THE NIL-BRAUER CATEGORY

JONATHAN BRUNDAN, WEIQIANG WANG, AND BEN WEBSTER

ABsTRACT. We introduce the nil-Brauer category and prove a basis theorem for its morphism spaces. This
basis theorem is an essential ingredient required to prove that nil-Brauer categorifies the split ;-quantum
group of rank one. As this -quantum group is a basic building block for i-quantum groups of higher
rank, we expect that the nil-Brauer category will play a central role in future developments related to the
categorification of quantum symmetric pairs.

1. INTRODUCTION

Throughout the article, we work over an integral domain k in which 2 is invertible, and all categories,
functors, etc. will be assumed to be k-linear without further mention. The aim of the article is to
introduce a new strict graded monoidal category, the nil-Brauer category, denoted NB, for a parameter
t € k. It turns out that A’B, is non-trivial only for + = 0 or = 1; we assume this is the case for the
remainder of the introduction.

The importance of the nil-Brauer category stems from results established in our subsequent work
[BWW23] relating A/B, to U;(slz), the split i-quantum group of rank one corresponding to the sym-
metric pair (SLy, SO;). Roughly speaking, the monoidal categories AB, (t = 0, 1) play the same role
for this, the most basic of all i-quantum groups, as the strict graded 2-category (sl,) introduced in
[Rou08, Laul0] plays for the ordinary quantum group Uy(sl>). To make a more precise statement, let
zU; be the modified Z[q, ¢~ ']-form of U} (sl,) associated to weights of parity 7 € {0, 1} arising as a spe-
cial case of the constructions in [BW18a, BW18b]. The algebra U;(slz) is simply a polynomial algebra

in one variable B, but the integral form 7 U! is not at all obvious; it has a basis as a free Z|q, g~']-module
given by the i-canonical basis which was computed explicitly in [BW18c]. We will show in [BWW23]
that A‘B, categorifies 7U. in the sense that the split Grothendieck ring of its graded Karoubi envelope,
viewed as a Z[q, g~ !]-algebra with the action of g coming from the grading shift functor, is isomorphic
to zUj, with the i-canonical basis arising from isomorphism classes of indecomposable objects.

The main theorem about A‘B, proved in the present article gives explicit bases for morphism spaces
in A\‘B,, a result which is used in an essential way in [BWW23]. Our proof follows a similar strategy
to the approach developed for Khovanov’s Heisenberg category in [BSW23], exploiting a remarkable
monoidal functor

Q : NB, —> Add(U(sh; 1), )

from AB, to the additive envelope of a monoidal category 7(sl;t)_ _ obtained by localizing the 2-

O

category U(slp) at certain morphisms. This functor takes the generating object B of A/B, to the di-
rect sum E @ F of the generating objects of U(sl;#) . It can be interpreted (in a weak sense
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due to the need to localize) as a categorification of the natural embedding of zU; into the completion
[ L= (mod 2) Lu 7U 1, of Lusztig’s modified Z[g, g~']-form of the quantum group U, (sl). Although
the construction of €, is elementary, it depends on an astonishingly delicate computation with generators
and relations expressed in terms of string calculus.

The rest of the article is organized as follows.

e We begin in Section 2 by defining A’B, by generators and relations; see Definition 2.1. Then we
show that it is trivial unless 7 € {0, 1}. For these values of ¢, we construct a homomorphism

¥ : T — Endgg, (1)

where I is the subalgebra of the algebra of symmetric functions over k generated by Schur’s
QO-functions.

e In Section 3, we recall the definition of the 2-category (sl,), and then introduce a localized ver-
sion of it, denoted U(sl,) .- In particular, this localization adjoins inverses of the 2-morphisms

usually denoted by dots. OWe then derive some remarkable relations in (sly)__ involving cer-
tain 2-morphisms which we call internal bubbles which are analogous to, but more complicated
than, corresponding morphisms for the Heisenberg category introduced in [BSW23].

e Then in Section 4 we pass from the 2-category (sly)_ _ to the monoidal category U(sh;t)_ .
The objects in the latter are words X in E and F, corresponding to formal sums of the 1-
morphisms X1, in U(sl)_ _ for the same word X and all weights 1 = ¢ (mod 2), and its
morphisms are represented by sequences of 2-morphisms in (sl)_ _; see Definition 4.1 for
the complete definition. The monoidal functor €, is finally constructed in Theorem 4.2.

e In Section 5, we use this functor to prove our main basis theorem, Theorem 5.1. This result
is analogous to the basis theorem establishing non-degeneracy of the Kac-Moody 2-category
U(sl,) in [KL10]. It shows that the homomorphism vy, mentioned earlier is actually an isomor-
phism, i.e., Endag (1) = T. Moreover, each morphism space Homgg (B*", B*") is free as a
graded ['-module with an explicit homogeneous basis.

Now we can give some further justification of the importance of the basis theorem proved here: in
the sequel [BWW23], we show that the graded rank of Homgg (B*", B*™) as a free I'-module is equal to
(B", B™)", where (-,-)" is the non-degenerate symmetric bilinear form on the -quantum group 7 U} from
[BW18a, Lem. 6.25]. We regard this as the first indication that AB, categorifies 7U!, indeed, it provided
us with some initial clues as to the precise form of the generators and relations for A/, in Definition 2.1.

Acknowledgements. We thank Peng Shan for her interest and encouragement in the early stages of this
project.

2. DEFINITION AND FIRST PROPERTIES OF THE NIL-BRAUER CATEGORY

The definition of AB, is by generators and relations. We use the string calculus to denote morphisms
in strict monoidal categories (or 2-morphisms in strict 2-categories), our general convention being that
composition f o g (“vertical composition”) is depicted by placing f on top of g and tensor product f * g
(“horizontal composition”) is depicted by placing f to the left of g.

Definition 2.1. For ¢ € k, the nil-Brauer category NB, is the strict monoidal category with one gen-
erating object B, whose identity endomorphism will be represented diagrammatically by the unlabeled
string |, and four generating morphisms

+ . B — B, ><:B*B—>B*B, MN\:B+*B—1, \_J:1—>B+B (1)
(degree 2) (degree —2) (degree 0) (degree 0)
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subject to the following relations:

ié—o, §§<—>§ 22)
(=1, mz‘zm, 2.3)
Q:o, x\zﬂ 2.4)
XXKALS A e

Remark 2.2. Although it will only play a secondary role in this article, it is important for the sequel to
note that AB, can be viewed as a graded monoidal category, i.e., a monoidal category enriched in the
closed symmetric monoidal category of graded k-modules, by declaring that the generators are of the
degrees indicated in parentheses in (2.1).

Remark 2.3. The defining relations just recorded are quite familiar in related settings. The first two
relations (2.2) are the same as defining relations in the nil-Hecke algebras associated to symmetric
groups, but the polynomial generator of the nil-Hecke algebra (often depicted also by a dot) satisfies
slightly different relations to (2.5). These relations come instead from the defining relations for the affine
Brauer category of [RS19], which is the monoidal category defined in the same way as in Definition 2.1
but replacing the O on the right-hand side of the first relation in (2.2) by the identity (so that the crossing
is an involution) and the O on the right-hand side of the first relation in (2.4) by (7. The endomorphism
algebras of objects in the affine Brauer category were introduced earlier by Nazarov [Naz96, Sec. 4],
and are known as Nazarov-Wenzl algebras [AMRO06], degenerate affine BMW algebras [DRV13] or
affine VW algebras [ES18]. The critical sign in the final relation from (2.5) emerged in that setting from
considerations involving orthogonal groups (and is unrelated to superalgebra).

As usual with definitions by generators and relations, the first task is to derive further relations as
consequences of the defining ones. To start with, we have the following:

- p-0-cf e
820, >C><:0, 2.7)
_><:

>< ‘_: \ p =% (2.8)

For example, to prove the first of these, we attach cups to the bottom left and bottom right of the second

relation in (2.4) to obtain

This can then be simplified using the zigzag relations from (2.3) to obtain the desired relation. The other
relations in (2.6) to (2.8) are proved similarly by attaching cups and/or caps to the ends of the strings in
other defining relations then simplifying in obvious ways.

Now we take the first relation from (2.5) and close at the top by attaching a cap and at the bottom by
attaching a cup. The left-hand side is O due to the first relations from (2.4) and (2.7). After replacing the
bubbles on the right-hand side with #1y, we deduce from this that

1y = tly. (2.9)
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Thus, for A‘B, to be non-trivial, one must have that r € {0, 1}. This will be assumed from now on. In
fact, henceforth, we will treat ¢ as though it is an element of {0, 1} — Z (rather than being the image of
that integer in k) so that we can use convenient expressions like (—1)".

The relations established so far imply that there are strict monoidal functors

R : NB, > NB*, B — B, s> (—1)*0 g, (2.10)
T: NB, — NB®, B +— B, s st (2.11)

Here, for a string diagram s we use st and s to denote its reflection in a horizontal or vertical axis, and
o(s) denotes the total number of dots in the diagram. The category NB, is strictly pivotal with duality
functor D := R o T = T o R; this rotates a string diagram s through 180° then scales by (—1)'(S). Also
by the relations established so far, a string diagram with no dots can be deformed freely under planar
isotopy without changing the morphism that it represents. This is not true in the presence of dots due to
the sign in the last relations from (2.5) and (2.8)—there is a sign change whenever a dot slides across
the critical point of a cup or cap.

To establish additional useful relations, we adopt a generating function formalism which is a slight
refinement of the setup introduced in [BSW20]. We denote the rth power of + under vertical compo-
sition simply by labeling the dot with . More generally, given a polynomial f(x) = >} cx" € k[x]
and a dot in some string diagram s, we denote

2 ¢, % (the morphism obtained from s by labeling the dot by r)

r=0

by attaching what we call a pin to the dot, labeling the node at the head of the pin by f(x):

+ = ¢ + € Endyg, (B). (2.12)
r=0

In the drawing of a pin, the arm and the head of the pin can be moved freely around larger diagrams so
long as the point stays put—these are not part of the string calculus. More generally, f(x) here could be
a polynomial with coefficients in the algebra k((u~!)) of formal Laurent series in an indeterminate '
then the string s decorated with a pin labeled f(x) defines a morphism in the base-changed monoidal
category AB,[u~']. We think of this as being a generating function for a family of morphisms. Pins
labeled by the power series

1

(u+ax) =u —awu? + PP - Eut e kX' (2.13)

for a € {4, —} appear so often that we denote them by a special shorthand, putting the variable u into
the node at the head of the pin and in addition we label the arm of the pin by the sign a:

+—@ = + (u—x)~" —u!

+u? + +u? # +u? § + - € Endag (B)[u '], (2.14)
+L@ = + win)1) = u"! ‘— u"? + +u? * —u? $ + - € Endag, (B)[u'].  (2.15)
These shorthand symbols behave well under R and T (2.10) and (2.11):
R (*_@> _ @—_+ , T (*_@) - +_@ (2.16)
Lemma 2.4. The following relations hold in NB,:

(Y@= a—¢ (2.17)
\ p@= @4 ). (2.18)
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Moo N kg o Rgr
X a0 [0 0 o2

Proof. It is clear from the last relation in (2.5) that ﬂ—m = m—{-\ and similarly for cups.
The relations (2.17) and (2.18) follow. To prove (2.19), it suffices to establish the equivalent relation

obtained by vertically composing on top with + | and on the bottom with| +—; this equiv-
alent relation follows immediately from the first relation from (2.5). Finally, the relation (2.20) follows

on applying T. O
The pin notation gives the generating function
O—@= >, u" € Endag, (1)[u] (2.21)
r=0

for “dotted bubbles”. This is often useful, but even more important is the renormalization
Z Qu":=(-1) (11 —2u O_@) €ly +u" Enng;r(ll)[[u’I]]. (2.22)
r=0

Its coeflicients are given explicitly by
Qg = 11, O, :==2(-1)O r (2.23)

for r > 1. Note also by (2.16) and (2.17) that O(u) is invariant under both of the symmetries R and T.
The following derives some further relations involving these generating functions. Yet more can then
be obtained by applying R and T.

Theorem 2.5. The following relations hold in NB,:

2u p;@ — *i@ O=@— +;@ - *i@ (224)
00 + 0@ = uO-® O-6. @25)
O(u)O(—u) = 11, (2.26)

o) = [(=y _+ o). 2.27)

Proof. To prove (2.24), we have that

2“#(3’_@(218)2%() @19, T O- 2u@-ﬁ@ 2u—@O—@ +

The desired relation (2.24) follows easily from this using (I +x ) — = T +x

Closing the free strings on the left in (2.24) gives a new relation whose left hand side is zero. This
gives (2.25) immediately. Then (2.26) follows by substituting the definition of O(«) and O(—u) into the
product O(u)O(—u), multiplying out the brackets, and simplifying using (2.25).

Finally, for the “bubble slide” relation (2.27), we have that

e e
gevg)

This shows that
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Let f denote the morphism on the left-hand side of this equation. The equation shows that f is fixed by
the symmetry R. Expanding the curl using (2.24) gives that

i@ B —® i@
-2 20-e- {212

So, using the definition of O(u), we have that

—(=1)" <2uf+ 1%) = tg < (=1 (11 —2u Oy=@) = m—* O(u).

Since f = R(f), the expression on the left-hand side of this equation is fixed by R, hence, so is the
expression on the right-hand side. Since R(O(u)) = O(u), this implies that

$0(0) = 0(u) ¢—{u=0 ).
The relation (2.27) follows immediately from this. O

Let A be the algebra of symmetric functions over the ground ring k. Adopting standard notations,
this is freely generated either by the elementary symmetric functions e, (r > 0) or by the complete
symmetric functions %, (r > 0). The two families of generators are related by the identity

e(—u)h(u) =1 (2.28)
where
e(u) = Z eu h(u) = Z hou™" (2.29)
r=0 r=0

are the corresponding generating functions, and ey = hy = 1 by convention.
Following [Mac15, Ch. III, Sec. 8], we define g(u) € A[u~'] and elements g, (r = 0) of A so that

q(u) = Z qu~ "= e(u)h(u). (2.30)
r=0
By (2.28), we have that
q(u)g(—u) =1 (2.31)
Equivalently, go = 1 and
r—1
B = (1) 3q7 + D (1) s (2.32)

for r = 1; cf. [Macl5, (I11.8.2")]. The subalgebra of A generated by all ¢, (r = 0) is denoted I'. As
explained in [Macl15], I is freely generated by g1, ¢g3,¢s,... (and it has a distinguished basis given by
the Schur Q-functions Q, indexed by all strict partitions). It follows that I" is generated by the elements
qr (r = 0) subject just to the relations (2.31). Hence, the relation (2.26) from Theorem 2.5 implies the
following:

Corollary 2.6. There is a unique algebra homomorphism y, : I' — Endg\@;l(]l) such that q, — Q, for
allr = 0.

We will show in Corollary 5.4 below that the homomorphism vy, just constructed is actually an iso-
morphism.
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3. RELATIONS IN THE 2-CATEGORY U(sly)

Next we recall the definition of the 2-category U(sl;) following the approach of Lauda [Laul0].
Working still over the ground ring k, (sly) is the strict 2-category with object set Z, generating 1-
morphisms E1; : 4 — A+ 2and 1F : 1 + 2 — A, whose identity 2-morphisms will be represented by
the oriented strings 1 and .|, and generating 2-morphisms

b1 Eli=Ely, M\ 1 tEF1; =1, \_J 1 :1;= FEl,, 3.1)
(degree 2) (degree 1 — 1) (degree 4 + 1)

><,a . EE1, = EEl,, [\ 1 FElL =1, 1 J 41y = EFly, (3.2)
(degree —2) (degree 4 + 1) (degree 1 — 1)

for all A € Z, subject to certain relations below. We refer to the dots in this setting as open dots to
distinguish them from the (closed) dots in the nil-Brauer category in the previous section.

Remark 3.1. The 2-category (sly) also admits a grading making it into a strict graded 2-category.
This is defined by declaring that the generating 2-morphisms are of the degrees specified in parentheses.
This grading will usually be ignored, but it crops up again in Remark 4.4, and it will be needed in the
final section since we need there to pass to the completion of 2(sl,) with respect to the grading.

To write down the relations, we denote the rth power of the dot under vertical composition simply
by labeling it with the natural number r. We introduce rightward and leftward crossings by setting

><,,z = m/z , ></z = %/z , (3.3)

(degree 0) (degree 0)

and use the following shorthands:

@l ::{ 1)”det( /1®rfsf/l )r,s:I ..... ; fo<n<-4a (3.4)

ifn<Oorn> —A4,

(degree 2n)
o —1)ydet (st ), , F0<n<2 3.5)
ifn<Oorn> A
(degree 2n)

Then the defining relations are as follows:

e KR XX XA
, nEn a7

1 =— |a +§;}1 ,;0 A}\iéz), P hi + Z:: ;0 ®i>< (3.8)

r+s=—A—1—n r+s=A—1-n

}Q 1= 6/1,0%1 ifA1>=0, P Q%: 020 /1‘ if 1 <0, 3.9
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nd )4 =6pao1 1y, forall0<n<ad,  a(pn =6, 411, forall0<n<—-A.  (3.10)

A more efficient presentation for [(sl;) was given by Rouquier in [Rou08]. To formulate this, we
just need the generating morphisms %A, ><,z, \_J1r and ("1 (hence, we also have the rightward crossings
defined via (3.3)), subject to the relations (3.6), the zigzag identities from (3.7), and the new inversion
relation which asserts that the following matrices are invertible in the additive envelope of U(sl,):

[></1 \_p-amt P \]i] L EF1,®1971 = FEI, if1<0, G.11)
X

: EF1; = FEL, ® 19! if 1> 0. (3.12)

The equivalence of Rouquier’s presentation with Lauda’s one from the previous paragraph was estab-
lished in [Brul6]. It is shown there that the two-sided inverse of the matrix (3.11) is the (1 — 1) x 1

matrix with first entry —></1 and (n+ 2)th entry equal to f\qn + 2 mn—l D+-+ 2 m ()
for 0 < n < —2 — 1, and the two-sided inverse of the matrix (3.12) is the 1 x (1 + 1) matrix with
first entry —><,z and (n + 2)th entry equal to nw 0 n—lw Lt 4 () U 1 for
O0<n<a-1

We define the downward open dot 1 é and the downward crossing AX to be the right mates of @1
and ></1, respectively. The defining relations for (sl ) imply that

m,z {,z, m,l :J,l . (3.13)

Moreover, 1 ? and AX are equal to the /eft mates of %A and ><,1. It follows that diagrams for 2-
morphisms in U(sly) are invariant under boundary-preserving planar isotopy. In particular, A(sl,) is
strictly pivotal with duality functor D defined by rotating diagrams through 180°. There are a couple
more useful symmetries, i.e., strict 2-functors

R : U(sh) — U(sh)™, T: U(slp) — U(slp)P (3.14)

defined as follows:
e Rtakes the object A to —A, switches E1, with 1_,E and F'1, with 1_,F, and takes string diagram
sto (—1)*() s also negating weights A labeling regions;
e T takes A to —A, switches the generating 1-morphisms E1, and F1_,, and takes string diagram
s representing a 2-morphism to (—1)* (5) 5%, also negating weights A labeling regions.

Here, x () is the total number of crossings in s. The duality functor factorizes asb = RoT = ToR.
We use similar conventions for pins attached to open dots as in (2.12) for pins attached to closed dots
in the previous section. In particular, as in (2.14) and (2.15), we have

%;@,4 = % (u—x)~1) 4 =u71]4 +u? %/l +u? %A + 4, (3.15)
%L@/i = % (u4x)~"] :u_lwz —u? #a +u3 %,1 — (3.16)
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Now, unlike in (2.17) and (2.18), we have simply that

QL@ = @Lm. UL@ = @LU, (3.17)

and similarly for the other orientation.
We define the fake bubble polynomials

-2 p
1= Z @ 1utn @ 1= Z @ 1 ut, (3.18)

which are polynomials in Endu(sh)(l 1)[u] with @ 1 =3d,01l1, when 4 > 0 and @ 1 = 38,011, when
A < 0. It is often convenient to combine the fake bubble polynomials with generating functions for
genuinely dotted bubbles by letting

AO(u) == @1 + @) € w My, 4wt Endu(slz)(l,l)[[u_l]], (3.19)
1Om) =@ 1 +Co—@ 1 € u'ly, +u' " Bndye,) (L) [u 1. (3.20)
As explained originally in [Laull, Prop. 8.2] (see also [BD17, (3.11)—(3.12)]), for any A € Z, the algebra

Endy(,)(121) may be identified with the algebra A of symmetric functions so that 1 ()(x) and 1 () as
just defined are identified with the generating functions u~4e(—u) and uh(u) from (2.29). In particular,

we have that
1O) Ou) = 14, (3.21)
as in (2.28).
The following relations are proved in [Brul6, Cor. 3.5]:

}(}AZ gln%@iz—[%—@@dluq, (3.22)

zgd@%“ :[,{@ @_H , (3.23)

u—!

with the second equalities being easily checked by equating coefficients; here and below we use [ f(u)],
to denote the coefficient of u” of a formal Laurent series f(u) in u~'. Other defining relations can be
written similarly in terms of generating functions. For example, the following are equivalent to (3.8):

L L

Next, we have the bubble slide relations

Ow) %i% O 1 . Ow « = O %i# LoG2s)

which follow from [KL10, Prop. 3.4]. They imply similar relations for the fake bubble polynomials:

@ «a - ﬁ% @ | @ 1 = [@ # p LO. (3.26)

4,0

Finally, we have the alternating braid relation

§2<A — >§§ 1 = @6U @—% 1+ %—@0(5@1 3.27)
K= =@ |,
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from [KL10, Prop. 3.5].
In order to make a connection between (sl ) and the nil-Brauer category, we need to localize at the
morphisms

R ANIE NS 629

X X X

for all A, u € Z and all 1-morphisms X : 1 + 2 — p — 2 in 2(sly). This means that we adjoin additional

generating 2-morphisms §—|—§ 1 : EXE1l, = EXE1, subject to the additional relations
b'¢

-1

HL% (e J( ...... sl (3.29)

By some analogy with [BSW21, (4.21)], we refer to the 2-morphisms (3.29) as teleportersl: the relation

$ f/l + f %u { ‘ wl (3.30)

X X X

means that dots can “teleport” across teleporters (hence, the name!). We denote the strict 2-category
obtained in this way by (sly)__: it also admits a grading like in Remark 3.1.

In 11(512)0“0, it is easy to see using (3.7) and (3.13) that the 2-morphisms defined similarly to (3.28)
but with one or both of the upward strings changed to downward strings are also invertible; we denote
their inverses in the obvious way by modifying the directions of arrows in (3.29). The dotted and solid
horizontal lines in all of these diagrams are present merely to indicate that the open dots at the endpoints
have been identified—they are not a part of the string calculus so can be moved freely around larger
diagrams as long as the endpoints remain fixed. It will often be convenient to allow open dots to be
connected by dotted or solid lines even when the endpoints are not at the same horizontal level. Such
string diagrams may be interpreted as morphisms by using planar isotopy to redraw the diagrams so that
the endpoints are aligned. For example, we have that

iﬁiini m ml +ma _2m4 =2 % (3.31)

It is similarly straightforward to check that

b - @;, A )‘.

From (3.31), we deduce that open dots are invertible in 2(sl;) . We will denote the inverse of @z
simply by labeling the dot by —1, and have that

iD/l = % %—1 a . (3.32)

lThey are also closely related to the morphisms called dumbbells in [BSW23].
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From (3.30), we deduce that

171 . (3.33)

‘We also have that

i;@ %,{ _ ﬁ@i p :%—@ J{ @i% 1. (3.34)

This and the following relations are easily deduced in a similar way to the proof of (2.19):

Som BN N =l e
Mot ~TX 1= X -guX
S-S X - P e

X X X

a@i% % L, (3.36)

In the literature, the fake bubbles @ 1 and 2 @ are often denoted by -1 @ 1 and 2 @—1 ,
respectively. We have avoided the latter convention because in (sl)_ _ it makes sense to consider
genuine dotted bubbles with dot labeled by —1.

Lemma 3.2. ( 1)1 — @ /1) (11 —2Q) =1

Proof. By (3.35), we have that

Ot 1= X 1 =1 a1

Then we expand the curls on the left-hand side using (3.22) and (3.23) to obtain

é@“@ /, +§@Ml@ = o)

By (3.10), the clockwise dotted bubble on the left-hand side here is O unless either n = 0 < A (when
it equals 1;,) or n = A, and the counterclockwise one is O unless either n = 0 < —A (when it equals
11,) or n = —A. Using this, and considering the cases 1 > 0,4 = 0 or 4 < 0 separately, the equation
obtained so far reduces to the identity we are trying to prove. O

Lemma 3.3. >_</z — >_<A = %}’%_{ A.

Proof. Using the rotated version of the last relation from (3.6) to commute all the dots to the bottom,

one checks easily that }{1 — }{1 = 2:>< 1 . Now compose vertically with teleporters on the top

and the bottom. O
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We come to what we promise is the last diagrammatical shorthand, which is a counterpart of [BSW23,
(5.27)—(5.28)]: we define the internal bubbles

-1
1 —1 1 —A—n A 1 —1 A 1 —1
1= 1 =5y (=1 ﬁLGD :—i —-[iJr @] » (3.38)
d? 2 i_{) 2 r;) —1=n—1 2 _@ 2 T 1 -
(degree —21 —2)
p!
1 “lo LN (_q)an _ 1 —lo _ -
A {P =4 @_i ! Z;)( 1) 3_@13[ =1 @_i [ /i@@ii Ll (3.39)
n=
(degree 214 — 2)
We also introduce internal bubbles on downward strings by taking the mates of (3.38) and (3.39), so that
we maintain invariance under planar isotopy. It can be checked easily that internal bubbles commute
with open dots and with other internal bubbles on the same string.

Lemma 3.4. The following hold:
(1) a é =22 i_@—%m A % ifA<2;
(2) d? 1= 2®_i 1 =202 % 1 ifa= =2

Proof. We just prove (1), then (2) follows by applying the symmetry R (which interchanges the two sorts
of internal bubble). Suppose that 4 < 2. The idea is to compute

_ > — > (3.40)

in two different ways. Starting from the form on the left-hand side, we slide the dot on the bubble past
the crossing above it using (3.37) and the first relation from (3.6) to obtain

=

Then we slide the dot on the curl up past the crossing using (3.37) again to get

1
A (H— > — 2 Oi) (35)% L O— 71_% Z 4 (n) oa—n—1
n=0

3.39
= Pl —0a1 4 |—042 2 @ .

On the other hand, we can simplify the right-hand side of (3.40) using the second relation from (3.8) to
obtain

A—1
21 i_@— Z Z 1 @ r4s =21 i_@—é‘i,l 7 ]—25,1,2 /1% —6/1’2 Pl @ .
n=0

r,5=0
r+s=A—1-n

The desired equality follows. O
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Lemma 3.5. The clockwise and counterclockwise internal bubbles are the two-sided inverses of each
other, i.e., we have that

Proof. We prove the second equality in the case that 4 > —1. The first equality in this case then
follows since internal bubbles commute, and after that the result may be deduced when 4 < —1 too by
applying the symmetry R. So assume that 4 > —1. By Lemma 3.4(2) and the definition (3.39) of the
counterclockwise internal bubble, we have that

G e @
@_ A @_ A u

A
—1

Now we observe that

g: L g: ) +g—T . @ﬂ%_l CED @ @?@_ 2

Substituting this into the previous formula gives

_ (@) 7@ _@ @+ (334 @ @&+ _
@_ @_ A ®;@ A 1

u—! u—!
To get the last equality here, we used that [@ @L@ A+2 ] = 11,.,, which follows from (3.21)
on expanding the definitions (3.19) and (3.20). ! O

Lemma3.6.@ﬂ —1—@}4 = %lh.

Proof. Expanding the definitions of the internal bubbles, also multiplying both sides by 2 and using the

identity @—]{D 1+ @T© 1= @—1 —1@ A which follows by (3.33), this reduces to checking
that

A 1

2 -1
G111 = D (=D @ a1 a = D (=) Bt (1 = (1= (=D)Y1,.
n=0 n=0
This follows in the three cases 4 > 0, 4 = 0 or 4 < 0 using (3.10) and Lemma 3.2. O

Lemma 3.7. We have that

ol -|z=ee]| o -[pe]e]

for either choice of orientation of the left-hand string.

_%Q :

Proof. We are going to expand
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in two different ways, neither of which depends on the chosen orientation of the left-hand string. Com-
muting the dot on the bubble past the crossing above it using (3.37) and the first relation from (3.6)

g e
=i -[fsl] [ ],

On the other hand, we can apply (3.24) to obtain

o [[28 ] =ifor- 198 -[ke ],

oo [fo] o [lel |

The last terms produced in each case cancel with each other, and the lemma is proved. O

Corollary 3.8. é;:l =4 #TFP—% [ #ﬁ@‘ G?]

Proof. This follows from Lemma 3.7 (taking the left-hand string to be oriented downward) using also
the definition of the internal bubble that is the mate of (3.38). O

Corollary 3.9. {z) I 1 =2 i Q assuming 1 < —2.

Proof. This follows from Lemma 3.7 (taking the left-hand string to be oriented upward) using also
(3.18) and Lemma 3.4(1). O

o] o 20 [ ae ]

Proof. We have that

Folve-4-{HE ] =<2

u u—1

Lemma 3.11. X 1= X 1 and X 1= X 1.
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Proof. We prove the first equality assuming that 4 << —2. Then the second equality for 1 < —2 can be
deduced using Lemma 3.5, and after that both equalities for 4 = —2 follow by applying R. So assume
that 4 < —2. By Lemma 3.4(1) and Corollary 3.9, we have that

o E
We need to show that this commutes with the crossing ><,1. It is easy to check that the various dots do
so, indeed, xyx; and x; + x; are central elements in the nil-Hecke algebra NH>. It is almost as easy to
see that the counterclockwise bubbles commute with the crossing too:

O (3.37) O ——O
\@A = @A + /:83 Pl
o 0. 2. Yoo

@ _

The lemma is proved.

W
Lemma3.12.><:%% +§@/w* Mf—%[@%@ﬂ@ ]
S A A R @ ¥

Proof. We just have to use the rotations of (3.35) then (3.36) to commute dots downward past the
crossing:

}<(339)1 ><_l[@i—><]
2
(335); >< ! —&J, _%[%i>< +@%1 z]
—1 -1 —1 mfl B
<3é9>1®_>< _’_bj,i _1[@i>< ]
2 —1 -1 2| @ S
| @

3.3 1 Pl , @><1 _|_@ w4
e @t¢ 3!

.
Corollary 3.13. % = >§§A —(%1%1 -1 %_c@_% Z [T_g %_1 A ] )
! @+ !

Proof. In the identity from Lemma 3.12, we use the image of Corollary 3.8 under R to combine the first
and fourth terms on the right-hand side to obtain the identity

D el S

It remains to rotate clockwise by 90° then apply R. O
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Lemma 3.14. gg/i = %m—l 2 —m—{i} Q-

Proof. Closing the identity established in Lemma 3.12 on the top with a rightward cap and using (3.22)
to expand the two curls produced gives thatgg 1 =A+ B+ C+ D + E where

() _ <
‘(%?;%” 5 %@?@* - ﬂﬁ@@

@ O OF
Blng o] hj ] o
c=[ % Q)

(& ©_0

3. 18)
D=1 [‘%/@ = 010 %ﬂ*l A

u—ly—1

A
I 7
e e
-1
-

After rewriting A, B and D as indicated, the first terms from the expansions of A and B combine accord-

ing to the definition (3.38) to produce the second term ﬂ @ o from the formula we are trying

(3.34)

to prove. Similarly, the second terms from the expansions of A and B combine to give [\? -1 @ 1

Adding this to C and D and applying Lemma 3.6 gives w —1, . Comparing with the first

term in the formula we are trying to prove, we are left with showing that the remaining term from A
i )

plus the term from E equals (UT(SA’O m—l/i . This holds because these two terms can be simplified as

follows:

EX o ifa<0

1
1 C _ (3.41)
2 ﬂ @ ! » { 0 otherwise,

L I Y
[fri<] (0

0 otherwise.
The arguments to prove (3.41) and (3.42) are similar, so we just explain how to see the second one. The
counterclockwise fake bubble polynomial is 0 if 4 < 0, so the expression on the left-hand side of (3.42)
is 0 in this case, as required. The fake bubble polynomial is the identity if 4 = 0, and it is easy to see
that (3.42) is true in this case too due to the presence of two pins. Finally, if 4 > 0, the fake bubble
polynomial is u" + (lower terms), and by (3.10) we have that @—¢) 1 = (—1)*"'u~"+ (lower terms).
It follows that the u~!-coefficient on the left-hand side of (3.42) comes from the leading terms, and the
identity follows easily. o

(3.42)
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Corollary 3.15. }éﬁ U)% % A® }4 s

Proof. By arotated version of (3.37), we have that

U> U4 U>
QR
M
It remains to apply Lemma 3.14 to the first term on the right-hand side. O
T o SV SN
AN as

Proof. We begin by attaching a rightward crossing to the top of the identity from Lemma 3.12 to get

Lemma 3.16. Pl

thaté/z =A+ B+ C+ D+ E where

1624 41 !
@g 2®§ [ 7@

(334) 1 iq 1 @ ] 1 @_% A
20— T @ W T2 et ~®
& I Qlﬂ !
(333) i— @—b\@j } @_% ] @_%@j A
Aol - Herg @ 1| +ow® 1| +ilew) @ o
& @ M u! (@13(\ ! @lﬁ !
] Rl &
32%6154 (3:37)% < 41 // . (3:22>_% [@/ \@ +%@/© bt
_15)\ —lé)\ —Tf\ —Tf\ @ u—l —T?p\
\o/_ J ] R
AL S SO %{@/}@ ® 2 _1@//@ R el
=\ @, SEAT A EA
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@ @4 _J
E:—% ®@i5{ (326)_% @ 6/1 _% @@\@

+
UL L -
@& ) @& _J
(3.22) N
:%@@%\9 ik ek

It just remains to gather the terms together to see that we get exactly the three terms on the right-hand
side of the formula claimed in the statement of the lemma. The first terms from A and D combine
according to Corollary 3.8 (rotated through 180°) to give the second term in the claimed formula. The
second term from A cancels with the first term from B. The third term from B gives the third term in the
claimed formula. The fourth term from B cancels with the second term from C. The first term from C
gives the first term in the claimed formula. This just leaves the second term in B, the second term in D
and both terms in E. The second term in D and the first term in E are easily seen to equal O using the
definitions (3.18). The second terms in B and E are O too, as follows by considering leading terms like
in the proof of (3.41) and (3.42). O

e [5[55] -tfod [0

Proof. We begin by calculating:

Heed U8 =g - Ted - s
B[ e [

2 NS e ] T80 - (o8 oo [
o (Mot al82] - T3 [Fol @ d el .

In deriving the last equality here, we have removed two terms that are 0 by the same argument as used
to prove (3.41) and (3.42). Then we use (3.39) to combine the first and third terms to obtain the identity

3 -3 [l ol e b el .

Similarly, we use Corollary 3.8 (or rather its image under T) to combine the term on the left-hand side
with the fourth term on the right-hand side to reduce to

Hhof T el el .

Dividing by 2 and adding an inverse dot to the right-hand string, this rearranges to show that

ol [holoRat].. - Bt tteg el 25,

u—1
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the additional second term on the left-hand side obviously being equal to 0. It remains to observe that
the left-hand side in this is equal to the left-hand in the formula we are trying to prove by (3.39). O

remmaaan. |5l ~Fho- L w2l 56 +2HHes i H | arace

Proof. We expand the left-hand side:

fottee[ege}] -tk 2 el et -
2 [f240]] Heh -Hal Lo

@ [ize)| el [ +Hod +Hst

@ [ize)| el [+ ol <Hot +Hh
2 [j242], -Hisal [l | - [fs) ~Hro. - He

T - L
A e T e

It just remains to expand the fake bubble polynomials using the assumption that 4 < —1 to see that

EOEIENE e i

The lemma is proved. O

u-

o
o
o

u—!
u—!

4. MONOIDAL FUNCTOR FROM /B, TO A LOCALIZED VERSION OF (sly)

We are now in position to construct the strict monoidal functor €, : A/B, — Add (‘Ll (slp; t)omo). The
latter category is the additive envelope of a monoidal category obtained by collapsing the 2-categorical
structure on U(sly)_ . Its full definition is as follows:

Definition 4.1. Let U(slp;¢)__ be the monoidal category with objects that are words in the free monoid
(E, F) generated by the letters E and F. For any X,Y € {(E,F) and A € Z, there are corresponding
I-morphisms X1,, Y1, in (sl;)_ _ obtained by horizontally composing the 1-morphisms E1, and F1,
corresponding to the letters of X and Y for appropriate weights . Then we define

Homa(a)_ = ] Homyy, (Y11,X1y) (4.1)
A€t+27Z

for X, Y € (E, F). Defining the weight wt(X) of X € (E, F) to be 2 x (the number of letters £ minus the
number of letters F in the word X), the morphism space (4.1) is 0 unless wt(X) = wt(Y). In general, f €
Homu(slz;,)OmO(Y, X) is a tuple f = (f1)ae1+2z of morphisms f; € Homuq_] (5[2)0“.0(Yl/l,Xl,l)omo. The
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composition law making U(sl;¢)__ into a category is induced by vertical composition in U(sl)_  :
we have that (g o f), = ga o f) for morphisms f : X — Y and g : ¥ — Z. The strict monoidal
product — x — : U(sly;t), & U(sl:t),  — U(sh;t),  is induced by horizontal composition in
u(slz)omo: it is defined on objects simply by concatenation of words and on morphisms by setting
(/% F)23= Flogy Faor f Y = X, 127 = X

Morphisms in the additive envelope Add (7(sh;7)_ _) are matrices of morphisms in U(sh;7)_ .
In the statement of the next theorem, we use some obvious shorthand to represent such matrices. For

example, the morphism €, <><) appearing below is an endomorphism of
(E®@F)?=2ExE®E+F®F~E®F «F,

so it is a 4 x 4 matrix with rows and columns indexed by the words EE, EF, FE and FF. In turn,
Q; (><)/1 is a matrix representing an endomorphism of EE1,; & E"Fl,l @® FE1, ® FF1,. The eight

morphisms appearing on the right-hand side of the equation for Q,(><) 2 in the statement of the theorem
are matrices of this form with 0 in all but the self-evident entry.

Theorem 4.2. There is a strict monoidal functor €, : NB, — Add (U(sh;t)_ ) taking the generating
object B to E ® F, and defined on generating morphisms by letting

2 ()= - g
(X0 o - H

(N )=\ +/Qu,
QU =\_Ji+h /)«

for A €t + 27Z. We also have that

Q (0(u); = 1O(=u) Olu). (4.2)

Proof. To prove the existence of €);, we simply need to check the eight defining relations from (2.2)
to (2.9)!
e Consider the first relation from (2.3). We have that

2(0),-O +(>

To check the relation, we must show that this equals Q,(71;), = ¢1,, which follows immedi-
ately from Lemma 3.6.
e For the second relation from (2.3), we have that

o (1), MU (3
a(]). ]+l
o (L), -85 L)

Thus, to check this relation, we need to show that

o=l =% 0. (B) +=]=l/]
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These both follow easily using (3.7), (3.13) and Lemma 3.5.
In a similar way, the first relation from (2.5) reduces to checking that

e XK

X

T
v
\
.
nE
|
5
Il
|

e

The first four of these follow immediately from the last defining relation in (3.6) plus its variants
obtained by rotating through 90°, 180° and 270°. The last two follow using (3.30).
Next, we look at the second relation from (2.5). For this, we must show that

M1 = ¢\, [Qi=¢0Q..

These both follow using planar isotopy since open dots commute with internal bubbles.
The first relation in (2.4) follows using Lemma 3.5 and the relations

D@4 o
(9, - ot oo

The first of these is Lemma 3.14, and the second follows from the first (with A replaced by —1)
on applying R.
The second relation from (2.4) requires the following four identities to be checked:

Y- Ry
Pl

The first two of these follow immediately using planar isotopy. The last one follows using
planar isotopy and Lemma 3.5. For the third, one also needs to use Lemma 3.11 (rotated coun-
terclockwise by 90°) to commute the two clockwise internal bubbles past the crossing to their
left.

The first relation from (2.2) involves six non-trivial relations, coming from the (EE1,, EE1,)-
(EFIA, FEIA)—, (FEI), FEl/l)—, (FFl,l, FFI,})-, (FEl/l, EFl/l)- and (EFl,l, EFl/l)-eIltI'iCS of
the corresponding 4 x 4 matrices. However, after applying Lemma 3.5 to redistribute some

internal bubbles, the last three may be deduced from images of the first three under R and T.
Thus, we really only have to verify three relations, which are as follows:

Q K)o &g
1 =0, 1 — 1+ 1 — =0,
. <g\ gz’l
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- -1
véj,a—ki ><2 pl 1}“{1—%(&}4:0.

— 1
The first of these is the first defining relation from (3.6). The third one follows from Lemma 3.16

after making an obvious application of (3.33). To prove the second one, we take the equation
from Corollary 3.15 and add it to the equation obtained from it by applying T to both sides to

deduce that
gg}i_ Uy, U, e U,
?3 LA

Now use Lemma 3.3.

e The second relation from (2.2) is the most complicated to check since it involves an equal-
ity of 8 x 8 matrices, and there are 20 non-zero entries in these matrices. After simplifying
with Lemmas 3.5 and 3.11 and using the symmetries R and T, the calculation reduces to check-
ing five relations, coming from the (EEE1,, EEE1,)-, (FEE1,,EEF1,)-, (EEF1,,EEF1,)-,
(EFE1,,EEF1,)- and (EFE1,, EFE1,)-entries. The first two of these are

O TS

both of which follow from the second defining relation in (3.7) (using also some planar isotopy
to get the one on the right). The relations from the (EEF1,, EEF1,)- and (EFE1,, EEF1,)-

T B
VB R

32( _@j%,{

We leave the verification of these as exercises for the reader—simplify using Corollary 3.15
and Lemma 3.16.

Finally, we must verify the relation arising from the (EFE1,, EFE1,)-entry. We found this
to be significantly harder than the relations encountered so far! After rearranging terms and
simplifying a little using Lemmas 3.5 and 3.11, it requires the following to be proved:

O T SRR S U i L
g/ B S RN R S R MR O

Notice that the right-hand side is the image of the left-hand side with A replaced by —4 — 2
under the map —Rr. Thus, we must show that A; + R(A_1—») = 0 where A, is the expression
consisting of the nine terms on the left-hand side of the relation. We show equivalently that
B, +R(B_,_2) = 0 where

S AR e e R e B
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To obtain the second expression for B,, we have used (3.30) several times to split the fourth
term and the last term into two and to combine the fifth, sixth, seventh and eight terms into
one. We denote the eight terms in this by B,.1,..., B,.g in order from left to right, so B, =
By + -+ + Bjg. By Corollary 3.13, we have that By.; = Cj.1 + Cp2 + Ca3 + Cp.a Where

T T e gt
i o] A B ),
e L I e
Cra=—2" Eé%)l_z Q} é QE{ +4<§>I€f — —[1:&5—31;6—31;7 (by Lemma 3.16),
& Hod [j:g@ Sod - (ol

(323)2 % | _(%1 _ @_gj@
@—81

odi-[os8] ] [@ @—@f |-l

(339 ,

(3 39)

(339 ,

%_
) % —@-(ga - @@@- .
%_

b2 i

T e—@® ¢ o—@

-+l -sfegh] -n
| (&) 27 | S ] 3t
i M%i% R dIE-2 SR E= =N

=5 st ] PR
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For the final equality in the expansion of C .3, the third term on the previous line is O by a similar
argument to the proof of (3.41) and (3.42). To see that the second terms on the two lines are
equal, this is clear when 4 < —2 for the simple reason that the counterclockwise fake bubble
polynomial is O in that case, and it is almost as easy to see that both terms are 0 when 4 = —2.
So we may assume that 4 > —2. Then the clockwise bubble can be converted into an internal
bubble using Lemma 3.4(2), after which it cancels with the counterclockwise internal bubble by
Lemma 3.5. In the expansion of C,.4, three terms have been removed without explicit reference
since they are 0 by the usual arguments. Now we collect the pieces to see that By = D+ E + F)
where

D, = §< [ @) . @_% ] (the second term is new, it cancels a term on the next line),
@4\ =

[ 28 -2 -5 93]

R g I

Next, observe that D, + R(D_,_») = 0 by (3.27). Also E,; = 0, indeed, already the expression
inside the square brackets vanishes as follows from the elementary identity

2 2 _ 1 _ 1 _ Xty —
7 7y B 7 () A (7)) () A (7 (e A 7 | e e 0

where x represents the dot on the top left component, y the dot on the bottom left component,
and z the dot on the rightmost vertical string. In view of all of this, it just remains to show that
Fy+R(F_)_») = 0. Since T is an involution and we always have that A < —1or —1—2 < —1,
we may assume without loss of generality that 4 << —1. Hence, we have that

olln [l

if 4 < -3.

E,

From (4.3) and using the first of the equalities (4.4), we have that

wra-id b afo].
sttt H o ol |
b33 Hfotf--1]
b frsfoff ot sfot].

where we also used Lemma 3.4(1), Lemma 3.5 and Corollary 3.8 to get the last three equalities.
Also by Lemma 3.17, we have that

R TRERCEN e

u
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el oot o] of - l2d) ]
] ool [l ]+ [Fleg)].
ol | H ool -{figd ] afed ]
~gl$-lo] ]

The last equality here needs further explanation. We used Lemma 3.10 to rewrite the fourth term on the
penultimate line to deduce that the sum of the fourth, fifth and sixth terms on this line equal

ol bl -4t [ fia ] [FereRl] o

Using also Lemma 3.4(1) and Lemma 3.5, the first term in (4.5) simplifies further tOT l—l% 1, hence,
it cancels with the second term on the penultimate line above. When 4 < —3, it is easy to see from
(4.4) that the remaining four terms in (4.5) are all 0, and the desired equality follows. If 1 = —2,
the remaining terms are 0 again—this time two of them are non-zero but they cancel with each other.
Finally, when 4 = —1 the remaining four terms simplify by a calculation using also Corollary 3.8 to
obtain the final term in the formula we are trying to prove. We use the simplified formulae for F
and R(F_,_,) now established to see that F; + R(F_,—) = 0. Indeed, after cancelling the clockwise
internal bubble and a dot from the leftmost string, the sum is equal to

Foth -stoh-<Hh <t - ]

which is 0 by Lemma 3.18.
It just remains to prove (4.2). By (3.19) and (3.20), it suffices to show that

(D' [ (OW) ], = & G=@1] ,+[@O ®i]0+r@O G—@1.
Equivalently, since @ 1= —@—@ 1, we show that
D2 OW) o = [@ G—@1] - [0+ @1 ],0-@=O G—@ 1.

By (2.22) and the definition of €);, we have that

(=)' [ (O(u))] <0 = —2u {@ﬁ@*@i@ ! ]

Expanding the definitions of the internal bubbles using (3.38) and (3.39), this equals A + B + C where

Azu[i An@@—@l] ’

—A—n—1
n=0

3. 39) _4

60, %
H

B:u[i(—n“ @4y @ﬂ] :

A—n—1
n=0
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C=—-u [@}@@ P +®@§@ Pl ] -

We complete the proof by showing that A = [@ @L@ 2 ]u<0, B =— [@i© @ 4 ] <o and

C= —@i© C;o;@ 1 . For A and B, this follows simply by expanding the definitions of the pins
and fake bubble polynomials, e.g., for B we have that

2
u Z Z(—I)A_”” /l—n—1+r© @ du !

n=0r=1

3T O @ = [0 @]

n=0r=A—n

For C, we first use the relations (3.33) and (3.34) to see that

S0) @<
— ~ _
{2’11—@ 4 +®j§® A :@_1‘@ @1+t @—t@ -
Now we can expand the definitions to get that

C=—u Y (1) r ) st a2 —u Y (=1) =1 (p-tu"!

r,s=0 r=1

= —uZ(—l)r r@ @s—l w2

r=0
s=1

== 2 ) O B = — o) G@

r,5=0

B

This completes the proof of the theorem. O
Remark 4.3. The monoidal functor in Theorem 4.2 is certainly not unique. One way to obtain alterna-
tive forms, maintaining the property (4.2) and preserving the leading terms %A and ><,1 in the formulae
for Q, ( + )A and Q, (>< )ﬂ, is as follows. Suppose that we are given invertible 2-morphisms fz in

U(sl,) for each A € t + 27Z, such that fl and ? 2 commute. We denote the inverse of f 1 by labeling the

star with —1. Then there is a strict graded monoidal functor Q : A/B, — U(sh;?) taking Bto E® F
and defined on generating morphisms by

Q;(+)A:: %l _%
()5 3 BB 3

(N )= 1+ ¥Qu,
Q (\U)y= -k _Ja 4+ A1

for A € t+2Z. The proof of the existence of this is almost identical to the proof in Theorem 4.2—in all of
the calculations stars cancel with their inverses so that the final relations that need to be checked reduce
to the same ones as checked before. For example, taking ft = fi)/a produces a monoidal functor Q,
with

Q(4),= o 4.



THE NIL-BRAUER CATEGORY 27

fz,(><) :=>< +>< +Eg,z +><,a+%>—%z —%’%)A —%—%1 +<j§ﬂé 1,

ﬁt(ﬂ)ﬁlzmﬂ +/ O\ 1,
ﬁt(U),ﬁ:@ a -s—Ux

ford et + 2Z.

~

Remark 4.4. Recall from Remarks 2.2 and 3.1 that both AB, and U(sl,), hence, U(sly;¢) can be
equipped with gradings. However, the functor €, in Theorem 4.2 is not a graded monoidal functor—it
does not preserve degrees of the generating morphisms. One way to fix this is to pass to the g-envelope
U, (sl) of U(sly) defined as in [BE17, Sec. 6] (ignoring the more complicated Z/2-gradings present
there). This has 1-morphisms that are formal symbols ¢"X1, for 1-morphisms X1, in 2(sl,) and n € Z,
and the 2-morphism space Homyy (s1,) (¢"X12,4"Y1,) is ¢"~" Homyqy,) (X, Y), where the g here is the
upward” grading shift functor on the category of graded k-modules (qV)a := Vy41. Horizontal and
vertical composition making [,(sl) into a strict graded 2-category are induced in an obvious way
by the ones in U(sl;). Then we modify Definition 4.1, redefining U(slp;¢)_ _ to be the strict graded
monoidal category with objects that are words in the free monoid (£, F). For any X € (£, F)and 1 € Z,
the corresponding 1-morphism X1, in uq(slz) is defined so that £1, := q_/l_lEl/l, and then

Homy(,y (Y X) 1= H Homy, () (Y14, X12)
Aet+27Z

for X, Y € (E, F). The graded analog of Q; can now be defined to be the graded monoidal functor given
on objects by B — F @ E, and on morphisms as in Theorem 4.2; one just needs to check that this does
indeed respect degrees. At the decategorified level, this modified definition of €, is consistent with the
standard choice of the embedding U, (sly) < Uy(sh), B — F + gK -1E.

5. THE BASIS THEOREM

Assume as before that k is an integral domain in which 2 is invertible and 7 € {0, 1}. Fix also
m,n > 0. Any morphism f : B*" — B*" is represented by a linear combination of m x n string
diagrams, i.e., string diagrams with m boundary points at the top and n boundary points at the bottom
that are obtained by composing the generating morphisms from (2.1). It follows that Homgg (B*", B*™")
is O unless m = n (mod 2).

The individual strings in an m x n string diagram s are of four basic types: generalized cups (with
two boundary points on the top edge), generalized caps (with two boundary points on the bottom edge),
propagating strings (with one boundary point at the top and one at the bottom), and internal bubbles (no
boundary points). We define an equivalence relation ~ on the set of m x n string diagrams by declaring
that s ~ s’ if their strings define the same matching on the set of m + n boundary points. We say that s
is reduced if the following properties hold:

There are no internal bubbles.

Propagating strings have no critical points (i.e., points of slope 0).

Generalized cups/caps (i.e., strings that connect top to top or bottom to bottom) each have
exactly one critical point.

There are no double crossings (i.e., two different strings which cross each other at least twice).

2If one prefers g to be the downward grading shift functor then one can instead use the g~'-envelope U, -1 (sl) in this place
and obtain a graded monoidal functor €, taking B to F @ E and defined on morphisms as in Remark 4.3.
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These assumptions imply in particular that there are no self-intersections (= crossings of a string with
itself). For example, the first of the following undotted diagrams is not reduced (indeed, it fails all of
the above conditions), while the second is reduced in the same ~-equivalence:

(M

Now fix a set B(m, n) of representatives for the ~-equivalence classes of undotted reduced m x n string
diagrams; the total number of such diagrams is (m + n — 1)!! if m = n (mod 2), and there are none
otherwise. For each of these ~-equivalence class representatives, we also choose distinguished points
in the interior of each of its strings that are away from points of intersection. Then let D(m, n) be the set
of all morphisms f : B*" — B*" obtained by closed dots labeled by some non-negative multiplicities at
the elements of D(m, n).

Recall the commutative algebra I' of Schur Q-functions and the algebra homomorphism y; : I' —
Endgg (1) from Corollary 2.6.

Theorem 5.1. Viewing Homgg (B*", B*") as a T-module so that p € T acts on f : B — B*" by
f - p = f*v(p), the morphism space Homgg (B*", B*") is free as a T-module with basis D(m, n).

We split the proof into two parts—spanning and linear independence.

Proof of spanning part of Theorem 5.1. Consider a morphism f € Homgg (B*", B*") represented by an
m x n string diagram in which there is either a self-intersection or a double crossing. We claim that f can
be rewritten as a linear combination of string diagrams with no self-intersections or double crossings,
all of which have strictly fewer crossings than the original diagram. To see this, we can essentially
ignore closed dots since, up to a sign, they can be moved freely along strings by the relations (2.5)
and (2.8) modulo a linear combination of terms with strictly fewer crossings. If the diagram involves
a curl >O then the morphism is O by the defining relations. If there are no curls, the presence of
some self-intersection or double crossing implies that the diagram can be transformed using the braid
relation and planar isotopy into a diagram containing a bigon ><>< and the resulting morphism is 0 again
by the defining relations. This last assertion is justified in the proof of [LaulO, Th. 8.3] by adapting an
argument from [Car00, Lem. 2], which establishes the analogous result for closed 4-valent planar graphs
(viewing a crossing in our setup as a 4-valent vertex).

Applying the claim and induction on the number of crossings, we are reduced to considering a
morphism f represented by an m x n string diagram with no self-intersections or double crossings.
Using planar isotopy, we can assume moreover that there are no cups or caps on propagating strings,
and at most one cup or cap on all other strings. In particular, all of the internal bubbles are simple circles
decorated by some number of dots. Using the bubble slide relation (2.27), these internal bubbles can then
be moved so that they all appear on the right-hand edge of the diagram and there are no nested bubbles.
Thus, we have produced a I'-linear combination of morphisms defined by reduced string diagrams. In
any reduced string diagram, closed dots can be moved to some distinguished point on each string modulo
diagrams with fewer crossings. It remains to observe that any two undotted string diagrams of the same
type are equivalent, i.e., they define the same morphism. This follows using the braid relation and planar
isotopy once again. Hence, we obtain the desired I'-linear combination of diagrams in D(m, n). O

The proof of linear independence needs some additional input about the structure of the 2-category
U(slp). Specifically, we need bases for its 2-morphism spaces. In fact, we are going to work with a
completion (sl,) of U(sly). Recall from Remark 3.1 that U(sl,) is naturally a strict graded 2-category.
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For 1-morphisms X1,,Y1, : 2 — win (sl) (so X and Y are words in (E, F) of weight u — 1), the
graded 2-morphism space

Homy(g,) (Y14, X1,) = @ Homyg,) (Y14, X1,)a 5.1
deZ

has finite-dimensional graded pieces and Homy(s,) (Y14, X13)a = 0 for d « 0. Consequently, it makes
sense to pass to the completion with respect to the grading. This is a strict 2-category with the same
objects and 1-morphisms as (sl ), and 2-morphisms that are defined from

HomA( )(Yl/l,Xl/l HHOmu o) (Y12, X12)4 (5.2)
deZ

with horizontal and vertical composition laws induced by the ones in 2(sl;).

The non-degeneracy of U(sl) gives bases for the 2-morphism spaces Homy(s,) (Y12, X1,) of a sim-
ilar nature to the bases in Theorem 5.1. The result can be deduced from [LaulO, Laull], but it was not
formulated explicitly until [KL.10, Th. 1.3] (which also extended the result from sl; to sl,,). To state the
result in a way that is convenient for the present purposes, take 1-morphisms X1,, Y1, : 4 — pin U(slp)
represented by words X, Y € (E, F) of lengths m and n, respectively. Take s € D(n, m). By writing the
letters in the words X and Y at the ends of the strings at the top and bottom of the diagram s, respectively,
s determines a matching between the letters of X and Y. We say that s is admissible for X and Y if the
letters matched by each propagating string are equal and the letters matched by each generalized cup or
cap are different. In that case, there is a corresponding 2-morphism Y1, — X1, in 2(sl,) represented by
the string diagram § 1 obtained from s by replacing the thick strings by thin strings oriented in the way
dictated by the letters in X and Y (E indicates upward and F downward), replacing all closed dots with
open dots with the same multiplicities, and labeling the rightmost region by A. Let _D)(Y 1,,X1,) be the
set of oriented string diagrams arising in this way from the diagrams in D(n, m) that are admissible for
XandY.

As mentioned already, the graded algebra Endy(s;,)(1,1) can be identified with the algebra A of sym-
metric functions, viewed as a graded algebra so that e, and h, are in degree 2r, so that 1 ()(u) =
u- ) and 1 O)(u) = u'h(u); this assertion is part of the non-degeneracy theorem that we are de-
scrlblng. Hence each 2-morphism space Homy(;,) (Y1, X1,) is naturally a graded A-module, p € A
acting on f by f - p := f » p. The full theorem asserts moreover that each Homu(slz)(Yl 1 X1,) is

free as a graded A-module with homogeneous basis given by the set _D)(Y 1,,X1,). The following is an
immediate consequence.

Theorem 5.2. For A € Z, the endomorphism algebra Endu(SI )(1 1) is identified with the grading com-

pletion A of the algebra of symmetric functions. Hence, for any I-morphisms X1,,Y1, : 4 — u, the
2-morphism space Homﬁ(slz)(Yl,l,Xl,l) is naturally a topological A-module. In fact, it is free as a

topological A-module with topological basis _D)(Yl,b X1,).
We need one more basic lemma.

Lemma 5.3. For any a € k, there is a strict 2-functor n, : U(sly) — U(sly) which fixes objects and
1-morphisms, and is defined on generating 2-morphisms by

% %1+aT (N1 =\, \J1=\_J1,
><i»—>><l (N1 =1, =)
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It also maps

oIS <”>a )1, oIy (;ﬂ_‘rr)<_a>n—r D, 63
r=0 r=0

I <”)a o oIy (2::)<_a>n—r No (5.4)
r=0 r=0

forn = 0.

Proof. The existence of n, follows by checking relations. All of these are clear except for (3.8), and this
is easy enough to see if one works with the equivalent form (3.24). In more detail, we note that

(o) Fer

because 7, (u 1 — $1) = (u—a) |1 — da. The relation (3.24) follows using this and the observation
that [f(u — a)],-1 [ f (u ]u 1 for f(u) € k((u™")). To deduce the formulae describing 77, on bubbles,
we explain assuming A > 0. By the observation already made, we have that

e (@1 ) =@
Since 4 > 0, we have that @ 1 = 0,0l1,, and it follows easily that 1, maps the generating function
1O)(u) from (3.19) to 2+ ()(u — a). Inverting, we deduce that i, maps 1 O)(u) to 1 O)(u — a). The various
formulae now follow by equating coefficients. O

Let¢: U(sh) — fI(sIz) be the canonical inclusion. The 2-functor 7, : U(sly) — U(sl,) maps

fofdamal | Joed | ol | b

Assuming that a € k*, this 2-morphism is invertible in the completion ﬁ(glz), hence, the composition
L o 1, extends uniquely to a strict 2-functor

707, : U(sh)_ _ — U(sh). (5.5)

Finally, for r € {0, 1}, we let ‘21(512; t) be the strict monoidal category defined by collapsing ﬁ(slz)
in exactly the same way as in Definition 4.1, replacing the localization (sly) __ with the completion

ﬁ(slg). The 2-functor (5.5) induces a strict monoidal functor

Lo U(slyst),  — U(shy; 1). (5.6)
We denote its natural extension to the additive envelopes of these categories by
ZFAdd (U(shsr), ) — Add (U(sh;1)). (5.7)

This functor will be useful as it is easier to work with 7(sl; t) than with U(skb;r)_ _, since we can
exploit the topological basis arising from Theorem 5.2.

Proof of linear independence part of Theorem 5.1. We first use the pivotal structure to make a standard
reduction: Closing diagrams on the left
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defines a I'-module isomorphism Homgg (B*", B*") = Homg\@r(B*(m*”), 1). Thus, the proof is re-
duced to the special case that m = 0, which we assume from now on.
Take a linear relation
D sps=0 (5.8)
s€D(n,0)
in Homyg (B*", 1) for ps € I'. We must show that p; = 0 for all s. Suppose not and choose u € D(n,0)
with a maximal number of crossings such that p,, # 0. Let Y be the word in (E, F) obtained by orienting
the generalized caps in u from left to right then reading the orientations of the boundary points using
the usual dictionary E = upward and F = downward. Also take any A € Z. We apply the monoidal
functor £, o ©; to (5.8) to obtain a morphism in Add ( (slp; )), then restrict this to Y1, to obtain a
linear relation
S (Qlspo))lv, =0
s€D(n,0)

in Homﬁ(slz)(Ylﬁ, 1,). By (4.2), we deduce that

Z é’;_(QT(S)”YU : ga(ps) =0, (5.9

s€D(n,0)

where £,(ps) denotes the image of p; € I' = A under the automorphism ¢, of A = Endys,)(12)
described by (5.3) and (5.4). In particular, this completes the proof in the special case n = 0.

Now we need to think more carefully about the 2-morphisms £, (€(s))|y1, arising in (5.9). It is
simply O if s is not admissible for Y. Assuming s is admissible, the definition of ), given in Theorem 4.2
implies that £ (Q;(s))|y1, is a topological sum of morphisms defined by oriented string diagrams with
the same number or with fewer crossings compared to s, with all the ones with the same number of
crossings being of the same underlying type as s; this sum here may be infinite since the images under
{, of internal bubbles and teleporters are infinite linear combinations of diagrams with extra dots and
internal dotted bubbles. Using the straightening algorithm sketched in the spanning part of the proof,
diagrams with the same number of crossings but a different type to s and diagrams with strictly fewer
crossings than s can be rewritten as a A-linear combination of basis vectors from _D)(Y 1, 1,4), all of
which either have the same number of crossings but a different type to s as before or have fewer crossings
than s. Now let

X:={seD[n,0)|s ~ u}.
For s € X, all of the generalized caps in § .1 are oriented from left to right, hence, this diagram only
involves upward or rightward crossings. Using the definition of €, it follows that £, (Q;(s))|y1, =
£4(§ 1) + (a topological linear combination of basis vectors with strictly fewer crossings). Putting these
two points together, it follows that

Z gj(Ql(s ‘YIl ga ps Zga S l éva(ps) ( )—O,
s€D(n,0) seX

where (x) is a topological linear combination of basis vectors with the same number of crossings as u
but a different type or with strictly fewer crossings In view of Theorem 5.2, it follows that

Zga ) La(ps) =0

seX

in Homyy(s1,) (Y14, 1,), hence, > (5 1) - ps = 0. We deduce that p; = 0 for all s € X, in particular,
pu = 0. This contradiction completes the proof of Theorem 5.1. O

Corollary 5.4. The algebra homomorphismy; : I’ — EndNQ;[(]]_) is an isomorphism.

Proof. This follows from the m = n = 0 case of Theorem 5.1, since D(0, 0) is a singleton. m]
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