C · η

= − 1

m1 +m2 + 1
< 0.

Since η has positive degree on every Teichmüller curve (e.g., from the positive sign

of the area Siegel–Veech constant), it follows that C · P1

g{µ′} < 0 in P1

g{µ}. Since
Teichmüller curves are dense in P1

g{µ′} and the negative ratio above is independent
of each individual Teichmüller curve, the desired claim follows by using the same
argument as in [Gh, Section 4].

The case of quadratic differentials is similar. The following relation of divisor

classes holds on P2

g{µ}:

12λ−Dh − κµη = (m1 +m2 + 2)
(1
2
− 1

m1 + 2
− 1

m2 + 2
+

1

m1 +m2 + 2

)
P2

g{µ′}

modulo the other boundary divisors, where the coefficient on the right is nonzero
by the assumption that m1,m2 ≥ −1 and at least one of them is positive. Let C be
the closure of a Teichmüller curve in P2

g{µ′}. Since C does not intersect the part

of the boundary of P2

g{µ} away from Dh and P2

g{µ′}, we obtain

(12λ−Dh − κµη) · C
η · C

= −1

2
+

1

m1 + 2
+

1

m2 + 2
− 1

m1 +m2 + 2
.

It follows that

C · P2

g{µ′}
C · η

= − 1

m1 +m2 + 2
< 0.

The rest of the argument is the same as before. □

Remark 5.1. If a stratum in Theorem 1.5 is disconnected, since each of its con-
nected components contains a dense collection of Teichmüller curves, the conclusion
of Theorem 1.5 still holds for each connected component.

Remark 5.2. For k-differentials with k > 2, since there is no meaningful way to
define Teichmüller curves in this case, our method cannot be directly adapted. We
leave it as an interesting question to determine whether the stratification of the
k-th Hodge bundle is extremal for k > 2.
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