NONVARYING, AFFINE, AND EXTREMAL GEOMETRY OF
STRATA OF DIFFERENTIALS

DAWEI CHEN

ABSTRACT. We prove that the nonvarying strata of abelian and quadratic dif-
ferentials in have trivial tautological rings and are affine varieties.
We also prove that strata of k-differentials of infinite area are affine varieties
for all k. Vanishing of homology in degree higher than the complex dimension
follows as a consequence for these affine strata. Moreover we prove that the
stratification of the Hodge bundle for abelian and quadratic differentials of fi-
nite area is extremal in the sense that merging two zeros in each stratum leads
to an extremal effective divisor in the boundary. A common feature through-
out these results is a relation of divisor classes in strata of differentials as well
as its incarnation in Teichmiiller dynamics.
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1. INTRODUCTION

For pu = (my,...,my) with Y7 m; = k(2g — 2), let PF(u) be the projectivized
stratum of k-differentials w on smooth and connected complex curves of genus g
that have labeled zeros and poles whose orders are specified by u. Equivalently,
Pglf(/i) parameterizes k-canonical divisors of prescribed type p.

The study of differentials is important in surface dynamics and moduli theory.
We refer to [Zol W] for an introduction to this subject. Despite various known
results, the global geometry of Pg(u) remains quite mysterious, e.g., the full struc-
ture of the tautological ring of 73!’; (1) is largely unknown. Moreover, it is generally
unclear whether the underlying coarse moduli space of P;(,u) is an affine variety.
The birational geometry of PF(u) is also less studied. Such questions are mean-
ingful for understanding a moduli space, e.g., many exciting ideas and results have
been discovered in the study of these questions for the moduli space M, of curves
of genus g.
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There has been some expectation among experts that the (rational) Picard group
of 775 (1) should behave similarly comparing to that of Mg, which is of rank one
(for g > 3) generated by the tautological divisor class A. However, our result below
shows that such an expectation should at least exclude the strata whose Teichmiiller
curves have nonvarying sums of Lyapunov exponents (as listed in [CMI] [CM2] for
about 30 of them). For simplicity we call them nonvarying strata. Note that a
stratum can be disconnected due to spin and hyperelliptic structures ([KZ, L]).
Since different connected components can have distinct properties, when speaking
of a stratum we mean a specific connected component according to the hyperelliptic
and spin parity labelings.

The tautological ring of a stratum is defined in [C4] to be generated by the tau-
tological classes pulled back from M, ,, together with the tautological line bundle
class of the projectivized Hodge bundle. We say that the tautological ring of a
stratum is trivial if it is isomorphic to Q generated by the fundamental class, i.e.,
if every tautological class of positive codimension is zero over Q. Here a cycle class
on a stratum is treated in the stacky sense when we perform intersection calcula-
tions, just like doing calculations on M, , as a moduli stack. In contrast, when
speaking of affine, birational, or topological properties, we refer to the underlying
coarse moduli space of a stratum.

Theorem 1.1. The nonvarying strata of abelian and quadratic differentials listed
in [CMIl [CM2] have trivial tautological rings and their coarse moduli spaces are
affine varieties.

In contrast if a stratum is varying, then the tautological classes should not be

all trivial (see Remarks and .

Next we consider k-differentials of infinite area, i.e., when p contains at least one
entry < —k (see [BCGGM?2] for an introduction to k-differentials).

Theorem 1.2. The coarse moduli spaces of strata of k-differentials of infinite area
are affine varieties.

Affine varieties are Stein spaces in analytic geometry. By [AF,N|] we thus obtain
the following result about the homology of an affine stratum of differentials.

Corollary 1.3. Let ’Pg(u) be one of the above affine strata of differentials. Then
Hy(Py(p),Z) = 0 if d > dime PN (p) and Hq(PF(u),Z) is torsion free if d =
dim(c 'P:; (p,)

Remark 1.4. For strata of holomorphic differentials with 4 = (mq,...,m,) and
m; > 0 for all 4, a (strongly) (g+ 1)-convex exhaustion function was constructed on
Pi (1) by using the area and length functions on flat surfaces (see [M, Proposition
3.17]), i.e., P;(u) is a (g +1)-complete complex space. It follows that Hy(Pj (1), Z)
is torsion and Hy(Pj(u),C) = 0 for d > dimg Py(u) + g = 39 — 2+ n (see [BB]
Theorem 0.3])E|

In general little is known about the homology of strata of differentials (never-
theless see [CMZ] for computing the Euler characteristics and [Zy] for the L°°-

isodelaunay decomposition). Even if one is interested in strata of holomorphic
differentials in high genus, differentials in low genus and meromorphic differentials

INote that the g-complete index is defined in [M] one higher than in [BB].



naturally appear in the boundary of compactified strata ([BCGGMI| [BCGGM3]).
Therefore, we expect that the above results can be useful for inductively computing
the homology of strata of differentials.

Finally we turn to the stratification of the (ordinary) Hodge bundle of holomor-
phic differentials (up to scale) as the disjoint union of Pj{u}, where y runs over
all partitions of 2g — 2 and {u} denotes the version of strata with unlabeled zeros.
Note that 7391 {p} is a finite quotient of 73; (1) under the group action permuting the

zeros that have the same order. We also denote by fj}{,u} the closure of P} {u} in
the extended Hodge bundle over the Deligne-Mumford moduli space M, of stable
curves. We use similar notations for the stratification of the (quadratic) Hodge
bundle of quadratic differentials with at worst simple poles and the extension over
ﬂgys, where s is a given number of simple poles to start with.

Theorem 1.5. Let u = (mq,...,my,) be a signature of abelian differentials with
m; > 1 for all i, and let ' = (mq + ma,ms,...,my,). Then the stratum f;{,u’} 18

—1
an extremal effective divisor in P {p}.

Let = (mq,...,my) be a signature of quadratic differentials with m; > —1 for
all i, and let ' = (my + ma,ms, ..., my), where at least one of my, ma is positive.

Then the stratum fi{u'} is an extremal effective divisor in ﬁj{u}.

Differentials of type p’ as degeneration of differentials of type p can be realized
geometrically by merging the two zeros of order m; and ms. Theorem thus has
an amusing interpretation that the stratification of the Hodge bundle (for abelian
and quadratic differentials of finite area) is extremal, where merging two zeros leads
to an extremal effective divisor in the boundary. We remark that if a stratum of
type p is disconnected, then Theorem holds for each connected component of
type u and the component of type u’ obtained by merging the zeros in the prescribed
component of type p.

Strategies of the proofs. To prove Theorem we show that the nonvarying
property yields an extra relation between tautological divisor classes which forces
them to be trivial. To prove Theorem [I.2] we observe the sign change of m; + k for
entries m; < —k and m; > —k in u, and use it to exhibit an ample divisor class
which is trivial on strata of k-differentials of infinite area. To prove Theorem
we show that Teichmiiller curves contained in 735 {1’} have negative intersection

numbers with the divisor class of fs{u’} in fz{u} for k=1, 2.

Related works. Previously in [C3] the author showed that the nonvarying strata
of abelian differentials for p = (4)°44, (3,1), (2,2)°44, and (6)°*" are affine by
using the geometry of canonical curves in low genus (see also [LM] for a related
discussion). This is now completed for all known nonvarying strata (including for
quadratic differentials). Moreover in [C3| the author also showed that there is no
complete curve in any stratum of k-differentials of infinite area, which now follows
from Theorem[I.2] Note that in general the implication does not work the other way
around, e.g., A% removing a point contains no complete curves but it is not affine.
For unprojectivized strata of holomorphic differentials, nonexistence of complete
curves was shown in [Ge] and [C5]. Finally the beginning case of Theorem [1.5| for
the principal strata, i.e., for all zeros equal to one, was previously established in
[Gh]. Now this extremal behavior is shown to hold for all zero types. Therefore,
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our current results can further enhance the understanding of the tautological ring,
affine geometry, topology, and birational geometry of the strata. We hope that the
ideas employed in this paper can shed some light on related questions.

Acknowledgements. The author would like to thank Frederik Benirschke, Matteo
Costantini, Iulia Gheorghita, Samuel Grushevsky, Richard Hain, Martin Moller,
Gabriele Mondello, and Scott Mullane for helpful discussions on relevant topics.
The author also sincerely thanks the referee for very useful comments.

2. TRIVIALITY CRITERIA

Marking the zeros and poles of differentials, P (1) can be viewed as a subvariety
in the moduli space M, ,, of curves of genus g with n marked points. We introduce
the following tautological divisor classes that will be used throughout the paper.
Let 7 be the first Chern class of the tautological line bundle O(—1) on ’Pg(u) whose
fibers are spanned by the underlying k-differentials w. Let A be the first Chern
class of the Hodge bundle, x be the Miller-Morita—Mumford class, and ; be the
cotangent line bundle class associated to the i-th marked point. When m; # —k
for all i, we will often use the following quantity

J— 1 -
H#—E(Qg—Q—i—n)—;

Recall that the tautological ring of ”Pg(,u) is defined to be generated by the
tautological classes pulled back from M, ;, together with 7. If 1 does not contain
—k as an entry, then it was shown in [C4, Theorem 1.1] that in this case 7 can
generate the entire tautological ring of P;“(u).

1

Proposition 2.1. Suppose m; # —k for all the entries of p. Let D be an effective
divisor in Mg, with divisor class aX+ Y, bjy;. Then the pullback of D to 735 (1)

has divisor class
n

1 /(29 —2+n)a 12bi—a)
5 +;mi+k T

Moreover if the above coefficient of n is nonzero and if D and Pg(u) are disjoint,
then n is trivial on 735 (1) and the tautological ring of Péf(u) 18 trivial.

For the nonvarying strata of abelian and quadratic differentials, the desired di-
visors D in Proposition arise from those used in [CMT], [CM2] which are disjoint
from the respective strata. Occasionally we will use some variants of M, ,, by mark-
ing fewer points or lifting to the spin moduli spaces, for which the above reasoning
still works as we only consider the interior of these moduli spaces.

Proof. The following relations hold on P;“(u) (see [C4l Proposition 2.1]):
n=(m; + k), 12\=k=r,n.

Then the claim on the pullback divisor class follows from these relations.

For the other claim, we only need to show that in this case n being trivial implies
that the tautological ring of 77;“ (w) is trivial, which indeed follows from the fact that
7 generates the tautological ring when p contains no entries equal to —k (see [C4l
Theorem 1.1]). O
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Proposition 2.2. If all tautological divisor classes are trivial on 735(#), then the
coarse moduli space of 735 (1) is an affine variety.

Proof. The tautological divisor class k+Y .-, ¢; is ample on ﬂg’n (see [Cal, Theo-
rem (2.2)]) and is trivial on P} (u) by the assumption. Let & be the total boundary
of My, and 0 < e < 1. The divisor class k + > ., 1; + € remains ample and its
restriction to the closure of P;“(u) can be represented by a divisor fully supported
on the boundary. This proves the claim. O

3. NONVARYING STRATA

In this section we prove Theorem We use the effective divisors described in
[CMT] [CM2] and then apply Propositions and

3.1. The hyperelliptic strata. Note that A is trivial on the hyperelliptic locus
(see [CH]), which implies that the hyperelliptic strata have trivial tautological rings
and are affine varieties.

3.2. P1(4)°dd and Pi(3,1). The divisor H parameterizing hyperelliptic curves in
M3 is disjoint from these strata and has divisor class 9\ (see [CMIl Section 2.5,
Equation (1)]).

3.3. P1(2,2)°%. For (X, p1,p2) € P1(2,2)°, by definition p; + ps is an odd theta
characteristic, which maps P43 (2, 2)°44 to the odd spin moduli space S; . The divisor
Z3 in S5 parameterizes odd theta characteristics with a double zero. It is disjoint
from P3(2,2)°4 and has divisor class 11\ (see [CMI], Section 5.3]).

3.4. P3(2,1,1). Marking the first two zeros maps Pi(2,1,1) to Mj35. The Brill-
Noether divisor BN317(172) in M35 parameterizes curves that admit a g3 given by
p1 + 2p2. It is disjoint from P3(2,1,1) and has divisor class —\ + 91 + 312 (see
[CMI] Section 2.5, Equation (5)]).

3.5. Pi(6)°v°". For (X,p) € P4(6)°°", by definition 3p is an even theta character-
istic. The theta-null divisor ©, in My ; parameterizes curves that admit an odd
theta characteristic whose support contains the marked point. It is disjoint from
P1(6)°°" and has divisor class 30\ + 60t (see [CMIL Section 2.5, Equation (3)]).

3.6. P}(6)°4 and P}(5,1). Marking the zero of the largest order, these strata
map to My ;. The Brill-Noether divisor BN?})(Q) in My ; parameterizes curves

that admit a g3 ramified at the marked point. It is disjoint from both strata and
has divisor class 8\ + 411 (see [CMI1] Section 2.5, Equation (7)]).

3.7. P1(3,3)"°"¥P. The divisor Lin} in Mj » parameterizes curves that admit a g3
with a fiber containing both marked points. It is disjoint from P} (3, 3)"°"™P and
has divisor class 8\ — 1 — 1 (see [CMI] Section 2.5, Equation (8)]).

3.8. P;i(2,2,2)°%. For (X,p1,p2,p3) € Pi(2,2,2)°%, by definition p1 + p2 + ps
is an odd theta characteristic. The divisor Z; in the odd spin moduli space S,
parameterizes odd theta characteristics with a double zero. It is disjoint from
P1(2,2,2)° and has divisor class 12X\ (see [CMI, Section 5.3]).
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3.9. P§(3,2,1). The Brill-Noether divisor BNy ; ; ,) in My 3 parameterizes curves

that admit a g} given by p; +pa +2p3. It is disjoint from P} (3,2,1) and has divisor
class —A 4+ 1 + 12 + 313 (see [CMI], Section 2.5, Equation (6)]).

3.10. P(8)cven. The Brill-Noether divisor BN4 in M5 ; parameterizes curves with
a gi. It is disjoint from P2(8)°¥*® and has divisor class 8\ (see [CMIl, Section 2.5,
Equation (4)]).

3.11. P1(8)°dd. The divisor NfoldéA(l) in M5 ; parameterizes curves that admit
a g1 with a fiber containing 3p. It is disjoint from P2(8)°¢ and has divisor class

A+ 1591 (see [CMI] Section 2.5, Equation (9)]).

3.12. P1(5,3). The Brill-Noether divisor BN, i(l 9y i M5 parameterizes curves

that admit a g} with a fiber containing p; + 2ps. It is disjoint from P2(5,3) and
has divisor class TA + Tty + 215 (see [CM1] Section 2.5, Equation (10)]).

3.13. Pi(4,2)°ven, Pi(4,2)°, and P2(6,2)°d9. The nonvarying property of these
strata was proved in [YZ] by using the Harder—Narasimhan filtration of the Hodge
bundle (see also [CM2, Appendix A]). Note that the filtration holds not only on a
Teichmiiller curve but also on (the interior of) each stratum. Let L, be the sum of
(nonnegative) Lyapunov exponents which satisfies that A\ = L,n from the Harder—
Narasimhan filtration on these strata. In these cases we know that L, # ,/12.
Then the triviality of 1 on these strata follows from the two distinct relations
A= (ku/12)n and A = L,n.

3.14. Nonvarying strata of quadratic differentials in genus one and two.
Strata in genus < 2 can be generally dealt with as in Sections [.2] and [£.3] below.

3.15. P3(9,—1)*. This stratum is disjoint from the hyperelliptic divisor H in M3
whose divisor class is 9\ (see [CM2| Section 3.1, Equation (6)]).

3.16. P2(8), P2(7,1), P2(8,1,—1), P3(10, —1, —1)"°nhyP_and P2(9, —1)"&. Mark-
ing the zero of the largest order, these strata map to M3 ;. The divisor W of Weier-
strass points in M3 ; is disjoint from these strata and has divisor class —\ + 64
(see [CM2l Section 3, Equation (5)]).

3.17. P2(6,2)ronhye P2(6 1, 1)nenbyp - P2(5.3), P2(5,2,1), P2(4,4), P2(4,3,1),
P2(5,4,-1), P2(5,3,1,-1), P2(7,2,—1), P2(7,3,—1,—1), and P2(6,3, —1)™s.
Marking the first two zeros, these strata map to M3 . The Brill-Noether divisor
BN;(QJ) in M3, parameterizes curves that admit a g1 given by 2p; + pa. It is
disjoint from these strata and has divisor class —\ + 3¢ + 12 (see [CM2, Section
3.1, Equation (8)]).

3.18. P3(4,2,2), P3(3,3,2)mnbvp P2(4,3,2,—1), P5(3,2,2,1), P5(3,3,1, 1)mntvp,
and P3(3,3,3,—1)"8. Marking the first three zeros, these strata map to Msj 3.
The Brill-Noether divisor BN317(17171) in M3 3 parameterizes curves that admit a
g3 given by p; + pa + p3. It is disjoint from these strata and has divisor class
=X+ 91 + 12 + P35 (see [CM2, Section 3.1, Equation (7)]).

3.19. P3(13,-1), P;(11,1), and P3(12)**8. Marking the zero of the largest order,
these strata map to My ;. The divisor W of Weierstrass points in My ; is disjoint
from these strata and has divisor class —A + 10t (see [CM2, Lemma 3.2]).
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3.20. P2(10,2)"onhyr P2(8 4), P2(8,3,1), and P37 (9,3)" 8. Marking the first two
zeros, these strata map to My2. The Brill-Noether divisor BNi (3.1) in My
parameterizes curves that admit a g} given by 3p; + pe. It is disjoint from these
strata and has divisor class —A + 691 + 12 (see [CM2, Lemma 3.2]).

3.21. P;(7,5) and P;(6,6)"8. The Brill-Noether divisor BN/ (2,2) I My pa-
rameterizes curves that admit a g} given by 2p; + 2ps. It is disjoint from these
strata and has divisor class —\ + 3¢1 + 3ty (see [CM2, Lemma 3.2]).

3.22. P3(7,3,2), Pi(5,4,3), and P (6,3, 3) 8. The Brill-Noether divisor BN @1.1)
in M, 3 parameterizes curves that admit a gf given by 2p; + ps + ps. It is disjoint
from these strata and has divisor class —A+ 391 + 12 + 13 (see [CM2, Lemma 3.2]).

3.23. P3(3,3,3,3)™e. It is disjoint from the Brill-Noether divisor BN41_’(171’171) in
My 4 whose divisor class is =X + 11 + ¥ + 13 + 14 (see [CM2], Lemma 3.2]).

3.24. P3(6,3,—1)"*, PZ(12)", and P3(9, 3)" . We can use the Harder—Narasimhan
filtration of the quadratic Hodge bundle for these strata (see [CM2, Appendix A]
and [CY] Section 4.2]) and argue as in Section

Remark 3.1. We say that a stratum of abelian differentials 7791 (w) is varying, if
it contains two Teichmiiller curves that have distinct sums of Lyapunov exponents.
In this case we claim that 7 is nontrivial on Pj ().

To see this, let Ag be the locus of stable differentials of type pu on curves with sep-
arating nodes only, where the differentials have simple poles with opposite residues
at the nodes. If Pj(u) is irreducible, then Ag is also irreducible and modeled on
Py_1(4,{—1,—1}). Moreover, every Teichmiiller curve in P, () only intersects Ao
in the boundary (see [CM1, Corollary 3.2]).

Suppose that 7 is trivial on Pgl(u). Then 1 = edy on the partial compactification
Py (1) U Ag for some constant e. Since A = (,,/12)n on Pj(u), we have X = (4,
on 7791 (1) U Ag for some constant ¢. Then the sum of Lyapunov exponents of a
Teichmiiller curve C' is given by (A - C)/(n- C) = £/e which is independent of C,
contradicting that 77; (n) is a varying stratum.

Note that the above criterion is practically checkable for arithmetic Teichmiiller
curves generated by square-tiled surfaces by using the combinatorial description of
area Siegel-Veech constants and sums of Lyapunov exponents (see [EKZ], Section
2.5.1] and also [C1], Theorem 1.8] for the relation with slopes of Teichmdiller curves).

The same conclusion would hold for a varying stratum of quadratic differentials,
assuming that all Teichmiiller curves contained in the stratum intersect only one
irreducible boundary divisor (see [CM2] Remark 4.7] for this assumption).

Remark 3.2. We speculate that the rational Picard group (and the rational second
cohomology group) of any varying stratum of holomorphic differentials P, (1) should
be of rank one generated by 7.

4. DIFFERENTIALS OF INFINITE AREA

In this section we prove Theorem [I.2] for strata of k-differentials of infinite area.
For completeness we also include the discussion for some strata in low genus.
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4.1. Strata in genus zero. Every stratum in genus zero is isomorphic to the
corresponding moduli space of pointed smooth rational curves, which has a trivial
Chow ring and is affine.

4.2. Strata in genus one. Since ¢); = 0 on My, for all i (see [AC] Theorem 2.2
c)]), every stratum Py(p) in genus one (including the case of some m; = —k in
1) has a trivial tautological ring and is affine by Proposition The affinity also
follows from the fact that the ambient space My ,, is affine (see [C3| Theorem 3.1]).

4.3. Strata in genus two. Since \ is trivial on My, every stratum P§(u) in
genus two with m; # —k for all ¢ has a trivial tautological ring and is affine by
Proposition [2.2

4.4. Strata with poles of order < —k. Suppose m; < —k. By the relations
n = (m; + k)i; for all i and (29 — 2)n = kx — >, m;1p;, we obtain that

k‘(li—szi) = (29—2+n)ny
= (29 —2+n)(m1+ k)¢

It implies that £+ Y| 1; +avy is trivial on P (u) where a = —(2g — 2+ n)(my +
k)/k > 0. Since £+ >, 1; + ayy; (as ample plus nef) remains ample on M, ,, it
follows that ’Pg(u) is affine and Theorem is justified.

5. EXTREMAL STRATIFICATION OF THE HODGE BUNDLE

In this section we prove Theorem Recall the notation p = (mq,...,my),
w = (my + mg,ms,...,my), and we work with unordered zeros. The idea is to
show that Teichmiiller curves in PZ;{ w'} has negative intersection numbers with the

divisor class of f’;{,u’ }in fg{u} for k = 1,2. In order to verify that, we make
use of the aforementioned fact that degenerate differentials in the boundary of a
Teichmiiller curve can have only simple polar nodes (after taking a local square
root in the case of quadratic differentials).

Proof of Theorem[I.5. First consider the case of abelian differentials. The following
relation of divisor classes holds on f;{,u}:

1 1

1
_ N )
m1+1 m2+1 m1+m2+1

P in'}

12X\ — Dp, — kun = (mq +m2+1)(1—

modulo the other boundary divisors, where Dy, is the boundary divisor generically
parameterizing stable differentials with simple polar nodes. This relation follows
from [CCM| Proposition 6.3], where f;{u} can be identified with the boundary
divisor Dr having I'; as a rational vertex containing the two merged zeros and
fr = mq 4+ mg + 1 therein. Note that the coefficient on the right of the above
equality is positive for mq, mg > 1.
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Let C be the closure of a Teichmiiller curve in P {x/}. Since C' does not intersect
the part of the boundary of f_(l]{u} away from Dy, and f;{;/}, we obtain
(12X = Dy — kun) - C
n-C

= Ky — Ry

1 1 1

= -1+ + - ,
m1—|—1 m2—|—1 m1+m2—|—1

where 12\ — Dy, = k1 holds on the stratum ﬁ;{u’} (modulo the other irrelevant
boundary divisors of fé{ w'} which do not meet C). Consequently, this implies

C- P} _ 1

- < 0.
C-n my+mg+1

Since n has positive degree on every Teichmiiller curve (e.g., from the positive sign
of the area Siegel-Veech constant), it follows that C' - f; {¢'} <0in fz{u}. Since

Teichmiiller curves are dense in f;{ 1’} and the negative ratio above is independent
of each individual Teichmiiller curve, the desired claim follows by using the same
argument as in [Ghl Section 4].

The case of quadratic differentials is similar. The following relation of divisor
classes holds on 5(2]{ w}:

11 1 1 —
12A’D"”W:(”““"”2)(5*ml+2*mz+2+ml+mz+2)7)g{‘”’

modulo the other boundary divisors, where the coefficient on the right is nonzero
by the assumption that m,,mo > —1 and at least one of them is positive. Let C be
the closure of a Teichmiiller curve in PZ{y}. Since C' does not intersect the part

of the boundary of fi{,u} away from Dj, and fi{u’ }, we obtain

(A2A-Dy—run)-C _ 1, 1 1 1
n-C T2 T mi+2 me+2 mit+me+2
It follows that )
0P |
= - < 0.
C-n my + mg + 2
The rest of the argument is the same as before. O

Remark 5.1. If a stratum in Theorem is disconnected, since each of its con-
nected components contains a dense collection of Teichmiiller curves, the conclusion
of Theorem still holds for each connected component.

Remark 5.2. For k-differentials with £ > 2, since there is no meaningful way to
define Teichmiiller curves in this case, our method cannot be directly adapted. We
leave it as an interesting question to determine whether the stratification of the
k-th Hodge bundle is extremal for k& > 2.
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