THE DEGENERATE HEISENBERG CATEGORY
AND ITS GROTHENDIECK RING

JONATHAN BRUNDAN, ALISTAIR SAVAGE, AND BEN WEBSTER

AsTrACT. The degenerate Heisenberg category Heisy is a strict monoidal category which was
originally introduced in the special case k = —1 by Khovanov in 2010. Khovanov conjectured
that the Grothendieck ring of the additive Karoubi envelope of his category is isomorphic to a
certain Z-form for the universal enveloping algebra of the infinite-dimensional Heisenberg Lie
algebra specialized at central charge —1. We prove this conjecture and extend it to arbitrary
central charge k € Z. We also explain how to categorify the comultiplication (generically).

1. INTRODUCTION

Throughout the article, we work over a fixed ground field k of characteristic zero. The
degenerate Heisenberg category Heisy, of central charge k € Z is a strict k-linear monoidal cat-
egory which was introduced originally by Khovanov [Kh] in the special case k = —1, motivated
by the calculus of induction and restriction functors between representations of the symmetric
groups. Khovanov’s definition of Heis;, was extended to arbitrary central charge in [MS, B].
The relations of this category are modeled on those of a Z-form Heisy, for a central reduction
of the universal enveloping algebra U(}) of the infinite-dimensional Heisenberg Lie algebra.
By [Kh, MS], there is an injective ring homomorphism

vi - Heisy — Ko(Kar(Heisy)) (1.1)

to the Grothendieck ring of the additive Karoubi envelope of Heis,. In this paper, we prove
that y;, is also surjective, so that Heisy categorifies Heisy, as was conjectured in [Kh, MS]. We
also take a first step towards categorification of the comultiplication on U(b).

To give more precise statements, we need to recall some basic notions. Let Sym; be the
ring of symmetric functions; see [M]. It is freely generated either by the elementary symmetric
functions {e,},>1 or the complete symmetric funtions {h,},>1. We also have the power sums
{pn}n>1 Whose images generate Sme := Q ® Sym;. Moreover, Sym; is a Hopf ring with
comultiplication ¢ : Symy — Symg ®z Symg, f = ¥4 fi) ® f() satisfying

n n
Sh)= ) ey ®hy, e =) ey @ S(p)=pi@l+lep,  (12)
r=0 r=0
where hyp = ey = 1 by convention. As a Z-module, Sym; is free with the canonical basis
{s1}1ep Of Schur functions indexed by the set # of all partitions.
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The infinite-dimensional Heisenberg Lie algebra is the Lie algebra h over Q with basis
{c, 254 | n> 1} and Lie bracket defined from

le, Py) =[PP = [Py, Py 1 =0, (P Pn] = Ompnc. (1.3)

The central reduction U(h)/(c — k) of its universal enveloping algebra may also be realized as
the Heisenberg double Symg, #g Symg, with respect to the bilinear Hopf pairing

(‘, _>k: Sme X Sme - Q’ <pm’ pn)k = 5171,nnk~ (1 4)
By definition, Symg, #g Symy, is the vector space Symg ®q Symg, with associative multiplica-
tion defined by

(e® f)g®h):= Z (fy, 8@ €801y ® fioh.
(:(8)

The pairing of two complete symmetric functions is an integer, as follows for example by
comparing the coefficients appearing in [S, Th. 5.3] to [S, (2.2)]. Thus we can restrict to obtain
a biadditive form (—, —) : Sym; X Sym; — Z. The resulting Heisenberg double

Heis; := Symy #7 Sym, (1.5)
gives us a natural Z-form for U(h)/(c — k) = Symg, #g Symg. For f € Sym;, we write f~ and
S+ for the elements f ® 1 and 1 ® f of Heis;, respectively. Then Heis; is generated as a ring
by the elements {/;, €, },>0 subject to the relations

min(m,n) k
hg = e(_) = 1, /’l,‘;h; = h;h;, 6;16,; = 6;6;1, h:;e; = Z (r) e;_rh;_r. (16)
r=0

See [S, Section 5] and [LRS, Appendix A] where this and other presentations are derived. The
usual comultiplication on U(h) descends to ring homomorphisms

S + Heis — Heisy @z Heis,, = > (fu)* @ (fi)* (1.7)
93}

for k = [+ mand f € Sym,. The antipode induces o7 : Heis; — (Heis_;)°P, i (—l)wsj,.
Also there is an isomorphism wy, : Heisy > Heis_g, sy sj,.
The degenerate Heisenberg category Heisy is a strict k-linear monoidal category with two

generating objects T and | and six generating morphisms

A full set of relations between these generating morphisms is recorded in Definition 5.1 below,
where we adopt the usual string calculus for strict monoidal categories. The relations imply
that Heisy is strictly pivotal with duality functor * defined on a morphism by rotating its string
diagram through 180°. In particular, the generating objects T and | are duals of each other.
Letting S, denote the symmetric group with basic transpositions sy, ..., s,—1, there is also an
algebra homomorphism 1, : kS, — Endg;, (7®"), which sends s; to the crossing of the ith
and (i + 1)th strings. Note we always number strings in diagrams by 1,2, ... from right to left.

By the additive Karoubi envelope Kar(Heis;) of Heis;, we mean the idempotent com-
pletion of its additive envelope Add(Heisy). Let Ko(Kar(Heis;)) be the Grothendieck ring
of the monoidal category Kar(Heisy), i.e., the split Grothendieck group with multiplication
[X][Y] := [X® Y]. For A € P with |1] = n, let e; € kS, be the corresponding Young sym-
metrizer, so that the left ideal S (1) := (kS,)e, is the usual (irreducible) Specht module for the
symmetric group. Associated to the idempotent e,, we also have the object

S = (19", u(e.)) € Kar(Heisy). (1.8)

Let 7 := ($))", and set H; := S¢) and E; := S

{1 for short. Our first main result is as
follows.
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Theorem 1.1. There is a ring isomorphism vy, : Heisy S Ko(Kar(Heisy)) such that 57 [S7]
for each A € P. In particular, hy; — [H;] and e — [E;]. Also for X € Kar(Heisy) we have
that [X]=0= X =0.

This proves extended versions of [Kh, Conjecture 1] and [MS, Conjecture 4.5]. The original
conjectures in loc. cit. are concerned with the specialization Heisy(6) of Heis; obtained by
evaluating the (strictly central) bubble k@ = é -k at a scalar § € k; see [B, Theorem 1.4].
We will not discuss this specialization further here, but note that our arguments can be carried
out in Heisi(6) in exactly the same way as in Heis;. Consequently, Theorem 1.1 remains
true when Heisy, is replaced by Heisi(5). The specialized version with k = —1,6 = 0 or with
k < 0,6 € Z proves the original conjectures from [Kh] and [MS], respectively.

The main new ingredient needed to prove Theorem 1.1 is to show that y; is surjective.
We do this by combining the strategy proposed by Khovanov in [Kh, Section 5] with one
additional general result about Grothendieck groups; see Theorem 2.2. This additional result
is well known (and easy to prove) in the setting of finite-dimensional algebras. However, we
need it here for algebras that are not finite-dimensional and, at this level of generality, we
actually could not find it explicitly in the literature (but see [D] for a related result).

We also prove the following theorem, which categorifies the relations (1.6). An analogous
result categorifying the commutation relations between %, and £, was recorded in [MS, Propo-
sition 4.3], where it was used to construct the homomorphism vy in the first place. In our proof
of Theorem 1.1 explained in Section 7, we give a new approach to the construction of yy,
thereby making our arguments completely independent of loc. cit.. We are then able to exploit
Theorem 1.1 to give a considerably simplified proof of the categorical relations; see Section 8.

Theorem 1.2. In Kar(Heisy), there are distinguished isomorphisms

min(m,n,k)

H'®H'=H' @ H, Hy®E, = (B PE,. eH,, ifk=0,
r=0  A€P,
min(m,n,—k)
E,®E, = E; ® E,, E,oH' = (D (PH,©E,, k<o,
r=0 /IEP,-_,;;

where P, denotes the set of all partitions whose Young diagram fits into an rX (k—r) rectangle.
The other key ingredient making this new approach possible is a strict monoidal functor
Ay = Kar(Heisy) — Kar(Heis; © Heisy,) (1.9)

for k = I + m; see Theorem 5.4. Here, — © — denotes symmetric product of strict monoidal
categories (see Section 3 for the definition), and Heis; © Heis,, is the localization of Heis; ©

Heis,, at the morphism
41

where the left (blue) string comes from Heis; and the right (red) string comes from Heis,,.
The following explains how Ay, categorifies the comultiplication ¢y, from (1.7).

Theorem 1.3. For any k = [ + m, there is a commutative diagram

. Otpm . .
Heisy, Heis; ®z Heis,,

Yi®Ym

Vi Ko(Kar(Heis))) ®z Ko(Kar(Heis,,))

%

Ko(Kar(Heisy)) T Ko(Kar(Heis; © Heisy,)),

where €y, is the ring homomorphism induced by the canonical functors from Heis; and Heis,y,
to Heis; © Heis,y,.
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The categorical comultiplication Ay, allows one to take tensor products of Heisenberg mo-
dule categories provided that the morphism (1.10) acts invertibly (that is, there is no overlap in
the spectrum of the red and blue dots). In Section 6, we give another application of this prin-
ciple, namely, an efficient new proof of the basis theorem for morphism spaces in Heis; from
[B, Theorem 1.6] (where it is proved by invoking results of [Kh, MS] when k£ < 0 and [BCNR]
when k = 0). The same general idea was first used in [W], and its formulation via categorical
comultiplication as developed here has subsequently been applied to establish basis theorems
for several other diagrammatic monoidal categories of a similar nature, including Frobenius
and quantum analogs of the Heisenberg category; see [BSW1, BSW2, BSW3].

2. A GENERAL RESULT ABOUT GROTHENDIECK GROUPS

In this section, until the final paragraph, all rings and modules are assumed to be unital.
For a ring R, we let Ky(R) denote the split Grothendieck group of the category R-pmod of
finitely generated projective left R-modules. By definition (e.g., see [R, Definition 1.1.5]),
this is the group completion of the commutative monoid consisting of isomorphism classes of
finitely generated projectives with respect to the operation + induced by taking direct sums
of modules. We write [P] for the image of the isomorphism class of P € R-pmod in Ky(R).
According to the definition of group completion, any element of Ky(R) can be written in the
form [P] — [P’] for P,P’ € R-pmod. Furthermore [P] — [P’] = 0 in Ky(R) if and only if
P® Q= P & Q for some Q € R-pmod. Since Q is finitely generated and projective, it is a
direct summand of a free module of finite rank. In other words, there exists Q" € R-pmod and
n > 0 such that Q ® Q' = R". Hence:

[P1-[P'1=0in Ko(R) & P®R" = P ®R" for some n > 0. 2.1

The ring R is stably finite if AB = 1 = BA = 1 for all matrices A, B € M,,(R) and alln > 1. This
is equivalent to the property P® R" = R" = P = 0 for all P € R-pmod, i.e., [P]=0= P =0.

Lemma 2.1. IfR is finitely generated as a module over its center then R is stably finite.

Proof. Suppose that P@®R" = R" for some non-zero P € R-pmod. Since P is finitely generated
over the center Z, the Nakayama lemma implies that the quotient P/mP is non-zero for some
maximal ideal m of Z. Then we have that P/mP & (R/mR)" = (R/mR)" as R/mR-modules,
hence, as Z/m-vector spaces. This is clearly impossible by dimension considerations. O

Suppose R and S are rings, and M is an (S, R)-bimodule that is finitely generated and pro-
jective as a left S-module. Then we have the induced functor

F :R-pmod — S-pmod, P+ MQ®gP,

which induces a homomorphism of Abelian groups [F] : Ko(R) — Ko(S). The main result
in this section is as follows. Note in [D, Theorem 2.2(3)] one finds a similar split short exact
sequence in K-theory, but this is proved under different hypotheses.

Theorem 2.2. Suppose R is a ring and e € R is an idempotent. Let S := R/ReR and suppose
that there exists a unital ring homomorphism o: S — R such that too = idg, wheren: R — S
is the quotient map. Then there is a split short exact sequence of Abelian groups

0 —> Ko(eRe) — Ko(R) — Ko(S) — 0, 2.2)

where ¢([P]) := [Re ®.r. P] and y([Q]) := [S ®r Q). Moreover, R is stably finite if and only if
both eRe and S are stably finite.

The proof will be carried out in the remainder of the section via a series of lemmas. We
begin with some elementary remarks. First, the map ¢ is well defined since the (R, eRe)-
bimodule Re is finitely generated and projective as a left R-module. Similarly, the map ¢ is
well defined since the (S, R)-bimodule S is finitely generated and projective as a left S -module.
We may denote this bimodule also by S, to make it clear that the right R-module structure is
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defined via the homomorphism 7 : R — §. Similarly, we have the (R, §)-bimodule R, which
is the left regular R-module R with right action of S defined by rs := ro(s). Note that

Sr®r Ry = Spor =S 2.3)
as an (S, S )-bimodule.
Lemma 2.3. The map ¢ from (2.2) is a split surjection.

Proof. Since R, is finitely generated and projective as a left R-module, we get a well-defined
map 6 : Ko(S) = Ko(R), [P] — [Rs ®s P]. Then the identity (2.3) implies that y o 8 =id. O

Lemma 2.4. The map ¢ is injective.
Proof. As noted above, any element in Ky(eRe) can be written in the form [P] — [P’] for some

P, P’ € eRe-pmod. Suppose [P]—[P’] € ker(¢). Then we have that [Re®,g. P]—[Re®.g.P'] = 0,
so by (2.1) there exists n € N such that there is an isomorphism

0:Re®pp, POR" — Re Q,z, P’ ®R".

Writing maps on the right, 6 can be represented by right multiplication by an invertible 2 x 2
matrix [ B]for A : Re®.g. P — Re®cg. P’, arow vector B : Re®.g. P — R", a column vector
C : R" - Re ®.g. P’ and an n X n matrix D € M,(R). The image n(D) in M,(S) is invertible,
so, with loss of generality, we can assume n(D) is the identity matrix I,. Then we have that
D =1, - Y., AweBy for some m > 1 and Ay, B € M,,(R). Consider the homomorphism

0: Re®p, POR"®(Re)"®---® (Re)" —> Re ®.p. P’ ®R" ® (Re)" @ - -- ® (Re)"

(where there are m summands (Re)" on each side) defined by right multiplication by the matrix

[A B 0 o - 0 ]
C I, Aje Aye --- A,e
0 eBy el, o --- 0
X=10 eB, 0 eI, --- 0
10 eB, O o - el,]

By some obvious elementary row operations, the matrix X can be transformed into the invert-
ible matrix

(A B 0 0 0]
cC D 0 0 0
O eBy el, O 0
0 eB, 0 el 0
0 eB, O 0 .- el

It follows that the matrix X is invertible. On the other hand, by some other elementary row and
column operations, the matrix X can be transformed into a matrix of the form

[ Y1, 0 Yo Yiz - Yime |
0 I, 0 0 ‘.- 0
Yo 0 Yoo Yo - Yo
i 0 Y Y3z o Y
,Ym+1,1 0 Ym+1,2 Ym+1,3 e Ym+1,m+1_

defines an isomorphism
0" : Re ®pc P®(Re)"®---® (Re)" = Re Q,r. P’ ®(Re)"® -+ ®(Re)".
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Finally, we restrict 8 to eRe ®,g, P ® (eRe)" & - - - ® (eRe)", noting that eRe Q.g, P = P and
eRe®.g. P’ = P’, to obtain an isomorphism of eRe-modules P®(eRe)™ = P’ ®(eRe)™. Hence,
[P] - [P'] = 0in Ky(eRe) by (2.1). O

Lemma 2.5. We have that o ¢ = 0.

Proof. For any right R-module M, the multiplication map is an isomorphism M ®g Re = Me.
Applying this to M = S ,, we see that S, ®g Re = (S )e, which is zero as n(e) = 0. The map
¥ o ¢ is defined by tensoring with this bimodule. O

Lemma 2.6. If P € R-pmod and S, ®g P = 0, then P = Re ®.g. V for some V € eRe-pmod.

Proof. Suppose P € R-pmod and S, ®g P = 0. Let V := eP, which is naturally an eRe-module.
Consider the homomorphism of R-modules

U: Re®ppe V=P, ae®v i aev.
Since 0 = S, ®; P = (R/ReR) ®g P = P/ReP, it follows that ReP = P. Hence, u is surjective.

Since P is projective as a left R-module, the map u splits, so we have a homomorphism of
R-modules 7: P — Re ®.g. V such that y o 7 = idp. Restricting, we have

V=eP5 eRe®u, VS V.

In other words, 7|y splits the isomorphism pleges,, v and hence must be its inverse. Thus
e® V C imt. It follows that 7 is surjective, hence, an isomorphism. We have now shown that
P = Re ®,.g, V as R-modules. It remains to show that V is finitely generated and projective.

Since P € R-pmod, we can choose elements py, ..., p, that generate P as an R-module. As
noted above, we have P = ReP. Hence, foreachi = 1,...,m, we can write
ni
pi = Z aj jeqi,j
j=1
for some n; > 0, a;; € Rand g;; € P. The elements {eg; ;|i=1,...,m, j=1,...,n;} generate

V as an eRe-module. So V is finitely generated.
To see that V is projective, suppose we have a surjective homomorphism of eRe-modules
0: U —» V. Then we have an induced surjective homomorphism of R-modules

id®0: Re ®.g, U - Re Q.p. V = P.
Since P is projective, this map splits. So we have a homomorphism of R-modules
& Re®ore V — Re Qg U

such that id®6) o ¢ = idgeg,v. From this, we see that the restriction &|.ges,, v Splits the
restriction (id ®0)|eree U : €R€®ere U — eRe®cp, V. Under the natural isomorphisms eRe ®,g,
U = U and eRe ®.g. V = V, the map (id ®)|cree,,, v corresponds to 6. So 6 splits. ]

Lemma 2.7. Suppose P € R-pmod and let Q := S, ®g P. There exists V € eRe-pmod and
n > 0 such that R, ®s Q ® (Re)" = P @ Re Q.g. V as R-modules.

Proof. By Frobenius reciprocity, we have a natural isomorphism
Homg(R, ®s Q, P) = Homg(Q, Homg (R, P)). 2.4)

Moreover, Homg(R,, P) = ,P, meaning the left R-module P viewed as an S-module via the
map o: § — R. Since Q = (R/ReR) ® P = P/ReP, we have a short exact sequence

0— sReP — P — Q0 — 0.

Since Q is projective as an S-module, we have a splitting 7: Q — ,P. Letv: R, ® Q — P
be the R-module homomorphism corresponding to 7 under (2.4), i.e., v(a ® q) = at(q).
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As S-modules, we have ,P = ,ReP & im 7. Thus, since imv 2 im 7, we have P = (imv) +
ReP. Let py,..., pm generate P as an R-module and, fori = 1,...,m, write

n
pi = v(u;) + Z a; jqjs
=1
for some n > 0, u; € R, ®s Q, a;; € Re and g; € eP. Then the map

0:Ry®s Q@ (Re)' = P, (u,by,...,by) — v(u) + ijQj»
=1
is a surjective R-module homomorphism. Since P is projective as an R-module, this map splits.
So we have
R, ®s Q@ (Re)" = P & (ker 6).
When we apply the functor S, ®g — to the split short exact sequence

0 — ker — R, ®s O ® (Re)" —6>P—>0,

we obtain a short exact sequence
id
0— S, kerd — S, @ Ry ®s Q 3 Q —> 0.
The composite of idg ®F and the isomorphism Q 58 7z ®r Ry ®s Q from (2.3) is the identity
idg, hence, ids ®0 is an isomorphism. This implies that S, ®g keré = 0. Finally, we apply
Lemma 2.6 to ker 8 € R-pmod to deduce that ker 8 = Re ®.g, V for some V € eRe-pmod. O

Lemma 2.8. We have kery C im ¢.

Proof. Consider an arbitrary element [P] — [P’] € kery, where P, P’ € R-pmod. In Ky(S), we
have that [Q] — [Q’] = 0 where Q := S, ®g P and Q' := S, Qg P’. By (2.1), we can assume
(replacing P and P’ by P ® R" and P’ @ R" for some n > 0) that Q = Q" as §-modules. By the
second isomorphism from (2.3), we have that R, ®5 O = Ry0,®g P and R, Qs Q' = Ry, ®r P’.
Applying Lemma 2.7 twice, we get V, V' € eRe-pmod and n,n” > 0 such that

(Re)'®Ry ® Q= PO Re®ur, V,  (Re)" @R, ®5 Q' = P ®Re®pp. V'.
Since R, ®s QO = R, ®s Q' as R-modules, we deduce that
[P] = [P'] = (n—n)[Re] — [Re ®cre V] + [Re @re V'],
which belongs to im ¢. O

Proof of Theorem 2.2. The fact that (2.2) is split exact follows from Lemmas 2.3, 2.4, 2.5 and
2.8. For the final part, suppose first that eRe and S are both stably finite. Take P € R-pmod
with [P] = 0. Then [S; ®¢ P] = 0 which implies that S, ® P = 0. Applying Lemma 2.6, we
deduce that P = Re ®.g, V for some V € eRe-pmod. As [Re ®.g. V] = 0, Lemma 2.4 now gives
that [V] = 0. Hence, V = 0, so P = 0 too.

Conversely, suppose that R is stably finite. Take V € eRe-pmod with [V] = 0. Then
[Re ®.ge V] = 0 which implies that Re ®.g, V = 0. Then multiply by the idempotent e to get
that V = eRe ®.g. V = 0. Finally, take Q € S-pmod with [Q] = 0. Then [S, ® Q] = 0 which
implies that S, ®s QO = 0. Hence, Q = R, ® S, ®s QO = 0. m]

We are going to be working in the remainder of the article with (usually monoidal) k-linear
categories instead of rings. The data of a k-linear category (A is the same as the data of a
locally unital algebra, i.e., an associative (but not necessarily unital) k-algebra A equipped
with a system of mutually orthogonal idempotents {1x | X € A} such that

A= @ 1yAly. (2.5)

X, YeA
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Under this identification, A is the object set of A, the idempotent 1y is the identity endomor-
phism of object X, 1yAly := Homx(X, Y), and multiplication in A is induced by composition
in A. By a module over such a locally unital algebra, we mean a left module V as usual such
that V = @, _, 1xV. This is just the same data as a k-linear functor from A to vector spaces.
Let A-pmod be the category of finitely generated projective A-modules. Then the Yoneda
lemma implies that there is a contravariant equivalence of categories

Kar(A) — A-pmod (2.6)

sending an object X € A to the left ideal Aly, and a morphism f : X — Y to the homomor-
phism Aly — Aly defined by right multiplication. We get induced a canonical isomorphism

Ko(Kar(A)) = Ky(A), (2.7

where Ky(A) denotes the split Grothendieck group of A-pmod. Providing A is actually uni-
tal, i.e., A has only finitely many non-zero objects, Theorem 2.2 can then be applied in this
situation.

3. CATEGORIFICATION OF SYMMETRIC FUNCTIONS

It is well known that the ring Sym; of symmetric functions is categorified by the represen-
tations of the symmetric groups &, for all n. In this section, we are going to reformulate this
classical result in terms of monoidal categories. This will give us the opportunity to introduce
language which will be essential later on.

Let Sym be the free strict k-linear symmetric monoidal category generated by one object.
This has a very simple monoidal presentation in terms of the string calculus for morphisms in
strict monoidal categories; see e.g. [TV, Chapter 2]. We represent the horizontal composition
f ® g (resp., vertical composition f o g) of morphisms f and g diagrammatically by drawing
f to the left of g (resp., drawing f above g). We denote the unit object by 1 and its identity
endomorphism by 1;. Then, Sym is the strict k-linear monoidal category generated by one
object T and one morphism " :T ® T—T ® T subject to the relations

S8 e

The objects of Sym are the tensor powers 1®" of the generating object for n € N. There
are no non-zero morphisms between 7" and 1®" for m # n. Moreover, there is an algebra
isomorphism

1n - kS, — Endsy,(1°") (3.2)
sending the ith basic transposition s; to the crossing of the ith and (i+ 1)th strings (remembering
that we number strings 1,2, ... from right to left). Thus Sym assembles the group algebras of
all the symmetric groups into one convenient package.

Now we can use the equivalence (2.6) and the isomorphism (2.7) to translate the well-
known representation theory of symmetric groups into statements about Sym. Since we are in
characteristic zero, Maschke’s theorem implies that the additive Karoubi envelope Kar(Sym)
is a semisimple Abelian category. For A € P with |4| = n, the Specht module S (1) = (kS,)e,
corresponds to the indecomposable object S, := (1%",1,(e))) € Kar(Sym). We set H, :=
Sum and E, := S for short. Then we see that the classes {[S,l] |/l € P} give a basis for
Ky(Kar(Sym)) as a free Z-module. Moreover, since taking tensor products of idempotents in
Kar(Sym) corresponds to the induction product at the level of k&,-modules, the Littlewood-
Richardson rule implies that there is a ring isomorphism

y : Sym; — Ko(Kar(Sym)), sy [Sal, ha= [Hyl,  en = [Ey] (3.3)

Thus Sym categorifies the ring of symmetric functions.
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In the remainder of the section, we are going to explain how to categorify the comultipli-
cation (1.2) on Sym;. The usual way to do this is by considering the restriction functors from
S, to S, X G,_, for all 0 < r < n. We are going to formulate the result instead in terms of a
monoidal functor on Sym.

Given strict k-linear monoidal categories C and D, we can form their free product C® D as
a strict k-linear monoidal category. This can be defined by a universal property: the category
of k-linear monoidal functors C ® O — B for any other strict k-linear monoidal category 8 is
the same as the category of pairs of k-linear monoidal functors C — B and D — B. When C
and D are themselves defined by generators and relations, the free product of C and D may be
constructed simply as the strict k-linear monoidal category defined by taking the disjoint union
of the given generators and relations of C and D. The symmetric product C © D is the strict k-
linear monoidal category obtained from C®9 by adjoining isomorphisms oxy : X®Y S YeX
for each pair of objects X € C and Y € D, subject to the relations

oxex,y = (0x,y ®1y,) o (Ix, ® 0x, v), oxyo(f®ly)=(y®f)oox,y,
oxyer, = (ly, ®oxy,) o (Oxy, ® ly,), oxy, o (Ix®g) =(€®lx)ooxy,
forall X, X,,X; € C,Y,Yy,Y, € D and f € HOch(Xl,Xz),g € Homgp (Y1, Y»).

The symmetric product Sym©Sym of two copies of Sym is the free strict k-linear symmetric
monoidal category generated by two objects. Diagrammatically it is convenient to use different
colors, denoting the symmetric product instead by Sym © Sym and using the color blue (resp.,
red) for objects and morphisms in the first (resp., second) copy of Sym. Morphisms may then
be represented by linear combinations of string diagrams colored both blue and red. In these
diagrams, as well as the one-color crossings that are the generating morphisms of Sym and
Sym, we have the additional two-color crossings

(TM=><;T®T_>T®T, am=><:T®T—>T®T, (34)

which are mutual inverses. The definition of symmetric product gives braid-like relations
allowing all one-color crossings to be commuted across strings of the other color, for example:

o .

For 0 < r < n let P, denote the set of size ( consisting of tuples A = (4y,...,4,) € Z~
suchthatn —r > 4; > --- > A4, 2 0. Let min,,, (resp., max,,) be the element A € P,,, with
A =--=2=0(@esp.,4; =--- =4, =n—r). Forany A € P,,,, we let

181= 12T @1 @ 1P @18 ... 0 1 ® 1% € Sym© Sym; (3.6)

in particular, 1® ™t = 18N and 1O M= 19191 In this way, P, labels the objects
of Sym ® Sym obtained by tensoring r generators T and (n — r) generators T in some order. We
denote the identity endomorphism of 1® simply by 1,. There is also a unique isomorphism

oy 1% ;T® min, , (3.7

whose diagram only involves crossings of the form X ; in particular, o"min,, = Imin,,. To make
sense of these definitions, one can represent an element of #,, by a Young diagram with A;
boxes on its ith row drawn inside an r X (n — r)-rectangle. Then 7®! may be seen by walking
southwest along the boundary of the diagram; for example, (3,3,2,0,0) € Psg is

A= , 1121210101070 1T07T0111, (U=]>%§§<[]

We will often identify the group algebra kS, ®; kS,_, of S, X S,_, with a subalgebra of
kS, sothat s;® 1 < s;and 1 ® s; <> 5,4 ;. There is an algebra isomorphism

lrn * ker B kgn—r ;) EndS)fr71®S)‘177 <T®(n~r) ® T®r> (38)
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sending s; = 5; ® 1 to the crossing of the ith and (i + 1)th red strings and s,,; = 1 ® s; to the
crossing of the jth and (j + 1)th blue strings. Combining this isomorphism with the elements
{o-;l ooy |Au€E P,,n}, which give the matrix units, we see that

EndAdd(Sym(DS)'m) ((T 5] T)®n) = @ Mat(’]{) (kgr ®x kerl—r) . (39)
r=0

Using (2.6)—(2.7) too, we conclude that Ko(Kar(Sym © Sym)) = Sym; ®z Sym;. An explicit
isomorphism is given by the composition

Sym; ®z Sym;, = Ky(Kar(Sym)) ®z Ko(Kar(Sym)) LN Ky(Kar(Sym © Sym))

where the second map € is induced by the inclusions of Sym and Sym into Sym © Sym.
Now we are ready to define a strict k-linear monoidal functor

A : Sym — Add(Sym © Sym) (3.10)
by sending the generating object T to T @ T, and defined on the generating morphism by

><H><+><+><+><. (3.11)
The right-hand side of this, which is a 4 x4 matrix in Endadqsymesym(T®T@T0 161016 1®17),
is the morphism defining the symmetric braiding on the object T @ T of Add(Sym © Sym) with
respect to its canonical symmetric monoidal structure as the additive envelope of the symmetric
monoidal category Sym ® Sym. The fact that A is well defined is immediate from the universal
property of Sym as the free symmetric monoidal category on one object; alternatively, one can
directly verify that the defining relations (3.1) are satisfied. To compute A on a more general
diagram D, one just has to sum over all diagrams obtained from D by coloring the strings red
or blue in all possible ways.

Remark 3.1. Similarly, there is a monoidal functor Sym — Add (Sym © Sym © Sym) to the
triple symmetric product which sends T to T @ T @ 7. Identifying Sym © Sym © Sym with
(Sym © Sym) © Sym and Sym © (Sym © Sym), this agrees with both of the compositions
(A©1d) o A and (Id®A) o A. In other words, the categorical comultiplication is coassociative.

The functor A extends to a monoidal functor A : Kar(Sym) — Kar(Sym © Sym), which in
turn induces [A] : Ko(Kar(Sym)) — Ko(Kar(Sym © Sym)). Note that [A] is automatically a
ring homomorphism; the analogous statement in the more traditional approach via restriction
functors requires an application of the Mackey theorem at this point. We claim moreover that

Symy, - Sym; ®z Sym,,

7£ £E°7®7 (3.12)

Ko(Kar(Sym)) T Ko(Kar(Sym @ Sym))

commutes, i.e., A categorifies the comultiplication ¢ on Sym,. This is a consequence of the
following theorem, bearing in mind that the complete symmetric functions %, generate Sym,,.

Theorem 3.2. For each n > 0, we have that
AH,) = D) Hyr © Hy, MEn) = (D Ers O .. (3.13)
r=0 r=0

Proof. For the isomorphism involving H,, it suffices to show that the idempotents A(z,(e()))
and }'_ 1,(e) ® e(—r) Which define the objects A(H,) and @1;:0 H,_, ® H, are conjugate.
Thus, we need to construct morphisms # and v in Kar(Sym © Sym) such that u o v = A(1,(e(y)))
andvou =" 1..(ep) ® en-r). To do this, notice for any A, u € P,.,, that

-1
n _
1/1 o A(ln(e(n))) © 1/1 = (}") O—ﬂl o lr,n(e(r) ® e(n—r)) 0.
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It follows that A(z,(e))) = u o v where

n -1 n
n z : _
u:= Z ( r) O-#l ° ln(er) ® €m-r)), V= E lra(eq) ® em—rp) © 0.
r=0

HEP, r=0 A€P,,
Finally it is easy to check that vou = }}7_ 1.,(e¢) ® e(-r))-
To establish the isomorphism involving E,, one needs to show instead that there are mor-
phisms u and v such that u o v = A(i,(e(1n)) and vou = 377 1,.,(e(1r) ® e(1-ry). These are given
by similar formulae to the above, replacing e, by e and o, by (-1)"o-, everywhere. O

4. THE DEGENERATE AFFINE HECKE CATEGORY

The degenerate affine Hecke algebra AH, is the vector space k[xy, ..., x,] ® kS, viewed
as an associative algebra with multiplication defined so that k[x1, ..., x,] and kS, are subalge-
bras, and in addition s;f = s;(f) s; + 0;(f) for f € k[xy,...,x,]andi = 1,...,n — 1, where 9;
is the Demazure operator

f=si(f)
0i(f) := ——. “.1)
Xit1 — Xi
Also recall that the center of AH, is the subalgebra Sym, := klxi, ..., x,]% of symmetric

polynomials; see e.g. [KI, Theorem 3.3.1]. The algebra AH, is finitely generated as a Sym,,-
module. The following theorem was proved by Khovanov in [Kh]; its proof uses the assump-
tion that k is of characteristic zero in an essential way.

Theorem 4.1. The inclusion kS,, — AH, induces an isomorphism Ky(kS,) > Ko(AH,).
More generally, the same assertion holds when kS, is replaced withkS,, ® --- & kG, and
AH, is replaced with AH,, ® --- ® AH,, ® B for any ny,...,n, > 0 and any polynomial
algebra B (possibly of infinite rank).

Proof. This is explained in [Kh, Section 5.2]; see especially [Kh, (40)]1. The argument in loc.
cit. depends ultimately on a result of Quillen [Q, Theorem 7]. In order to be able to apply
Quillen’s result, one needs to know that the degenerate affine Hecke algebra AH,, is a filtered
deformation of the smash product k[xi, ..., x,]#S,, which is a positively graded algebra with
degree zero component given by the semisimple algebra kS,.. When B is of infinite rank, one
needs to know also that taking Ky commutes with direct limits [R, Theorem 1.2.5]. ]

The first part of this theorem implies that one can categorify the ring Sym,, using the algebra
AH, in place of kS,,. Of course, we are going to translate this into the language of monoidal
categories. Let AH be the strict k-linear monoidal category obtained from the category Sym
from the previous section by adjoining an additional generating morphism ¢ :7—7 subject to
the additional relations

X=X+, =+ T “2)

In fact, in the presence of the quadratic relation in Sym, the two relations in (4.2) are equiva-
lent. We denote the ath power of ¢ under vertical composition by labeling the dot with the
multiplicity a € N. Just like for Sym, there are no non-zero morphisms between 7" and 1"
for m # n. Moreover, replacing (3.2), there is an algebra isomorphism

1, : AH, — Endgg/(1%") (4.3)

sending s; to the crossing of the ith and (i+1)th strings and x; to the dot on the jth string. Using
(2.6)—(2.7) and Theorem 4.1, we deduce that the canonical monoidal embedding Sym — AH
induces a ring isomorphism Ky(Kar(Sym)) > Ko(Kar(AH)). Thus, we can reformulate (3.3):
there is a ring isomorphism

Y SymZ ;) K()(Kal'(ﬂ?‘{)), Sy = [S/l]’ hn g [Hn]’ ey [En]a (44)

IThis is (44) in the preprint version available at https://arxiv.org/abs/1009.3295v1.
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viewing S ,, H, and E, now as objects of Kar(AH).

The next obvious question is whether the monoidal functor A from (3.10) can be upgraded
from Sym to AH too. To do this, it turns out that we need to localize.

Consider the symmetric product AHOAH. This is generated by the objects and morphisms
from two copies of AH, one drawn in blue and the other in red, plus the additional two-color
crossings as in (3.4). As well as (3.5), dots of one color commute across strings of the other:

K% X=X

Given a diagram D representing a morphism in AH © AH and two generic points in this
diagram, one on a red string and the other on a blue string, we will denote the morphism
represented by (D with an extra dot at the red point) — (D with an extra dot at the blue point)
by joining the two points with a dotted line; this line may pass willy nilly through other strings
in the diagram as needed. For example:

SRR S SR R R CRE

Let AH © AH be the strict k-linear monoidal category obtained from AH © AH by local-
izing at % $ . This means that we adjoin a two-sided inverse to this morphism, which we

denote as a dumbbell B
H (4]

By the commuting relations, the morphism ?ﬁ $ is also invertible in AH © AH, with

two-sided inverse H i (% %)-1 ] é |

We can also introduce more general dumbbells that cross over other strings: let
-1 -1

for any object X € AH © AH, where the two-colored vertical line represents 1x. To see that
this makes sense, one needs to prove that this morphism is indeed invertible; this follows easily
from the commuting relations. For example, if X = T ® T ® T then

Note also that AH © A has a monoidal involution
flip : AH © AH — AH © AH 4.8)

which is defined on diagrams by switching the colors blue and red then multiplying by (—1)*
where z is the total number of dumbbells in the picture.

There are several other useful relations in AH © AH. Composing the definition (4.6) on
the top with the dumbbell, we get that

NN
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which gives a way to teleport dots across dumbbells modulo a correction term. More generally:

%—%a = H ) b% % . (4.9)

b,c>0
b+c=a—1

Dots commute with dumbbells:

H-H H-H-

To see this, compose on top and bottom with 43 $ . Similarly, different dumbbells commute
with each other. Also, dumbbells commute past two-color crossings:

DA s et

For one-color crossings, we have the following more complicated commutation relations:

%—T=><_l+%—%, ><_$=><—T+M. (4.10)

For example, to prove the first one of these, one just needs to compose on the top with % T%'

and on the bottom withT {3 $ , then apply the dot-sliding relation from (4.2). Let us also
record the mirror images of the last set of relations under flip:

We have done this in order to stress that the signs are different when the colors are this way
around! Note also in (4.10)—(4.11) that the vertical string on the right hand side could also be
drawn on the left hand side; the resulting relations also hold thanks to the commuting relations.

Theorem 4.2. There is a strict k-linear monoidal functor A : AH — Add (37{7-( © AH ) such
that T— 1 ® T and

I AR PSSPV S Sl o Rl e B
In addition, we have that A = flip oA (extending flip to the additive envelope in the obvious
way).

Remark 4.3. This categorical comultiplication is coassociative like in Remark 3.1.

Proof of Theorem 4.2. We just need to check that the defining relations from (3.1) and (4.2)
are satisfied in AH © AH. For the quadratic relation, the image of the crossing squared is

G- B Ee X R
SRS R N -]

This expression is a shorthand for a 4 X 4 matrix. We must show that it equals the 4 X 4 identity
matrix | T+ ] T+ ] ]+ |. Looking at the 16 individual matrix entries (most of which are
zero), the proof reduces to verifying the following three identities

Sl arg-g-ge Bl Ak KR

together with the mirror images of these identities under flip. All are obviously true by com-
muting relations. For the dot sliding relation (4.2), one computes the entries of the 4 X 4
matrices involved to see that the proof reduces to checking the following

SV P 4 G S s s ANt
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together with their mirror images under flip. Again these are all clear; use (4.9) for the last
one. The braid relation may be checked by a similar sort of calculation although this is quite
lengthy since it involves 8 X 8 matrices; this is where one needs (4.10)—(4.11). m]

The goal now is to show that the new version of the functor A also categorifies ¢ by establish-
ing an analog of (3.12). The canonical functors AH — AH © AH and AH — AH © AH
induce a ring homomorphism € : Ko(Kar(AH)) ®z Ko(Kar(AH)) — Ko(Kar(AH © AH)).
We claim that

Sym; - Symg ®z Sym,,

Y €0y®y (4.13)

Ko(Kar(AH)) T Ko(Kar(AH © AH))

commutes. This follows from the next theorem.

Theorem 4.4. For each n > 0, we have that
AH,) = P H,  ®H, AE)=PDE,  ®F,. (4.14)
r=0 r=0

In comparison to Theorem 3.2, the proof of Theorem 4.4 is rather non-trivial, and it will
occupy the remainder of the section. We will need the isomorphisms o, (4 € P,.,,) from (3.7),
viewed now as morphisms in AH © AH. Let us also identify AH,®, AH,,_, with a subalgebra
of AH, sothat 5;® 1 & s5;,x;®1 & x;,1®5; & 5, ;and 1 ®x; & x,,;. Let AH, ® AH,_, be
the Ore localization of AH, ® AH,_, at the central element

roon-r
zon = | ] 0= - (4.15)
i=1 j=1
Generalizing (3.8), there is an algebra isomorphism
lrn * AHr g]lg AHn—r - Endy['H o) ;H’H(T®(n_r) ® T®r) (416)

sending s; = 5; ® 1 and s,,; = 1 ® s; to the same diagrams as before, and x; = x; ® 1 and
Xr+j = 1 ® x; to dots on the ith red string or jth blue string, respectively. To see this, we just
observe that the analogous isomorphism before localizing is obvious; then it follows for the
localized versions too since all dumbbells make sense in AH, ®; AH,_,, and conversely the
image of z,, is invertible in the endomorphism algebra. Just like in (3.9), we then get that

n
End oz 5 270 (T © D) = @ Mat(r, (AH, & AH,_,). 4.17)
r=0
Forie®P,,and1 <i<r,1<j<r—n,welet
1 ifj<a
&) ._{ oty (4.18)

Thus it is 1 or —1 according to whether (i, j) is inside or outside of the Young diagram of A.
Also let

Yij = (rs1oi — Xps)) "' € AH, ® AH,_,. 4.19)
Numbering strings 1, ...,n from right to left as usual, 1,,(y; ;) is the dumbbell between the
(r + 1 = i)th and (r + j)th strings; alternatively, numbering strings from the center (with red to
the right and blue to the left) it joins the ith red string to the jth blue string. The key observation
needed to prove Theorem 4.4 is as follows.
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Lemma 4.5. For0 <r <nand A, € P,,,, we have that

-1
n _
]y o A(ln(e(n))) o ]/{ = ( V) 0—#1 Olyp (e(r) ® e(n—r)) o lr,n( l—[ (1 + Si,j(/l)yi,j) ) © 0,

I<i<r
1<j<n—r

ny _
Lu© Alta(eqn)) © 1y = (=1 ( ) ) o ot [T (1= 1) o tn ey @ ) 0 0
lﬁljséﬁir

Proof. Note that A(tx(e())) and A(z(e(12))) are equal to
(13X 8 1508 10001 =4840 131 T+ 3)
(11X 30133080 1 9)=(1 130401 H)-( 1)

respectively. The lemma in the case n = 2 follows from these formulae. For the general case,
we proceed by induction on |u| — |1]. We just explain the proof for the first formula, since the

second is similar.
In the base case when y = min,, (so 1, = 0, = 180=1) ® 197) and A = max,, (so 1, =

19" @ 18=1) we have that
1
€n) = _I’l! E E TO

1€C,XC,_, 0eD
where D denotes the set of minimal length S, X S,_,\ S,-coset representatives. For 7 € S, X
S,—r, we have that 1, 0 A(1,(7)) = 0';1 0 1,,(1) o 1,,. Thus, we see that

-1
n _
Ly o Al(e)) o 1y = (r) Do o talew @ en) 0 1y o A(a)) o 1.

ogeD
Since A is maximal, the term 1, 0 A(z,(07)) o 1, here can only be non-zero when ¢ is the longest
coset representative. Moreover, when computing A(z,(07)), we must replace each crossing ><

in a reduced word for 1,(0) with >< + X , i.e., the terms from the expression in (4.12) that
are colored 77 at the top and 77 at the bottom. We conclude for this longest o that
o M@)o L=t [ ] (1431))oc

1<i<r
1<j<n—r

Since &; j(1) = 1 for all i and j, this checks the base case.
For the induction step, take u, A € P,,, such that either u is not minimal or A is not maximal,
and consider X := 1, o A(i,(e(y)) o 1,. If p is not minimal, we let v € P,, be obtained from

u by removing a box. Let j be the unique index such that that o7,' = (>< ) o o', where the
J

subscript indicates we are applying the crossing to the jth and (j + 1)th strings. The induction
hypothesis gives us a formula for ¥ := 1, o A(1,(e(n))) © 1,, reducing the problem to showing

that X = (>< ) o Y. To see this, we apply 1, o A(z,(—)) o 1, to the identity e, = %(1 + 5))em)

to deduce that X=%G [+ %—%)jox.;.%(x_ ><)joy_
(11-43), 2= -8),2(X) =

In view of the isomorphism (4.17), this morphism space is free as a module over the integral
domain k[xi, ..., x,],,,, so it is permissible to cancel the first term, and this gives the desired

Hence,
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formula. Instead, if A € P, is not maximal, we let k be obtained from A by adding a box, and

define j so that oy = o © (>< ) . LetZ :=1, o A(tn(ew))) © 1. Then we need to show that
j

xo(] [+ 43), =22 (), o] - 34),

which follows by applying 1, o A(z,(-)) o 1, to the identity e(,, = e(n)%(l +5)). m]

From the defining relations, one sees that s;few) = (sief)ew) and s;feqn = —(sie feqn),
where

sio f = s5i(f) + 0:(f), siof = si(f) = 0:i(f). (4.20)
Transporting the left action of AH,, on AH,e(y through the linear isomorphism k[xj, .. ., x,] S
AHye), f = few, we deduce thatk[x, ..., x,]is aleft AH,-module with k[x, ..., x,] acting

by left multiplication and &, acting by . By degree considerations, the space of S,-fixed
points with respect to the action e is the same as the fixed points with respect to the usual

action, i.e., we recover the subalgebra Sym, of k[xi,...,x,]. This shows that the spherical
subalgebra ey AH,e(,) of AH, is Sym,. Moreover, for any f € k[x, ..., x,], we have that
1 1
6(,1)fe(,1) = —' Z e(,,)ﬂ'fe(,,) =€) —' Z 7T€Bf €n). (421)
n: neS, n: e,
Similarly, one sees that en)AH,e(» = Sym, and
1
E(IVI)fe(ln) = e(l”) ; Z JTGf e(ln). (422)
© e,
The  and e actions extend to actions on k(x1, . .., x,), with the simple transpositions satisfying

the same formulae (4.20).

Lemma 4.6. For 0 < r < n, we have that

3 (5 [T (e =n= 3w 3 [T (1-eutm)

eSS, XS,_, AP, 1<i<r neS, XS, _, UEP,, 1<Zisr
I<j<n-r 1<j<n—r

Proof. We just explain the proof of the first equality; the second then follows by considering
the automorphism x; — —x; of k(xj,...,x,). Proceed by induction on n. For the induction
step, we partition P, , as A U B as suggested by the diagram:

_____ T

—+ |
Ao ,Jr_,f s B & ,_H_: .
Thus, A consists of 4 € P,, such that 4; = n — r, and B consists of 4 € P,, such that
A1 < n —r. The expression we are trying to compute then splits as a sum X + Y where for X
we take the second sum just over 4 € A and for Y we take it over A € B. Using the induction

hypothesis plus the observation that {1, s;—1, S—2Sm—15---»S1s---»Sm—1} 18 a set of S,/ S,,_1-
coset representatives, we see that

n—-r

X=-DI0+s++sise | [(1+31),
j=1

,
Y= (= DI+ s+ s spDe | [ (0= i)
i=1
It remains to show that X + Y = n!.

From (4.19) and (4.10)—(4.11), we obtain the following identitiesfor | <i<r,1 < j<n-r:

) vienSrei—g = Yirrgyiy ifi+1=q<r,
Sr+1-qYi,j = { VijSrel-g ifi+l<qg<r (4.23)
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) YijiSrg iy ifl<g=j-1,
Sr+qYi.j = { ViiiSraq ifl<g<j-1. (4.24)
For m > 1, let C,, be the set of sequences ((i1, j1),...,Em> jm)) € {1,..., 7} x{1,...,n—r})"
such that either iy, > iy41, jq = Jjg+1 OT iy = igs1, jg < jg+1 foreachg =1,...,m—1. Sucha
sequence may be visualized as a “hook” drawn inside the rx(n—r) rectangle, e.g.,if r = 4,n =9

then ((4,1),(4,2),(2,2),(2,4)) € Cy is

Using (4.23) and inductionon i = 1,...,r, one shows that

n-r
Srel=it® Sr-28r-19 l_[ (1 +y1,,-) =1- Z Z (=Dt Vi
J=1 =L (1,1 )i Jir))ECon

i1=i
Hence:
X=rn-Dl=(m-1! ) Dy ey (4.25)
m=1 ((i1,]1)ses(imsJjm))ECm
Similarly, using (4.24) and inductionon j =n —r,..., 1, one shows that

.
srageesiase [ [y =100, ) Dy
i=1

mz 1 ((i1,1)wsCims jm))ECm

Ji=i
Hence:
Y=(@m-nn-D+@-D) > (= Dlliinlly, oy (4.26)
m21 ((i1,j1)ses(ms jm))ECm
Adding the identities (4.25) and (4.26) gives that X + Y = n!. m]

For later reference, let us also discuss the space enAH,euy. For 4 = (4;,...,4,) € N,
let x* := x'--xy and Ay == Ypee, (D @n(xt). Setting p := (n - 1,...,1,0) € N", the
symmetric polynomial

X, = Arip/Ap € Sym, 4.27)
is the usual Schur polynomial in n variables when 4; > --- > A,;; on the other hand, it is zero if
A+ p has a repeated entry. We have that e (ker 0;)e(,y = 0, hence, e(1nsi(f)ew) = —eqn few).
Since k[xy, ..., x,] = (kerd; + --- + kerd,-1) ® Sym,, x°, we deduce that e.;nAH,e, is a free
Sym,-module generated by e(;+x”e(,). Moreover,

e(ln)x/le(,,) = Xﬁ_pe(ln)x”e(,,) = e(lu)xoe(,,)/\//l_p (428)
for any A4 € N". Similar statements hold when e(,) and e(;~, are interchanged.

Proof of Theorem 4.4. Consider first the statement about H,. Exactly like in the proof of The-
orem 3.2, we need to construct morphisms # and v in Kar(AH © AH) such that uov =
A(ln(e(n))) andvou= Z;l:() lr,n(e(r) ® e(n—r))' We set

n -1
2 : n 2 : -1

u:= ( ) g, ° lr,n(e(r) ® e(n—r))’
r=0 r

HEP
n
vi= Z Z Urn (€0) ® €n-r)) © lr,n( n (1 + gi,j(/l)yi,j> ) 00,
r=0 A€P,, 1<i<r
1<j<n-r

Lemma 4.5 implies that u o v = A(1,,(e(y))). Also

n -1
n
vou= ( r) lrn (@(,—) ® e(n—r)) o lr,n( Z 1—[ (1 + si,j(/l)yi,j) ) ° lrn (e(r) ® e(n—r)) .

r=0 AEP,, 1<i<r
1<j<n-r
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Using the analog of (4.21) for AH, ® AH,_,, this equals

n

Z lrn (e(r) ® e(n—r)) o ni!lr,n( Z ﬂ@( Z l—l (1 + Si,j(/l)yi,j) )) Olrn (e(r) ® e(n—r)) .

r=0 eSS, XS, AEP,, 1<isr
1<j<n-r

Then we use Lemma 4.6 to see that this equals the required })"_ 1, ,(€() ® €(n-r))-
For the statement about E,, we need morphisms u and v such that u o v = A(1,(e(i»))) and
vou =" o1(eqr ® eqrn). One takes

n -1
u:= Z:(; (,:) Z (—1)""0',;l ° lr,n( l_[ (1 - 8i,j(ll)yi,j> ) o 1,(eqr) ® eqnry),

HEP 0 1<i<r

I1<j<n-r
Vi= Z Z (_l)wlr,n (e(l") ® e(l”"')) 00,
r=0 AeP,,
The proof then proceeds like in the previous paragraph, using (4.22) instead of (4.21). m}

5. THE DEGENERATE HEISENBERG CATEGORY

Although for us k is a field of characteristic zero, the following definition makes sense
for k that is any commutative ring. Moreover, all of the results recorded in this section are
valid for any k, including the definition of the categorical comultiplication in Theorem 5.4 (but
excluding (5.36) since n! needs to be invertible for the underlying idempotents to be defined).

Definition 5.1 ([B, Theorem 1.2]). The (degenerate) Heisenberg category Heis; of central
charge k € Z is the strict k-linear monoidal category generated by objects T and | and mor-
phisms

% 11, \_ 15081, M\:tel-o1,
><:T®T—>T®T, 118, /Mool

subject to certain relations. To record these, define the sideways crossings

><:: m ><;: W (5.1)

and introduce the fake bubbles for a < k or a < —k, respectively, by setting

C} a—k-1 = det( i—j+k©)i’j=1 o a+k-1 @ = —det (—C} i—j—k )i,j:l T (5.2)

..........

interpreting the determinants as d, in case a < 0. Then the relations are as follows:

§:| D IS SN

\J Ut

ark-16 ) = =840ly if -k <a <0, (ko1 =8aplyifk<a <0, (5.5)

>© = 5k,0| if k>0, <><= 6k,0| ifk <0, (5.6)

U -y
= + —a—b-2 s = + -a-b-2 ., (57)
| a,;zlo G[\?b | a;O b @
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As explained in the proof of [B, Theorem 1.2], the defining relations of Heis; imply that
the following is an isomorphism in Add(Heisy):

v
N
o

TR l>l e el ifk>0,
(5.8)

L1677
XUU e\ [ 1elel®h Sler ifk<0.

In fact, as in [B, Definition 1.1], Heis; can be defined equivalently as the strict k-linear
monoidal category generated by the morphisms & , >< , \_/J and /) subject just to the
relations (5.3)—(5.4) plus the requirement that the morphism (5.8) is invertible (where the right-
ward crossing is defined as in (5.1)). In the category defined in this way, there are then unique
morphisms Y_/ and /" such that the other relations from Definition 5.1 hold:

Lemma 5.2. Suppose that C is a strict k-linear monoidal category containing objects T and |
and morphisms $ , >< , \J and [\ satisfying (5.3)—(5.4). If C contains morphisms \_J
and [\ satisfying (5.5)—(5.7) (for the sideways crossings and the negatively dotted bubbles
defined via (5.1)—(5.2)) then these two morphisms are uniquely determined.

Proof. This follows by the argument from the penultimate paragraph of the proof of [B, The-
orem 1.2]. m]

We will need various other relations in Heis;, most of which are derived in [B, Theorem
1.3]. The relation (5.4) means that | is a right dual to 7. It is also a left dual since the following

relations hold:
)] (e

This means that Heisy is rigid. Moreover, it is strictly pivotal: rotating diagrams through 180°
defines a strict k-linear monoidal isomorphism

x 1 Heisy — (Heisy)®)™", (5.10)
where op (resp., rev) denotes the monoidal category with the same horizontal composition

and the opposite vertical composition (resp., the reversed horizontal composition and the same
vertical composition). This follows due to the relations

{j ::mzm, (5.11)

Informally, these relations mean that dots and crossings slide over cups and caps. Applying =
to the relations (5.3) and (5.6) gives

A AT
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= 00| ifk <0, = 00| if k> 0. (5.14)

There is another useful symmetry
Q : Heisy — (Heis_), (5.15)

which sends a morphism in Heis; represented by some string diagram to the morphism in
Heis_; obtained by reflecting this diagram in a horizontal axis then multiplying by (—1)**”,
where x is the total number of crossings and y is the total number of leftward cups and caps in
the diagram (including ones in fake bubbles); see [B, Lemma 2.1].

Remark 5.3. Using * and Qy, one can deduce several more equivalent presentations for Heisy.
For example, it may be defined by the same generating objects and morphisms as in Defini-
tion 5.1 subject to the relations (5.3), (5.9), (5.5), (5.6) and (5.7); i.e., we have traded the right
adjunction relation (5.4) for the left adjunction relation (5.9). Alternatively, one could replace
the generating morphisms given by the upward dot and crossing with the downward dot and
crossing, taking the relations (5.13), (5.9), (5.5), (5.14) and (5.7), where the sideways cross-
ings are obtained by rotating the downward one in an analogous way to (5.1). There are also
alternative versions of both of these presentations based on an “inversion relation” along the
lines of the presentation explained after (5.8).

Since the relations (3.1) and (4.2) hold in Heisy, there is a strict k-linear monoidal functor
1 : AH — Heis; sending diagrams in AH to the same diagrams viewed instead as morphisms
in Heisy; this is actually an inclusion thanks to the basis theorem established in Theorem 6.4
below, but we will not use this fact here. In particular, this means that there is an algebra
homomorphism
1y : AH, — Endggis, (1%") (5.16)
sending s; to the crossing of the ith and (i + 1)th strings, and x; to the dot on the jth string.
Using (5.13), one sees also that there is an algebra homomorphism

Jn 2 AH, — Endg,is, (15") (5.17)

sending —s; to the crossing of the ith and (i + 1)th strings, and x; to the dot on the jth string.
Note 1, and j, are related by the formula j, = €4 o1, o v where 7 : AH, — AH, is the
antiautomorphism which is the identity on each of the generators s; and x;.

The bubbles (both genuine and fake) satisfy the infinite Grassmannian relations:

C})a = (5[1!_](_1111 ifa< —k, a@ = —6‘1‘/(_1 11 ifa< k, Z Cb><>—b—2 = —6a,011, (518)

beZ
for any a € Z. For an indeterminate w, let

O = > Con w™ e whly +w ™ Endygeis (DIw '], (5.19)
nez
Ow) =- Z ndOw e w1y + w ! Endgges, (DI (5.20)
nez
Then the infinite Grassmannian relation implies that
O w) Ow) = 1. (5.21)

Up to the choice of normalization, this is the well-known identity from [M, (I1.2.6)] relating
elementary and complete symmetric functions. It follows that there is a well-defined algebra
homomorphism

B : Sym — Endgeis, (1), en> (it By > (=1 1)), (5.22)
where Sym := k ®; Sym, denotes the algebra of symmetric functions over k. Using this
dictionary, one can also make sense of the determinantal formulae (5.2) used to define the fake
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bubbles in Definition 5.1: they are are a formal consequence of another well-known symmetric
functions identity from [M, Exercise 1.2.8].
There are three more essential relations: the curl relations

a ZZOa—b—l %b s }Qa :—Z b% “"H@ (5.23)
b>0 b>0

for all a > 0, the alternating braid relation

uw \\_/Ja
- = Z C}—a—b—c—S %c + Z c% —a—b—c—3<©’ (5.24)

and the bubble slides
]C}a = C}a]— Z O}a—b—c—z %b+c s a@ [:] a@ - Z b+c% a—b—c—Z@ (5.25)
b,c>0 b,c=0
fora e Z.

For the remainder of the section, we assume that k = [ + m for integers /,m € Z. Let
Heis; © Heis,, be the symmetric product defined as in Section 3. Now there are additional
two-color crossings

1

X)X X)) XX

These satisfy many commuting relations such as (3.5), (4.5), and also pitchfork relations” like

the following:
o<=><\, >U=\§< (5.26)

We extend the notation (4.6) to Heis; © Heis,, in the obvious way. Let Heis; © Heis,, be
the strict k-linear monoidal category obtained from Heis; © Heis,, by localizing at 43 $ .
As in (4.7), we denote the two-sided inverse of this morphism by a solid dumbbell. Then we
introduce the following shorthands which we refer to as internal bubbles:

Z:Z O—a—l%ll + O—% , é Z:Z ll%—a—l@ + %—O , (5.27)
= Z @1% - @—% , ¢ = Z %1@ - %—@ . (528

The category Heis; ® Heis, is strictly pivotal with duality functor
x 1 Heis; © Heis,, — ((Weisl o HeiAs,,l)Op)rev (5.29)

defined by rotating diagrams through 180°. In particular, the left mates of the internal bubbles
(5.27)—(5.28) are equal to their right mates. We denote these by

0 9

This definition ensures that internal bubbles commute past cups and caps in all possible con-
figurations. For example:

(59

-1
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The dotted line notation (4.6) obviously makes sense between points on downward strings as
well as on upward strings. We extend the dumbbell notation to such situations by setting

antisnvilEN ankiVaunt

These are two-sided inverses of the morphisms represented by the same diagrams but with
dotted lines replacing the solid ones in the dumbbells. The morphisms on the right hand sides
of the following are also such inverses, hence, these are true equations due to the uniqueness
of inverses:

HH-HAL R
T H - H - HRAAH

From this discussion, it follows that dumbbells commute over cups and caps in any configura-
tion. One can then deduce many other commuting relations, such as:

We will appeal to these sorts of relation without further mention. Finally, there are two more
useful symmetries

flip : Heis; © Heis,, — Heis,, © Heis,, (5.30)
Qy, : Heis; © Heis,, — (Heis_ © Heis_,)" . (5.31)

The first of these is defined on diagrams by switching the colors blue and red then multiplying
by (—1)° where z is the total number of dumbbells in the picture; it interchanges the internal
bubbles in (5.27) with the ones in (5.28). The second takes a diagram to its mirror image in a
horizontal axis multiplied by (—1)**> where x is the number of one-colored crossings and y is
the number of leftward cups and caps (including ones in fake and internal bubbles). The only
additional thing that needs to be used to see that this is well defined beyond what was already
checked for (5.15) is that f f is invertible. All of the symmetries *, flip and €y, extend
canonically to the Karoubi envelope.

Theorem 5.4. For k = [+ m as above, there is a unique strict k-linear monoidal functor
Ay - Heisy — Add (7—(eis1 o) ‘Heis,,,)
such that T— T® 7T, - | ® |, and on morphisms

% — % + % , (P O\ + 0, =+, (5.32)
><+—>><+><+><+><—X+X—H+H. (5.33)
We have that flip oAy, = Ay. Moreover, Ay, satisfies the following for all a € Z:

mH[?P +[\Q, e - (-{)@ (5.34)

Ga s 6(?“ , ZOACEDY Gy (5.35)

beZ beZ
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Finally, extending Ay, to the Karoubi envelopes in the canonical way, we have that
n n
Ao (HE) = @ H:, ® H, Ap(ED) = (D E:, ® EF. (5.36)
r=0 r=0

Remark 5.5. As in Remarks 3.1 and 4.3, the categorical comultiplication A, is coassociative
in the appropriate sense. It also seems worth pointing out that Ay, does not commute either
with the duality * or the involution Q. In fact, either of the monoidal functors * o Ay, o * or
Q_j—m © Ay, 0 Q4 could be used as different (but equally natural) choices for the categorical
comultiplication map. Yet another possibility would be to define Ay, in the same way as in
(5.32)—(5.33) on the upward dot and crossing, but to adopt the following on cups and caps

atIatieh} e\ O
IaTIEeRay -G e

This no longer has the property that flip oAy, = A, but instead flip oAy, 0 * = % 0 Ayy.

The proof of Theorem 5.4 will be explained at the end of the section. The main work is to
verify that all of the defining relations from Definition 5.1 are satisfied in Heis; © Heis,,. To
prepare for this, we first establish a series of lemmas.

-1
Lemma 5.6. We have that ¢ = —[ ﬁ}] .

Proof. We note first that

—a=1
(4. 11) (5. 23) @
2, +Z
a>0 Q a>0 2

—a 1 —u b—

4.9
(:)Z a a + Z a

> > > >
a=0 _{1_1 a> 0 ab 0 b a,b>0 _a° b )

Using this and the definition (5.28) gives that

—a 1
(5.18)
= Z a+b = -
a,b>0 a>0 a>0 a>0
,, —u—l 2

beZ —a— I)

Noting that internal bubbles on the same string commute, this implies the result. m}

Lemma 5.7. We have that @ @ [ foranya > 0.
beZ [I h—

Proof. By the definitions (5.27)—(5.28), the left hand side is

2 QD Q-G+ QO+

b>0 -b—1 a+b a b>0 -b-1 atb
YO Q00+ > OO0
b>0 7[) 1 a+b b>0 —b-1 a+b b,c>0 b ¢

b+c=a—1

This simplifies to produce the single summation on the right hand side. O
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Lemma 5.8. We have that >é = §<+ M - Z a% @ %b :
a,h>0 —a—b-2

Proof. By the definition (5.28), the left hand side equals

(4 10)
u>0 7{1 1 (5 3) - 1 ab>0 —a— 17—

Using (5.28) once again, this is equal to the right hand side.

Lemma 5.9. We have that >® @ % 0 =
a>0 a—

beZ

Proof. We apply Lemma 5.8 to commute the internal bubble in the term on the left hand side
past the crossing. The left hand side becomes

doo-sdoo
a.b>0 —-a-b-2 b
2.5 sloo-3-
(5.27) o 1 ~ 7 ¥ 1 P /; 2 h
(5.28)
}»Coz H00-5199,-5199:
4,550 -b-1 —a-1 a.b>0 b —a—b-2 ab>0 |[a=b=2 b

which equals the right hand side. O
Lemma 5.10. We have that = - + Z @ u

w520 —a—b—c— 2©mb

cEZ

Proof. By Lemma 5.8, the left hand side equals

4. 10)
bc>0ﬂ —b -2 bc>0 —b -2
(5.27) \\_/J
(533)§_%:® + Z G-a-1 Z O’—a 1 Z C}c-a-le
a=0 a>0 a,b,c>0 f‘o\ —b-c-2
a
(sg>¢|+z @%_2_%:@+Z C}\—\E/fz Y @L\,ﬁ[
4.9)
ab=0 bf’o ab20 [‘T@ abez0 —b 2
(5§8><#|_ +Z®—ab2 Z &a)gchrZO,};‘{
4.9 b+c© .
a,b,c>0 ) a,b,c>0 m . a,b,c>0 */7 =2

It remains to observe that the three summations at the end simplify to the single summation on
the right hand side of the formula we are trying to prove. O

Lemma 5.11. We have that b.
a, b>0

—a— 17 c-3
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Proof. Applying (4.10)—(4.11), the left hand side equals

|- |- |- O

Then we apply Lemma 5.9 (and the relation obtained by applying flip to its 180° rotation) to
rewrite this expression as

ZEZO a9 —a=b-2 ZZ% —a— b 294
Finally an application of (4.9) gives the result. o

Lemma 5.12. We have that >é = 3<+ % .

Proof. By (5.28), the left hand side is

(5 25) 17+(
53 — l
a>0 @ 7(1 1 ( ) o abc>0 ARa- 17 c-3
@.11) @ a 17+¢
- Z —a—1
a0 abc>0 —a— b c-3
4.11) a b+c
5% 05 3 -
(5.7) —a-1 a —b -2
a>0 a,b,c>0 —ad—b—c-3 b c>0
b+(
b+(
Z Z —b —c=2
ab,c —d— b c-3 b,c>0 a>0 - |
=X - Z +2, “
—17 c=2 —a— b
b,c20 a=0 i % | bc>0

which is equal to the right hand side by (5.28) once again. O

(5.28)
(5.23)

Proof of Theorem 5.4. Once Ay, has been constructed, the part about flip is obvious. Also
(5.36) for the sign + follows from Theorem 4.4, noting that the formulae in (4.12) are the same
as here; then for the sign — it follows by taking right duals (using the rightward cups and caps).

In the remainder of the proof, we are going to use the presentation from Definition 5.1
to establish the existence of Aj,. Thus we define Ay, on the generating morphisms from
that definition by the formulae (5.32)—(5.34), and must check that the images of the defining
relations (5.3)—(5.7) all hold in Add(Heis; © Heis,,). Moreover we will show that Ay, satisfies
(5.35). In view of Lemma 5.2, this is enough to prove the theorem as stated. We already
checked the relations (5.3) in the proof of Theorem 4.2. Also the check of the relation (5.4) is
quite trivial since all of the matrices involved are diagonal.

Next we check (5.35). Assume that k > 0 and consider the clockwise bubble a@. Ifitisa
fake bubble, i.e., a < 0, it is a scalar (usually zero) by the definition (5.2) and the assumption on
k. Hence, it is quite trivial to see that (5.35) is satisfied. When a > 0, the image of a@ under

Ay is = “€ ) — “8 ), which is indeed equal to — ¥cz b@ @a—b—] by Lemma 5.7. Now
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consider (5.35) for the counterclockwise bubble (still assuming k£ > 0). Define the generating
functions ¥_) (w) and (_y(w) (resp., € )(w) and (_Y(w)) in the same way as (5.19)—(5.20) but
using blue (resp., red) bubbles in place of black ones. We have proved already that

A (O W) = O w) O(w). (5.37)
Passing to the inverses of these formal power series and using (5.21) shows that
Ay (O W) = O W) O w). (5.38)

Equating coeflicients yields the desired relation for the counterclockwise bubble. This com-
pletes the proof of (5.35) when k > 0. A similar argument works when k < 0 too: one starts off
by considering the relation for the counterclockwise bubble, using the infinite Grassmannian
relation to deduce the one for the clockwise bubble at the end. On the way, one needs to use
the relation obtained by applying the symmetry €, to Lemma 5.7.

The relation (5.5) follows easily from (5.35) using the first two equalities in (5.18) for the
blue and red bubbles.

Moving on to (5.6), we first consider the right curl, so k > 0. Applying Ay, to the relation
reveals that we must show

G 1o [ 1 =]

This follows from the identity in Lemma 5.9 and its mirror image under flip. Note for this that
the only non-zero term in the summation on the right hand side of this identity is the one with
a = 0,b = —1 due to the assumption that k > 0. The argument to treat the case of the left curl
is entirely similiar; it depends ultimately on the identity obtained by applying the symmetry
Qy, to Lemma 5.9 then rotating through 180°.

Finally, we must check (5.7). We just go through the argument for this for the first equation.
The proof of the second one is entirely similar; it depends ultimately on three identities derived
from Lemmas 5.10-5.12 by applying €, then rotating. By the definition (5.1), the map Ay,
sends

X0 X X X X 26+ 6 oy

With this, it is straightforward to compute the image under A, of the left hand side of (5.7).
To compute the image of the right hand side, one also needs to use (5.35). Then one looks at
the various matrix entries of the resulting equation to reduce to checking the following three

identities
FH0 | 3%
ug}ﬁﬁ “”’O‘QO Al § § ‘ 1

plus their images under the symmetry ﬂip. To prove the first two of these, simplify them by
multiplying the bottom left string with a clockwise internal bubble and using Lemma 5.6; the
resulting identities then follow from Lemmas 5.10 and 5.11, respectively. For the final one, use
Lemma 5.12 to commute the clockwise internal bubble in the first diagram past the crossing
below it, then use Lemma 5.6 and a commuting relation. O
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6. A NEW PROOF OF THE BASIS THEOREM

By a module category over Heisy, we mean a k-linear category V together with a k-linear
monoidal functor Heis, — Endy(V), where Endy (V) denotes the strict k-linear monoidal
category consisting of k-linear endofunctors and natural transformations. Suppose that V and
‘W are two k-linear categories. Let V ® ‘W be the k-linear category with objects that are pairs
(X, Y) of objects X € V and Y € ‘W, and morphisms defined from

Homygqy((X1, Y1), (X2, ¥2)) := Hom/(X1, X5) ® Homy (Y1, 12).

The rule for composition of morphisms in VR Wis (e® f)o(g®h) := (eog) @ (f o h). If
V and ‘W are module categories over Heis; and Heis,,, respectively, then V ® W is naturally
a module category over the symmetric product Heis; © Heis,,. If in addition the morphism
$ $ = T % - $ T acts invertibly on all objects of V ® ‘W, then this categorical action
extends to an action of the localization Heis; © Heis,, from Section 5. Hence, we can use
the categorical comultiplication A, from Theorem 5.4 to make Add(V ® ‘W) into a module
category over Heis;, where k = [ + m. In this section, we are going to use this idea to give an
efficient proof of the basis theorem for the morphism spaces in Heis; from [B, Theorem 1.6].
To get started, we need a source of Heisenberg module categories. These come from de-
generate cyclotomic Hecke algebras. Assume that f(w), g(w) are monic polynomials in k[w]
of degrees [,m > 0, respectively. The degenerate cyclotomic Hecke algebra H,{ associated to
the polynomial f(w) is the quotient AH, /(f(x})); in case n = 0 we have that H({ =AH) =kby
convention. This algebra has the well-known basis

{5 xon|ne Sn0<ar,. . a < I} (6.1)

see [KI, Section 7.5]. In particular, one sees from this that the natural homomorphism H;f —
H{ .1 1s injective. The following elementary lemma is well known; cf. [KI, Proposition 2.2.2].

It implies that the eigenvalues of all x; on any H,{ -module lie in the same cosets of k modulo Z
as the roots of the polynomial f(w).

Lemma 6.1. Assume that V is a finite-dimensional AH,-module. All eigenvalues of x, on V
are of the form A, A+ 1 or A — 1 for eigenvalues A of x; on V.

Proof. For the proof, we may assume that the ground field k is algebraically closed. Letv € V
be a simultaneous eigenvector for the commuting operators x; and x; of eigenvalues 4; and A5,
respectively. If s;v = v (resp., s;v = —v) then A, = 4; + 1 (resp., 4, = 4; — 1), as follows easily
from the relation x,v = (s;x; + 1)sv. Otherwise, v and s,v are linearly independent, in which

. - . . . A4 -1
case the matrix describing the action of x; on the subspace with basis {v, s|v} is ( (1) 2 )
So A, is another eigenvalue of x; on V. m]

To the polynomials f(w) and g(w), we are going to associate a Heisi-module category
V(flg). As a k-linear category, this is defined from?

V(flg) = Add(V(/H ® V(9)")

where
V(f) := @ H pmod,  V(g)" := @ HE-pmod. 6.2)
n>0 n=0
To make V(f|g) into a module category, we first make V(f) and V(g)" into Heis_;— and
Heis,,-module categories, respectively. According to [B, (1.23)], there is a strict k-linear
monoidal functor
Y, Heis_; — Endy (V(f)) (6.3)

2We take the opportunity to point out typos in the analogous definitions [BSW1, (9.10)], [BSW2, (6.15)] and [BSW3,
(8.15)], in all of which the essential “Add” is missing.
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sending T (resp., |) to the endofunctor defined on M € H,{ -pmod by the induction functor

ind"*! = Hf: ;1 ®yy — (resp., the restriction functor res);_,). On generating morphisms, ¥'s sends

. % to the natural transformation defined on a projective H,{ -module M by the map
H ®ur M — H @y M,h®Vv > hx,1 ®V;

n+l n+l

° >< to the natural transformation defined on a projective H;f -module M by the map
H @, M- H &, M.h® v hs, ®v;

n+2 n+2

e \_Jand /M to the natural transformations defined by the unit and counit of the canon-
ical adjunction making (ind;frl s resﬁ”) into an adjoint pair.

Thus we have made V() into a module category over Heis_;. Similarly, switching the roles of

induction and restriction using j, in place of 1,, we make V(g)" into a Heis,,-module category

via the strict k-linear monoidal functor
Wy : Heis,, — End. (V(g)") (6.4)

sending | (resp., T) to the endofunctor defined on M € H&-pmod by the induction functor

3 n+1 — 8 - M n 1 M \
ind,"" = H,  ®ys — (resp., the restriction functor res;,_,). On generating morphisms, ¥, sends

° ‘i) to the natural transformation defined on a projective Hs-module M by the map
H¢ Qs M — H'IH ®us M,h®v > hxyy ®v;

n+l

° X to the natural transformation defined on a projective H:-module M by the map

HS @y M — HE , ®ys MJh @V = —hs,, ® v;

e \_J and /M) to the natural transformations defined by the unit and counit of the canon-
ical adjunction making (ind"*!, res’*') into an adjoint pair.

The proof of this is similar to the argument explained in [B, (1.23)], using one of the alternative

presentations for Heis,, from Remark 5.3.

Lemma 6.2. Suppose that f(w) = (w—A;)---(w — A)) and gw) = (W — 1) -+ - (W — u,,) for
Aipj € k such that A; — u; € Z for all i, j. In the categorical action of Heis_; © Heis,, on
V()= V(g)" arising from (6.3)—(6.4), % $ acts invertibly on every object.

Proof. Lemma 6.1 and the genericity assumption imply that the set of eigenvalues of xi, ..., x,
on any finite-dimensional H,J,c -module is disjoint from the set of eigenvalues of xi,..., x,, on
any finite-dimensional H5-module. Consequently, the commuting endomorphisms defined by
evaluating T $ and $ T on an object of V(f) ® V(g)" have disjoint spectra. Hence, all

eigenvalues of the endomorphism defined by $ $ = T % - $ Tlie in k*. Consequently,
this endomorphism is invertible. O

As explained in the opening paragraph of the section, it follows that there is a strict k-linear
monoidal functor Heis_; © Heis, — Endy (V(f)®V(g)V)) for f(w), g(w) satisfying the
genericity assumption from Lemma 6.2. Passing to the additive envelope and composing with
the categorical comultiplication A_y,,, we obtain a strict k-linear monoidal functor

‘Pflg : 7-{eism—l - Sndk ((V(flg)) . (65)

Thus we have made V(f|g) into a module category over Heis,,—;.

Lemma 6.3. In the categorical action of Heis,,—; on V(f|g) just defined, the generating func-
tions € ) (w) and (Y (w) from (5.19)—(5.20) act on (Hf, Hg) by multiplication by g(w)/f(w) €
Wk [w™ ' and f(w)/g(w) € wk[w™ '], respectively.

Proof. Applying [B, Lemma 1.8] with f’(w) = 1, we get that

¥ Oy = fo, Y (O W)y = fw).
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Similarly, applying it with f(w) = 1, we get that
¥y (O W)ye = gw), Py (O W)y =gw)™".
Now use the identities (5.37)—(5.38). m|

Now we can prove the basis theorem. To recall its statement, let X = X, ® --- ® X; and

Y =Y, ®---®Y; be objects of Heisy for X;,Y; € {T,l}. An (X,Y)-matching is a bijection
between the sets {i | X; =T} U {j|Y; =l}and {i | X; =1} U {j|Y; =T}. A reduced lift of an
(X, Y)-matching means a diagram representing a morphism X — Y such that

o the endpoints of each string are points which correspond under the given matching;

o there are no floating bubbles and no dots on any string;

o there are no self-intersections of strings and no two strings cross each other more than

once.

Fix a set B(X, Y) consisting of a choice of reduced lift for each of the (X, Y)-matchings. Let
B.(X,Y) be the set of all morphisms that can be obtained from the elements of B(X, Y) by
adding dots labelled with non-negative integer multiplicities near to the terminus of each string.
Recall the homomorphism g from (5.22).

Theorem 6.4. For X,Y € Heisy, the morphism space Homyy,;s, (X, Y) is a free right Sym-
module with basis B.(X, Y), where the right Sym-module structure is defined by ¢0 := ¢ ®(6).

Proof. We just prove this when k£ < 0; the result for k£ > O then follows by applying ;. Let
X=X,® --®X;andY = Y;®---®Y; be two objects.

We first observe that B, (X, Y) spans Homg,;s, (X, Y) as a right Sym-module. This is because
there is a “straightening rule” allowing any diagram representing a morphism X — Y as a
linear combination of the ones in B,(X,Y). This proceeds by induction on the number of
crossings. Dots can be moved past crossings modulo a correction term with fewer crossings,
so we can assume that all dots are at the termini of their strings. Also we can use the relations
(5.3), (5.7), (5.23) and (5.24) to move strings into the same configuration as one of the chosen
reduced lifts. Again this may produce correction terms with fewer crossings plus some floating
bubbles. Finally floating bubbles can be moved to the right hand edge using (5.25), where they
become scalars in Sym.

It remains to prove the linear independence. The main step is to do this in the special case
that X = ¥ = 1®". Take a linear relation 3. ¢; ® B(6;) = 0 for ¢; € Bo(X,Y) and 6; € Sym.
Choose [ > m > 0 so that

e k=m-1

o the multiplicities of dots in all ¢; arising in this linear relation are < /;

o all of the symmetric functions 6; € Sym are polynomials in the elementary symmetric

functions ey, ..., e,,.

Let uy,...,u, be indeterminates and let K be the algebraic closure of k(u,,...,u,). We are
going to work now with algebras/categories that are linear over K (instead of the usual k),
adding a subscript K to our notation as we do to avoid any confusion. Consider the cyclotomic
Hecke algebras KH,{ and g Hs over K associated to the polynomials

fw) = w, gw) =w" + wuw™ o,

Using the functor ¥y, from (6.5), we make xV(f|g) into a xHeisy-module category. Since
k — K, there is a canonical k-linear monoidal functor Heis; — xHeisy, allowing us to view
xV(f|g) also as a module category over Heis;. Now we evaluate the relation Zﬁi L 9i®B6;) =0
on (KH(’; s KHg) € xV(flg) to obtain a relation in KH,{ . By the basis theorem for KH/: from

(6.1) and the choice of /, the images of ¢, ..., ¢y in KH,{ are linearly independent over K, so
we deduce that the image of 5(6;) in K is zero for each i. To deduce from this that §; = O,
we know by the choice of m that 6; is a polynomial in ey,...,e,. So we need to show that

the images of B(e;), . . .,B(e,) in K are algebraically independent. In fact, these images are the
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indeterminates uy, . . ., u,,, respectively, as follows from Lemma 6.3 on noting that g(w)/ f(w) =
wWE W e, whm,

We have now proved the linear independence when X = Y =1%". The general case reduces
to this special case in just the same way as indicated in the proof of [Kh, Proposition 5]. Let
us give some more details. First, we can use the canonical isomorphism Homgy,;s, (X, Y) =
Homgy,is, (1, X* ® Y) arising from rigidity to reduce the proof of linear independence to the
case that X = 1. Assume this from now on. The set B,(1,Y) is empty unless Y has the
same number n of 1’s as |’s. Also we have already proved the linear independence in the case
Y =1®" ® 1®". So we may assume that Y has a subword T ® |. Let Z be Y with the two letters in
the subword interchanged. By induction, we may assume the linear independence has already
been established for B,(1,Z). Now take a linear relation Zfil ¢; ® B(6;) for ¢; € B,(1,Y) and
6; € Sym. Recalling the isomorphism T ® | ® 1%% = | ® 1 from (5.8), multiplying the
subword T ® | on top by the sideways crossing >< defines a Sym-linear map

s : Homgyeis, (1, Y) = Homgy,is, (1, Z).

Unfortunately, s does not send B,(1, Y) into B,(1, Z), so we need to argue a little further. For
¢ € B,(1,7), there are three possibilities:

(1) If ¢ has a leftward cup labelled with a dots joining the letters in the subword then s(¢) has
a dotted curl in this position, which can be rewritten using the relation

DU S

from (5.23). Thus s(¢) = ¢' + (x) where ¢' is ¢ with the leftward cup labelled by a
dots replaced with a rightward cup labelled by a — k dots, and (x) is a linear combina-
tion of similar-looking diagrams but with strictly fewer dots on the rightward cup and a
clockwise bubble. This bubble may be moved to the right hand edge using (5.25), where
it becomes a scalar in Sym; this process produces extra diagrams which have additional
dots on the strings along the way. We may assume further that B(1, Z) was chosen so that
¢" € B,(1,Z). Let B; = Upso B1,» Where By, is the set of all ¢ € B.(1, Z) which have a
rightward cup labelled by a dot of multiplicity b joining the letters in the subword. Then
we have shown that s(¢) = ¢ + (+%) for ¢' € B 4 and (+x) that is a linear combination
of terms in By, for0 < b <a—k.

(2) If ¢ has two non-intersecting strings at the letters | and T of the subword, we can slide
any dots on the 7-string of s(¢) to the terminus to obtain ¢* + () where ¢ is a diagram
that has intersecting strings at the letters of the subword, and (x) is a linear combination of
diagrams which have a dotted rightward cup at the subword. Again, we may assume that
¢ € B,(1,Z) by the choice of B(1, Z). Let B, be all elements of B (1, Z) with intersecting
strings at the subword. Rewriting the error terms () in terms of the basis, we deduce that
s(¢) = ¢7 + (x%) for 7 € B, and (++) that is a linear combination of terms in B;.

(3) If ¢ has two intersecting strings at the letters | and T, then s(¢) will have two strings that
cross each other twice. Again, we slide dots to the terminus, producing also an error term
(*) which is a linear combination of terms in B;. Then we use (5.7) (and possibly some
other braid relations if there are other strings in between) to eliminate the crossings of the
two strings in the leading term. Making a suitable choice of B(1, Z) and letting B3 be the
set of all elements of B,(1,Z) with non-intersecting strings at the subword, we thus have
that s(¢) = ¢™ + (+%) for ¢T € B3 and and () that is a linear combination of terms in
B, U B;.

We have that ) s(¢;) ® 5(6;) = 0. Ordering B,(1, Z) so that Bip < Bjg <Bjp<--<
B, < Bs, we have shown that s(¢;) = ¢IT + (*) for q}j € By U B, U B3 and (%) that is a linear
combination of smaller g € By U B, U B3. Also the elements qﬂ, e ¢,TV are all different. Hence,
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the known linear independence of B,(1, Z) implies that 6; = 0 for all 7, as required to complete
the argument. m}

Corollary 6.5. The homomorphism 8 : Sym — Endyy,is, (1) is an isomorphism.

Remark 6.6. As noted before Definition 5.1, the category Heis; can be defined more generally
over any commutative ground ring k. Theorem 6.4 is easily extended to this situation: the proof
of the spanning part of the result works for any k; the linear independence in general may be
deduced from the known linear independence over Q by standard base change arguments.

7. Proors oF THEOREMS 1.1 AND 1.3

Recall the objects S € Kar(Heis;) for each A € P defined by (1.8). We note that
QS =S, (7.1)

with the transpose partition appearing because of the sign when € is applied to a crossing.
The following provides the final important ingredient needed to prove the main results. The
argument depends essentially on Theorems 2.2, 4.1 and 6.4.

Theorem 7.1. The Grothendieck group Ko(Kar(Heisy)) is free as a Z-module, with basis given
by the elements {[S,; ® S}] | LpePlifk=0o0r{lS;®S]] | Au € PYifk < 0. Moreover,
[X]=0= X =0for X € Kar(Heisy).

Proof. It suffices to treat the case k > 0; then the case k < 0 follows using (7.1). We make four
elementary reductions which were suggested in [Kh, Section 5.1]:

(1) Let A be the locally unital algebra with distinguished idempotents {1y | X € A} that arises
from the k-linear category Heisy as in (2.5). In view of the contravariant equivalence (2.6),
it suffices to show that [P] = 0 = P = 0 for all P € A-pmod, and that Ky(A) has basis
{[Aeya] | A,u € P} where ey = ju(ey) ® yy(ey) for 1, and j, as in (5.16)-(5.17). Note
these are the objects of A-pmod which correspond to the objects S i ® S € Kar(Heisy).

(2) Ford € Z, let A, be the set of all words X € A such that the number of letters T minus the
number of letters | is equal to d. Let

A(d) = @ lely.
X, Yehy
Noting that 1yAly = 0 for X € Ay, Y € A, and d # e, we have that A = ) ,,, A, hence,
Ko(A-pmod) = €D ,_, Ko(A’-pmod). Therefore it is enough to show that [P] =0 = P =
0 for all P € A)-pmod, and that Ko(A®) has basis {[A@De,] | A, u € P, 14| - |ul = d}.

(3) Since T® | =| ® T @ 1%, the left ideal A1y for X € Ay is isomorphic to a direct sum
of left ideals AY1y for words Y € A, in which all letters | appear to the left of the letters
7. Letting A; denote the set of all such Y, this means that A is Morita equivalent to the

locally unital algebra
B = P 1xA“1y.
X, YeA}
Hence, we just need to show that [P] = 0 = P = 0 for all P € B“-pmod, and that
Ko(B-pmod) has basis {[BVe,] | A, € P, || - |u] = d.
(4) Next, we let lf,d )= 2x lx summing over all words X € A of length < (2n +|d|). Then let
B .— 1@ @@
This defines a direct system of locally unital algebras 0 = B(_dl) c Bgl) C B(ld) C --- whose

union is B). Moreover, each B is actually unital. As any idempotent in B belongs to
B for some sufficiently large n, we have that

KO(B(d)-pmod) = li_r)nKo(B,(fi)-pmod).
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Using this, we are reduced to checking for each n that B is stably finite, and that
Ko(B{-pmod) has basis {[B e,u1 | 4.t € P, 14| = ul = d. 2] + |u| < 2n +|d]}.

To complete the proof of the theorem, we establish the truth of the statement just made by
induction on n = —1,0, 1,.... For the induction step, take n > 0, set R := Bfld) and e := ll(i)].
Note that eRe = B’gd_)l. By induction, we know already that eRe is stably finite and that Ky(eRe)
has basis {[B e,]| 4.t € P, 1A = |ul = d. | Al + || < 2n +|d]} . Let n1, ny > 0 be defined from
ny —ny = d and n; + ny = 2n + |d|. By Theorem 6.4, the quotient S := R/ReR has basis
given by the elements n(¢8) for ¢ € B,(|® ® 1®", [®2 @ 1¥") involving no cups or caps
and 6 running over a basis for Sym, where 7 : R - § is the quotient map. It follows that
there is an isomorphism AH,, ® AH,, ® Sym S8, D1 QP ®0 = Jn,(2) ®1,,(d1) ® B(O).
Moreover, o : S — R, 1(¢0) — ¢0 + e is a unital algebra homomorphism. Since we obviously
have that 7 o o = 1idg, this puts us in a position to apply Theorem 2.2. We deduce that
the induction step follows from the assertions that AH,,, ® AH,, ® Sym is stably finite and
Ko(AH,, ® AH,, ® Sym) has basis {[AH, e, ® AH,,e, ® Sym] | A e P, A = ny,|ul = nol.
The first of these statements follows from Lemma 2.1, and the second from Theorem 4.1. 0O

To prove Theorem 1.1, we are going to categorify some representations of Heis,. The basic
representation of Heis_; is the ring Sym; of symmetric funtions viewed as a Heis_;-module
so that for f € Sym,, the element f* acts by left multiplication by f, and f~ acts by the adjoint
operator with respect to the usual form (-, —) on Symy, i.e., (s, 5,) := d.1,. In particular, the
generators of Heis_; act on the basis of Schur functions as follows:

e hfsy = ), s, summing over all partitions u whose Young diagram is obtained from
that of A by adding a box to the end of n different columns;
® ¢, 5, = ), 5, summing over partitions u whose Young diagram is obtained from that of
A by removing a box from the end of » different rows.
Let Sym% be the Heis;-module obtained from Sym; using w; : Heis; S Heis_;. Thus,
denoting s, instead by s} to avoid confusion, the action of Heis; on Sym;, satisfies
o hfsy =% s;l’ summing over all partitions ;¢ whose Young diagram is obtained from
that of A by removing a box from the end of n different columns;
e esy =) s;f summing over partitions ¢ whose Young diagram is obtained from that
of A by adding a box to the end of n different rows.

More generally, for any /,m > 0 and k := m—I, the tensor product V(l|m) := Sym%l ® (Sym%)m
is naturally a Heisg-module. It has a natural monomial basis indexed by (/ + m)-tuples of
partitions. The associated representation

Yim : Heisy — Endz (V(Im)) (7.2)
is faithful as soon as [/ + m > 0; the proof of faithfulness is particularly easy when both [ > 0
and m > 0 which is all that we use below.

For monic f(w) € k[w] of degree one, the inclusion kS, — H,{ is actually an algebra
isomorphism. Thus, the Heis_;-module category V(f) from (6.3) is the semisimple Abelian
category @nzo kS,-pmod, and there is an isomorphism Sym, = Ko(V( ), sq > [S()] of
Z-modules. Similar statements hold for the Heis;-module category V(g)" from (6.4) when
g(w) € k[w] is of degree one. More generally, for uy,...,u;,vy,...,v, €Kk, the category
V@, ..., wvi,...,vp) = Add(Vw-—u))R---BVw-—u) RVw—-v)) " ®---8VWw-v,)")
is a semisimple Abelian category, and there is a Z-module isomorphism

V(lim) = Ko (V. .owlv, ., vm)), (7.3)

S @ @50 @8, ® - ® 5%, = [(SAM),...,5?), S @M),..., s @™)].
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This is a module category over Heis_| © --- © Heis_; © Heis; © --- @ Heis;. If we assume
in addition that u;,...,u;,vy,..., v, are generic in the sense that their images in k/Z are all
different, then we can argue as in Lemma 6.2 to see that the action extends to the localization
Heis_1 © --- © Heis_; © Heis; © --- © Heisy. Using the iterated categorical comultipli-
cation from Theorem 5.4 (and the coassociativity noted in Remark 5.5), it becomes a module
category over Heisy. Thus, there is a strict k-linear monoidal functor

Wi : Heisy — Ende (V(uy, ..., ulvi, ..., vm)). (7.4)

Since V(uy,...,u]v1,...,v,) is Abelian, this extends to a functor from Kar(Heisy), which we
denote by the same notation ¥y,,. The following shows that this functor categorifies (7.2).

Theorem 7.2. There is a ring isomorphism 7y : Heis, — Ko(Kar(Heisy)) sending sj - [S j]
for each A € P. Moreover, for generic uy, ..., u;,vi,..., vy, withk = m — 1, the diagram

Heis s Endz(V(lm))

WI ick (7.5)

Ko(Kar(Heisy)) F Endz(Ko(V(ui, ..., wlvi,...,vim))

commutes, where cy, is the ring isomorphism defined by conjugating with (7.3), and the bottom
map is the ring homomorphism [X] — [¥},,(X)].

Proof. Theorem 7.1 shows there is a Z-module isomorphism 7y; : Heis; S Ko(Kar(Heisy))
sending s, 57 = [S, ® S7]if k > 0 or s;s; = [S,; ® S ]if k < 0, although we do not yet
know that this is a ring homomorphism. Taking this as the definition of the left hand map, we
are going to show in the next paragraph that the diagram (7.5) commutes for all generic u;, v;.
This is all that is needed to complete the proof: since the top and bottom maps in (7.5) are ring
homomorphisms, the right hand map is a ring isomorphism, and moreover iy, is injective for
any sufficiently large [ and m, the commutativity of the diagram implies that the left hand map
vk is a ring homomorphism too.

To see that the diagram commutes, it suffices to check that it commutes on each of the basis
vectors via which y; has been defined. This reduces easily to checking that

ck(s3v) = [S7]ek(v) (7.6)

for each 1 € P and v € V(l|m). The restrictions y, and y; of the map y; to the subalgebras
Heis, = Sym, ®1 and Heis; = 1 ® Symy, respectively, are both ring homomorphisms. This
follows for y; because y; (s}) = [1](y(sa)), where y is the ring isomorphism from (3.3) and
[1] is the ring homomorphism induced by the monoidal functor : : Sym — Heis; defined just
before (5.16). To see it for y,, use instead that y, (s7) = [71(y(sar)) for the monoidal functor
J : Sym — Heisy arising from (5.17). In view of this and the fact that Heis is generated by
{h; | n > 1}, we deduce that (7.6) follows if we can establish just that

) = [HElex(v). (7.7)
By the definition of (6.3), the object H;" € Kar(Heis_;) acts on S (1) € k&,-pmod by
HS (1) =ind2". S(A) ®triv,,
which is the image of &,s, under the isomorphism Sym; > Ko(V(w — u;)). Thus A} and
[H;] act in the same way under this isomorphism. Since H, = (H,)*, we deduce from this

that i, and [H,] act in the same way too. Similar statements hold for the action on Sym, =
[Viw—=v j)v] for each j. Recalling (1.2) and (1.7), ¥, (h;;) is multiplication by

> he-ei,

rytee S rem=n

Now (7.7) follows from (5.36), as that shows that ¥';,,(H") satisfies an analogous formula. O
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Proof of Theorem 1.1. The isomorphism 7y is constructed in Theorem 7.2. The final part fol-
lows from the final part of Theorem 7.1. O

Proof of Theorem 1.3. As the maps involved are ring homomorphisms, it suffices to show that
the diagram commutes on the generators /" and e;, of Heis, which follows from (5.36). O

8. ProOOF OF THEOREM 1.2

To prove Theorem 1.2, we need some explicit maps. To write these down, we use some
“thick calculus” in the same spirit as [KLMS]. For X, Y € Heis; and idempotents ex : X — X
and ey : Y — Y we have that Homgar(#seis,) (X, €x), (Y, ey)) = ey Homgy,is, (X, Y)ex by the
definition of Karoubi envelope. We will denote the identity endomorphisms of the objects
HY = (1®", 1,(en)) and E, = (1®", ju(e(y)) by thick strings labelled by n, upward for H;' and
downward for E,. We stress that these objects are not duals (unless n = 1). Instead, they are
interchanged by the symmetry ;. We introduce more diagrammatic shorthands:

n
‘{f = (e few) : Hy — H,, if = Jnlew fem) : E; = E,, 8.1
n
n n—r r
n
= ty(ew) : H,_, ® HY —> H,, Y = (r) wew) : Hy = H,_,®HS, (82)
n-r r n

n—r r n

— — - n _ _ _
Y = Jﬂ(e(”)) : En - En—r ® Er 4 A’ = (l’) ]71(8('1)) : En—r ® Er - En ’ (83)
n

n—-r r

for0 <r <nand f € Sym,. Again, the downward morphisms in (8.1)—(8.3) are the images of
the upward ones under ;. Also, the merge and split morphisms are associative in an obvious
sense allowing their definition to be extended to more strings, e.g., for three strings:

R-AA VYV ¥-Y-Y A-A-A
The identities (4.21)—(4.22) imply for A = (1y,...,4,) € N” that

n

A
A1 = ZneEn ﬂ@x'l > A M = Znesn e ’ (8'4)

A Ay

where x* 1= x{' - - x". There are thick cups and caps, which we define recursively by setting

2 n+l n+l g n+l n+l
‘ l = lﬁ, l :r:: 18 n ! , ‘ \ = ﬁl , ‘l: ' = ! n Bl . (8.5)
n+1 n+l o n+l n+l1 n

Symmetric polynomials commute across thick cups and caps, so we may also draw them at the
critical point without ambiguity. By (4.28), we have for A = (1,,...,4,) € N" that

A Xip n . " A Xip l n R
‘ ] n l T [ ] “n 1: '
@ - ' - ' @ - ' B ' (8.6)
n n A Xy n n A Xa-p

A-p
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where X, is the (signed) Schur polynomial from (4.27) andp = (n—1,---,1,0) € Z". We note
also that

n

n n
m = n1<,-<,,v<,,<1<x,x_,)2>'}\ :m , N - n1<,»<,-<,,(1—<x,—x,>2>i = Ul (8.7)
n n n

Finally, there are thick upward crossings which are defined recursively so that

X B (n:)l X ) (:)l x (8.8)

m

forany 0 < r < m,0 < s < n. There are thickened versions of the braid and quadratic relations
(3.1). Moreover, the braid relation implies further relations:

X% KR R
Similarly, there are thick downward, rightward and leftward crossings, defined by the same

pictures as (8.8) with different orientations. Analogs of (8.9) hold for all possible orientations.

Lemma 8.1. Assume that k > 0 and m,n > 0. Then

n n m n
k-1
-1+
a=0 a
m m m n

where a shaded box indicates a morphism which will not be determined precisely.

Proof. We proceed by induction on n. The base case will be discussed in the next paragraph.
For the induction step, assuming n > 1, the induction hypothesis gives us that

n n n m n
k-1
1 1
n n ot
m m m m n
n m n mon n m n m n
1 k-1 k-1 k-1 k-1
= — [n-1 + Z + Z = + Z + Z .
a a
a=0 a a=0 a=0 a a=0
m m m n m n
m n m n

Now we commute the a dots in the final term to the left past the crossing. This also produces
correction terms, but these all have strictly fewer than a dots on the cap so are allowed.

It just remains to treat the base case n = 1. This proceeds by inductiononm = 1,2,.... The
case m = 1 follows from (5.7) and (5.5). The induction step follows by a calculation which

is the mirror image in a vertical axis of the calculation in the previous paragraph, starting by
splitting the string of thickness m into strings of thickness 1 and m — 1. O

n

S| =

m

S

Corollary 8.2. For k > 0 and m,n > 0, we have that

m-r,
0<r<min(m,n) X
AEP :

m n

Proof. Rearrange the identity from Lemma 8.1 to get the » = 0 term in the sum exactly, then
use induction on min(m, n) plus (8.6) to get the other terms. O
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Proof of Theorem 1.2. We just treat the case k > 0; the result for £ < O then follows easily by
applying € (also transposing matrices). The thick upward (resp., downward) crossing gives a
canonical isomorphism H, ® H* — H' ® H?, (tesp., E, ® E; — E, ® E,). For the remaining

m

relation, we must construct an isomorphism between the objects

min(m,n)

P:=H' ®E,, 0:= @ @E,;,@H;H.
r=0 AP,

Corollary 8.2 shows that the morphism 6,,,, : P — Q defined by the column vector

m-r (8.10)

0<r<min(m,n),A€P,x

has a left inverse ¢,,,,. Moreover, thanks to Theorem 1.1 and (1.6), we have that [P] = [Q]
in Ko(Kar(Heis;)). Using the final part of Theorem 1.1, this is enough to imply that ¢,,, is
actually the two-sided inverse of 6,,,,.

To explain the last assertion in more detail, we use (2.6) to translate into a statement about
projective modules over the locally unital algebra A arising from Heis;. Remembering that
this is a contravariant equivalence, we have finitely generated projective A-modules P, Q such
that [P] = [Q], and homomorphisms 6,,,, : Q — P and ¢, : P — Q such that6,,,0¢,,, = idp,
and need to show that 6,,, is an isomorphism. Let R := ker 6,,,,. Since 6,,,, has a right inverse,
it is surjective. Since Q is projective, we have that O = P@®R. Since [P] = [Q], we deduce that
[R] = 0. Hence, R = 0. O
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