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Abstract. We develop axiomatics of highest weight categories and quasi-hereditary

algebras in order to incorporate two semi-infinite situations which are in Ringel
duality with each other; the underlying posets are either upper finite or lower finite.

We also consider various more general sorts of stratified categories. In the upper

finite cases, we give an alternative characterization of these categories in terms
of based quasi-hereditary algebras and based stratified algebras, which are certain

locally unital algebras possessing triangular bases.
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1. Introduction

Highest weight categories were introduced by Cline, Parshall and Scott [CPS1] in
order to provide an axiomatic framework encompassing a number of important examples
which had previously arisen in representation theory. In the first part of this article,
we give a detailed exposition of two semi-infinite variants, which we call lower finite
and upper finite highest weight categories. Lower finite highest weight categories were
already included in the original work of Cline, Parshall and Scott, although they did
not use this language. Well-known examples include the category ReppGq of finite-
dimensional rational representations of a (connected) reductive algebraic group. On the
other hand, the upper finite highest weight categories studied here do not fit into the
locally Artinian framework of [CPS1]. Nevertheless, there are many examples of upper
finite highest weight categories already in the literature, often of a diagrammatic nature,
and an appropriate axiomatic framework was sketched out by Elias and Losev in [ELos,
§6.1.2]. There are plenty of subtleties, so a full treatment seems desirable.

Then, in the next part, we extend Ringel duality to the semi-infinite setting:
"

lower finite
highest weight categories

*

Ringel duality
ÐÝÝÝÝÝÝÝÑ

"

upper finite
highest weight categories

*

.

Other approaches to “semi-infinite Ringel duality” exist in the literature, but these
typically require the existence of a Z-grading; e.g., see [Soe] (in a Lie algebra setting)
and also [Maz2]. We avoid this by working with finite-dimensional comodules over a
coalgebra in the lower finite case, and with locally finite-dimensional modules over a lo-
cally finite-dimensional locally unital algebra in the upper finite case. Another approach
to semi-infinite Ringel duality based around pseudo-compact topological algebras was
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initiated by Marko and Zubkov [MZ]. However, their theory requires some additional
finiteness assumptions which are not satisfied in important examples including all non-
semisimple categories of the form ReppGq for a reductive group G; see Corollary 4.28,
Remark 4.31 and Remark 4.23.

Finally, as an application of semi-infinite Ringel duality, we give an elementary alge-
braic characterization of upper finite highest weight categories, showing that any such
category is equivalent to the category of locally finite-dimensional modules over an up-
per finite based quasi-hereditary algebra. This is an algebraic formulation of the notion
of object-adapted cellular category from [ELau, Def. 2.1], and a generalization of the
based quasi-hereditary algebras of [KM, Def. 2.4]. As well as Ringel duality, the proof
of this characterization uses a construction from [AST] to construct bases for endomor-
phism algebras of tilting objects. The observation that the bases arising from [AST] are
object-adapted cellular bases was made already by Elias and several others, and appears
in recent work of Andersen [And].

Throughout the article, we systematically develop the entire theory in the more gen-
eral setting of what we call ε-stratified categories. The idea of this definition is due to
Ágoston, Dlab and Lukács: in [ADL, Def. 1.3] one finds the notion of a stratified algebra
of type ε; the category of finite-dimensional left modules over such a finite-dimensional
algebra is an example of a ε-stratified category in our sense. The various other gener-
alizations of highest weight category that have been considered in existing literature fit
naturally into our ε-stratified framework.

To explain the contents of the paper in more detail, we start by explaining our precise
setup in the finite-dimensional case, since even here it does not seem to have appeared
explicitly elsewhere in the literature. Consider a finite Abelian category, that is, a cat-
egory R equivalent to the category A-modfd of finite-dimensional left A-modules for
some finite-dimensional algebra A over an algebraically closed field k. A stratification
of R is a quintuple pB, L, ρ,Λ,ďq consisting of a set B, a labelling function L such
that tLpbq | b P Bu is a full set of pairwise inequivalent irreducible objects of R, and a
stratification function ρ : B Ñ Λ for a poset pΛ,ďq.

Given a stratification, let P pbq (resp., Ipbq) be a projective cover (resp., injective hull)
of Lpbq. For λ P Λ, let Rďλ (resp., Răλ) be the Serre subcategory of R generated by
the irreducibles Lpbq for b P B with ρpbq ď λ (resp., ρpbq ă λ). Define the stratum
Rλ to be the Serre quotient Rďλ{Răλ with quotient functor jλ : Rďλ Ñ Rλ. For
b P Bλ :“ ρ´1pλq, let Lλpbq :“ jλLpbq. These give a full set of pairwise inequivalent
irreducible objects in Rλ. Still for b P Bλ, let Pλpbq (resp., Iλpbq) be a projective cover
(resp., injective hull) of Lλpbq in Rλ.

The functor jλ has a left adjoint jλ! and a right adjoint jλ˚ . We refer to these as
the standardization and costandardization functors, respectively, following the language
of [LW, §2]. Then we introduce the standard, proper standard, costandard and proper
costandard objects of R for λ P Λ and b P Bλ:

∆pbq :“ jλ! Pλpbq, ∆̄pbq :“ jλ! Lλpbq, ∇pbq :“ jλ˚Iλpbq, ∇̄pbq :“ jλ˚Lλpbq. (1.1)

Equivalently, ∆pbq (resp., ∇pbq) is the largest quotient of P pbq (resp., the largest subob-
ject of Ipbq) that belongs to Rďλ, and ∆̄pbq (resp., ∇̄pbq) is the largest quotient of ∆pbq
(resp., the largest subobject of ∇pbq) such that all composition factors apart from its
irreducible head (resp., its irreducible socle) belong to Răλ.

Fix a sign function ε : Λ Ñ t˘u and define the ε-standard and ε-costandard objects

∆εpbq :“

"

∆pbq if εpρpbqq “ `
∆̄pbq if εpρpbqq “ ´

, ∇εpbq :“

"

∇̄pbq if εpρpbqq “ `
∇pbq if εpρpbqq “ ´

. (1.2)

By a ∆ε-flag (resp., a ∇ε-flag) of an object of R, we mean a (necessarily finite) filtration
whose sections are of the form ∆εpbq (resp., ∇εpbq) for b P B. Then we call R an
ε-stratified category if one of the following equivalent properties holds:
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(P∆ε) For every b P B, the projective object P pbq has a ∆ε-flag with sections ∆εpcq
for c P B with ρpcq ě ρpbq.

(I∇ε) For every b P B, the injective object Ipbq has a ∇ε-flag with sections ∇εpcq for
c P B with ρpcq ě ρpbq.

The fact that these two properties are indeed equivalent was established in [ADL, Th. 2.2]
(under slightly more restrictive hypotheses than here), extending the earlier work of Dlab
[Dla1]. We give a self-contained proof in Theorem 3.5; see also §6.1 for some elementary
examples. An equivalent statement is as follows.

Theorem 1.1 (Dlab,. . . ). Let R be a finite Abelian category equipped with a stratifica-
tion pB, L, ρ,Λ,ďq and ε : Λ Ñ t˘u be a sign function. Then R is ε-stratified if and
only if Rop is p´εq-stratified.

If the stratification function ρ : B Ñ Λ is a bijection, i.e., each stratum Rλ has a
unique irreducible object (up to isomorphism), then we can use ρ to identify B with Λ,
and denote the various distinguished objects simply by Lpλq, P pλq,∆εpλq, . . . for λ P Λ
instead of by Lpbq, P pbq,∆εpbq, . . . for b P B. When (P∆ε)–(I∇ε) hold in this situation,
we instead call R an ε-highest weight category with weight poset pΛ,ďq and labelling
function L. The notion of ε-highest weight category generalizes the original notion of
highest weight category from [CPS1]: a (finite) highest weight category in the sense of
loc. cit. is an ε-stratified category in which each stratum Rλ is actually simple, i.e.,
equivalent to Vecfd. This stronger assumption means not only that ρ is a bijection but
also that Lλpλq “ Pλpλq “ Iλpλq, hence, ∆pλq “ ∆̄pλq and ∇pλq “ ∇̄pλq for each λ P Λ.
Consequently, in highest weight categories, the sign function ε plays no role and may be
omitted entirely, and the above properties simplify to the following:

(P∆) Each P pλq has a ∆-flag with sections ∆pµq for µ ě λ.
(I∇) Each Ipλq has a ∇-flag with sections ∇pµq for µ ě λ.

In fact, in this context, the equivalence of pP∆q and pI∇q was established already in
[CPS1]. Moreover, in loc. cit., it is shown that A-modfd is a highest weight category if
and only if A is a quasi-hereditary algebra.

The next important special cases arise when ε is the constant function ` or ´. The
idea of a `-stratified category originated in the work of Dlab [Dla1] already mentioned,
and in another work of Cline, Parshall and Scott [CPS2]. In particular, the “standardly
stratified categories” of [CPS2, Def. 2.2.1] are `-stratified categories.

We say that a finite Abelian category R equipped with a stratification pB, L, ρ,Λ,ďq is
a fully stratified category if it is both a `-stratified category and a ´-stratified category;
in that case, it is ε-stratified for all choices of the sign function ε : Λ Ñ t˘u. Such
categories arise as categories of modules over the fully stratified algebras introduced
in a remark after [ADL, Def. 1.3]. In fact, these sorts of algebras and categories have
appeared several times elsewhere in the literature but under different names: they are
called “weakly properly stratified” in [Fri1], “exactly properly stratified” in [CouZ], and
“standardly stratified” in [LW]. The latter seems a particularly confusing choice since
it clashes with the established notion from [CPS2] but we completely agree with the
sentiment of [LW, Rem. 2.2]: fully stratified categories have a well-behaved structure
theory. One reason for this is that all of the standardization and costandardization
functors in a fully stratified category are exact. We note also that any ε-stratified
category with duality is automatically fully stratified; see Corollary 3.21 for a precise
statement.

We use the language fibered highest weight category in place of fully stratified category
when the stratification function ρ is a bijection. Equivalently, a fibered highest weight
category is a category which is ε-highest weight for all choices of the sign function ε.
Such categories arise as the categories of finite-dimensional modules over the properly
stratified algebras introduced in [Dla2]. It is perhaps worth pointing out that any finite
Abelian category can be given the structure of a fully stratified category in a trivial way
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Finite-dimensional algebra A Finite Abelian category A-modfd

Quasi-hereditary algebra Highest weight category
ε-Quasi-hereditary algebra ε-Highest weight category
Properly stratified algebra Fibered highest weight category
ε-Stratified algebra ε-Stratified category
Stratified algebra Fully stratified category

Table 1. Dictionary between algebras and categories

taking the poset Λ to be a singleton. Fibered highest weight categories are at the other
extreme with Λ being as big as possible.

Table 1 gives a dictionary between the various different types of finite Abelian category
R discussed so far and the language we adopt for the underlying finite-dimensional
algebras A such that R is equivalent to A-modfd. Some of this language is non-standard;
see Remark 3.8 for further discussion.

There are many classical examples of highest weight categories, including blocks of the
BGG category O for a semisimple Lie algebra, the classical Schur algebra and Donkin’s
generalized Schur algebras introduced in [Don2], and many more examples arising from
categories of perverse sheaves with stratifications of geometric origin [BBD]. Further
examples of fully stratified categories and fibered highest weight categories which are
not highest weight arise in the context of categorification. This includes the pioneering
examples of categorified tensor products of finite dimensional irreducible representations
for the quantum group attached to slk from [FKS] (in particular Remark 2.5 therein), and
the categorified induced cell modules for Hecke algebras from [MS, 6.5]. Building on these
examples and the subsequent work of Webster [Web1], [Web2], Losev and Webster [LW]
formulated the important axiomatic definition of a tensor product categorification. These
are fully stratified categories which have been used to give a categorical interpretation
of Lusztig’s construction of tensor product of based modules for a quantum group.

The device of incorporating the sign function ε into the definition of ε-stratified or
ε-highest weight category seems to be quite convenient as it streamlines many of the
subsequent definitions and proofs. It also leads to some interesting new possibilities
when it comes to the “tilting theory” which we discuss next.

Assume R is an ε-stratified category as above. An ε-tilting object is an object of
R which has both a ∆ε-flag and a ∇ε-flag. Isomorphism classes of indecomposable
ε-tilting objects are parametrized in a canonical way by the set B; see Theorem 4.2.
The construction of these objects is a non-trivial generalization of Ringel’s classical
construction via iterated extensions of standard objects: in general one takes a mixture of
extensions of standard objects on the top for positive strata and extensions of costandard
objects on the bottom for negative strata. We denote the indecomposable ε-tilting
objects by tTεpbq | b P Bu.

Now let T be an ε-tilting generator, i.e., an ε-tilting object in which every Tεpbq ap-
pears at least once as a summand. If ε “ ` or ´ (the constant functions) then T is a
tilting or cotilting module, respectively, for the underlying finite-dimensional algebra in
the general sense of tilting theory; for more general ε, T is an example of a Wakamatsu
tilting module as defined in [Rei, §4.1]. The Ringel dual of R relative to T is the category
R1 :“ B-modfd where B :“ EndRpT q

op (so that T is a right B-module). The isomor-
phism classes of irreducible objects in R1 are in natural bijection with the isomorphism
classes of indecomposable summands of T , hence, they may be indexed by the same set
B that labels the irreducibles in R. We denote them by tL1pbq | b P Bu. Let

F :“ HomRpT, ?q : RÑ R1,
G :“ CohomRpT, ?q “ HomRp?, T q

˚ : RÑ R1.
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These are the Ringel duality functors. The following theorem is well known for highest
weight categories (where it is due to Ringel [Rin] and Happel [Hap]) and for `- and
´-stratified categories (where it is developed in the framework of standardly stratified
algebras in [AHLU]). We prove it for general ε-stratified categories in Theorem 4.10.

Theorem 1.2 (Ringel, Happel, . . . ). Let R1 be the Ringel dual of R relative to an
ε-tilting generator T as above. Let ´ε : Λ Ñ t˘u be the negation of the original sign
function ε.

(1) The quintuple pB, L1, ρ,Λ,ěq is a stratification of R1 making it into a p´εq-
stratified category with weight poset pΛ,ěq, that is, the opposite of the poset
used for R. Moreover, each stratum R1λ :“ R1ěλ{R1ąλ of R1 is equivalent to the
corresponding stratum Rλ :“ Rďλ{Răλ of R.

(2) The functor F defines an equivalence of categories between the category of ∇ε-
filtered objects in R and the category of ∆´ε-filtered objects in R1. It sends
ε-tilting objects (resp., injective objects) in R to projective objects (resp., p´εq-
tilting objects) in R1.

(3) The functor G defines an equivalence of categories between the category of ∆ε-
filtered objects in R and the category of ∇´ε-filtered objects in R1. It sends
ε-tilting objects (resp., projective objects) in R to injective objects (resp., p´εq-
tilting objects) in R1.

(4) Assume that Rλ is of finite global dimension for all strata λ with εpλq “ ´

(resp., εpλq “ `). Then the total derived functor RF : DbpRq Ñ DbpR1q (resp.,
LG : DbpRq Ñ DbpR1q) is an equivalence between the bounded derived categories.

In the setup of the theorem, let P be a projective generator for R. Then T 1 :“ GP
is a p´εq-tilting generator for R1 such that A :“ EndRpP q

op – EndR1pT
1qop. Since R

is equivalent to A-modfd, this shows that R is equivalent to the Ringel dual pR1q1 of
R1 relative to T 1. Thus, the original category R can be recovered from its Ringel dual
R1. This statement can be interpreted as a double centralizer property: starting from
R “ A-modfd so that T is an pA,Bq-bimodule, and taking the projective generator P
to be the left regular A-module so that A – EndApP q

op, the pB,Aq-bimodule T 1 “ GP
is isomorphic to the dual T˚ of T . Now Theorem 1.2(3) implies that A – EndBpT

˚qop.
We do not consider here derived equivalences in the case of infinite global dimension,

but instead refer to [PS], where this and involved t-structures are treated in detail by
generalizing the classical theory of co(resolving) subcategories. This requires the use of
certain coderived and contraderived categories in place of ordinary derived categories.

Now we shift our attention to the semi-infinite case, which is really the main topic
of the article. Following [EGNO], a locally finite Abelian category is a category that is
equivalent to the category comodfd-C of finite-dimensional right comodules over some
coalgebra C. Let R be such a category. A lower finite stratification of R is a quintuple
pB, L, ρ,Λ,ďq consisting of a set B, a function L labelling a full set tLpbq | b P Bu of
pairwise inequivalent irreducible objects, a stratification function ρ : B Ñ Λ required
now to have finite fibers Bλ :“ ρ´1pλq, and a lower finite poset pΛ,ďq (i.e., the intervals
p´8, µs are finite for all µ P Λ). Fix also a sign function ε : Λ Ñ t˘u. For any
lower set (i.e., ideal of the poset) Λ� in Λ, we can consider the Serre subcategory R�

of R generated by the objects tLpbq | b P B�u where B� :“ ρ´1pΛ�q. The restriction
of the stratification of R gives a stratification pB�, L, ρ,Λ,ďq of R�. We say that R is
a lower finite ε-stratified category if R� is a finite Abelian category that is ε-stratified
in the earlier sense for every finite lower set Λ� of Λ; cf. Definition 3.50. By the same
procedure one also obtains definitions of lower finite ε-highest weight, lower finite fully
stratified, lower finite fibered highest weight, and lower finite highest weight categories.

In a lower finite ε-stratified category R, there are ε-standard and ε-costandard objects
∆εpbq and ∇εpbq; they are the same as the ε-standard and ε-costandard objects of the
Serre subcategory R� defined from any finite lower set Λ� containing ρpbq. As well as
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(finite) ∆ε- and ∇ε-flags, one can consider certain infinite ∇ε-flags in objects of the ind-
competion IndpRq (which is the category comod-C of all right C-comodules in the case
that R “ comodfd-C). We refer to these as ascending ∇ε-flags; see Definition 3.52 for
the precise formulation. Theorem 3.56 establishes a homological criterion for an object
to possess an ascending ∇ε-flag similar to the well-known criterion for good filtrations in
rational representations of reductive groups [Jan1, Prop. II.4.16]. From this, it follows
that the injective hull Ipbq of Lpbq in IndpRq has an ascending ∇ε-flag. Moreover, the
multiplicity of ∇εpcq as a section of such a flag satisfies

pIpbq : ∇εpcqq “ r∆εpcq : Lpbqs,

generalizing BGG reciprocity. This leads to alternative “global” characterizations of
lower finite ε-stratified and fully stratified categories; see Theorems 3.60 and 3.63. The
latter involves an Ext2-vanishing condition which first appeared in work of Dlab and
Ringel [DR].

In a lower finite ε-stratified category, there are also ε-tilting objects. Isomorphism
classes of the indecomposable ones are labelled by B just like in the finite case. In fact,
for b P B the corresponding indecomposable ε-tilting object of R is the same as the
object Tεpbq of the Serre subcategory R� defined from any finite lower set Λ� containing
ρpbq. By an ε-tilting generator for R, we now mean an object T “

À

iPI Ti P IndpRq
with a given decomposition as a direct sum of ε-tilting objects Ti P R such that each
Tεpbq appears at least once as a summand of T . Then the Ringel dual R1 of R relative
to T is the category A-modlfd of locally finite-dimensional left modules over the locally
finite-dimensional locally unital algebra

A “
´

à

i,jPI

HomRpTi, Tjq
¯op

,

where the op denotes that multiplication in A is the opposite of composition in R; see
Definition 4.24. Saying that A is locally unital means that A “

À

i,jPI eiAej where tei|i P

Iu are the mutually orthogonal idempotents defined by the identity endomorphisms of
each Ti, and locally finite-dimensional means that dim eiAej ă 8 for all i, j P I. A
locally finite-dimensional module is an A-module V “

À

iPI eiV with dim eiV ă 8 for
each i. As eiAej “ HomRpTi, Tjq is finite-dimensional, each left ideal Aej is a locally
finite-dimensional projective module.

This brings us to the notion of an upper finite ε-stratified category, whose definition
may be discovered by considering the nature of the categories R1 that can arise as Ringel
duals of lower finite ε-stratified categories. We refer to Definition 3.34 for the intrinsic
formulation; there are also upper finite counterparts of ε-highest weight, fully stratified,
fibered highest weight and highest weight categories. Starting from R that is a lower
finite ε-stratified category as above, the Ringel dual R1 comes equipped with an upper
finite stratification pB, L1, ρ,Λ,ěq making it into an upper finite p´εq-stratified category;
see Theorem 4.25 which extends parts (1) and (2) of Theorem 1.2.

In general, in an upper finite ε-stratified category, the underlying poset is required
to be upper finite, i.e., all of the intervals rλ,8q are finite. There are ε-standard and
ε-costandard objects, but now these can have infinite length (although composition mul-
tiplicities in such objects are finite). On the other hand, the indecomposable projectives
and injectives do still have finite ∆ε-flags and ∇ε-flags, exactly like in pP∆εq and pI∇εq.
Perhaps the most interesting feature is that one can still make sense of ε-tilting objects.
These are objects possessing certain infinite flags: both an ascending ∆ε-flag and a
descending ∇ε-flag; see Definition 3.35. This allows us to define the Ringel dual of an
upper finite ε-stratified category relative to an ε-tilting generator T : it is the category
comodfd-C for the coalgebra C :“ CoendRpT q that is the continuous dual of the oppo-
site endomorphism algebra B :“ EndRpT q

op; see Theorem 4.27 which extends parts (1)
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and (3) of Theorem 1.2. This makes sense because B is a pseudo-compact topological
algebra; see Lemma 2.10.

Again there are double centralizer properties. For R1 arising as the Ringel dual of a
lower finite ε-stratified category R relative to T “

À

iPI Ti, the indecomposable p´εq-
tilting objects in R1 are the images of the indecomposable injective objects of R under

F :“
à

iPI

HomRpTi, ?q : RÑ R1

and, given a p´εq-tilting generator T 1 for R1, the Ringel dual pR1q1 of R1 relative to T 1

is equivalent to the original category R; see Corollary 4.29 and also §6.2 for an explicit
example. Similarly, for R1 arising as the Ringel dual of an upper finite ε-stratified
category relative to T , the indecomposable p´εq-tilting objects of R1 are the images
of the indecomposable projective objects of R under G :“ CohomRpT, ?q and, given a
p´εq-tilting generator T 1 “

À

iPI T
1
i for R1, the Ringel dual pR1q1 of R1 relative to T 1 is

equivalent to R; see Corollary 4.30.

In §5.1, we apply semi-infinite Ringel duality together with arguments from [AST]
to give an elementary algebraic characterization of upper finite highest weight cate-
gories in terms of upper finite based quasi-hereditary algebras. In the finite-dimensional
setting, these are the based quasi-hereditary algebras defined by Kleshchev and Muth
in [KM], who proved that their definition of based quasi-hereditary algebra is equiva-
lent to the original definition of quasi-hereditary algebra from [CPS1]; we have stream-
lined the definition a little further here. Our more general algebras are locally finite-
dimensional locally unital algebras rather than unital algebras. Viewing them instead
as finite-dimensional categories, that is, small k-linear categories with finite-dimensional
morphism spaces, the definition translates into something equivalent to the notion of
an object-adapted cellular category which was introduced already by Elias and Lauda
[ELau, Def. 2.1]. (In turn, the Elias-Lauda definition evolved from work of Westbury
[Wes], who extended the definition of cellular algebra due to Graham and Lehrer [GL]
from finite-dimensional algebras to finite-dimensional categories.)

We say that a fully stratified category is tilting-rigid if there is a bijection ν : B Ñ B
such that T`pbq – T´pνpbqq for all b P B; see Definition 4.36. In the finite case, R is
tilting-rigid if and only if it is Gorenstein with strata that are quasi-Frobenius (then
ν encodes their Nakayama permutations); see Theorem 4.39 which generalizes [CM,
Th. 2.2]. The situation is even better if in addition all of the strata are symmetric, since
in that case the tilting objects Tεpbq are isomorphic for all choices of the sign function
ε so that they may all be denoted by T pbq. Most of the naturally-occurring examples
of fully stratified categories are tilting-rigid with symmetric strata, including the tensor
product categorifications from [LW] mentioned earlier. For us, the key point about the
tilting-rigid hypothesis is that the Ringel dual of a tilting-rigid fully stratified category
is again a tilting-rigid fully stratified category; see Theorem 4.42. This is important in
§5.3, when we introduce notions of based stratified algebras and based properly stratified
algebras; see Definitions 5.20 and 5.21. These have a similar flavor to the fibered object-
adapted cellular categories of [ELau, Def. 2.17]. We show that the category of locally
finite-dimensional modules over an upper finite based stratified algebra (resp., upper
finite based properly stratified algebra) is an upper finite fully stratified (resp., fibered
highest weight) category, and conversely any such category which is also tilting-rigid
with symmetric strata can be realized in this way.

The definition of an upper finite based stratified algebra A involves certain basic
finite-dimensional algebras Aλ pλ P Λq which provide explicit realizations of the strata.
Their direct sum

À

λPΛAλ is a locally unital algebra which plays the role of “Cartan
subalgebra”, although in general it is not a subalgebra of A. The assumption that the
algebras Aλ are basic can in fact be dropped entirely. On doing that one obtains a
weaker notion which we call an algebra with a triangular basis; see Definition 5.26. Our
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Upper finite highest
weight categories

Upper finite fully
stratified categories

Upper finite based
stratified algebras

Upper finite based
quasi-hereditary algebras

Algebras with an upper
finite triangular basis

Algebras with an upper finite
triangular decomposition

`highest weight strata (3.67)

(5.23) `tilting-rigid (5.25)(5.11) (5.9)

`opposite

Borels
`B-free (5.34)

`basic semisimple

Cartan
`basic Cartan

(5.28)

`semisimple

Cartan (5.36)

(5.35)

`quasi-hereditary Cartan (5.29)

Table 2. Upper finite algebras and categories

understanding of this definition was influenced by the recent preprint [GRS] in which
the authors introduce the closely-related notion of an algebra with a weak triangular
decomposition; up to a choice of basis, this is the same as an algebra with a triangular
basis in our sense in which all distinguished idempotents are special. It is still the
case that the category of locally finite-dimensional modules over such an algebra is
an upper finite fully stratified category, just like for based stratified algebras. This
observation is due to Gao, Rui and Song [GRS, Th. 3.5]; we give a slightly different
proof in Theorem 5.28. Gao, Rui and Song also discuss some interesting examples
arising from cyclotomic quotients of the affine Brauer and oriented Brauer categories
and their q-analogs.

For many of the naturally occurring algebras A with a triangular basis, the upper
and lower halves of the basis span a pair of opposite Borel subalgebras A5 and A7;
this includes all of the level one cyclotomic quotients from [GRS] but not the ones
of higher level. In Definition 5.31, we formalize this idea with the final notion of an
algebra with a triangular decomposition. The first author came upon essentially this
definition originally from considerations involving the oriented Brauer category and its
q-analog; see [Rey], [Bru] and also [RS], which applies a similar approach in the context
of the Brauer category. A closely related notion of triangular category was developed
independently by Sam and Snowden [SS] in order to study these and other examples;
see also [CouZ]. In the presence of a triangular decomposition, the “Cartan subalgebra”
À

λPΛAλ may be identified with A˝ :“ A5XA7, so that now it is actually a subalgebra of
A, and the standardardization/costandardization functors can be realized as parabolic
induction/coinduction functors. In Theorem 5.35, we explain a general construction to
make any algebra with a triangular decomposition into a based stratified algebra. If A˝ is
semisimple, as is the case for the examples arising from the (oriented) Brauer category
in characteristic zero but not in positive characteristic, this produces a based quasi-
hereditary algebra. There are other advantages to having a triangular decomposition
rather than merely a triangular basis, e.g., see [SS] where triangular decompositions are
used to show that many of the motivating examples are Noetherian.

Table 2 summarizes some of the connections established between these various types
of algebras and their module categories. In the main body of the text, we also dis-
cuss a parallel situation involving essentially finite rather than upper finite algebras
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and categories. For example, the finite-dimensional graded algebras with a triangular
decomposition studied in [HN], [BT] fit naturally into our more general framework of
algebras with an essentially finite triangular decomposition; see Remark 5.33.

As we have already mentioned, the category R :“ ReppGq for a reductive group G
is the archetypical example of a lower finite highest weight category. Its Ringel dual
R1 is an upper finite highest weight category. This case has been studied in particular
by Donkin (e.g., see [Don2], [Don3]), but Donkin’s approach involves truncating to a
finite-dimensional algebra from the outset. The double centralizer property allowing R
to be reconstructed from R1 in this case can be interpreted as a shadow of the Tannakian
formalism; see Theorem 6.11. Other important examples of semi-infinite Ringel duality
come from blocks of category O over an affine Lie algebra: in negative levels one obtains
lower finite highest weight categories, while positive levels produce the upper finite ones
which are their Ringel duals. These and several other prominent examples are outlined
in §§6.3–6.7.

We would finally like to remark that our semi-infinite versions of highest weight
categories should not be confused with the affine highest weight categories of [Kle], and
our based quasi-hereditary algebras are not affine quasi-hereditary algebras in the sense
of [Kle]. The latter are special examples of affine cellular algebras introduced in [Xi],
[KX]. They are not covered by out setup since we require that strata can be realized by
finite-dimensional algebras over an algebraically closed field. To incorporate them, one
would need to develop the theory here over more general commutative ground rings as
suggested in Remark 5.7.

Acknowledgements. The first author would like to thank Ben Elias, Alexander Kleshchev
and Ivan Losev for many illuminating discussions. In particular, the fact that Ringel du-
ality could be extended to upper finite highest weight categories was originally explained
to this author by Losev. The second author would like to thank Henning Andersen,
Shrawan Kumar and Wolfgang Soergel for several useful discussions on topics related
to this paper. The authors also thank Tomoyuki Arakawa, Peter Fiebig and Julian
Külshammer for helpful comments, and Kevin Coulembier for pointing out a mistake in
the treatment of ind-completions in §2.3 of the first version of this article.

2. Some finiteness properties on Abelian categories

We fix an algebraically closed field k. All algebras, categories, functors, etc. will
be assumed to be linear over k. We write b for bk. The naive terms direct limit and
inverse limit will be used for small filtered colimits and limits, respectively. We begin
by introducing some language for Abelian categories with various finiteness properties;
see Table 3.

2.1. Finite and locally finite Abelian categories. According to [EGNO, Def. 1.8.5],
a finite Abelian category is a category that is equivalent to the category A-modfd of finite-
dimensional (left) modules over some finite-dimensional algebra A. We refer to a choice
for the algebra A here as an algebra realization of R. Note that the opposite category is
also a finite Abelian category as it is equivalent to the category Aop-modfd “ modfd-A
due to the existence of the contravariant equivalence

?˚ : A-modfd Ñ modfd-A (2.1)

taking a finite-dimensional left A-module to the linear dual viewed as a right A-module
in the natural way.

A finite Abelian category can also be characterized as a category which is equivalent
to the category comodfd-C of finite-dimensional (right) comodules over some finite-
dimensional coalgebra C. To explain this in more detail, recall that the dual A :“ C˚

of a finite-dimensional coalgebra C has a natural algebra structure with multiplication
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Finite Abelian categories

Essentially finite
Abelian categories

Schurian
categories

Locally finite
Abelian categories

(2.21)

(2.20) (2.22)

(2.21) (2.21)

Table 3. Finiteness properties

A b A Ñ A that is the dual of the comultiplication C Ñ C b C; for this, one needs to
use the canonical isomorphism

C˚ b C˚ Ñ pC b Cq˚, f b g ÞÑ pv b w ÞÑ fpvqgpwqq (2.2)

to identify C˚bC˚ with pC bCq˚. Then any right C-comodule can be viewed as a left
A-module with action defined from av :“

řn
i“1 apciqvi assuming here that the structure

map η : V Ñ V b C sends v ÞÑ
řn
i“1 vi b ci. Conversely, the C-comodule structure on

V can be recovered uniquely from the action of A. Thus, the categories comodfd-C and
A-modfd are isomorphic.

A locally finite Abelian category is a category R that is equivalent to comodfd-C for a
(not necessarily finite-dimensional) coalgebra C. We refer to a choice of C as a coalgebra
realization of R. The following result of Takeuchi gives an intrinsic characterization
of locally finite Abelian categories; see [Tak] and [EGNO, Th. 1.9.15]. It is a version
of [Gab, Th. IV.4] adapted to our situation. Note Takeuchi’s original paper uses the
language “locally finite Abelian” slightly differently (following [Gab]) but his formulation
of the result is equivalent to the one here (which follows [EGNO, Def. 1.8.1]). In loc. cit.
it is shown moreover that C can be chosen so that it is pointed, i.e., all of its irreducible
comodules are one-dimensional; in that case, C is unique up to isomorphism.

Lemma 2.1. An essentially small category R is a locally finite Abelian category if and
only if it is Abelian, all of its objects are of finite length, and all of its morphism spaces
are finite-dimensional.

In view of Lemma 2.1, one could also define a locally finite Abelian category to be a
category that is equivalent to A-modfd for a (not necessarily finite-dimensional) unital
algebra A, but we prefer to work in terms of comodules since this language facilitates
the passage to the ind-completion. To explain this in more detail, consider the locally
finite Abelian category

R “ comodfd-C.

Fix a full set of pairwise inequivalent irreducible objects tLpbq | b P Bu in R. By Schur’s
Lemma, we have that EndRpLpbqq “ k for each b P B. Note that the opposite category
Rop is again a locally finite Abelian category, and a coalgebra realization for it is given
by the opposite coalgebra Ccop. This follows because there is a contravariant equivalence

?˚ : comodfd-C Ñ C-comodfd (2.3)

sending a finite-dimensional right comodule to the dual vector space viewed as a left
comodule in the natural way: if v1, . . . , vn is a basis for V , with dual basis f1, . . . , fn
for V ˚, and the structure map V Ñ V b C sends vj ÞÑ

řn
i“1 vi b ci,j then the dual’s

structure map V ˚ Ñ CbV ˚ sends fi ÞÑ
řn
i“1 ci,jbfj . Since we have that C-comodfd –

comodfd-Ccop, we deduce that Rop is equivalent to comodfd-Ccop.



SEMI-INFINITE HIGHEST WEIGHT CATEGORIES 11

In general, R need not have enough injectives or projectives. To get injectives, we
pass to the ind-completion IndpRq; see e.g. [KS, §6.1]. For V,W P IndpRq, we write
ExtnRpV,W q, or sometimes ExtnCpV,W q, for ExtnIndpRqpV,W q; it may be computed via
an injective resolution of W in the ind-completion. This convention is unambiguous due
to [KS, Th. 15.3.1]; see also [Cou3, Th. 2.2.1]. One can also consider the right derived
functors RnF of a left exact functor F : IndpRq Ñ R1 to an Abelian category R1.

Let comod-C be the category of all right C-comodules. Every comodule is the union
(hence, the direct limit) of its finite-dimensional subcomodules. Moreover, a comodule
V is compact, i.e., the functor HomCpV, ?q commutes with direct limits, if and only if
it is finite-dimensional. Using this, [KS, Cor. 6.3.5] implies that the canonical functor
IndpRq Ñ comod-C is an equivalence of categories. This means that one can work with
comod-C in place of IndpRq, as we do in the next few paragraphs.

The category comod-C is a Grothendieck category: it is Abelian, it possesses all
small coproducts, direct colimits of monomorphisms are monomorphisms, and there
is a generator. A generating family may be obtained by choosing representatives for
the isomorphism classes of finite-dimensional C-comodules. By the general theory of
Grothendieck categories, every C-comodule has an injective hull. We use the notation
Ipbq to denote an injective hull of Lpbq. The right regular comodule decomposes as

C –
à

bPB

Ipbq‘ dimLpbq. (2.4)

By Baer’s criterion for Grothendieck categories (e.g., see [KS, Prop. 8.4.7]), arbitrary
direct sums of injectives are injective. It follows that an injective hull of V P comod-C
comes from an injective hull of its socle: if soc V –

À

sPS Lpbsq then
À

sPS Ipbsq is an
injective hull of V .

In any Abelian category, we write rV : Ls for the composition multiplicity of an
irreducible object L in an object V . By definition, this is the supremum of sizes of the
sets ti “ 1, . . . , n | Vi{Vi´1 – Lu over all finite filtrations 0 “ V0 ă V1 ă ¨ ¨ ¨ ă Vn “ V ;
possibly, rV : Ls “ 8. Composition multiplicity is additive on short exact sequences.
For any right C-comodule V , we have by Schur’s Lemma that

rV : Lpbqs “ dim HomCpV, Ipbqq. (2.5)

When C is infinite-dimensional, the map (2.2) is not an isomorphism, but one can
still use it to make the dual vector space B :“ C˚ into a unital algebra. Since C is
the union of its finite-dimensional subcoalgebras, the algebra B is the inverse limit of
its finite-dimensional quotients, i.e., the canonical homomorphism B Ñ lim

ÐÝ
pB{Jq is an

isomorphism where the limit is over all two-sided ideals J of B of finite codimension.
These two-sided ideals J form a base of neighborhoods of 0 making B into a pseudo-
compact topological algebra; see [Gab, Ch. IV] or [Sim, Def. 2.4]. We refer to the topology
on B defined in this way as the profinite topology. The coalgebra C can be recovered
from B as the continuous dual

Bˇ :“
 

f P B˚
ˇ

ˇ f vanishes on some two-sided ideal J of finite codimension
(

. (2.6)

It has a natural coalgebra structure dual to the algebra structure on B. This is discussed
further in [Sim, §3]; see also [EGNO, §1.12] where Bˇ is called the finite dual. We
note that any left ideal I of B of finite codimension contains a two-sided ideal J of
finite codimension, namely, J :“ AnnBpB{Iq. So, in the definition (2.6) of continuous
dual, “two-sided ideal J of finite codimension” can be replaced by “left ideal I of finite
codimension”. Similarly for right ideals.

Any right C-comodule V is naturally a left B-module by the same construction as
in the finite-dimensional case. We deduce that the category comod-C of all right C-
comodules is isomorphic to the full subcategory B-modds of B-mod consisting of all
discrete left B-modules, that is, all B-modules which are the unions of their finite-
dimensional submodules. In particular, comodfd-C and B-modfd are identified under
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this construction. This means that any locally finite Abelian category may be realized
as the category of finite-dimensional modules over an algebra which is pseudo-compact
with respect to the profinite topology; see also [Sim, §3].

The definition of the left C-comodule structure on the linear dual V ˚ of a right C-
comodule V in (2.3) required V to be finite-dimensional in order for it to make sense.
If V is an infinite-dimensional right C-comodule, it can be viewed equivalently as a
discrete left module over the dual algebra B :“ C˚. Then its dual V ˚ is a pseudo-
compact right B-module, that is, a B-module isomorphic to the inverse limit of its finite-
dimensional quotients. Viewing pseudo-compact modules as topological B-modules with
respect to the profinite topology (i.e., submodules of finite codimension form a basis of
neighborhoods of 0), we obtain the category modpc-B of all pseudo-compact right B-
modules and continuous B-module homomorphisms. The functor (2.3) extends to

?˚ : B-modds Ñ modpc-B. (2.7)

This is a contravariant equivalence with quasi-inverse given by the functor

?ˇ : modpc-B Ñ B-modds (2.8)

taking V P modpc-B to its continuous dual

V ˇ :“
 

f P V ˚
ˇ

ˇ f vanishes on some submodule of V of finite codimension
(

.

We are using subtlely different notation here (?˚ vs. ?ˇ), but confusion seldom arises
due to context.

We record one more basic lemma about comodules over a coalgebra.

Lemma 2.2. Suppose that C is a coalgebra and B :“ C˚ is its dual algebra. For any
right C-comodule V , composing with the counit ε : C Ñ k defines an isomorphism of
left B-modules αV : HomCpV,Cq

„
Ñ V ˚. When V “ C, the right regular comodule, this

map gives an algebra isomorphism EndCpCq
op – B.

Proof. Let η : V Ñ V b C be the comodule structure map. To show that αV is an
isomorphism, one checks that the map βV : V ˚ Ñ HomCpV,Cq, f ÞÑ pfb̄ idq ˝ η is its

two-sided inverse; cf. [Sim, Lem. 4.9]. It remains to show that αC : EndCpCq
op „
Ñ B is

an algebra homomorphism: for f, g P B we have that

αCpβCpgq ˝ βCpfqq “ ε ˝ pgb̄ idq ˝ η ˝ pfb̄ idq ˝ η

“ pgb̄ idq ˝ pidbεq ˝ η ˝ pfb̄ idq ˝ η “ g ˝ pfb̄ idq ˝ η “ fg. �

2.2. Locally unital algebras. We are going to work with certain Abelian categories
which are not locally finite, but which nevertheless have some well-behaved finiteness
properties. We will define these in the next subsection. First we must review some basic
notions about locally unital algebras. These ideas originate in the work of Mitchell [Mit].

A locally unital algebra is an associative (but not necessarily unital) algebra A equipped
with a distinguished system tei | i P Iu of mutually orthogonal idempotents such that

A “
à

i,jPI

eiAej .

We say A is locally finite-dimensional if each subspace eiAej is finite-dimensional.
A locally unital homomorphism (resp., isomorphism) between two locally unital al-

gebras A and B is an algebra homomorphism (resp., isomorphism) which takes distin-
guished idempotents to distinguished idempotents. We say that A is an idempotent
contraction of B, or B is an idempotent expansion of A, if there is an algebra isomor-
phism A

„
Ñ B sending each distinguished idempotent in A to a sum of distinguished

idempotents in B. Usually when we use this language it will be the case that B “ A
and the isomorphism AÑ B is the identity function; then A “

À

i,jPÎ êiAêj is an idem-

potent expansion of A “
À

i,jPI eiAej if each of the idempotents ei pi P Iq is a finite sum

of the idempotents êj pj P Îq.
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For a locally unital algebra A, an A-module means a left module V as usual such that
V “

À

iPI eiV . A vector v P V is homogeneous if v P eiV for some i P I. A module V is

‚ locally finite-dimensional if dim eiV ă 8 for all i P I;
‚ finitely generated if V “ Av1 ` ¨ ¨ ¨ ` Avn for vectors v1, . . . , vn P V (which may

be assumed to be homogeneous) or, equivalently, it is a quotient of the finitely
generated projective A-module Aei1 ‘ ¨ ¨ ¨ ‘ Aein for i1, . . . , in P I and n P N;

‚ finitely presented if there is an exact sequence

Aej1 ‘ ¨ ¨ ¨ ‘ Aejm ÝÑ Aei1 ‘ ¨ ¨ ¨ ‘ Aein ÝÑ V ÝÑ 0

for i1, . . . , in, j1, . . . , jm P I and m,n P N.

Let A-mod (resp., A-modlfd, resp., A-modfg, resp., A-modfp) be the category of all A-
modules (resp., the locally finite-dimensional ones, resp., the finitely generated ones,
resp., the finitely presented ones). Similarly, we define the categories mod-A, mod lfd-A,
modfg-A and modfp-A of right modules.

Remark 2.3. Any locally unital algebra A “
À

i,jPI eiAej can be viewed as a category

with object set I and HomApj, iq “ eiAej , with the idempotent ei P A corresponding to
the identity endomorphism 1i P EndApiq. Conversely, any small category A (k-linear,
of course) gives rise to a corresponding locally unital algebra A which we call the path
algebra of A. In these terms, locally finite-dimensional locally unital algebras correspond
to finite-dimensional categories, that is, small categories all of whose morphism spaces
are finite-dimensional. The notion of idempotent expansion of the algebra A becomes
the notion of thickening of the category A, which is a sort of “partial Karoubi envelope”.
Also, a left A-module (resp., a locally finite-dimensional left A-module) is the same as
a k-linear functor from A to the category Vec (resp., Vecfd) of vector spaces (resp.,
finite-dimensional vector spaces); right A-modules are functors to Vecop.

Lemma 2.4. An essentially small category R is equivalent to A-mod for some locally
unital algebra A if and only if R is Abelian, it possesses all small coproducts, and it has
a projective generating family, i.e., there is a family pPiqiPI of compact projective objects
such that V ‰ 0 ñ HomRpPi, V q ‰ 0 for some i P I.

Proof. This is similar to [Fre, Ex. 5.F]. One shows that R is equivalent to A-mod for
the locally unital algebra A “

À

i,jPI eiAej defined by setting eiAej :“ HomRpPi, Pjq
with multiplication that is the opposite of composition in R. The canonical equivalence
RÑ A-mod is given by the functor

À

iPI HomRpPi, ?q. �

Lemma 2.5. Let A be a locally unital algebra. An A-module V is compact if and only
if it is finitely presented. Also, for projective modules, the notions of finitely presented
and finitely generated coincide.

Proof. This is well known for modules over a ring, and the usual proof in that setting
carries over almost unchanged to the locally unital case. �

Lemma 2.6. Let A be a locally unital algebra. Any A-module is isomorphic to a direct
limit of finitely presented A-modules.

Proof. As any A-module is the union of its finitely generated submodules, it suffices to
show that any finitely generated A-module V is isomorphic to a direct limit of finitely
presented modules. But then V is a quotient of P “ Aei1 ‘ ¨ ¨ ¨ ‘Aein by a submodule.
This submodule is the union of its finitely generated submodules W , so we have that
V – P { lim

ÝÑ
W – lim

ÝÑ
P {W . This is a direct limit of finitely presented modules. �

The following lemma is fundamental. It is the analog of “adjointness of tensor and
hom” in the locally unital setting; see e.g. [BD1, §2.1] for a fuller discussion.

Lemma 2.7. Let A “
À

i,jPI eiAej and B “
À

i,jPJ fiBfj be locally unital algebras,

and let M “
À

iPI,jPJ eiMfj be an pA,Bq-bimodule.
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(1) The functor MbB? : B-mod Ñ A-mod is left adjoint to
À

jPJ HomApMfj , ?q.

(2) The functor ?bAM : mod-AÑ mod-B is left adjoint to
À

iPI HomBpeiM, ?q.

For any locally unital algebra A, there is a contravariant equivalence

?f : A-modlfd Ñ modlfd-A (2.9)

sending a left module V to V f :“
À

iPIpeiV q
˚, viewed as a right module in the obvious

way. The analogous functor ?f : mod lfd-A Ñ A-modlfd gives a quasi-inverse. The
contravariant functor (2.9) also makes sense on arbitrary left (or right) A-modules. It is
no longer an equivalence, but we still have that

HomApV,W
fq – HomApW,V

fq (2.10)

for any V P A-mod and W P mod-A. To prove this, apply Lemma 2.7(1) to the pk, Aq-
bimodule W to show that HomApV,W

fq – pW bA V q
˚, then apply Lemma 2.7(2) to

the pA, kq-bimodule V to show that pW bA V q
˚ – HomApW,V

fq.

Lemma 2.8. The dual V f of a projective (left or right) A-module is an injective (right
or left) A-module.

Proof. Just like in the classic treatment of duality for vector spaces from [Mac, IV.2],
(2.10) shows that the covariant functor ?f : A-mod Ñ pmod-Aqop is left adjoint to the
exact covariant functor ?f : pmod-Aqop Ñ A-mod. So it sends projective left A-modules
to projectives in pmod-Aqop, which are injective right A-modules. �

Now we assume that A is a locally unital algebra and T P A-modlfd. We are going to
give a self-contained account of the construction of a coalgebra CoendApT q which is the
continuous dual of the endomorphism algebra EndApT q

op. This is the coend construction
which is an essential ingredient in the proof of Lemma 2.1 as discussed for example in
[EGNO, §1.10], although as usual we are using the language of algebras and modules
rather than the language of categories and functors used there. To start with, let

B :“ EndApT q
op, (2.11)

which is a unital algebra. Then T is an pA,Bq-bimodule and the dual Tf is a pB,Aq-
bimodule. Let Ti :“ eiT , so that T “

À

iPI Ti and Tf “
À

iPI T
˚
i .

Lemma 2.9. Suppose that T “
À

iPI Ti P A-modlfd and B :“ EndApT q
op are as above.

For any V P A-mod, there is a natural isomorphism of right B-modules

HomApV, T q
„
Ñ pTf bA V q

˚, θ ÞÑ pf b v ÞÑ fpθpvqqq. (2.12)

In particular, taking V “ T , we get that pTf bA T q
˚ – B as pB,Bq-bimodules.

Proof. By Lemma 2.7 applied to the pA, kq-bimodule Tf, the functor TfbA? is left
adjoint to

À

iPI HomkpT
˚
i , ?q. Hence,

pTf bA V q
˚ “ HomkpT

f bA V, kq – HomA

´

V,
à

iPI

HomkpT
˚
i , kq

¯

– HomApV, T q.

This is the natural isomorphism in the statement of the lemma. We leave it to the reader
to check that it is a B-module homomorphism. �

Continuing with this setup, let

C :“ Tf bA T. (2.13)

There is a unique way to make this into a coalgebra so that the bimodule isomorphism
B

„
Ñ C˚ from Lemma 2.9 is actually an algebra isomorphism (viewing the dual C˚ of a

coalgebra as an algebra as in the previous subsection). Explicitly, let u
piq
1 , . . . , u

piq
dpiq be a
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basis for Ti and v
piq
1 , . . . , v

piq
dpiq be the dual basis for T˚i . Let c

piq
r,s :“ v

piq
s b u

piq
r P C. Then

the comultiplication δ : C Ñ C b C and counit ε : C Ñ k satisfy

δ
`

cpiqr,s
˘

“

dpiq
ÿ

t“1

c
piq
r,t b c

piq
t,s, ε

`

cpiqr,s
˘

“ δr,s (2.14)

for each i P I and 1 ď r, s ď dpiq. For the next lemma, recall the definition of continuous
dual of a pseudo-compact topological algebra from (2.6).

Lemma 2.10. The endomorphism algebra B “ EndApT q
op of T P A-modlfd is a pseudo-

compact topological algebra with respect to the profinite topology, i.e., B is isomorphic
to lim
ÐÝ

B{J where the inverse limit is over all two-sided ideals J of finite codimension.
Moreover, the coalgebra C from (2.13) may be identified with the continuous dual Bˇ.

Proof. This follows because B – C˚ as algebras. �

Thus, the coalgebra C defined by (2.13) is identified with the continuous dual

CoendApT q :“ pEndApT q
opq

ˇ
(2.15)

of B. Explicitly, using the formula (2.12), the element c
piq
r,s “ v

piq
s b u

piq
r P C is identified

with the function sending θ P EndApT q to vspθpurqq.
Now consider the functor TfbA? : A-mod Ñ B-mod. Since T is locally finite-

dimensional, it takes finitely generated A-modules to finite-dimensional B-modules. Any
A-module V is the union of its finitely generated submodules, and TfbA? commutes
with direct limits, so we see that TfbAV is actually a discrete B-module. Since B – C˚,
the category B-modds is isomorphic to comod-C. So we have constructed a functor

TfbA? : A-mod Ñ comod-C. (2.16)

For V P A-mod, the comodule structure map on Tf bA V is given explicitly by the
formula

η : Tf bA V Ñ Tf bA V b C, vpiqs b v ÞÑ

dpiq
ÿ

r“1

vpiqr b v b cpiqr,s. (2.17)

Recall the definition of the functor ?ˇ from (2.8).

Lemma 2.11. Suppose that T “
À

iPI Ti P A-modlfd, B :“ EndApT q
op and C – Bˇ

are as above. The functor TfbA? just constructed is isomorphic to

G “ CohomApT, ?q :“ HomAp?, T q
ˇ : A-mod Ñ comod-C, (2.18)

and it is left adjoint to the functor

G˚ “
à

iPI

HomCpT
˚
i , ?q : comod-C Ñ A-mod . (2.19)

Thus, pG,G˚q is an adjoint pair.

Proof. The fact that (2.16) is left adjoint to (2.19) follows by Lemma 2.7. To see
that it is isomorphic to (2.18), take V P A-mod and consider the natural isomorphism
HomApV, T q – pT

fbAV q
˚ of right B-modules from Lemma 2.9. As TfbAV is discrete,

its dual is a pseudo-compact left B-module, hence, HomApV, T q is pseudo-compact too.
Then we apply ˇ, using that it is quasi-inverse to ˚, to get that HomApV, T q

ˇ P B-modds

is naturally isomorphic to Tf bA V . �
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2.3. Schurian categories. By a Schurian category, we mean a category R that is
equivalent to A-modlfd for a locally finite-dimensional locally unital algebra A. This
non-standard terminology is considerably more restrictive than other usage of the same
term elsewhere in the literature, where “Schurian category” is typically used to indicate
a k-linear category in which the endomorphism algebras of the indecomposable objects
are one-dimensional1 (e.g., see work of Roiter).

By an algebra realization of a Schurian category R, we mean a locally finite-dimensional
locally unital algebra A (together with the set I indexing its distinguished idempotents)
such that R is equivalent to A-modlfd. Now we assume that

R “ A-modlfd

and proceed to summarize some of the basic properties of such categories, referring
to [BD1, §2] for a more detailed treatment. Let tLpbq | b P Bu be a full set of pairwise
inequivalent irreducible objects of R. Schur’s Lemma holds: we have that EndRpLpbqq “
k for each b P B. Note that the opposite category Rop is also Schurian, and Aop gives
an algebra realization for it. This follows because Rop “ pA-modlfdq

op is equivalent to
modlfd-A – pAopq-modlfd using (2.9).

Let Rc be the (not necessarily Abelian) full subcategory of R consisting of all compact
objects, and IndpRcq be its ind-completion. The canonical functor IndpRcq Ñ A-mod is
an equivalence of categories. To see this, we note that all finitely generated A-modules
are locally finite-dimensional as A itself is locally finite-dimensional. Hence, finitely
presented A-modules are locally finite-dimensional too, i.e, A-modfg is a subcategory of
A-modlfd. In view of Lemma 2.5, this is the category Rc. It just remains to apply [KS,
Cor. 6.3.5], using Lemma 2.6 when checking the required hypotheses.

The category A-mod is a Grothendieck category. In particular, this means that every
A-module has an injective hull in A-mod. Since every A-module is a quotient of a direct
sum of projective A-modules of the form Aei, the category A-mod also has enough
projectives. It is not true that an arbitrary A-module has a projective cover, but we will
see in Lemma 2.14 below that finitely generated A-modules do.

Like we did in §2.1, we write ExtnRpV,W q, or sometimes ExtnApV,W q, in place of
ExtnIndpRcq

pV,W q for any V,W P IndpRcq. This can be computed either from a projective
resolution of V or from an injective resolution of W . We can also consider both right
derived functors RnF of a left exact functor F : IndpRcq Ñ R1 and left derived functors
LnG of a right exact functor G : IndpRcq Ñ R1. We provide an elementary proof of the
following, but note it also follows from [KS, Th. 15.3.1].

Lemma 2.12. For V,W P R and n ě 0, there is a natural isomorphism

ExtnRpV,W q – ExtnRoppW,V q.

Proof. Using (2.9), we must show that ExtnApV,W q – ExtnApW
f, V fq for locally finite-

dimensional A-modules V and W . To compute ExtnApV,W q, take a projective resolution

¨ ¨ ¨ ÝÑ P1 ÝÑ P0 ÝÑ V ÝÑ 0

of V in A-mod. By Lemma 2.8, on applying the exact functor f, we get an injective
resolution

0 ÝÑ V f ÝÑ Pf0 ÝÑ Pf1 ÝÑ ¨ ¨ ¨

of V f in mod-A. Since W is locally finite-dimensional, we can use (2.10) to see that
HomApPi,W q – HomApW

f, Pfi q for each i. So ExtnApV,W q – ExtnApW
f, V fq. �

1Note also that the present usage is different from several recent papers of the first author: in [BD1], the
phrase “locally Schurian” was used to describe the categories we now call “Schurian”; more precisely,

in [BD1], a locally Schurian category referred to a category of the form A-mod (rather than A-modlfd)
for locally finite-dimensional locally unital algebras A. We could not use the phrase “Schurian” in loc.
cit. since that was reserved for a more restrictive notion defined in [BLW, §2.1]; this more restrictive
notion will be discussed in the next subsection, again using different language.
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Let Ipbq be an injective hull of Lpbq in A-mod. The dual peiAq
f of the projective

right A-module eiA is injective in A-mod. Since EndAppeiAq
fqop – EndApeiAq – eiAei,

which is finite-dimensional, the injective module peiAq
f can be written as a finite direct

sum of indecomposable injectives. To determine which ones, we compute its socle: we
have that HomApLpbq, peiAq

fq – HomApeiA,Lpbq
fq – pLpbqfqei “ peiLpbqq

˚, hence,

peiAq
f –

à

bPB

Ipbq‘ dim eiLpbq, (2.20)

with all but finitely many summands on the right hand side being zero. In particular,
this shows for fixed i that dim eiLpbq “ 0 for all but finitely many b P B. Conversely,
for fixed b P B, we can always choose i P I so that eiLpbq ‰ 0, and deduce that Ipbq is
a summand of peiAq

f. This means that each indecomposable injective Ipbq is a locally
finite-dimensional left A-module.

Let P pbq be the dual of the injective hull of the irreducible right A-module Lpbqf. By
dualizing the right module analog of the decomposition (2.20), we get also that

Aei –
à

bPB

P pbq‘ dim eiLpbq, (2.21)

with all but finitely many summands being zero. In particular, P pbq is projective in
A-mod, hence, it is a projective cover of Lpbq in A-mod. The composition multiplicities
of any A-module satisfy

rV : Lpbqs “ dim HomApV, Ipbqq “ dim HomApP pbq, V q. (2.22)

Lemma 2.13. For A as above, left A-module V is locally finite-dimensional if and only
if rV : Lpbqs ă 8 for all b P B.

Proof. Note that V is locally finite-dimensional if and only if dim HomApAei, V q ă 8 for
each i P I. Using the decompositon (2.21), this is if and only if dim HomApP pbq, V q ă 8
for each b P B. �

There is a little more to be said about finitely generated modules. Recall from the
previous subsection that a module is finitely generated if V “ Av1 ` ¨ ¨ ¨ ` Avn for
homogeneous vectors v1, . . . , vn P V . We say that V is finitely cogenerated if its dual
is finitely generated. It is obvious from these definitions that HomApV,W q is finite-
dimensional either if V is finitely generated and W is locally finite-dimensional, or if V
is locally finite-dimensional and W is finitely cogenerated. The following checks that
our naive definitions are consistent with the usual notions of finitely generated and
cogenerated objects of Grothendieck categories.

Lemma 2.14. For V P A-mod, the following properties are equivalent:

(i) V is finitely generated;
(ii) the radical radV , i.e., the sum of its maximal proper submodules, is a superfluous

submodule and hd V :“ V {radV is of finite length;
(iii) V is a quotient of a finite direct sum of the modules P pbq for b P B.

Moreover, any finitely generated V has a projective cover.

Proof. We have already observed that P pbq is a projective cover of Lpbq. The lemma
follows by standard arguments given this and the decomposition (2.21). �

Corollary 2.15. For V P A-mod, the following properties are equivalent:

(i) V is finitely cogenerated;
(ii) soc V is an essential submodule of finite length;

(iii) V is isomorphic to a submodule of a finite direct sum of modules Ipbq for b P B.

We say that a locally finite-dimensional locally unital algebra A “
À

i,jPI eiAej is
pointed if A is a basic algebra, i.e., all of its irreducible modules are one-dimensional,
and all of its distinguished idempotents tei | i P Iu are primitive.
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Lemma 2.16. Let A “
À

i,jPI eiAej be a locally finite-dimensional locally unital algebra.

Pick an idempotent expansion A “
À

i,jPÎ êiAêj such that for some subset B Ď Î the set

têb | b P Bu is a complete set of pairwise non-conjugate primitive idempotents in A. Let
B :“

À

a,bPB êaAêb. Then B is a pointed locally unital algebra that is Morita equivalent
to A, and any such pointed locally unital algebra is isomorphic to B.

Proof. It is clear that B is pointed. To see that A and B are Morita equivalent, note
that the functor A-mod Ñ B-mod, V ÞÑ

À

bPB êbV is an equivalence of categories with

quasi-inverse given by the functor
`
À

bPBAêb
˘

bB?. Finally if B1 another pointed locally
unital algebra that is Morita equivalent to A, let F : A-mod Ñ B1-mod be an equivalence
of categories. Then we have that B1 “

À

bPBB
1
b for left ideals B1b – F pAêbq. So

B1 –

˜

à

a,bPB

HomB1pB
1
a, B

1
bq

¸op

–
à

a,bPB

HomApAêa, Aêbq “
à

a,bPB

êaAêb “ B.

This proves the uniqueness. �

Finally, we introduce some terminology which will not be neeeded until §5.5.

Definition 2.17. Let A “
À

i,jPI eiAej be a locally finite-dimensional locally unital
algebra. Let S Ď I be a subset. We say that a left A-module V is S-free if there is a
subset X “

Ů

sPSXpsq Ă V such that the following properties hold:

(LF1) V “
À

xPX Ax.
(LF2) The homomorphism Aes Ñ Ax, a ÞÑ ax is an isomorphism for x P Xpsq.

Equivalently, there is a K-submodule U of eV :“
À

sPS esV such that the multiplication
map AebK U Ñ V is an isomorphism, where Ae :“

À

sPSAes and K :“
À

sPS kes.

Lemma 2.18. Suppose that A “
À

i,jPI eiAej is a locally finite-dimensional locally

unital algebra and teb|b P Bu is a full set of pairwise non-conjugate primitive idempotents
in A for some subset B Ď I. Then every finitely generated projective left A-module is
B-free.

Proof. Any finitely generated projective left A-module V decomposes as a finite direct
direct sum of indecomposable projectives, and any indecomposable projective is isomor-
phic to Aeb for some b P B. Hence, we can pick a finite subset X “

Ů

bPBXpbq so that
V “

À

xPX Ax with Ax – Aeb for x P Xpbq. �

There are obvious right module analogs of these notions.

2.4. Essentially finite Abelian categories. We say that a locally unital algebra A “
À

i,jPI eiAej is essentially finite-dimensional if each right ideal eiA and each left ideal
Aej is finite-dimensional. By an essentially finite Abelian category, we mean a category
R that is equivalent to A-modfd for such an A. In that case, we refer to A as an algebra
realization of R. Note that R is essentially finite Abelian if and only if Rop is essentially
finite Abelian. Moreover, if A is an algebra realization for R then Aop is one for Rop by
the obvious contravariant equivalence ?˚ : A-modfd Ñ modfd-A.

Lemma 2.19. An essentially small category R is equivalent to A-modfd for a locally
unital algebra A “

À

i,jPI eiAej such that each left ideal Aej (resp., each right ideal eiA)
is finite-dimensional if and only if R is a locally finite Abelian category with enough
projectives (resp., enough injectives).

Proof. We just prove the result for left ideals and projectives; the parenthesized state-
ment for right ideals and injectives follows by replacing R and A with Rop and Aop.

Suppose first that A “
À

i,jPI eiAej is a locally unital algebra such that each left
ideal Aej is finite-dimensional. Then A-modfd is a locally finite Abelian category. It has
enough projectives because the left ideals Aej are finite-dimensional.
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Conversely, suppose R is a locally finite Abelian category with enough projectives.
Let tLpbq | b P Bu be a full set of pairwise inequivalent irreducible objects, and P pbq P R
a projective cover of Lpbq. Define A to be the locally unital algebra A “

À

a,bPB eaAeb
where eaAeb :“ HomRpP paq, P pbqq with multiplication that is the opposite of com-
position in R. This is a pointed locally finite-dimensional locally unital algebra. As
in the proof of Lemma 2.4, the functor

À

bPB HomRpP pbq, ?q defines an equivalence
R Ñ A-modfd. It remains to note that the ideals Aeb are finite-dimensional since they
are the images under this functor of the projectives P pbq, which are of finite length. �

Corollary 2.20. An essentially small category R is an essentially finite Abelian category
if and only if it is a locally finite Abelian category with enough injectives and projectives.

Essentially finite Abelian categories are almost as convenient to work with as finite
Abelian categories since one can perform all of the usual constructions of homological
algebra without needing to pass to the ind-completion.

Lemma 2.21. For a category R, the following are equivalent:

(i) R is a finite Abelian category;
(ii) R is a Schurian category with only finitely many isomorphism classes of irre-

ducible objects;
(iii) R is an essentially finite Abelian category with only finitely many isomorphism

classes of irreducible objects;
(iv) R is a locally finite Abelian category with only finitely many isomorphism classes

of irreducible objects and either enough projectives or enough injectives;
(v) R is both a locally finite Abelian category and a Schurian category.

Proof. Clearly, (i) implies (ii) and (iii). The implication (ii)ñ(i) follows on considering a
pointed algebra realization of R. The implication (iii)ñ(iv) follows from Corollary 2.20.
The implication (iv)ñ(i) follows from Lemma 2.19. Clearly (ii) and (iv) together imply
(v). Finally, to see that (v) implies (ii), it suffices to note that a Schurian category
with infinitely many isomorphism classes of irreducible objects cannot be locally finite
Abelian: the direct sum of infinitely many non-isomorphic irreducibles is a well-defined
object of R but it is not of finite length. �

Essentially finite Abelian categories with infinitely many isomorphism classes of ir-
reducible objects are not Schurian categories. However they are closely related as we
explain next.

‚ If R is essentially finite Abelian, we define its Schurian envelope EnvpRq to be the
full subcategory of IndpRq consisting of all objects that have finite composition
multiplicities.

‚ If R is Schurian, let FinpRq be the full subcategory of R consisting of all objects
of finite length.

We say that a Schurian category R is Cartan-bounded if its Cartan matrix C has only
finitely many non-zero entries in every row and column, where by Cartan matrix we
mean the matrix

pdim HomRpP paq, P pbqqa,bPB “ pdim HomRpIpaq, Ipbqqa,bPB , (2.23)

where B is labelling indecomposable projectives and injectives in the usual way.

Lemma 2.22. If R is an essentially finite Abelian category then EnvpRq is a Cartan-
finite Schurian category, and conversely if R is a Cartan-finite Schurian category then
FinpRq is an essentially finite Abelian category. Morever, Env and Fin are inverses in
the sense that FinpEnvpRqq is equivalent to R for any essentially finite Abelian R, and
EnvpFinpRqq is equivalent to R for any Cartan-finite Schurian R:

ˆ

Essentially finite
Abelian categories

˙

Env
ÝÑ
ÐÝ
Fin

ˆ

Cartan-finite
Schurian categories

˙

.
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Proof. This is easy to see in terms of an algebra realization: if R “ A-modfd for an
essentially finite-dimensional locally unital algebra A then EnvpRq “ A-modlfd, so it
is Schurian. Since the indecomposable injectives and projectives in EnvpRq are the
same as in R, they have finite length. Conversely, using Lemma 2.16, we may assume
that R “ A-modlfd for a pointed locally finite-dimensional locally unital algebra, such
that all of the indecomposable injectives and projectives are of finite length. Since A is
pointed, this means equivalently that all of the left ideals Aei and right ideals eiA are
finite-dimensional. Hence, A is essentially finite-dimensional, and FinpRq “ A-modfd is
essentially finite Abelian. �

2.5. Recollement. We conclude the section with some reminders about “recollement”
in our algebraic setting; see [BBD, §1.4] or [CPS1, §2] for further background. We
need this here only for Abelian categories R satisfying finiteness properties as developed
above. The recollement formalism provides us with an adjoint triple of functors pi˚, i, i!q
associated to the inclusion i : R� Ñ R of a Serre subcategory, and an adjoint triple
of functors pj!, j, j˚q associated to the projection j : R Ñ R� onto a Serre quotient
category, with the image of i being the kernel of j. These functors will play an essential
role in all subsequent arguments.

First suppose that R is any Abelian category. Assume that we are given a full
set tLpbq | b P Bu of pairwise inequivalent irreducible objects. Let B� be a subset
of B and R� be the full subcategory of R consisting of all the objects V such that
rV : Lpbqs ‰ 0 ñ b P B�. This is a Serre subcategory of R with irreducible objects
tL�pbq | b P B�u defined by L�pbq :“ Lpbq.

Lemma 2.23. In the above setup, the inclusion functor i : R� Ñ R has a left adjoint
i˚ and a right adjoint i!:

R� R.i

i!

i˚

The counit of one of these adjunctions and the unit of the other give isomorphisms:

i˚ ˝ i
„
Ñ IdR�

„
Ñ i! ˝ i.

In particular, i is fully faithful.

Proof. This is straightforward. Explicitly, i˚ (resp., i!) sends an object of R to the
largest quotient (resp., subobject) that belongs to R�. �

Now we are going to pass to the Serre quotient R� :“ R{R�. This is an Abelian
category equipped with an exact quotient functor j : R Ñ R� satisfying the following
universal property: if h : R Ñ C is any exact functor to an Abelian category C with
hLpbq “ 0 for all b P B�, then there is a unique functor h̄ : R� Ñ C such that h “ h̄ ˝ j.
The irreducible objects in R� are tL�pbq|b P B�u where B� :“ BzB� and L�pbq :“ jLpbq.
For a fuller discussion of these statements, see e.g. [Gab].

The quotient functor j need not have a left or a right adjoint in general, so we need to
impose some additional hypotheses. We first assume that R is finite Abelian, essentially
finite Abelian or Schurian. Then one can understand j rather explicitly as an idempotent
truncation functor and it always has both a left and right adjoint:

Lemma 2.24. Suppose that R is finite Abelian, essentially finite Abelian or Schurian,
B “ B� \ B�, and i : R� Ñ R and j : R Ñ R� “ R{R� are as above. Then R� and
R� are of the same type (finite Abelian, essentially finite Abelian or Schurian) as R.
Moreover, the quotient functor j : RÑ R� has a left adjoint j! and a right adjoint j˚:
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R R�.
j

j˚

j!

The counit of one of the adjunctions and the unit of the other give isomorphisms:

j ˝ j˚
„
Ñ IdR�

„
Ñ j ˝ j!.

In particular, j! and j˚ are fully faithful.

Proof. Fix a pointed algebra realization

A “
à

a,bPB

eaAeb

of R, soA is finite-dimensional, essentially finite-dimensional or locally finite-dimensional
according to whether R is finite Abelian, essentially finite Abelian or Schurian. Let

A� “
à

a,bPB�

ēaA
�ēb :“ A

L

pec | c P B�q, A� :“
à

a,bPB�

eaAeb,

where x̄ denotes the canonical image of x P A under the quotient map A � A�. Then
it is clear that R� is equivalent to A�-modfd in the finite Abelian or essentially finite
Abelian cases, and to A�-modlfd in the Schurian case. As A� satisfies the same finiteness
properties as A, we deduce that R� is of the same type as R.

The quotient category R� is realized by the algebra A�, and the quotient functor j
becomes the functor that sends an A-module V to

jV :“
à

aPB�

eaV (2.24)

with A� acting by restricting the action of A. We deduce that R� is again of the same
type as R. Since j is isomorphic to

À

bPB� HomApAeb,´q, it has the left adjoint

j! :“
´

à

bPB�

Aeb

¯

bA�? : A�-mod Ñ A-mod (2.25)

thanks to Lemma 2.7(1). From this, it is clear that the unit of adjunction IdR� Ñ

j ˝ j! is an isomorphism. On the other hand, j is also isomorphic to the tensor functor
p
À

bPB� ebAqbA?, so Lemma 2.7(1) also gives that j has the right adjoint

j˚ :“
à

aPB

HomA�

´

à

bPB�

ebAea, ?
¯

: A�-mod Ñ A-mod . (2.26)

Again using this we see that the counit j ˝ j˚ Ñ IdR� is an isomorphism. �

The situation when R is locally finite Abelian is more complicated. Continuing with
the above notation, it follows immediately from Lemma 2.1 that the Serre subcategory
R� and the quotient category R� are locally Schurian too. The following lemma explains
how to obtain an explicit coalgebra realization of R� starting from one for R.

Lemma 2.25. Suppose that R “ comodfd-C for a coalgebra C. Let C� be the largest
right coideal of C belonging to R�. Then C� is a subcoalgebra of C. Moreover, R�

consists of all V P comodfd-C such that the image of the structure map η : V Ñ V b C
is contained in V b C�, i.e., we have that R� “ comodfd-C�.

Proof. For a right comodule V with structure map η : V Ñ V b C, we can consider
V b C as a right comodule with structure map idbδ. The coassociative and counit
axioms imply that η is an injective homomorphism of right comodules. We deduce that
all irreducible subquotients of V belong to R� if and only if ηpV q Ď V b C�. Applying
this with V “ C� shows that C� is a subcoalgebra. Applying it to V P R shows that
V P R� if and only if ηpV q Ď V b C�. �
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For locally finite Abelian R, the quotient category R� can also be realized explicitly as
a category of comodules: if R “ comodfd-C then R� “ comodfd-eCe for an idempotent
e P C˚ and the quotient functor j becomes the idempotent truncation functor defined by
e. This is reviewed in detail in [Nav]. It follows that the extension j : IndpRq Ñ IndpR�q

of j to the ind-completions always has a right adjoint j˚ with j˝j˚ – IdIndpR�q. However,

this adjoint does not necessarily take objects of R� to objects of R, so that the original
functor j : RÑ R� need not have a right adjoint itself. For left adjoints, the situation is
even a bit worse since one should really pass to the pro-completions. For our purposes,
though, it will always be sufficient to impose the stronger condition from (i) of the
following lemma; this ensures that both adjoints exist without any need to pass to ind-
or pro-completions.

Lemma 2.26. Suppose that R is locally finite Abelian, and let B� Ď B and j : RÑ R�

be as above. Then the following are equivalent:

(i) Lpbq has an injective hull Ipbq and a projective cover P pbq in R for all b P B�;
(ii) R� is essentially finite Abelian and the quotient functor j : R Ñ R� has a left

adjoint j! and a right adjoint j˚:

R R�.
j

j˚

j!

When these properties hold, there are isomorphisms j ˝ j˚ – IdR� – j ˝ j! just like in
Lemma 2.24.

Proof. (i)ñ(ii): Let j˚ : IndpR�q Ñ IndpRq be the right adjoint of j : IndpRq Ñ IndpR�q

as in [Nav]. For b P B�, let I�pbq be an injective hull of L�pbq in IndpR�q. By adjunction
properties, j˚I

�pbq is an injective hull of Lpbq in IndpRq, hence, j˚I
�pbq – Ipbq which

has finite length by assumption. From j ˝j˚ – IdIndpR�q, we deduce that I�pbq – jIpbq is

of finite length too, so I�pbq P R� and R� has enough injectives. We have shown that j˚
takes I�pbq to Ipbq P R, hence using left exactness we deduce that it takes any object of
finite length to an object of finite length. This means that the restriction j˚ : R� Ñ R
is well-defined and gives a right adjoint to j : RÑ R�. The dual argument shows that
R� has enough projectives and that j : RÑ R� has a left adjoint j! : R� Ñ R. Finally
we deduce that R� is essentially finite Abelian due to Corollary 2.20.

(ii)ñ(i): We can take Ipbq :“ j˚I
�pbq and P pbq :“ j!P

�pbq where I�pbq is an injective
hull and P �pbq is a projective cover of L�pbq in R�. �

In the locally finite Abelian or Schurian cases, we may use the same notations i, i˚, i!

for the natural extensions of these functors to the ind-completions IndpRq, IndpR�q or
IndpRcq, IndpR�

cq, respectively. Similarly, we will use the notations j, j˚, j! for the ex-
tensions of these to the appropriate ind-completions, assuming the equivalent conditions
from Lemma 2.26 hold in the locally finite Abelian case.

Lemma 2.27. Continuing with the above setup, assume either that R is finite Abelian,
essentially finite Abelian, or Schurian, or that R is locally finite Abelian and the equiv-
alent conditions from Lemma 2.26 hold. For b P B�, let P pbq (resp., Ipbq) and P �pbq
(resp., I�pbq) be a projective cover (resp., injective hull) of Lpbq in R and a projective
cover (resp., injective hull) of L�pbq in R�. Then we have that

jP pbq – P �pbq, jIpbq – I�pbq, j!P
�pbq – P pbq, j˚I

�pbq – Ipbq.

Moreover, the adjunction gives isomorphisms

HomRpP pbq, j˚V q – HomR�pP �pbq, V q, HomRpj!V, Ipbqq – HomR�pV, I�pbqq (2.27)

for V P R�, hence, rV : L�pbqs “ rj˚V : Lpbqs “ rj!V : Lpbqs for all b P B�.
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Proof. Take b P B�. By adjunction properties, j!P
�pbq is a projective cover of Lpbq in R,

so it is isomorphic to P pbq. Hence, jpj!P
�pbqq – P �pbq – jP pbq; similarly for injectives.

The remaining assertions follow. �

3. Generalizations of highest weight categories

In this section, we define the various generalizations of highest weight categories
and derive some of their fundamental properties in the four settings of finite Abelian,
essentially finite Abelian, Schurian, and locally finite Abelian categories. The important
definitions in the section are Definitions 3.7, 3.34 and 3.50. The reader new to these
ideas may find it helpful to assume initially that all of the strata are simple in the sense
of Lemma 3.4, when the definitions specialize to the notions of finite, essentially finite,
upper finite and lower finite highest weight categories, respectively.

3.1. Stratifications and the associated standard and costandard objects. Let
pΛ,ďq be a poset. It is interval finite (resp., upper finite, resp., lower finite) if the
interval rλ, µs :“ tν P Λ | λ ď ν ď µu (resp., rλ,8q :“ tν P Λ | λ ď νu, resp., p´8, µs :“
tν P Λ | ν ď µu) is finite for all λ, µ P Λ. A lower set (resp., upper set) means a subset
Λ� (resp., Λ�) such that µ ď λ P Λ� ñ µ P Λ� (resp., µ ě λ P Λ� ñ µ P Λ�).

A stratification function ρ : B Ñ Λ is a function from a set B to a poset pΛ,ďq such
that all of the fibers Bλ :“ ρ´1pλq are finite. We often use other obvious notations like
Bďλ :“

Ť

µďλ Bµ,Băλ :“
Ť

µăλ Bµ, etc..

A stratification of an Abelian category R is a quintuple pB, L, ρ,Λ,ďq consisting of a
set B, a function L labelling a full set tLpbq | b P Bu of pairwise inequivalent irreducible
objects in R, and a stratification function ρ : B Ñ Λ for the poset pΛ,ďq. In the case
that ρ is a bijection, one can use it to identify B with Λ, writing Lpλq instead of Lpbq;
similarly for all of the other families of objects indexed by the set B to be introduced
shortly.

Given a stratification pB, L, ρ,Λ,ďq of R and λ P Λ, let Rďλ and Răλ be the Serre
subcategories of R associated to the subsets Bďλ and Băλ of B, respectively. We denote
the inclusion functors by

iďλ : Rďλ Ñ R, iăλ : Răλ Ñ R, (3.1)

The left and right adjoints of iďλ are i˚
ďλ and i!ďλ as in Lemma 2.23. We say that the

stratification is

(F) a finite stratification if R is a finite Abelian category (so that B is a finite set);
(EF) an essentially finite stratification if R is an essentially finite Abelian category

and the poset Λ is interval finite;
(LF) a lower finite stratification if R is a locally finite Abelian category and the poset

Λ is lower finite;
(UF) an upper finite stratification if R is a Schurian category and the poset Λ is upper

finite.

In these four cases, the induced stratifications of the subcategories Răλ and Rďλ are
automatically of the same type.

By an admissible stratification, we mean a stratification of one of the above four types
such that the following axiom is satisfied when in type (LF) (it holds automatically for
the other types):

(A) The irreducible object Lpbq has both a projective cover and an injective hull in
Rďρpbq for all b P B.

This is a significant restriction on the sorts of lower finite Abelian categories that can be
considered; for example, the category ReppGaq of rational representations of the additive
group does not have this property. Using Lemma 2.21 together with Lemma 2.26 in the
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lower finite case, we deduce for λ P Λ that the quotient category Rλ :“ Rďλ{Răλ is
finite Abelian in all cases. Let

jλ : Rďλ Ñ Rλ (3.2)

be the quotient functor. The objects
 

Lλpbq :“ jλLpbq
ˇ

ˇ b P Bλ

(

(3.3)

give a full set of pairwise inequivalent irreducible objects in Rλ. Moreover, we are in a
recollement situation as in Lemmas 2.23, 2.24 and 2.26:

Răλ Rďλ
iăλ

i!ăλ

i˚
ăλ

Rλ.
jλ

jλ˚

jλ!

(3.4)

Let Pλpbq be a projective cover and Iλpbq be an injective hull of Lλpbq in Rλ. By
Lemma 2.27, these are isomorphic to the images of the projective cover and injective
hull of Lpbq in Rďλ, respectively. Finally, define standard, costandard, proper standard
and proper costandard objects ∆pbq,∇pbq, ∆̄pbq and ∇̄pbq according to (1.1).

Lemma 3.1. Suppose we are given an admissible stratification pB, L, ρ,Λ,ďq of R.
Take b P B and set λ :“ ρpbq.

(1) The standard object ∆pbq is a projective cover of Lpbq in Rďλ. The proper
standard object ∆̄pbq is the largest quotient of ∆pbq such that all composition
factors of rad ∆̄pbq are of the form Lpcq for c P Băλ.

(2) The costandard object ∇pbq is an injective hull of Lpbq in Rďλ. The proper
costandard object ∇̄pbq is the largest subobject of ∇pbq such that all composition
factors of ∇̄pbq{ soc ∇̄pbq are of the form Lpcq for c P Băλ.

Proof. We just check (1) since (2) is similar. We have that ∆pbq is a projective cover of
Lpbq in Rďλ by Lemma 2.27. It remains to prove the statement about ∆̄pbq. Assume
r∆̄pbq : Lpcqs ‰ 0. Since ∆̄pbq P Rďλ, we have ρpcq ď ρpbq. If ρpcq “ ρpbq then

r∆̄pbq : Lpcqs “ rjλ∆̄pbq : jλLpcqs “ rLλpbq : Lλpcqs “ δb,c.

Thus, ∆̄pbq is such a quotient of ∆pbq. To show that it is the largest such quotient, it
suffices to show that the kernel K of ∆pbq � ∆̄pbq is finitely generated with head that
only involves irreducibles Lpcq with ρpcq “ ρpbq. To see this, apply the right exact functor

jλ! to a short exact sequence 0 Ñ pK Ñ Pλpbq Ñ Lλpbq Ñ 0 to get an epimorphism

jλ!
pK � K. Then observe that jλ!

pK is finitely generated as jλ! is a left adjoint, and
its head only involves irreducibles Lpcq with ρpcq “ ρpbq. The latter assertion follows

because HomRpj
λ
!
pK,Lpcqq – HomRλp

pK, jλLpcqq for c P Bďλ. �

Corollary 3.2. We have that dim HomRp∆pbq, ∇̄pcqq “ dim HomRp∆̄pbq,∇pcqq “ δb,c
for all b, c P B.

Lemma 3.3. Suppose that we are given an admissible stratification pB, L, ρ,Λ,ďq of
R, and in addition that R possesses a contravariant autoequivalence ?_ which preserves
isomorphism classes of irreducibles. Then we have that P pbq_ – Ipbq, Ipbq_ – P pbq,
∆pbq_ – ∇pbq, ∆̄pbq_ – ∇̄pbq, ∇pbq_ – ∆pbq and ∇̄pbq_ – ∆̄pbq for all b P B.

Proof. Since Lpbq_ – Lpbq, we have that Ipbq_ – P pbq and P pbq_ – Ipbq. Then the
statements about ∆pbq_, ∆̄pbq_, ∇̄pbq_ and ∇pbq_ follow using Lemma 3.1. �

For λ P Λ, we say that the stratum Rλ is simple if it is equivalent to the category
Vecfd of finite-dimensional vector spaces.

Lemma 3.4. The following are equivalent:

(i) all of the strata are simple;
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(ii) ρ is a bijection and ∆pλq “ ∆̄pλq for all λ P Λ;
(iii) ρ is a bijection and HomRp∆pλq,∇pλqq is one-dimensional;
(iv) ρ is a bijection and ∇pλq “ ∇̄pλq for all λ P Λ.

Proof. (i)ñ(ii): Take λ P Λ. As the stratum Rλ is simple, Bλ “ tbλu is a singleton and
Pλpbλq “ Lλpbλq. We deduce that ρ is a bijection and ∆pbλq “ ∆̄pbλq.

(ii)ñ(iii): This follows because ∇pλq is the injective hull of Lpλq in Rďλ.

(iii)ñ(iv): This follows because ∆pλq is the projective cover of Lpλq in Rďλ.

(iv)ñ(i): Take λ P Λ. Then Rλ has just one irreducible object (up to isomorphism),
namely, jλ∇̄pλq. Since this equals jλ∇pλq, it is also projective. Hence, Rλ is simple. �

Given a sign function ε : Λ Ñ t˘u, we introduce the ε-standard and ε-costandard
objects ∆εpbq and ∇εpbq as in (1.2). Corollary 3.2 implies that

dim HomRp∆εpbq,∇εpcqq “ δb,c (3.5)

for b, c P B. A ∆ε-flag of V P R means a finite filtration 0 “ V0 ă V1 ă ¨ ¨ ¨ ă Vn “ V
with sections Vm{Vm´1 – ∆εpbmq for bm P B. Similarly, we define ∇ε-flags. We denote
the exact subcategories of R consisting of all objects with a ∆ε-flag or a ∇ε-flag by
∆εpRq and ∇εpRq, respectively.

A ∆-flag (resp., ∇̄-flag) is a ∆ε-flag (resp., ∇ε-flag) in the special case that ε “ `.
A ∆̄-flag (resp., ∇-flag) is a ∆ε-flag (resp., ∇ε-flag) in the special case that ε “ ´. We
denote the exact subcategories of R consisting of all objects with a ∆-flag, a ∆̄-flag, a
∇-flag or a ∇̄-flag by ∆pRq, ∆̄pRq, ∇pRq and ∇̄pRq, respectively.

3.2. Finite and essentially finite ε-stratified categories. Throughout this sub-
section, R is a finite or essentially finite Abelian category equipped with a finite or
essentially finite stratification pB, L, ρ,Λ,ďq. Also ε : Λ Ñ t˘u denotes a sign function.
Let P pbq and Ipbq be a projective cover and an injective hull of Lpbq, respectively. We
also need the objects from (1.1)–(1.2). Consider the following two properties:

(yP∆ε) For each b P B, there exists a projective object Pb admitting a ∆ε-flag with
∆εpbq at the top and other sections ∆εpcq for c P B with ρpcq ě ρpbq.

(xI∇ε) For each b P B, there exists an injective object Ib admitting a ∇ε-flag with ∇εpbq
at the bottom and other sections ∇εpcq for c P B with ρpcq ě ρpbq.

It is trivial to see that the property pP∆εq formulated in the introduction implies pyP∆εq,

and similarly pI∇εq implies pxI∇εq. The seemingly weaker properties pyP∆εq–pxI∇εq are
often easier to check in concrete examples. The essence of the following fundamental
theorem appeared originally in [ADL], extending earlier work of Dlab [Dla1].

Theorem 3.5. The four properties (yP∆ε), pxI∇ε), (P∆ε) and pI∇ε) are equivalent.
When these properties hold, the standardization functor jλ! is exact whenever εpλq “ ´,
and the costandardization functor jλ˚ is exact whenever εpλq “ `.

Remark 3.6. When all strata are simple, the properties pyP∆εq–pxI∇εq may be written
more succinctly as the following:

(yP∆) For each λ P Λ, there exists a projective object Pλ admitting a ∆-flag with ∆pλq
at the top and other sections of the form ∆pµq for µ P Λ with µ ě λ.

(xI∇) For each λ P Λ, there exists an injective object Iλ admitting a ∇-flag with ∇pλq
at the bottom and other sections of the form ∇pµq for µ P Λ with µ ě λ.

Theorem 3.5 shows that these are equivalent to the properties pP∆q–pI∇q from the
introduction, as was explained originally by Cline, Parshall and Scott in [CPS1].

We postpone the proof of Theorem 3.5 until a little later in the the subsection. It
is important because it justifies the next key definition (εS) and its variations (FS),
(εHW), (FHW) and (HW).
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Definition 3.7. Let R be an Abelian category equipped with a finite (resp., essentially
finite) stratification pB, L, ρ,Λ,ďq.

(εS) We say that R is a finite (resp., essentially finite) ε-stratified category if one of

the equivalent properties pyP∆εq–pxI∇εq holds for a given choice of sign function
ε : Λ Ñ t˘u.

(FS) We say R is a finite (resp., essentially finite) fully stratified category if one of
these properties holds for all choices of sign function ε : Λ Ñ t˘u.

(εHW) We say R is a finite (resp., essentially finite) ε-highest weight category if the
stratification function ρ is a bijection, i.e., each stratum has a unique irreducible

object (up to isomorphism), and one of the equivalent properties pyP∆εq–pxI∇εq

holds for a given choice of sign function ε : Λ Ñ t˘u.
(FHW) We say R is a finite (resp., essentially finite) fibered highest weight category if

the stratification function ρ is a bijection and one of these properties holds for
all choices of sign function.

(HW) We say R is a finite (resp., essentially finite) highest weight category if all of
the strata are simple (cf. Lemma 3.4) and one of the equivalent properties

pyP∆q–pxI∇q holds.

Remark 3.8. The language “fibered highest weight” in Definition 3.7 is a departure
from the existing literature, where such categories are usually referred to as properly
stratified categories; this terminology goes back to the work of Dlab [Dla2]. A recent
exposition which takes a more traditional viewpoint than here can be found in [CouZ].
In particular, in [CouZ, Def. 2.7.4], one finds five types of finite-dimensional algebra A
defined in terms of properties of the category A-modfd, namely, standardly stratified
algebras, exactly standardly stratified algebras, strongly stratified algebras, properly
stratified algebras, and quasi-hereditary algebras. In our preferred language, these are
`-stratified algebras, stratified algebras, `-quasi-hereditary algebras, properly stratified
algebras, and quasi-hereditary algebras, respectively, as in Table 1 from the introduction.
For further reference to the original literature, [CouZ, §A.2] is helpful.

We can view tLpbq | b P Bu equivalently as a full set of pairwise inequivalent irre-
ducible objects in Rop. The stratification of R is also one of Rop. The indecomposable
projectives and injectives in Rop are Ipbq and P pbq, while the p´εq-standard and p´εq-
costandard objects in Rop are ∇εpbq and ∆εpbq, respectively. So we can reinterpret
Theorem 3.5 as the following.

Theorem 3.9. R is ε-stratified, fully stratified, ε-highest weight, fibered highest weight
or highest weight if and only if Rop is p´εq-stratified, fully stratified, p´εq-highest weight,
fibered highest weight or highest weight, respectively.

Now we must prepare for the proof Theorem 3.5. The main step in the argument
will be provided by the homological criterion for ∇ε-flags from the next Theorem 3.11.
In turn, the proof of this criterion reduces to the following lemma which treats a key
special case. The reader wanting to work fully through the proofs should look also at
this point at the lemmas in §3.4 below.

Lemma 3.10. Assume that R is an Abelian category equipped with a finite or essentially

finite stratification pB, L, ρ,Λ,ďq and sign function ε, such that property pyP∆εq holds.
Let λ be a maximal element of Λ with respect to the ordering ď, and V P R be an object
satisfying the following properties:

(i) Ext1
Rp∆εpbq, V q “ 0 for all b P B;

(ii) soc V – Lpb1q ‘ ¨ ¨ ¨ ‘ Lpbnq for b1, . . . , bn P Bλ.

Then V belongs to Rďλ (so that it makes sense to apply the functor jλ to it), and

V –

#

jλ˚pj
λV q if εpλq “ `,

∇pb1q ‘ ¨ ¨ ¨ ‘∇pbnq if εpλq “ ´.
(3.6)
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Moreover, in the case εpλq “ `, the functor jλ˚ is exact. Hence, in both cases, we have
that V P ∇εpRq.

Proof (assuming lemmas from §3.4 below). We first prove (3.6) in case εpλq “ ´. Let
W :“ ∇pb1q‘ ¨ ¨ ¨ ‘∇pbnq. By the maximality of λ and Lemma 3.46, this is an injective
hull of soc V . So there is a short exact sequence 0 Ñ V Ñ W Ñ W {V Ñ 0. For any
a P B, we apply HomRp∆εpaq, ?q and use property (i) to get a short exact sequence

0 ÝÑ HomRp∆εpaq, V q
f
ÝÑ HomRp∆εpaq,W q ÝÑ HomRp∆εpaq,W {V q ÝÑ 0. (3.7)

If ρpaq ‰ λ then HomRp∆εpaq,W q “ 0 as none of the composition factors of ∆εpaq
are constituents of soc W . If ρpaq “ λ then ∆εpaq “ ∆̄paq and any homomorphism
∆̄paq Ñ W must factor through the unique irreducible quotient Lpaq of ∆̄paq. So its
image is contained in soc W Ď V , showing that f is an isomorphism. These arguments
show that HomRp∆εpaq,W {V q “ 0 for all a P B. We deduce that soc pW {V q “ 0,
hence, W {V “ 0, which is what we needed.

Now consider (3.6) when εpλq “ `. By Lemma 3.46 again, the injective hull of V is
∇pb1q‘¨ ¨ ¨‘∇pbnq, which is an object of Rďλ. Hence, V P Rďλ. The unit of adjunction
gives us a morphism g : V ÑW :“ jλ˚pj

λV q. Since g becomes an isomorphism when we
apply jλ, its kernel belongs to Răλ. In view of property (2), we deduce that ker g “ 0, so
g is a monomorphism. Hence, we can identify V with a subobject of W . To show that g
is an epimorphism as well, we apply HomRp∆εpaq, ?q to 0 Ñ V ÑW ÑW {V Ñ 0 to get
the short exact sequence (3.7). By adjunction, the middle morphism space is isomorphic
to HomRλ

pjλ∆εpaq, j
λV q, which is zero if ρpaq ă λ. If ρpaq “ λ then ∆εpaq “ ∆paq is

the projective cover of Lpaq in R by Lemma 3.46, and jλ∆εpaq is the projective cover
of Lλpaq in Rλ. We deduce that both the first and second morphism spaces in (3.7)
are of the same dimension rV : Lpaqs “ rjλV : Lλpaqs, so f must be an isomorphism.
Therefore HomRp∆εpaq,W {V q “ 0 for all a P B, hence, V “W and (3.6) is proved.

To complete the proof, we must show that jλ˚ is exact when εpλq “ `. For this, we use
induction on composition length to show that jλ˚ is exact on any short exact sequence
0 Ñ K Ñ X Ñ Q Ñ 0 in Rλ. For the induction step, suppose we are given such an
exact sequence with K,Q ‰ 0. By induction, jλ˚K and jλ˚Q both have filtrations with
sections ∇̄pbq for b P Bλ. Hence, by Lemma 3.48, we have that ExtnRp∆εpbq, j

λ
˚Kq “

ExtnRp∆εpbq, j
λ
˚Qq “ 0 for all n ě 1 and b P B. As it is a right adjoint, jλ˚ is left exact,

so there is an exact sequence

0 ÝÑ jλ˚K ÝÑ jλ˚X ÝÑ jλ˚Q. (3.8)

Let Y :“ jλ˚X{j
λ
˚K, so that there is a short exact sequence

0 ÝÑ jλ˚K ÝÑ jλ˚X ÝÑ Y ÝÑ 0. (3.9)

To complete the argument, it suffices to show that Y – jλ˚Q. To establish this, we show
that Y satisfies both of the properties (i) and (ii); then, by the previous paragraph and
exactness of jλ, we get that Y – jλ˚pj

λY q – jλ˚pX{Kq – jλ˚Q, and we are done. To see
that Y satisfies (i), we apply HomRp∆εpbq, ?q to (3.9) to get an exact sequence

Ext1
Rp∆εpbq, j

λ
˚Xq ÝÑ Ext1

Rp∆εpbq, Y q ÝÑ Ext2
Rp∆εpbq, j

λ
˚Kq.

The first Ext1 is zero by Lemma 3.47. Since we already know that the Ext2 term is
zero, Ext1

Rp∆εpbq, Y q “ 0. To see that Y satisfies (ii), note comparing (3.8)–(3.9) that
Y ãÑ jλ˚Q, and soc jλ˚Q is of the desired form by what we know about its ∇̄ε-flag. �

Theorem 3.11 (Homological criterion for ∆ε-flags). Assume that R is an Abelian
category equipped with a finite or essentially finite stratification pB, L, ρ,Λ,ďq and sign

function ε, such that property pyP∆εq holds. For V P R, the following properties are
equivalent:

(i) V P ∇εpRq;
(ii) Ext1

Rp∆εpbq, V q “ 0 for all b P B;
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(iii) ExtnRp∆εpbq, V q “ 0 for all b P B and n ě 1.

If these properties hold, the multiplicity pV : ∇εpbqq of ∇εpbq as a section of a ∇ε-flag
of V is well-defined independent of the choice of flag, as it equals dim HomRp∆εpbq, V q.

Proof (assuming lemmas from §3.4 below). (iii)ñ(ii): Trivial.

(i)ñ(iii) and the final assertion of the lemma: These follow directly from Lemma 3.48.

(ii)ñ(i): Assume that V satisfies (ii). We prove that it has a ∇ε-flag by induction on

dpV q :“
ÿ

bPB

dim HomRp∆εpbq, V q P N.

The base case when dpV q “ 0 is trivial as we have then that V “ 0. For the induction
step, let λ P Λ be minimal such that HomRp∆εpbq, V q ‰ 0 for some b P B. The
Serre subcategory Rďλ with the induced (finite or essentially finite) stratification also

satisfies (yP∆ε) thanks to Lemma 3.45(2). Let W :“ i!ďλV . Because W is a subobject
of V , we have by the minimality of λ that HomRp∆εpbq,W q ‰ 0 only if b P Bλ. Hence,
soc W – Lpb1q ‘ ¨ ¨ ¨ ‘ Lpbnq for b1, . . . , bn P Bλ. Thus, W satisfies the hypothesis (ii)
from Lemma 3.10 (with V and R there replaced by W and Rďλ).

Now let Q :“ V {W . Take any b P B and apply HomRp∆εpbq, ?q to the short exact
sequence 0 ÑW Ñ V Ñ QÑ 0 to get the exact sequence

0 ÝÑ HomRp∆εpbq,W q ÝÑ HomRp∆εpbq, V q ÝÑ HomRp∆εpbq, Qq

ÝÑ Ext1
Rp∆εpbq,W q ÝÑ 0 ÝÑ Ext1

Rp∆εpbq, Qq ÝÑ Ext2
Rp∆εpbq,W q.

By the definition of W , the socle of Q has no constituent Lpbq for b P Bďλ. So, for
b P Bďλ the space HomRp∆εpbq, Qq is zero, and we get that Ext1

Rďλp∆εpbq,W q –

Ext1
Rp∆εpbq,W q “ 0 for all such b. This verifies hypothesis (i) from Lemma 3.10. So

now we can appeal to the lemma to deduce that W P ∇εpRďλq. Hence, W P ∇εpRq.
In view of Lemma 3.48, we get that ExtnRp∆εpbq,W q “ 0 for all n ě 1 and b P B. So,

by the above exact sequence again, we get that Ext1
Rp∆εpbq, Qq “ 0 for all b P B, and

moreover dpQq “ dpV q ´ dpW q ă dpV q. Finally we appeal to the induction hypothesis
to deduce that Q P ∆εpRq. Since we already know that W P ∆εpRq, this shows that
V P ∆εpRq. �

Corollary 3.12. In the setup of Theorem 3.11, multiplicities in a ∇ε-flag of Ipbq satisfy
pIpbq : ∇εpcqq “ r∆εpcq : Lpbqs.

Corollary 3.13. For R as in Theorem 3.11, let 0 Ñ U Ñ V ÑW Ñ 0 be a short exact
sequence. If U and V have ∇ε-flags then so does W .

Proof of Theorem 3.5. Suppose that R satisfies (yP∆ε). Since V “ Ipbq is injective, it
satisfies the hypothesis of Theorem 3.11(ii). Hence, by that theorem, Ipbq has a ∇ε-flag
and the multiplicity pIpbq : ∇εpcqq of ∇εpcq as a section of any such flag is given by

pIpbq : ∇εpcqq “ dim HomRp∆εpcq, Ipbqq “ r∆εpcq : Lpbqs.

This is zero unless ρpbq ď ρpcq. Also the bottom section must be ∇εpbq since Ipbq has
socle Lpbq. Thus, we have verified that R satisfies (I∇ε). Moreover, Lemma 3.10 shows
that jλ˚ is exact whenever εpλq “ `, giving half of final assertion made in the statement
of the theorem we are trying to prove.

Repeating the arguments in the previous paragraph but with R replaced by Rop

and ε replaced with ´ε show that pxI∇εq implies pP∆εq and that jλ! is exact whenever

εpλq “ ´. Since pP∆εq ñ pyP∆εq and pI∇εq ñ pxI∇εq, this completes the proof. �

So now Theorem 3.5 is proved and Definition 3.7 is in place. In the remainder of the
subsection, we are going to develop some further fundamental properties of these sorts
of category. We start off in the most general setup with R being a finite or essentially
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finite ε-stratified category. Again some of the proofs that follow invoke parts of the
lemmas from §3.4. From Lemma 3.44 and the dual statement, deduce that

Ext1
Rp∆εpbq,∆εpcqq “ Ext1

Rp∇εpcq,∇εpbqq “ 0 (3.10)

for b, c P B with ρpbq ę ρpcq. By “dual statement” here, we mean that one takes
Lemma 3.44 with R replaced by Rop and ε by ´ε, which we may do due to Theorem 3.9
and Lemma 2.12, then applies the contravariant isomorphism between R and Rop. In
a similar way, the following theorem follows immediately as it is the dual statement to
Theorem 3.11.

Theorem 3.14 (Homological criterion for ∇ε-flags). Assume that R is a finite or es-
sentially finite ε-stratified category. For V P R, the following properties are equivalent:

(i) V P ∆εpRq;
(ii) Ext1

RpV,∇εpbqq “ 0 for all b P B;
(iii) ExtnRpV,∇εpbqq “ 0 for all b P B and n ě 1.

Assuming that these properties hold, the multiplicity pV : ∆εpbqq of ∆εpbq as a sec-
tion of a ∆ε-flag of V is well-defined independent of the choice of flag, as it equals
dim HomRpV,∇εpbqq.

Corollary 3.15. pP pbq : ∆εpcqq “ r∇εpcq : Lpbqs.

Corollary 3.16. Let 0 Ñ U Ñ V Ñ W Ñ 0 be a short exact sequence in a finite or
essentially finite ε-stratified category. If V and W have ∆ε-flags then so does U .

The following results about truncation to lower and upper sets are extremely useful;
some aspects of them were already used in the proof of Theorem 3.11.

Theorem 3.17 (Truncation to lower sets). Assume that R is a finite or essentially
finite ε-stratified category. Suppose that Λ� is a lower set in Λ. Let B� :“ ρ´1pΛ�q and
i : R� Ñ R be the corresponding Serre subcategory of R with the induced stratification.
Then R� is itself a finite or essentially finite ε-stratified category according to whether
Λ� is finite or infinite. Moreover:

(1) The distinguished objects in R� satisfy L�pbq – Lpbq, P �pbq – i˚P pbq, I�pbq –
i!Ipbq, ∆�pbq – ∆pbq,∆̄�pbq – ∆̄pbq, ∇�pbq – ∇pbq and ∇̄�pbq – ∇̄pbq for b P B�.

(2) i˚ sends short exact sequences of objects in ∆εpRq to short exact sequences of
objects in ∆εpR�q, with i˚∆pbq – ∆�pbq and i˚∆̄pbq – ∆̄�pbq for b P B� and
i˚∆pbq “ i˚∆̄pbq “ 0 for b R B�.

(3) ExtnRpV, iW q – ExtnR�pi˚V,W q for V P ∆εpRq, W P R� and all n ě 0.
(4) i! sends short exact sequences of objects in ∇εpRq to short exact sequences of

objects in ∇εpR�q, with i!∇pbq – ∇�pbq and i!∇̄pbq – ∇̄�pbq for b P B� and
i!∇pbq “ i!∇̄pbq “ 0 for b R B�.

(5) ExtnRpiV,W q – ExtnR�pV, i!W q for V P R�,W P ∇εpRq and all n ě 0.
(6) ExtnRpiV, iW q – ExtnR�pV,W q for V,W P R� and n ě 0.

Proof. Apart from (6), this follows by Lemma 3.45 and its dual. To prove (6), by the
same argument as used to prove Lemma 3.45(4), it suffices to show that pLni˚qV “ 0 for
V P R� and n ě 1. Since any such V has finite length it suffices to consider an irreducible
object in R�, i.e., we must show that pLni˚qLpbq “ 0 for b P B� and n ě 1. Take a short
exact sequence 0 Ñ K Ñ ∆εpbq Ñ Lpbq Ñ 0 and apply i˚ and Lemma 3.45(3) to get

0 ÝÑ pL1i
˚qLpbq ÝÑ i˚K ÝÑ i˚∆εpbq ÝÑ i˚Lpbq ÝÑ 0.

But K,∆εpbq and Lpbq all lie in R� so i˚ is the identity on them. We deduce that
pL1i

˚qLpbq “ 0. Degree shifting easily gives the result for n ą 1. �

Theorem 3.18 (Truncation to upper sets). Assume that R is a finite or essentially
finite ε-stratified category. Suppose that Λ� is an upper set in Λ. Let B� :“ ρ´1pΛ�q

and j : R Ñ R� be the corresponding Serre quotient category of R with the induced
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stratification. Then R� is itself a finite or essentially finite ε-stratified category according
to whether Λ� is finite or infinite. Moreover:

(1) For b P B�, the distinguished objects L�pbq, P �pbq, I�pbq, ∆�pbq, ∆̄�pbq, ∇�pbq
and ∇̄�pbq in R� are isomorphic to the images under j of the corresponding
objects of R.

(2) We have that jLpbq “ j∆pbq “ j∆̄pbq “ j∇pbq “ j∇̄pbq “ 0 if b R B�.
(3) ExtnRpV, j˚W q – ExtnR�pjV,W q for V P R,W P ∇εpR�q and all n ě 0.
(4) j˚ sends short exact sequences of objects in ∇εpR�q to short exact sequences of

objects in ∇εpRq, with j˚∇�pbq – ∇pbq, j˚∇̄�pbq – ∇̄pbq and j˚I
�pbq – Ipbq for

b P B�.
(5) ExtnRpj!V,W q – ExtnR�pV, jW q for V P ∆εpR�q, W P R and all n ě 0.
(6) j! sends short exact sequences of objects in ∆εpR�q to short exact sequences of

objects in ∆εpRq, with j!∆
�pbq – ∆pbq, j!∆̄

�pbq – ∆̄pbq and j!P
�pbq “ P pbq for

b P B�.

Proof. Apart from (4) and (6), this follows from Lemma 3.49 and its dual. For (4) and
(6), it suffices to prove (4), since (6) is the equivalent dual statement. The descriptions
of j˚∇�pbq, j˚∇̄�pbq and j˚I

�pbq, follow from Lemma 3.49(1). It remains to prove the
exactness. We can actually show slightly more, namely, that pRnj˚qV “ 0 for V P

∇εpR�q and n ě 1. Take V P ∇εpR�q. Consider a short exact sequence 0 Ñ V Ñ I Ñ
QÑ 0 in R� with I injective. Apply the left exact functor j˚ and consider the resulting
long exact sequence:

0 ÝÑ j˚V ÝÑ j˚I ÝÑ j˚Q ÝÑ pR1j˚qV ÝÑ 0.

As V has a ∇ε-flag, we can use (3) to see that HomRp∆εpbq, j˚V q – HomR�pj∆εpbq, V q
and Ext1

Rp∆εpbq, j˚V q – Ext1
R�pj∆εpbq, V q for every b P B. Hence, Theorem 3.11, j˚V

has a ∇ε-flag with

pj˚V : ∇εpbqq “ dim HomRpj∆εpbq, V q “

"

pV : ∇�
εpbqq if b P B�,

0 otherwise.

Both I and Q have ∇ε-flags too, so we get similar statements for j˚I and j˚Q. Since
pI : ∇�

εpbqq “ pV : ∇�
εpbqq ` pQ : ∇�

εpbqq by the exactness of the original sequence, we
deduce that 0 Ñ j˚V Ñ j˚I Ñ j˚QÑ 0 is exact. Hence, pR1j˚qV “ 0. This proves the
result for n “ 1. The result for n ą 1 follows by a degree shifting argument. �

Corollary 3.19. Let notation be as in Theorem 3.18 and set B� :“ BzB�.

(1) For V P ∇εpRq, there is a short exact sequence 0 Ñ K Ñ V
γ
Ñ j˚pjV q Ñ 0

where γ comes from the unit of adjunction, j˚pjV q has a ∇ε-flag with sections
∇εpbq for b P B�, and K has a ∇ε-flag with sections ∇εpcq for c P B�.

(2) For V P ∆εpRq, there is a short exact sequence 0 Ñ j!pjV q
δ
Ñ V Ñ Q Ñ 0

where δ comes from the counit of adjunction, j!pjV q has a ∆ε-flag with sections
∆εpbq for b P B� and Q has a ∆ε-flag with sections ∆εpcq for c P B�.

Proof. We prove only (1), since (2) is just the dual statement. Using (3.10), we can
order the ∇ε-flag of V to get a short exact sequence 0 Ñ K Ñ V Ñ QÑ 0 such that K
has a ∇ε-flag with sections ∇εpbq for b P B� and Q has a ∇ε-flag with sections ∇εpcq for
c P B�. For each b P B�, the unit of adjunction ∇εpbq Ñ j˚pj∇εpbqq is an isomorphism;
this follows from Theorem 3.18(4) using the observation that it becomes an isomorphism
on applying j. Since j˚ sends short exact sequences of objects in ∇εpR�q to short exact
sequences, we deduce that the the unit of adjunction Q Ñ j˚pjQq is an isomorphism
too. It remains to note that jV – jQ, hence, j˚pjV q – j˚pjQq. �

We proceed to discuss some of the additional features which show up when in one of
the more refined settings (FS), (εHW), (FHW) and (HW). By Theorem 3.9, R is a fully
stratified category (resp., fibered highest weight category) if and only if so is Rop. The
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following lemma shows that fully stratified categories in our terminology are the same
as the “standardly stratified categories” defined by Losev and Webster in [LW, §2].

Lemma 3.20. Given a stratification pB, L, ρ,Λ,ďq of R, the following are equivalent:

(i) R is a fully stratified category;
(ii) R is ε-stratified for every choice of sign function ε : Λ Ñ t˘u;

(iii) R is ε-stratified and p´εq-stratified for some choice of sign function ε : Λ Ñ t˘u;
(iv) R is ε-stratified for some ε : Λ Ñ t˘u and all of its standardization and costan-

dardization functors are exact;
(v) R is a `-stratified category and each ∆pbq has a ∆̄-flag with sections ∆̄pcq for c

with ρpcq “ ρpbq;
(vi) R is a ´-stratified category and each ∇pbq has a ∇̄-flag with sections ∇̄pcq for c

with ρpcq “ ρpbq.

Proof. (i)ñ(ii)ñ(iii): Obvious.

(iii)ñ(iv): Take ε as in (iii) so that R is ε-stratified. The standardization functor jλ! is
exact when εpλq “ ´ by the last part of Theorem 3.5. Also R is p´εq-stratified, so the
same result gives that jλ! is exact when εpλq “ `. Similarly, all of the costandardization
functors are exact too.

(iv)ñ(v): Applying the exact standardization functor jλ! to a composition series of Pλpbq,
we deduce that ∆pbq has a ∆̄-flag with sections ∆̄pcq for c with ρpcq “ ρpbq. Similarly,
applying jλ˚ , we get that ∇pbq has a ∇̄-flag with sections ∇̄pcq for c with ρpcq “ ρpbq.

To show that R is `-stratified, we check that each Ipbq has a ∇̄-flag with sections ∇̄pcq
for c with ρpcq ě ρpbq. This is immediate if εpbq “ ` since we are assuming that R is
ε-stratified. If εpbq “ ´ then Ipbq has a ∇-flag with sections ∇pcq for c with ρpcq ě ρpbq.
Hence, by the previous paragraph, it also has the required sort of ∇̄-flag.

(v)ñ(i): We just need to show that R is ´-stratified. We know that each P pbq has a
∆-flag with sections ∆pcq for c with ρpcq ě ρpbq. Now use the given ∆̄-flags of each ∆pcq
to see that each P pbq also has the appropriate sort of ∆̄-flag.

(v)ô(vi): This follows from the above using the observation made earlier that R is fully
stratified if and only if Rop is fully stratified. �

Corollary 3.21. If R is an ε-stratified category with a contravariant autoequivalence
which preserves isomorphism classes of irreducible objects, then R is fully stratified.
Moreover, if R is an ε-highest weight category with a contravariant autoequivalence
preserving isomorphism classes of irreducible objects, then R is fibered highest weight.

Proof. Since R is ε-stratified, Rop is p´εq-stratified. Using Lemma 3.3, we deduce that
R is p´εq-stratified. This verifies Lemma 3.20(iii) and the first claim follows. The second
is then obvious. �

Lemma 3.22. Suppose that R is a finite or essentially finite fully stratified category.
For b, c P B and n ě 0, we have that

ExtnRp∆̄pbq, ∇̄pcqq –
"

ExtnRλ
pLpbq, Lpcqq if λ “ µ

0 otherwise,

where λ :“ ρpbq and µ :“ ρpcq.

Proof. Choose ε so that εpλq “ ´, hence, ∆̄pbq “ ∆εpbq. By Lemma 3.20, R is ε-
stratified, so we can apply Theorem 3.17(4) with R� “ Rďµ to deduce that

ExtnRp∆̄pbq, ∇̄pcqq – ExtnRďµpi
˚
ďµ∆̄pbq, ∇̄pcqq.

This is zero unless λ ď µ. If λ ď µ it is ExtnRďµp∆̄pbq, ∇̄pcqq. Now we change ε so that

εpµq “ `, hence, ∇̄pcq “ ∇εpcq. Then by Theorem 3.18(3) with R “ Rďµ and R� “ Rµ

we get that ExtnRďµp∆̄pbq, ∇̄pcqq – ExtnRµ
pjµ∆̄pbq, Lpcqq. This is zero unless λ “ µ, when

jµ∆̄pbq “ Lpbq and we are done. �
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The next results are concerned with global dimension.

Lemma 3.23. Let R be a finite ε-stratified category.

(1) All V P ∆εpRq are of finite projective dimension if and only if all negative strata2

have finite global dimension.
(2) All V P ∇εpRq are of finite injective dimension if and only if all positive strata

have finite global dimension.

Proof. As the two parts are dual statements, it suffices to prove (1). Replacing Λ by the
finite set ρpBq if necessary, we may assume that |Λ| ă 8.

First assume that all negative strata have finite global dimension. By [Wei, Ex. 4.1.2],
it suffices to show that pd ∆εpbq ă 8 for each b P B. We proceed by downwards induction
on the partial order on the finite poset Λ. Take any λ P Λ and consider ∆εpbq for b P Bλ,
assuming that pd ∆εpcq ă 8 for each c P Bąλ. We first observe that there is a short
exact sequence 0 Ñ Q Ñ P pbq Ñ ∆pbq Ñ 0 such that Q has a ∆ε-flag with sections
∆εpcq for c P Bąλ. If εpλq “ ` this follows immediately from (P∆ε); if εpλq “ ´ one
also needs to use (3.10) to see that a ∆ε-flag in P pbq can be ordered so that the sections
∆̄pcq with c P Bλ appear above the sections with c P Bąλ. By the induction hypothesis,
Q has finite projective dimension, hence, so does ∆pbq. This verifies the induction step
in the case that εpλq “ `. Instead, suppose that εpλq “ ´, i.e., ∆εpbq “ ∆̄pbq. Let
0 Ñ Pn Ñ ¨ ¨ ¨ Ñ P0 Ñ Lλpbq Ñ 0 be a finite projective resolution of Lλpbq in the
stratum Rλ. Applying jλ! , which is exact thanks to Theorem 3.5, we obtain an exact
sequence 0 Ñ Vn Ñ ¨ ¨ ¨ Ñ V0 Ñ ∆̄pbq Ñ 0 such that each Vm is a direct sum of standard
objects ∆pcq for c P Bλ. The result already established plus [Wei, Ex. 4.1.3] implies that
pdVm ă 8 for each m. Arguing like in the proof of [Wei, Th. 4.3.1], we deduce that
pd ∆̄pbq ă 8 too.

Conversely, suppose that pd ∆εpbq ă 8 for all b P B. Take λ P Λ with εpλq “ ´.
To show that Rλ has finite global dimension, it suffices to show that there is some
dpλq ě 0 such that ExtnRλ

pLλpbq,W q “ 0 for all n ą dpλq, b P Bλ and W P Rλ. By
Theorems 3.18(3) and 3.17(3), we have that

ExtnRλ
pLλpbq,W q – ExtnRďλp∆εpbq, j

λ
˚W q – ExtnRp∆εpbq, iďλpj

λ
˚W qq.

So we can take dpλq “ maxtpd ∆εpbq | b P Bλu. �

The case when all strata are positive (respectively negative) will be of great impor-
tance.

Corollary 3.24. If R is a finite `-stratified (resp., ´-stratified) category then all V P
∆pRq (resp., V P ∇pRq) are of finite projective (resp., injective) dimension.

Corollary 3.25. Suppose that R is a finite ε-stratified category. If R is of finite global
dimension then all of its strata are of finite global dimension too.

Proof. Lemma 3.23(1) implies that all negative strata have finite global dimension, and
Lemma 3.23(2) implies that all positive strata have finite global dimension. �

Corollary 3.26. Suppose that R is either a finite `-stratified category or a finite ´-
stratified category. If all of the strata are of finite global dimension then R is of finite
global dimension.

Proof. We just explain this in the case that R is ´-stratified; the argument in the
`-stratified case is similar. Lemma 3.23(1) implies that ∆̄pbq is of finite projective
dimension for each b P B. Moreover, there is a short exact sequence 0 Ñ K Ñ ∆̄pbq Ñ
Lpbq Ñ 0 where all composition factors of K are of the form Lpcq for c with ρpcq ă ρpbq.
Ascending induction on the partial order on the finite set ρpBq Ď Λ implies that each
Lpbq has finite projective dimension. �

2We mean the strata Rλ for λ P Λ such that εpλq “ ´.
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A special case of Corollary 3.26 recovers the following well-known result, see e.g.
[CPS1]. For further detailed remarks about the history of this, and the general notion
of highest weight category, we refer to [Don4, §A5] and [DR].

Corollary 3.27. Finite highest weight categories are of finite global dimension.

Remark 3.28. In the fully stratified case, Lemma 3.22 can be used to give a precise
bound on the global dimension of R in Corollary 3.26. Assuming Λ is finite, let

|λ| :“ sup

"

max pgl. dimRλ1
, . . . , gl. dimRλnq

2
` n´ 1

ˇ

ˇ

ˇ

ˇ

n ě 1 and λ1, . . . , λn P Λ
with λ1 ă ¨ ¨ ¨ ă λn “ λ

*

.

By mimicking the proof of [Don4, Prop. A2.3], one shows that ExtiRpLpbq, Lpcqq “ 0 for
b, c P B and any i ą |ρpbq| ` |ρpcq|. Hence, gl. dimR ď 2 maxt|λ| | λ P Λu. For finite
highest weight categories, this shows that gl. dimR ď 2pn´ 1q where n is length of the
longest chain of weights in the weight poset Λ.

Remark 3.29. Outside of the highest weight case, finitistic dimension is used as a
replacement for global dimension. In particular, finite fibered highest weight categories
have finitistic dimension ď 2pn´ 1q where n is length of the longest chain of weights in
the weight poset Λ; this can be proved following the argument of [AHLU, Cor. 2.7]. For
finite fully stratified categories, it should be possible to bound the finitistic dimension
of R in terms of the finitistic dimensions of the strata and chains in the poset like in the
previous remark.

Remark 3.30. Another remarkable result about global dimension of finite highest
weight categories was obtained in [MO], [MP] proving conjectures formulated in [CaeZ],
[EP]: if R is a finite highest weight category with duality, i.e., possessing a contravariant
autoequivalence preserving isomorphism classes of irreducible objects, then the global
dimension of R is equal to twice the projective dimension of a tilting generator (see
Definition 4.9 below). More generally, Mazorchuk and Ovsienko show that the finitisic
dimension is equal to twice the projective dimension of a tilting generator in any finite
fibered highest weight category with duality which is also tilting-rigid in the sense of Def-
inition 4.36 below. Recently, Cruz and Marczinik [CM, Th. 2.2] (see also Corollary 4.40
below) have shown that a finite fibered highest weight category R is tilting-rigid if and
only if it is Gorenstein, in which case the finitistic dimension of R coincides with its
Gorenstein dimension (e.g., see [Che, Lem. 2.3.2]).

3.3. Upper finite ε-stratified categories. In this subsection we assume that R is
a Schurian category equipped with an upper finite stratification pB, L, ρ,Λ,ďq. Also
ε : Λ Ñ t˘u denotes a sign function. Let Ipbq and P pbq be an injective hull and
a projective cover of Lpbq in R. Recall (1.1)–(1.2), the properties pP∆εq–pI∇εq and

pP∆q–pI∇q from the introduction, and the seemingly stronger properties pyP∆εq–pxI∇εq

and pyP∆q–pxI∇q from the previous subsection.
Before formulating the main definitions in the upper finite setting, we prove an analog

of the homological criterion for ∇ε-flags from Theorem 3.11. The proof depends on the
lemmas proved in §3.4 below, which we used already in the previous subsection, together
with the following two technical lemmas, which we prove by truncating to finite Abelian
quotients.

Lemma 3.31. Suppose that R is Schurian with upper finite stratification pB, L, ρ,Λ,ďq

and sign function ε, and assume that the property pyP∆εq holds in R. Let Λ� be a finite
upper set in Λ, B� :“ ρ´1pΛ�q, and j : R Ñ R� be the corresponding Serre quotient
category with the induced stratification. The functor j˚ sends short exact sequences of
objects in ∇εpR�q to short exact sequences of objects in ∇εpRq.

Proof (assuming lemmas in §3.4 below). Take a short exact sequence 0 Ñ K Ñ X Ñ

Q Ñ 0 in R� such that K,X and Q have ∇ε-flags. We must show that 0 Ñ j˚K Ñ
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j˚X Ñ j˚QÑ 0 is exact with all objects belonging to ∇εpRq. We proceed by induction
on the length of the ∇ε-flag of j˚pXq, with the base case (length one) following from
Lemma 3.49(1). For the induction step, we may assume that K,Q ‰ 0 and know by
induction that j˚K and j˚Q have ∇ε-flags. We must show that 0 Ñ j˚K Ñ j˚X Ñ

j˚QÑ 0 is exact. Since j˚ is left exact, this follows if we can show that

rj˚X : Lpbqs “ rj˚K : Lpbqs ` rj˚Q : Lpbqs

for all b P B. To see this, let Λ�� be the finite upper set generated by Λ� and b. Let
B�� :“ ρ´1pΛ��q and k : RÑ R�� be the corresponding Serre quotient. By Lemma 2.27,
we have that rj˚X : Lpbqs “ rkpj˚Xq : kLpbqs “ rkpj˚Xq : L��pbqs, and similarly for K
and Q. Since Λ� is an upper set in Λ��, we can also view R� as a quotient of R��, and
the quotient functor j factors as j “ ̄ ˝ k for another quotient functor ̄ : R�� Ñ R�.
We have that k˚ ˝ ̄˚ – j˚, hence, applying k, we get that ̄˚ – k ˝ j˚. It follows that
rkpj˚Xq : L��pbqs “ r̄˚X : L��pbqs, and similarly for K and Q. We have now reduced
the proof to showing that

r̄˚X : L��pbqs “ r̄˚K : L��pbqs ` r̄˚Q : L��pbqs.

To see this, we note that R�� and R� are finite ε-highest weight categories due to
Lemma 3.49(2) and Theorem 3.5. So we can apply Theorem 3.18(4) to see that the
sequence 0 Ñ ̄˚K Ñ ̄˚X Ñ ̄˚QÑ 0 is exact. �

Lemma 3.32. Suppose that R is Schurian with upper finite stratification pB, L, ρ,Λ,ďq

and sign function ε, and assume that the property pyP∆εq holds in R. Let V P R be a
finitely cogenerated object such that Ext1

Rp∆εpbq, V q “ 0 for all b P B. Then we have
that V P ∇εpbq, and the multiplicity pV : ∇εpbqq of ∇εpbq in any ∇ε-flag is equal to the
dimension of HomRp∆εpbq, V q.

Proof (assuming lemmas from §3.4 below). Since V is finitely cogenerated, its injective
hull is a finite direct sum of the indecomposable injective objects Ipbq. This means that
we can find a finite upper set Λ� and B� :“ ρ´1pΛ�q so that there is a short exact
sequence

0 ÝÑ V ÝÑ
à

bPB�

Ipbq‘nb ÝÑ Q ÝÑ 0

for some nb ě 0. Let j : R Ñ R� be the corresponding Serre quotient. This is a finite
ε-stratified category by Lemma 3.49(2) and Theorem 3.5.

Applying j to the above short exact sequence gives us a short exact sequence in
R�. Then we take b P B� and apply the functor HomR�p∆�

εpbq, ?q to this using also
Lemma 3.49(1) to obtain the long exact sequence

0 ÝÑ HomR�p∆�
εpbq, jV q ÝÑ HomR�

´

∆�
εpbq,

À

bPB� I�pbq‘nb
¯

ÝÑ HomR�p∆�
εpbq, jQq ÝÑ Ext1

R�p∆�
εpbq, jV q ÝÑ 0.

From adjunction and Lemma 3.49(1) again, we get a commuting diagram

0 ÑHomR�p∆�
εpbq, jV qÑHomR�

´

∆�
εpbq,

À

bPB� I�pbq‘nb
¯

ÑHomR�p∆�
εpbq, jQqÑ 0

§

§

đ

§

§

đ

§

§

đ

0 Ñ HomRp∆εpbq, V q Ñ HomR

´

∆εpbq,
À

bPB� Ipbq‘nb
¯

Ñ HomRp∆εpbq, Qq Ñ 0.

The vertical maps are isomorphisms and the bottom row is exact since Ext1
Rp∆εpbq, V q “

0. Hence the top row is exact. Comparing with the previously displayed long exact
sequence, it follows that Ext1

R�p∆�
εpbq, jV q “ 0. Now we can apply Theorem 3.11 in the

finite ε-stratified category R� to deduce that jV has a ∇ε-flag.
From Lemma 3.31, we deduce that j˚jV has a ∇ε-flag. Moreover the multiplicity

of ∇εpbq in any ∇ε-flag in j˚jV is dim HomRp∆εpbq, j˚jV q thanks to Lemma 3.48. To
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complete the proof, we show that the unit of adjunction f : V Ñ j˚jV is an isomorphism.
We know from Lemma 3.49(1) that the unit of adjunction is an isomorphism Ipbq Ñ
j˚jIpbq for each b P B�. Since V embeds into a direct sum of such Ipbq, it follows that
f is injective. To show that it is surjective, it suffices to show that

rj˚jV : Lpbqs “ rV : Lpbqs

for all b P B. To prove this, we fix a choice of b P B then define Λ��, B��, k : R Ñ

R�� and ̄ : R�� Ñ R� as in the proof of Lemma 3.31. Since b P B��, we have that
rV : Lpbqs “ rkV : L��pbqs and rj˚jV : Lpbqs “ rkpj˚jV q : L��pbqs. As in the proof of
Lemma 3.31, kpj˚jV q – ̄˚pjV q – ̄˚̄pkV q. Thus, we are reduced to showing that

r̄˚̄pkV q : L��pbqs “ rkV : L��pbqs.

This follows because kV – ̄˚̄pkV q. To see this, we repeat the arguments in the previous
paragraph to show that kV P R�� has a ∇ε-flag. Since the unit of adjunction is an
isomorphism ∇��

ε pbq
„
Ñ ̄˚̄∇��

ε pbq for each b P B��, we deduce using the exactness from

Theorem 3.18(4) that it gives an isomorphism kV
„
Ñ ̄˚̄pkV q too. �

Theorem 3.33. Theorem 3.5 holds in the upper finite setup too.

Proof. This is almost the same as the proof of Theorem 3.5 given in the previous sub-
section. One needs to use Lemma 3.32 in place of Theorem 3.11 to see that Ipbq has
a ∇ε-flag with the appropriate multiplicities. The exactness of jλ˚ when εpλq “ ` fol-
lows from Lemma 3.31 applied to the quotient functor jλ : Rďλ Ñ Rλ. Note for this

that Rďλ satisfies pyP∆εq due to Lemma 3.45(2), and we have that ∇εpRλq “ Rλ as
εpλq “ `. �

We are ready to proceed to the main definition.

Definition 3.34. Let pB, L, ρ,Λ,ďq be an upper finite stratification on R.

(εS) We say that R is an upper finite ε-stratified category if one of the equivalent

properties pyP∆εq–pxI∇εq holds for a given choice of sign function ε : Λ Ñ t˘u.
(FS) We say that R is an upper finite fully stratified category if one of these properties

holds for all choices of sign function ε : Λ Ñ t˘u.
(εHW) We say that R is an upper finite ε-highest weight category if the stratification

function ρ is a bijection, and one of the equivalent properties pyP∆εq–pxI∇εq holds
for a given choice of sign function ε : Λ Ñ t˘u.

(FHW) We say that R is an upper finite fibered highest weight category if the stratification
function is a bijection and one of these properties holds for all choices of sign
function.

(HW) We say that R is an upper finite highest weight category if all of the stata are

simple (cf. Lemma 3.4) and one of the equivalent properties pyP∆q–pxI∇q holds.

The Ext1-vanishing (3.10) and Theorem 3.9 both still hold in the same way as before.
Next we are going to consider two (in fact dual) notions of ascending ∆ε- and de-

scending ∇ε-flags, generalizing the finite flags discussed already. One might be tempted
to say that an ascending ∆ε-flag in V is an ascending chain 0 “ V0 ă V1 ă V2 ă ¨ ¨ ¨

of subobjects of V with V “
ř

nPN Vn such that Vm{Vm´1 – ∆εpbmq, and a descending
∇ε-flag is a descending chain V “ V0 ą V1 ą V2 ą ¨ ¨ ¨ of subobjects of V such that
Ş

nPN Vn “ 0 and Vm´1{Vm – ∆εpbmq, for bm P B. These would be serviceable defini-
tions when Λ is countable. In order to avoid this unnecessary restriction, we will work
instead with the following more general formulations.

Definition 3.35. Suppose that R is an upper finite ε-stratified category and V P R.

pA∆q An ascending ∆ε-flag in V is the data of a directed set Ω with smallest element 0
and a direct system pVωqωPΩ of subobjects of V such that V0 “ 0,

ř

ωPΩ Vω “ V ,
and Vυ{Vω P ∆εpRq for each ω ă υ. Let ∆asc

ε pRq be the full subcategory of R
consisting of all objects V possessing such a flag.
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pD∇q A descending ∇ε-flag in V is the data of a directed set Ω with smallest element 0
and an inverse system pV {VωqωPΩ of quotients of V such that V0 “ V ,

Ş

ωPΩ Vω “

0, and Vω{Vυ P ∇εpRq for each ω ă υ. Let ∇dsc
ε pRq be the full subcategory of

R consisting of all objects V possessing such a flag.

We stress that ∆asc
ε pRq and ∇dsc

ε pRq are subcategories of R: we have not passed to the
completion IndpRcq.

Lemma 3.36. Suppose that R is an upper finite ε-stratified category.

(1) For V P ∆asc
ε pRq, W P ∇dsc

ε pRq and n ě 1, we have that ExtnRpV,W q “ 0.
(2) For V P ∆asc

ε pRq the multiplicity of ∆εpbq in a ∆ε-flag may be defined from

pV : ∆εpbqq :“ dim HomRpV,∇εpbqq “ sup
 

pVω : ∆εpbqq
ˇ

ˇ ω P Ω
(

ă 8,

where pVωqωPΩ is any choice of ascending ∆ε-flag.
(3) For V P ∇dsc

ε pRq, the multiplicity of ∇εpbq in a ∇ε-flag may be defined from

pV : ∇εpbqq :“ dim HomRp∆εpbq, V q “ sup
 

pV {Vω : ∇εpbqq
ˇ

ˇ ω P Ω
(

ă 8,

where pV {VωqωPΩ is any choice of descending ∇ε-flag.

Proof. (1) We first prove this in the special case that W “ ∇εpbq. Let pVωqωPΩ be an
ascending ∆ε-flag in V , so that V – lim

ÝÑ
Vω. Since ExtnRpVω,W q “ 0 by Lemma 3.48, it

suffices to show that
ExtnRpV,W q – lim

ÐÝ
ExtnRpVω,W q.

To see this, like in [Wei, 3.5.10], we need to check a Mittag-Leffler condition. We show
that the natural map Extn´1

R pVυ,W q Ñ Extn´1
R pVω,W q is surjective for each ω ă υ in

Ω. Applying HomRp?,W q to the short exact sequence 0 Ñ Vω Ñ Vυ Ñ Vυ{Vω Ñ 0
gives an exact sequence

Extn´1
R pVυ,W q ÝÑ Extn´1

R pVω,W q ÝÑ ExtnRpVυ{Vω,W q.

It remains to observe that ExtnRpVυ{Vω,W q “ 0 by Lemma 3.48 again, since we know
from the definition of ascending ∆ε-flag that Vυ{Vω P ∆εpRq.

The dual of the previous paragraph plus Lemma 2.12 gives that ExtnRpV,W q “ 0 for
n ě 1, V “ ∆εpbq and W P ∇dsc

ε pRq. Then we can repeat the argument of the previous
paragraph yet again, using this assertion in place of Lemma 3.48, to obtain the result
we are after for general V P ∆asc

ε pRq and W P ∇dsc
ε pRq.

(2) This follows from (1) and (3.5) because

HomRpV,∇εpbqq – HomRplimÝÑVω,∇εpbqq – lim
ÐÝ

HomRpVω,∇εpbqq,

which is finite-dimensional as ∇εpbq, hence, each Vω, is finitely cogenerated.

(3) Similarly to (2), we have that

HomRp∆εpbq, V q – HomRp∆εpbq, limÐÝpV {Vωqq – lim
ÐÝ

HomRp∆εpbq, V {Vωq,

which is finite-dimensional as ∆εpbq is finitely generated. Then we can apply (1) and
(3.5) once again. �

Theorem 3.37 (Homological criterion for ascending ∆ε-flags). Assume that R is an
upper finite ε-stratified category. For V P R, the following are equivalent:

(i) V P ∆asc
ε pRq;

(ii) Ext1
RpV,∇εpbqq “ 0 for all b P B;

(iii) ExtnRpV,∇εpbqq “ 0 for all b P B and n ě 1.

Assuming these properties, we have that V P ∆εpRq if and only if it is finitely generated.

Proof. (iii)ñ(ii). Trivial.

(i)ñ(iii). This follows from Lemma 3.36(1).
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(ii)ñ(i). Let Ω be the directed set of finite upper sets in Λ. Take ω P Ω; it is some finite
upper set Λ�. Let B� :“ ρ´1pΛ�q and j : RÑ R� be the corresponding Serre quotient.
By Lemma 3.49(3), Ext1

R�pjV,∇εpbqq “ 0 for all b P B�. Hence, Vω :“ j!pjV q P ∆εpRq
thanks to the dual of Lemma 3.31. Let fω : Vω Ñ V be the morphism induced by the
counit of adjunction. We claim for any b P B� that the map

fωpbq : HomRpP pbq, Vωq Ñ HomRpP pbq, V q, θ ÞÑ fω ˝ θ

is an isomorphism. To see this, we assume that R “ A-modlfd for a pointed locally
finite-dimensional locally unital algebra A “

À

a,bPB eaAeb. Then R� “ eAe-modlfd

where e “
ř

aPB� ea, and Vω “ Ae beAe eV . In these terms, the map fω is the natural

multiplication map. For b P B�, this multiplication map gives an isomorphism ebVω
„
Ñ

ebV with inverse ebv ÞÑ eb b ebv. This proves the claim.
Now take υ ą ω, i.e., another finite upper set Λ�� Ą Λ�, and let k : R Ñ R�� be the

associated quotient. The quotient functor j : R Ñ R� factors as j “ ̄ ˝ k for another
quotient functor ̄ : R�� Ñ R�, and we have that

Vω “ p̄ ˝ kq!pp̄ ˝ kqV q – k!p̄!p̄pkV qqq, Vυ “ k!pkV q.

By Corollary 3.19(2), there is a short exact sequence 0 Ñ ̄!p̄pkV qq Ñ kV Ñ Q Ñ 0
such that both ̄!p̄pkV qq and Q belong to ∆εpR��q. Applying k! and using the exactness
from the dual of Lemma 3.31, we get an embedding fυω : Vω ãÑ Vυ such that Vυ{Vω –
k!Q P ∆εpRq. Since the morphisms all came from counits of adjunction, we have that
fυ ˝ f

υ
ω “ fω.

Now we can show that each fω is a monomorphism. It suffices to show that fωpbq :
HomRpP pbq, Vωq Ñ HomRpP pbq, V q is injective for all b P B. Choose υ in the previous
paragraph to be sufficiently large so as to ensure that b P B��. We explained already
that fυpbq is an isomorphism. Since fω “ fυ ˝ f

υ
ω and fυω is a monomorphism, it follows

that fωpbq is injective too. Thus, identifying Vω with its image under fω, we have defined
a direct system pVωqωPΩ of subobjects of V such that Vυ{Vω P ∆εpRq for each ω ă υ. It
remains to observe that V∅ “ 0 for a trivial reason, and

ř

ωPΩ Vω “ V because we know
for each b P B that fωpbq is surjective for sufficiently large ω.

Final part: If V P ∆εpRq, it is obvious that it is finitely generated since each ∆εpbq is
finitely generated. Conversely, suppose that V is finitely generated and has an ascending
∆ε-flag. To see that it is actually a finite flag, it suffices to show that HomRpV,∇εpbqq “
0 for all but finitely many b P B. Say hd V – Lpb1q ‘ ¨ ¨ ¨ ‘ Lpbnq. If V Ñ ∇εpbq is a
non-zero homomorphism, we must have that ρpbiq ď ρpbq for some i “ 1, . . . , n. Hence,
there are only finitely many choices for b as the poset is upper finite. �

Corollary 3.38. Let 0 Ñ U Ñ V ÑW Ñ 0 be a short exact sequence in R.

(1) If U and W belong to ∆asc
ε pRq (resp., ∆εpRq) so does V .

(2) If V and W belong to ∆asc
ε pRq (resp., ∆εpRq) so does U .

Theorem 3.39 (Homological criterion for descending ∇ε-flags). Assume that R is an
upper finite ε-stratified category. For V P R, the following are equivalent:

(i) V P ∇dsc
ε pRq;

(ii) Ext1
Rp∆εpbq, V q “ 0 for all b P B;

(iii) ExtnRp∆εpbq, V q “ 0 for all b P B and n ě 1.

Assuming these properties, V P ∇εpRq if and only if it is finitely cogenerated.

Proof. This is the equivalent dual statement to Theorem 3.37. �

Corollary 3.40. Let 0 Ñ U Ñ V ÑW Ñ 0 be a short exact sequence in R.

(1) If U and W belong to ∇dsc
ε pRq (resp., ∇εpRq) so does V .

(2) If U and V belong to ∇dsc
ε pRq (resp., ∇εpRq) so does W .
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The following is the upper finite analog of Theorem 3.17; we have dropped part (6)
since the proof of that required objects of R� to have finite length.

Theorem 3.41 (Truncation to lower sets). Assume that R is an upper finite ε-stratified
category. Suppose that Λ� is a lower set in Λ. Let B� :“ ρ´1pΛ�q and i : R� Ñ R be
the corresponding Serre subcategory of R with the induced stratification. Then R� is an
upper finite ε-stratified category. Moreover:

(1) The distinguished objects in R� satisfy L�pbq – Lpbq, P �pbq – i˚P pbq, I�pbq –
i!Ipbq, ∆�pbq – ∆pbq,∆̄�pbq – ∆̄pbq, ∇�pbq – ∇pbq and ∇̄�pbq – ∇̄pbq for b P B�.

(2) i˚ sends short exact sequences of objects in ∆εpRq to short exact sequences,
i˚∆pbq – ∆�pbq and i˚∆̄pbq – ∆̄�pbq for b P B�, and i˚∆pbq “ i˚∆̄pbq “ 0 for
b R B�.

(3) ExtnRpV, iW q – ExtnR�pi˚V,W q for V P ∆εpRq, W P R� and all n ě 0.
(4) i! sends short exact sequences of objects in ∇εpRq to short exact sequences,

i!∇pbq – ∇�pbq and i!∇̄pbq – ∇̄�pbq for b P B�, and i!∇pbq “ i!∇̄pbq “ 0 for
b R B�.

(5) ExtnRpiV,W q – ExtnR�pV, i!W q for V P R�,W P ∇εpRq and all n ě 0.

Proof. This follows from Lemma 3.45 and the dual statement. �

Next is the upper finite analog of Theorem 3.18.

Theorem 3.42 (Truncation to upper sets). Assume that R is an upper finite ε-stratified
category. Suppose that Λ� is an upper set in Λ. Let B� :“ ρ´1pΛ�q and j : RÑ R� be
the corresponding Serre quotient category of R with the induced stratification. Then R�

is itself a finite or upper finite ε-stratified category according to whether Λ� is finite or
infinite. Moreover:

(1) For b P B�, the distinguished objects L�pbq, P �pbq, I�pbq, ∆�pbq, ∆̄�pbq, ∇�pbq
and ∇̄�pbq in R� are isomorphic to the images under j of the corresponding
objects of R.

(2) We have that jLpbq “ j∆pbq “ j∆̄pbq “ j∇pbq “ j∇̄pbq “ 0 if b R B�.
(3) ExtnRpV, j˚W q – ExtnR�pjV,W q for V P R,W P ∇dsc

ε pR�q and all n ě 0.
(4) j˚ sends short exact sequences of objects in ∇εpR�q to short exact sequences,

j˚∇�pbq – ∇pbq, j˚∇̄�pbq – ∇̄pbq and j˚I
�pbq – Ipbq for b P B�.

(5) ExtnRpj!V,W q – ExtnR�pV, jW q for V P ∆asc
ε pR�q, W P R and all n ě 0.

(6) j! sends short exact sequences of objects in ∆εpR�q to short exact sequences,
j!∆

�pbq – ∆pbq, j!∆̄
�pbq – ∆̄pbq and j!P

�pbq “ P pbq for b P B�.

Proof. If Λ� is finite, this is proved in just the same way as Theorem 3.18. Assume
instead that Λ� is infinite. Then the same arguments prove (1) and (2), but the proofs
of the remaining parts need some slight modifications. It suffices to prove (3) and (4),
since (5) and (6) are the same results for Rop.

For (3), the argument from the proof of Lemma 3.49(3) reduces to checking that j
sends projectives to objects that are acyclic for HomR�p?,W q. To see this, it suffices to
show that ExtnR�pjP pbq,W q “ 0 for n ě 1 and b P B, which follows from Lemma 3.36(1).

Finally, for (4), the argument from the proof of Theorem 3.18(4) cannot be used since
it depends on R� being essentially finite Abelian. So we provide an alternate argument.
Take a short exact sequence 0 Ñ U Ñ V Ñ W Ñ 0 in ∇εpR�q. Applying j˚, we get
0 Ñ j˚U Ñ j˚V Ñ j˚W , and just need to show that the final morphism here is an
epimorphism. This follows because, by (3) and Theorem 3.39, j˚U , j˚V and j˚W all
have ∇ε-flags such that pj˚V : ∇εpbqq “ pj˚U : ∇εpbqq`pj˚W : ∇εpbqq for all b P B. �

The reader should have no difficulty in transporting Lemma 3.20 and Corollary 3.21
to the upper finite setting. Also, Lemma 3.23 remains valid when “finite ε-stratified
category” is replaced by “upper finite ε-stratified category”. To see this, we just note
that the argument by downwards induction on the partial order explained in the proof
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works just as well when Λ is upper finite rather than finite. The following is the upper
finite analog of Corollary 3.24.

Lemma 3.43. If R is an upper finite `-stratified (resp., ´-stratified) category then all
V P ∆pRq (resp., V P ∇pRq) are of finite projective (resp., injective) dimension.

Proof. This follows from the upper finite analog of Lemma 3.23. �

3.4. Shared lemmas for §§3.2–3.3. In this subsection, we prove a series of lemmas
needed in both §3.2 and in §3.3. Let R be an Abelian category equipped with a stratifi-
cation pB, L, ρ,Λ,ďq which is either essentially finite (§3.2) or upper finite (§3.3). Also
let ε : Λ Ñ t˘u be a sign function. We assume throughout the subsection that the

property (yP∆ε) from §3.2 holds.

Lemma 3.44. We have that Ext1
Rp∆εpbq,∆εpcqq “ 0 for b, c P B such that ρpbq ę ρpcq.

Proof. Using the projective objects Pb given by the assumed property (yP∆ε), we can
construct the first terms of a projective resolution of ∆εpbq in the form

Q ÝÑ
à

aPB
ρpaqěρpbq

P‘naa ÝÑ Pb ÝÑ ∆εpbq ÝÑ 0 (3.11)

for some na ě 0. Now apply HomRp?,∆εpcqq to get that Ext1
Rp∆εpbq,∆εpcqq is the

homology of the complex

HomRpPb,∆εpcqq ÝÑ HomR

´

à

aPB
ρpaqěρpbq

P‘naa ,∆εpcq
¯

ÝÑ HomRpQ,∆εpcqq.

The middle term of this already vanishes as r∆εpcq : Lpaqs ‰ 0 ñ ρpaq ď ρpcq. �

Lemma 3.45. Let Λ� be a lower set in Λ and B� :“ ρ´1pΛ�q. Let i : R� Ñ R be the
corresponding Serre subcategory of R equipped with the induced stratification.

(1) The standard, proper standard and indecomposable projective objects of R� are
the objects ∆pbq, ∆̄pbq and i˚P pbq for b P B�.

(2) The object i˚Pb is zero unless b P B�, in which case it is a projective object
admitting a ∆ε-flag with top section ∆εpbq and other sections of the form ∆εpcq

for c P B� with ρpcq ě ρpbq. In particular, this shows that pyP∆εq holds in R�.
(3) pLni˚qV “ 0 for V P ∆εpRq and n ě 1.
(4) ExtnRpV, iW q – ExtnR�pi˚V,W q for V P ∆εpRq, W P R� and n ě 0.

Proof. (1) For projectives, this follows from the usual adjunction properties. This also
shows that i˚Pb is projective, as needed for (2). For standard and proper standard
objects, just note that the standardization functors for R� are some of the ones for R.

(2) Consider a ∆ε-flag of Pb. Using Lemma 3.44, we can rearrange this filtration if
necessary so that all of the sections ∆εpcq with c P B� appear above the sections ∆εpdq
with d P BzB�. So there exists a short exact sequence 0 Ñ K Ñ Pb Ñ Q Ñ 0 in
which Q has a finite filtration with sections ∆εpcq for c P B� with ρpcq ě ρpbq, and K
has a finite filtration with sections ∆εpcq for c P BzB�. It follows easily that i˚Pb is
isomorphic to Q, so it has the appropriate filtration.

(3) It suffices to show that pLni˚q∆εpbq “ 0 for all b P B and n ą 0. Take a short exact
sequence 0 Ñ K Ñ Pb Ñ ∆εpbq Ñ 0 such that K has a ∆ε-flag with sections ∆εpcq for
c with ρpcq ě ρpbq. Applying i˚, we obtain the long exact sequence

0 ÝÑ pL1i
˚q∆εpbq ÝÑ i˚K ÝÑ i˚Pb ÝÑ i˚∆εpbq ÝÑ 0

and isomorphisms pLn`1i
˚q∆εpbq – pLni˚qK for n ą 0. We claim that pL1i

˚q∆εpbq “ 0.
We use Lemma 3.44 to order the ∆ε-flag of K so that it yields a short exact sequence
0 Ñ L Ñ K Ñ Q Ñ 0 in which Q has a ∆ε-flag with sections ∆εpcq for c P B�, and
L has a ∆ε-flag with sections ∆εpcq for c P BzB�. It follows that i˚K “ Q and there



40 J. BRUNDAN AND C. STROPPEL

is a short exact sequence 0 Ñ i˚K Ñ i˚Pb Ñ ∆εpbq Ñ 0. Comparing with the long
exact sequence, we deduce that pL1i

˚q∆εpbq “ 0. Finally some degree shifting using the
isomorphisms pLn`1i

˚q∆εpbq – pLni˚qK gives that pLni˚q∆εpbq “ 0 for n ą 1 too.

(4) By the adjunction, we have that HomRp?, iW q – HomR�p?,W q ˝ i˚, i.e., the result
holds when n “ 0. Also i˚ sends projectives to projectives as it is left adjoint to an
exact functor. Now the result for n ą 0 follows by a standard Grothendieck spectral
sequence argument; the spectral sequence degenerates due to (3). �

Lemma 3.46. Suppose that λ P Λ is maximal and b P Bλ. Then P pbq – ∆pbq and
Ipbq – ∇pbq.

Proof. Lemma 3.1 shows that ∆pbq – i˚
ďλP pbq and ∇pbq – i!ďλIpbq.

To complete the proof for P pbq, it remains to observe that P pbq belongs to Rďλ, so

i˚
ďλP pbq “ P pbq. This follows from yP∆ε: the object Pb belongs to Rďλ due to the

maximality of λ and P pbq is a summand of it.
The proof for Ipbq needs a different approach. From ∇pbq – i!ďλIpbq, we deduce that

there is a short exact sequence 0 Ñ ∇pbq Ñ Ipbq Ñ QÑ 0 with i!ďλQ “ 0, and we must
show that Q “ 0. Take a P B and apply HomRp∆εpaq, ?q to this short exact sequence
to get an exact sequence

HomRp∆εpaq, Ipbqq ÝÑ HomRp∆εpaq, Qq ÝÑ 0 (3.12)

and isomorphisms
Extn`1

R p∆εpaq,∇pbqq – ExtnRp∆εpaq, Qq (3.13)

for n ě 1. If ρpaq “ λ then HomRp∆εpaq, Qq “ 0 because i!ďλQ “ 0. If ρpaq ‰ λ, then
in fact we have that ρpaq ğ λ by the assumed maximality of λ, so r∆εpaq : Lpbqs “ 0.
Hence, HomRp∆εpaq, Ipbqq “ 0, implying in view of (3.12) that HomRp∆εpaq, Qq “ 0
again. Thus, we have shown that HomRp∆εpaq, Qq “ 0 for all a P B. This implies
that soc Q “ 0. In the essentially finite Abelian case, this is all that is needed to
deduce that Q “ 0, completing the proof. In the Schurian case, we need to argue
a little further because Q need not be finitely cogenerated, so can have zero socle
even when it is itself non-zero. We have for any a P B that ExtnRp∆εpaq,∇pbqq “ 0
for n ą 0. This follows using Lemma 3.45(4): it shows that ExtnRp∆εpaq,∇pbqq –
ExtnRďλpi

˚
ďλ∆εpaq,∇pbqq which is zero as ∇pbq is injective in Rďλ. Combining this

with (3.13), we get that Ext1
Rp∆εpaq, Qq “ 0. Now we observe that the properties

HomRp∆εpaq, Qq “ 0 “ Ext1
Rp∆εpaq, Qq for all a P B do imply that Q is zero. Indeed,

we have that HomRpP,Qq “ Ext1
RpP,Qq “ 0 for any P P R with a ∆ε-flag. This fol-

lows using induction on the length of the flag plus the long exact sequence. Since Pb
has a ∆ε-flag by the hypothesis pyP∆εq and P pbq is a summand of it, we deduce that
HomRpP pbq, Qq “ 0 for all b P B, which certainly implies that Q “ 0. �

Lemma 3.47. Assume that λ P Λ is maximal and εpλq “ `. For any V P Rλ and
b P B, we have that Ext1

Rp∆εpbq, j
λ
˚V q “ 0.

Proof. If b P Bλ then ∆εpbq is projective in Rďλ by Lemma 3.46, so we get the Ext1-
vanishing in this case. For the remainder of the proof, suppose that b R Bλ. Let I be an
injective hull of V in Rλ. Applying jλ˚ to a short exact sequence 0 Ñ V Ñ I Ñ QÑ 0,
we get an exact sequence 0 Ñ jλ˚V Ñ jλ˚I Ñ jλ˚Q. By properties of adjunctions,
jλ˚Q is finitely cogenerated and all constituents of its socle are of the form Lpcq for
c P Bλ. The same is true for jλ˚I{j

λ
˚V since it embeds into jλ˚Q. We deduce that

HomRp∆εpbq, j
λ
˚I{j

λ
˚V q “ 0.
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Now take an extension 0 Ñ jλ˚V Ñ E Ñ ∆εpbq Ñ 0. Since jλ˚I is injective, we can
find morphisms f and g making the following diagram with exact rows commute:

0 ÝÝÝÝÑ jλ˚V
s

ÝÝÝÝÑ E ÝÝÝÝÑ ∆εpbq ÝÝÝÝÑ 0
›

›

›

f

§

§

đ

§

§

đ

g

0 ÝÝÝÝÑ jλ˚V
t

ÝÝÝÝÑ jλ˚I ÝÝÝÝÑ jλ˚I{j
λ
˚V ÝÝÝÝÑ 0.

The previous paragraph implies that g “ 0. Hence, im f Ď im t. Thus, f “ t ˝ f̄ for
some f̄ : E Ñ jλ˚V . We deduce that f̄ ˝ s “ id, i.e., the top short exact sequence splits,

proving that Ext1
Rp∆εpbq, j

λ
˚V q “ 0. �

Lemma 3.48. For b, c P B and n ě 0, we have that dim ExtnRp∆εpbq,∇εpcqq “ δb,cδn,0.

Proof. The case n “ 0 follows from (3.5), so assume that n ą 0. Suppose that b P Bλ

and c P Bµ. By Lemma 3.45(4), we have that

ExtnRp∆εpbq,∇εpcqq – ExtnRďµpi
˚
ďµ∆εpbq,∇εpcqq.

If λ ę µ then i˚ďµ∆εpbq “ 0 and we get the desired vanishing. Now assume that λ ď µ,
when we may identify i˚ďµ∆εpbq “ ∆εpbq. If εpµq “ ´ then ∇εpcq “ ∇pcq, and the
result follows since ∇pcq is injective in Rďµ by Lemma 3.1(2). So we may assume also
that εpµq “ `. If λ “ µ then ∆pbq is projective in Rďµ by the same lemma, so again
we are done. Finally, we are reduced to λ ă µ and εpµq “ `, and need to show that
ExtnRďµp∆εpbq, ∇̄pcqq “ 0 for n ą 0. If n “ 1, we get the desired conclusion from

Lemma 3.47 applied in the subcategory Rďµ (allowed due to Lemma 3.45(2)). Then
for n ě 2 we use a degree shifting argument: let P :“ i˚ďµPb. By Lemma 3.45(2), P is
projective in Rďµ, and there is a short exact sequence 0 Ñ K Ñ P Ñ ∆εpbq Ñ 0 such
that K has a ∆ε-flag with sections ∆εpaq for a P Bďµ. Applying HomRďµp?, ∇̄pcqq we

obtain ExtnRďµp∆εpbq, ∇̄pcqq – Extn´1
RďµpK, ∇̄pcqq, which is zero by induction. �

Lemma 3.49. Let Λ� be an upper set in Λ and B� :“ ρ´1pΛ�q. Let j : RÑ R� be the
corresponding Serre quotient category of R equipped with the induced stratification.

(1) For b P B�, the objects P �pbq, I�pbq, ∆�pbq, ∆̄�pbq, ∇�pbq and ∇̄�pbq in R�

are the images under j of the corresponding objects of R. Moreover, we have
that j!∆

�pbq – ∆pbq, j!∆̄
�pbq – ∆̄pbq, j!P

�pbq – P pbq and j˚∇�pbq – ∇pbq,
j˚∇̄�pbq – ∇̄pbq, j˚I�pbq – Ipbq.

(2) For any b P B, the object jPb has a ∆ε-flag with top section ∆�
εpbq and other

sections of the form ∆�
εpcq for c P B� with ρpcq ě ρpbq. In particular, this show

that (yP∆ε) holds in R�.
(3) ExtnRpV, j˚W q – ExtnR�pjV,W q for V P R, W P ∇εpR�q and n ě 0.

Proof. (1) By Lemma 2.27, P �pbq “ jP pbq for each b P B�. Now take b P Bλ for λ P Λ�.
Let jλ : Rďλ Ñ Rλ be the quotient functor as usual, and denote the analogous functor
for R� by kλ : R�

ďλ Ñ R�
λ. The universal property of quotient category gives us an

exact functor ̄ : Rλ Ñ R�
λ making the diagram

Rďλ
j

ÝÝÝÝÑ R�
ďλ

jλ
§

§

đ

§

§

đkλ

Rλ ÝÝÝÝÑ
̄

R�
λ

commute. In fact, ̄ is an equivalence of categories because it sends the indecomposable
projective jλP pbq in Rλ to the indecomposable projective kλP �pbq in R�

λ for each b P

Bλ. We deduce that there is an isomorphism of functors j! ˝ k
λ
! ˝ ̄ – jλ! . Applying

this to Pλpbq and to Lλpbq gives that j!∆
�pbq – ∆pbq and j!∆̄

�pbq – ∆̄pbq. Also by
adjunction properties we have that j!P

�pbq – P pbq. Similarly, applying the isomorphism
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j˚ ˝ k
λ
˚ ˝ ̄ – jλ˚ to Iλpbq and Lλpbq gives that j˚∇�pbq – ∇pbq and j˚∇̄�pbq – ∇̄pbq. Also

by adjunction properties we have that j˚I
�pbq – Ipbq. It just remains to apply j to the

isomorphisms constructed thus far and use j ˝ j˚ – IdR� – j ˝ j!.

(2) This follows from (1) and the exactness of j, using also that j∆εpbq “ 0 if b R B�.

(3) The adjunction gives an isomorphism HomRp?, j˚W q – HomR�p?,W q˝j. This proves
the result when n “ 0. For n ą 0, the functor j is exact. In order to invoke the usual
degenerate Grothendieck spectral sequence argument, all that remains is to check that j
sends projectives to objects that are acyclic for HomR�p?,W q. By (2), the functor j sends
projectives in R to objects with a ∆ε-flag. It remains to note that ExtnR�pX,W q “ 0
for X P ∆εpR�q,W P ∇εpR�q and n ą 0. This follows from the analog of Lemma 3.48
for R�, which is valid due to (2). �

3.5. Lower finite ε-stratified categories. In this subsection, R is a locally finite
Abelian category equipped a lower finite stratification pB, L, ρ,Λ,ďq and ε : Λ Ñ t˘u

denotes a sign function. For b P B, we use the notation Ipbq to denote an injective hull
of Lpbq in IndpRq.

Definition 3.50. Let pB, L, ρ,Λ,ďq be a lower finite stratification of the locally finite
Abelian category R. For a finite lower set Λ� in Λ, let B� :“ ρ´1pΛ�q and R� be
corresponding Serre subcategory of R. We say that R is a lower finite ε-stratified
category (resp., lower finite fully stratified category, resp., lower finite ε-highest weight
category, resp., lower finite fibered highest weight category, resp., lower finite highest
weight category) if R� with its naturally induced stratification is a finite ε-stratified
category (resp., finite fully stratified category, resp., finite ε-highest weight category,
resp., finite fibered highest weight category, resp., finite highest weight category) for
every finite lower set Λ� Ď Λ.

Remark 3.51. For a simple example, let Q be any quiver. The category R of finite
length nilpotent representations of Q can be realized naturally as the category of finite-
dimensional comodules over the path coalgebra of Q as in [Sim, (8.3)]. In order for
this to be a lower finite highest weight category, one must assume that there are only
finitely many different paths between any two vertices. In that case, the path algebra kQ
is locally finite-dimensional, and we have that R – kQ-modfd with irreducible objects
labelled by the set Λ of vertices of Q in the usual way. We claim now that R is a
lower finite highest weight category with weight poset pΛ,ďq for any lower finite partial
ordering ď on Λ. To see this, the Serre subcategory R� corresponding to a finite lower
set Λ� Ă Λ is kQ�-modfd where Q� is the full subquiver Q� of Q generated by Λ�. It is
well known that this is a hereditary category, hence, it is a finite highest weight category
(e.g., see [Mad, Th. 4.1]).

Let R be a lower finite ε-stratified category. Since Rďλ is a finite Abelian category, the
admissibility axiom (A) from §3.1 holds, so we can introduce the objects ∆pbq, ∆̄pbq, ∇̄pbq
and ∇pbq as explained there, also adopting the shorthands ∆εpbq and ∇εpbq. These
objects are of finite length. Note also that Theorem 3.9, Lemma 3.20 and Corollary 3.21
carry over immediately to the lower finite setting.

Now we are going to consider another sort of infinite good filtration in objects of
IndpRq. Usually (e.g., if Λ is countable), it is sufficient to restrict attention to filtrations
given by an ascending chain of subobjects 0 “ V0 ă V1 ă V2 ă ¨ ¨ ¨ such that V “
ř

nPN Vn and Vm{Vm´1 – ∇εpbmq for some bm P B. Here is the general definition which
avoids this restriction.

Definition 3.52. An ascending ∇ε-flag in an object V P IndpRq is the data of a direct
system pVωqωPΩ of subobjects of V such that the following properties hold:

(A∇1) V “
ř

ωPΩ Vω;
(A∇2) each Vω has a ∇ε-flag with ∇εpbq appearing with multiplicity pVω : ∇εpbqq P N;
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(A∇3) pV : ∇εpbqq :“ supppVω,∇εpbqq | ω P Ωu ă 8 for each b P B.

Let ∇asc
ε pRq be the full subcategory of R consisting of all objects V that possess an

ascending ∇ε-flag. In the special case ε “ ` (resp., ε “ ´), we call it an ascending
∇̄-flag (resp., ∇-flag), denoting the category ∇εpRq by ∇̄pRq (resp., ∇pRq).

The multiplicities pVω : ∇εpbqq and pV : ∇εpbqq appearing in this definition depend a
priori on the choice of flag. In fact, they do not, so that the notation is unambiguous:

Lemma 3.53. Assume R is a lower finite ε-stratified category. For V P ∇asc
ε pRq, the

multiplicity pV : ∇εpbqq of ∇εpbq in the ascending ∇ε-flag appearing in Definition 3.52
is equal to dim HomRp∆εpbq, V q. Hence, it is well-defined independent of the particular
choice for this flag.

Proof. By Theorem 3.14 applied in the Serre subcategory R� associated to a finite lower
set Λ� of Λ chosen so that Vω P R�, we have that pVω : ∇εpbqq “ dim HomRp∆εpbq, Vωq.
Also HomRp∆εpbq, V q “ HomRp∆εpbq, limÝÑVωq – lim

ÝÑ
HomRp∆εpbq, Vωq. We deduce that

dim HomRp∆εpbq, V q “ maxtpVω : ∆εpbqq | ω P Ωu,

which is the definition of the multiplicity pV : ∇εpbqq from Definition 3.52. �

Lemma 3.54. Assume that R is a lower finite ε-stratified category. For V P ∇asc
ε pRq

and b P B, we have that Ext1
Rp∆εpbq, V q “ 0.

Proof. If V is of finite length then it belongs to the finite Abelian category R� associated
to some finite lower set Λ� of Λ, and the lemma follows from Theorem 3.11. Now suppose
that V is not of finite length. Let pVωqωPΩ be an ascending ∇ε-flag in V . Take an
extension V ãÑ E � ∆εpbq. We can find a subobject E1 of E of finite length such that
V ` E1 “ V ` E; this follows easily by induction on the length of ∆εpbq as explained
at the start of the proof of [CPS1, Lem. 3.8(a)]. Since V X E1 is of finite length, there
exists ω P Ω with V X E1 Ď Vω. Then we have that V X E1 “ Vω X E1 and

pVω ` E1q{Vω – E1{Vω X E1 “ E1{V X E1 – pV ` E1q{V “ pV ` Eq{V – ∆εpbq.

Thus, there is a short exact sequence 0 Ñ Vω Ñ Vω ` E1 Ñ ∆εpbq Ñ 0. The first
sentence of the proof implies that Ext1

Rp∆εpbq, Vωq “ 0, hence, this splits. Thus, we
can find a subobject E2 – ∆εpbq of Vω ` E1 such that Vω ` E1 “ Vω ‘ E2. Then
V ` E “ V ` E1 “ V ` Vω ` E1 “ V ` Vω ` E2 “ V ` E2 “ V ‘ E2, and our original
short exact sequence splits too. �

Corollary 3.55. Let i : R� Ñ R be the inclusion of the Serre subcategory of R associ-
ated to a finite lower set Λ� of Λ and i! be its right adjoint. For V P ∇asc

ε pRq, we have
that i!V P ∇εpR�q.

Proof. Take a short exact sequence 0 Ñ i!V Ñ V Ñ QÑ 0. Note that

HomR�p∆εpbq, i
!V q – HomRp∆εpbq, V q

is finite-dimensional for each b P B�. Since R� is finite Abelian, it follows that i!V P R�

(rather than IndpR�q). Moreover, HomRp∆εpbq, Qq “ 0 for b P B�. So, on applying
HomRp∆εpbq, ?q and considering the long exact sequence using Lemma 3.54, we get that
Ext1

R�p∆εpbq, i
!V q “ Ext1

Rp∆εpbq, i
!V q “ 0 for all b P B�. Thus, by Theorem 3.11, we

have that i!V P ∇εpR�q. �

The following homological criterion for ascending ∇ε-flags generalizes Theorem 3.11.

Theorem 3.56 (Homological criterion for ascending ∇ε-flags). Assume that R is a
lower finite ε-stratified category. For V P IndpRq, the following are equivalent:

(i) V P ∇asc
ε pRq;

(ii) Ext1
Rp∆εpbq, V q “ 0 and dim HomRp∆εpbq, V q ă 8 for all b P B;

(iii) ExtnRp∆εpbq, V q “ 0 and dim HomRp∆εpbq, V q ă 8 for all b P B and n ě 1.
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Assuming these properties, we have that V P ∇εpRq if and only if V P R.

Proof. (ii)ñ(i): Let Ω be the directed set consisting of all finite lower sets in Λ. Take
ω P Ω. It is a finite lower set Λ� Ď Λ, so we have associated the corresponding finite
ε-stratified subcategory R�. Letting i : R� Ñ R be the inclusion, we set Vω :“ i!V . By
Corollary 3.55, we have that Vω P ∇εpRq. So the subobject V 1 :“

ř

ωPΩ Vω of V has an
ascending ∇ε-flag.

Now we complete the proof by showing that V “ V 1. Applying HomRp∆εpbq, ?q to
the short exact sequence 0 Ñ V 1 Ñ V Ñ V {V 1 Ñ 0 using Lemma 3.54, we get a short
exact sequence

0 ÝÑ HomRp∆εpbq, V
1q ÝÑ HomRp∆εpbq, V q ÝÑ HomRp∆εpbq, V {V

1q ÝÑ 0

for every b P B. But any homomorphism ∆εpbq Ñ V has image contained in Vω for
sufficiently large ω, hence, also in V 1. Thus, the first morphism in this short exact
sequence is an isomorphism, and HomRp∆pbq, V {V

1q “ 0 for all b P B. This implies that
V {V 1 “ 0 as required.

(i)ñ(ii): This follows by Lemmas 3.53 and 3.54.

(iii)ñ(ii): Trivial.

(i)ñ(iii): This follows from Lemma 3.53 and Theorem 3.59(4). Since this is a forward
reference, we should note that the proof of Theorem 3.59 only depends on (i)ô(ii) from
the present theorem. �

Corollary 3.57. In a lower finite ε-stratified category, each indecomposable injective
object Ipbq belongs to ∇asc

ε pRq and pIpbq : ∇εpcqq “ r∆εpcq : Lpbqs for each b, c P B.

Proof. The first part follows from the implication (ii)ñ(i) in the theorem. For the second
part, we get from Lemma 3.53 that pIpbq : ∇εpcqq “ dim HomRp∆εpcq : Lpbqq. �

Corollary 3.58. Let 0 Ñ U Ñ V ÑW Ñ 0 be a short exact sequence in a lower finite
ε-stratified category. If U, V P ∇asc

ε pRq then W P ∇asc
ε pRq too. Moreover

pV : ∇εpbqq “ pU : ∇εpbqq ` pW : ∇εpbqq.

The following is the lower finite counterpart of Theorem 3.17.

Theorem 3.59 (Truncation to lower sets). Suppose R is a lower finite ε-stratified
category. Let Λ� be a lower set, B� :“ ρ´1pΛ�q, and i : R� Ñ R be the corresponding
Serre subcategory of R with the induced stratification. Then R� is a finite or lower finite
ε-stratified category according to whether Λ� is finite or infinite. Moreover:

(1) The distinguished objects of R� are L�pbq – Lpbq, I�pbq – i!Ipbq, ∆�pbq – ∆pbq,
∆̄�pbq – ∆̄pbq, ∇�pbq – ∇pbq and ∇̄�pbq – ∇̄pbq for b P B�.

(2) pRni!qV “ 0 for n ě 1 assuming either that V P ∇asc
ε pRq or that V P R�.

(3) i! takes short exact sequences of objects in ∇asc
ε pRq to short exact sequences of

objects in ∇asc
ε pR�q, with i!∇pbq – ∇�pbq and i!∇̄pbq – ∇̄�pbq for b P B� and

i!∇pbq “ i!∇̄pbq “ 0 for b R B�.
(4) ExtnRpiV,W q – ExtnR�pV, i!W q for V P R�,W P ∇asc

ε pRq and all n ě 0.
(5) ExtnRpiV, iW q – ExtnR�pV,W q for V,W P R� and all n ě 0.

Proof. The fact that R� is itself a lower finite ε-stratified follows immediately from
Definition 3.50. It is finite if and only if B� is finite. The identification of objects as in
(1) is straightforward. In particular, the objects ∇εpbq in R� are just the same as the
ones in R indexed by b P B�, while the indecomposable injectives in IndpR�q are the
objects i!Ipbq for b P B�.

To prove (2), assume first that V P ∇asc
ε pRq. Let I be an injective hull of soc V in

IndpRq. Note that I is of the form
À

aPB Ipaq
‘na for

0 ď na ď dim HomRp∆εpaq, V q “ pV : ∇εpaqq ă 8.
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Hence, for b P Bďλ, we have that

dim HomRp∆εpbq, Iq “
ÿ

aPBďλ

nar∆εpbq : Lpaqs ă 8

too. We deduce that I P ∇asc
ε pRq using the implication (ii)ñ(i) of Theorem 3.56. Now

consider the short exact sequence 0 Ñ V Ñ I Ñ Q Ñ 0. By Corollary 3.58, we have
that Q P ∇asc

ε pRq too. Applying the left exact functor i! and considering the long exact
sequence, we see that to prove that pR1i!qV “ 0 it suffices to show that the canonical
map i!I Ñ i!Q is an epimorphism. Once that has been proved we can use degree shifting
to establish the desired vanishing for all higher n; it is important for the induction step
that we have already established that Q P ∇asc

ε pRq just like V .
To prove the surjectivity, look at 0 Ñ i!I{i!V Ñ i!QÑ C Ñ 0. Both i!I and i!V have

∇ε-flags by Lemma 3.55. Hence, so does i!I{i!V , and on applying HomR�p∆εpbq, ?q for
b P B�, we get a short exact sequence

0 ÝÑ HomR�p∆εpbq, i
!I{i!V q ÝÑ HomR�p∆εpbq, i

!Qq ÝÑ HomR�p∆εpbq, Cq ÝÑ 0.

The first space here has dimension

pi!I : ∇εpbqq ´ pi
!V : ∇εpbqq “ pI : ∇εpbqq ´ pV : ∇εpbqq “ pQ : ∇εpbqq “ pi

!Q : ∇εpbqq,

which is the dimension of the second space. This shows that the first morphism is an
isomorphism. Hence, HomR�p∆εpbq, Cq “ 0. This implies that C “ 0 as required.

Finally let V P R�. Then V is of finite length, so it suffices just to consider the case
that V “ Lpbq for b P B�. Then we consider the short exact sequence 0 Ñ Lpbq Ñ
∇εpbq Ñ Q Ñ 0. Applying i! and using the vanishing established so far gives 0 Ñ
i!Lpbq Ñ i!∇εpbq Ñ i!Q Ñ pR1i!qLpbq Ñ 0 and isomorphisms pRni!qQ – pRn`1i!qLpbq
for n ě 1. But i! is the identity on Lpbq,∇εpbq and Q, so this immediately yields
pR1i!qLpbq “ 0, and then pRni!qLpbq “ 0 for higher n by degree shifting.

Having proved (2), property (3) follows easily. Finally (4)–(5) follow by the usual
Grothendieck spectral sequence argument starting from the adjunction isomorphism
HomR�piV, ?q – HomRpV, ?q ˝ i

!. One just needs (2) and the observation that i! sends
injectives to injectives. �

Our next result gives an alternative characterization of lower finite ε-stratified cate-
gories. Note for this that if R is a lower finite ε-stratified category then the hypotheses
of the theorem are automatically satisfied taking Iasc

b :“ Ipbq; cf. Corollary 3.57.

Theorem 3.60 (Global characterization of lower finite ε-stratified categories). Let R be
a locally finite Abelian category equipped with a lower finite stratification pB, L, ρ,Λ,ďq
and ε : Λ Ñ t˘u be a sign function. Assume for each b P B that Lpbq has an injective
hull in Rďρpbq so that we can introduce the objects ∇εpbq in the usual way3. Suppose
that the following property holds:

(xI∇
asc

ε ) For every b P B, there exists an injective object Ib P IndpRq with an ascending
∇ε-flag pVωqωPΩ in the sense of Definition 3.52 such that for each ω P Ω the
given ∇ε-flag of Vω has ∇εpbq at the bottom and all other sections are of the
form ∇εpcq for c P B with ρpcq ě ρpbq.

Then R is a lower finite ε-stratified category.

Proof. We must verify the condition from Definition 3.50. Let Λ� be a finite lower set,
B� :“ ρ´1pΛ�q, and R� be the corresponding Serre subcategory of R. This is a locally
finite Abelian category with irreducible objects labelled by the finite set B�. We need
to show it is a finite ε-stratified category with respect to the induced stratification.

Step 1: Ext1
Rp∇εpaq,∇εpbqq “ 0 for ρpaq ğ ρpbq. Let pVωqωPΩ be the given ascending

∇ε-flag of Ib. We have that ∇εpbq ãÑ Ib and Ib{∇εpbq “
ř

ωPΩpVω{∇εpbqq. The socle of

3We do not insist that Lpbq has a projective cover in Rďρpbq and do not need the objects ∆εpbq.
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the latter object only involves constituents Lpcq with ρpcq ě ρpbq. We deduce that there
is an injective resolution 0 Ñ ∇εpbq Ñ Ib Ñ J Ñ ¨ ¨ ¨ in IndpRq in which J is a direct
sum of Ic with ρpcq ě ρpbq. The Ext1-vanishing now follows on applying HomRp∇εpaq, ?q
to this resolution and taking homology.

Step 2: For b P B�, the object I�
b :“ i!Ib P IndpR�q has a ∇ε-flag with ∇εpbq at the bottom

and other sections of the form ∇εpcq for c P B� with ρpcq ě ρpbq. In particular, I�
b is of

finite length. Take b P B� and let pVωqωPΩ be the given ascending ∇ε-flag in Ib. Since B�

is finite, we can choose some sufficiently large ω P Ω so that pV : ∇εpcqq “ pVω : ∇εpcqq
for all c P B�; these multiplicities are the given ones from Definition 3.52. Then we see
that i!Vυ “ i!Vω for all larger υ, hence, i!V “ i!Vω. In view of Step 1, we can rearrange
the ∇ε-flag of Vω so that the sections ∇εpcq with c P B� appear below the other sections,
with bottom section ∇εpbq. So there is a short exact sequence 0 Ñ Uω Ñ Vω ÑWω Ñ 0
such that Uω P ∇εpR�q and i!Wω “ 0. Then we get that i!V “ i!Vω “ Uω, which has
the desired ∇ε-flag.

Step 3: R� is a finite ε-stratified category with respect to the induced stratification. By
adjunction properties, the object I�

b P R� from Step 2 is injective and it has Lpbq in
its socle. This shows that the locally finite Abelian category R� has enough injectives,
hence, it is a finite Abelian category by Lemma 2.21. Moreover, the objects I�

b pb P B�q

satisfy the condition pxI∇εq from §3.2, so R� is a finite ε-stratified category according to
Definition 3.7. �

Corollary 3.61. Let R be a locally finite Abelian category, pΛ,ďq be a lower finite poset,
and L : Λ Ñ R be a function labelling a complete set of pairwise inequivalent irreducible
objects. Assume for all λ P Λ that Lpλq has an injective hull ∇pλq P Rďλ such that
r∇pλq : Lpλqs “ 1. Suppose that the following property holds:

(xI∇
asc

) For every λ P Λ there exists an injective object Iλ P IndpRq with an ascending
∇-flag pVωqωPΩ such that for each ω P Ω the given ∇-flag of Vω has ∇pλq at the
bottom and all other sections are of the form ∇pµq for µ P Λ with µ ě λ

Then R is a lower finite highest weight category.

Proof. Apply the theorem taking B “ Λ and ρ to be the identity function, using also
Lemma 3.4. �

Remark 3.62. Using Corollary 3.61, it follows that R is a lower finite highest weight
category with all intervals pλ,8s in the weight poset being countable if and only if
IndpRq is a highest weight category in the original sense of [CPS1, Def. 3.1] with a
weight poset that is lower finite. This is also mentioned in [Cou3].

The following theorem gives a related characterization for lower finite fully stratified
categories. The proof is based on the well-known proof of the homological criterion for
good filtrations in the context of reductive algebra groups from [Jan1, Prop. II.4.16].
The Ext2-vanishing property needed for this is used as one of the defining properties in
[RW, Def. 2.1]; see also [Cou3, Def. 3.1.2(:)]. We know already that lower finite fully
stratified categories automatically satisfy the conditions of this theorem.

Theorem 3.63 (Homological characterization of lower finite fully stratfied categories).
Suppose that R is a locally finite Abelian category equipped with a lower finite stratifi-
cation pB, L, ρ,Λ,ďq. Suppose that every Lpbq has a projective cover and an injective
hull in Rďρpbq so that we can introduce standard and costandard objects. Consider the
following properties:

(1) Ext1
Rp∆̄pbq,∇pcqq “ Ext2

Rp∆̄pbq,∇pcqq “ 0 for all b, c P B.
(2) Ext1

Rp∆pbq, ∇̄pcqq “ Ext2
Rp∆pbq, ∇̄pcqq “ 0 for al b, c P B.
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If (1) holds then R is a lower finite ´-stratified category, and if (2) holds then R is a
lower finite `-stratified category. Hence, if both (1) and (2) hold then R is a lower finite
fully stratified category.

Proof. We will prove that (1) implies that R is a lower finite ´-stratified category.
The fact that (2) implies that R is `-stratified then follows from this assertion with R
replaced by Rop. Hence, if both hold then R is fully stratified thanks to Lemma 3.20(iii).

So now we just assume (1). Define ascending ∇-flags and the corresponding full
subcategory ∇ascpRq by repeating the ε “ ´ case of Definition 3.52. We first establish
two claims.

Claim 1: For V P ∇ascpRq, we have that Ext1
Rp∆̄pbq, V q “ 0 for all b P B. Moreover, the

multiplicity pV : ∇pbqq defined from a specific choice of ascending ∇-flag in V is equal to
dim HomRp∆̄pbq, V q. For any c P B, we have as always that dim HomRp∆̄pbq,∇pcqq “
δb,c, and moreover Ext1

Rp∆̄pbq,∇pcqq “ 0 by property (1). Hence, Claim 1 holds when
the ∇-flag is of finite length. Then it follows for arbitrary V P ∇ascpRq by the same
arguments as used to prove Lemmas 3.53 and 3.54 above, using the special case just
established in place of the references to Theorems 3.11 and 3.14 made in those proofs.

Claim 2: If V P IndpRq satisfies dim HomRp∆̄pbq, V q ă 8 and Ext1
Rp∆̄pbq, V q “ 0 for

all b P B then V has an ascending ∇-flag pVωqωPΩ. Let Ω be the poset of finite lower
sets in Λ ordered by containment. For ω “ Λ� P Ω, define Vω to be the subobject
i!V where i : R� Ñ R is the inclusion of the Serre subcategory of R associated to
B� :“ ρ´1pΛ�q. This defines a direct system pVωqωPΩ of subobjects of V . We prove the
claim by establishing the following:

(a) Each Vω pω P Ωq has a finite ∇-flag.
(b) V “

ř

ωPΩ Vω.

To check (a), take ω “ Λ� P Ω setting B� :“ ρ´1pΛ�q once again. We show that Vω
has a finite ∇-flag by induction on npV q :“

ř

bPB� dim HomRp∆̄pbq, V q. If npV q “ 0
then Vω “ 0 and there is nothing to do. If npV q ą 0, let λ be minimal such that
dim HomRp∆̄pbq, V q ‰ 0 for some b P Bλ. Then HomRpLpcq, V q “ 0 for c P Băλ
and HomRpLpbq, V q ‰ 0. By applying HomRp?, V q to the short exact sequence 0 Ñ
K Ñ ∆̄pcq Ñ Lpcq Ñ 0, it follows that Ext1

RpLpcq, V q “ 0 for all c P Bďλ. Then
by applying HomRp?, V q to the short exact sequence 0 Ñ Lpbq Ñ ∇pbq Ñ Q Ñ 0, it
follows that the natural map HomRp∇pbq, V q Ñ HomRpLpbq, V q is surjective. Since the
right hand space is non-zero and soc ∇pbq “ Lpbq, it follows that there is an injective
homomorphism f : ∇pbq Ñ V . Let U :“ im f and W :“ V {U . Thus, U – ∇pbq and
there is a short exact sequence 0 Ñ U Ñ V Ñ W Ñ 0. Applying HomRp∆̄paq, ?q and
using the hypotheses Ext1

Rp∆̄paq, Uq “ Ext1
Rp∆̄paq, V q “ Ext2

Rp∆̄paq, Uq “ 0, we deduce
that npW q ă npV q and Ext1

Rp∆̄paq,W q “ 0 for all a P B. Thus we can apply induction
to prove that Wω has a finite ∇-flag. Since Vω “Wω{U it follows that Vω does too, and
(a) is proved. To check (b), we let V 1 :“

ř

ωPΩ Vω and show that V “ V 1 by repeating
the argument from the proof of (ii)ñ(i) in Theorem 3.56 with ∆εpbq replaced by ∆̄pbq,
using Claim 1 to get that Ext1

Rp∆̄pbq, V
1q “ 0. Thus, we have proved Claim 2.

Now we complete the proof of the theorem. For b P B, let Ib :“ Ipbq. Like in the proof
of Corollary 3.57, Claims 1 and 2 imply that Ib has an ascending ∇-flag pVωqωPΩ with
pIb : ∇pcqq “ r∆̄pcq : Lpbqs. By passing to a subset of Ω if necessary, we may assume

that all Vω are non-zero. It follows that the condition (xI∇
asc

´ ) from Theorem 3.60 is
satisfied, and R is a lower finite ´-stratified category. �

Corollary 3.64. Suppose that R is a locally finite Abelian category, pΛ,ďq is a lower
finite poset, and L : Λ Ñ R is a function labelling a complete set of pairwise inequivalent
irreducible objects. Assume Lpλq has both an injective hull ∇pλq and a projective cover
∆pλq in Rďλ. Suppose that the following properties hold for all λ, µ P Λ:
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(i) HomRp∆pλq,∇pλqq is one-dimensional;
(ii) Ext1

Rp∆pλq,∇pµqq “ Ext2
Rp∆pλq,∇pµqq “ 0.

Then R is a lower finite highest weight category.

Proof. Property (i) implies that all strata are simple; cf. Lemma 3.4. Now apply the
theorem. �

Corollary 3.64 applies in particular to the category R “ ReppGq for a reductive alge-
braic group G; see §6.4. The Ext-vanishing properties in the corollary are consequences
of Kempf’s vanishing theorem; see [Jan1, Prop. II.4.13].

3.6. Refining stratifications in fully stratified categories. We end the section by
formulating a basic lemma about refinement of stratifications in fully stratified categories
in any of the settings (finite, essentially finite, upper finite or lower finite).

Definition 3.65. Let pB, L, ρ,Λ,ďq be a stratification of an Abelian category R. A
refinement of it means a stratification pB, L, σ,Γ,ĺq of R with the same underlying
labelling function together with a surjective function q : Γ � Λ such that the following
properties hold:

(R1) ΓX Λ “ ∅.
(R2) ρ “ q ˝ σ.
(R3) For β, γ P Γ, we have that β ĺ γ ñ qpβq ď qpγq and qpβq ă qpγq ñ β ă γ.

In the setup of Definition 3.65, if one of the stratifications is admissible of one of our
four types then the other one is automatically admissible of the same type. Assuming
this is the case, take γ P Γ and set λ :“ qpγq. We have the stratum Rλ :“ Rďλ{Răλ
with quotient functor jλ coming from the original stratification, and the stratum Rγ :“
Rĺγ{Răγ with quotient functor jγ coming from the refined stratification4. There is also
an induced finite stratification pρλ,Bλ,Γ,ĺ, Lλq on Rλ defined by setting ρλ :“ ρ|Bλ
and Lλpbq :“ jλLpbq for each b P Bλ. We denote the stratum of this labelled by γ
by Rλ,γ with quotient functor pjλq

γ : Rλ,ĺγ Ñ Rλ,γ . In fact, Rλ,γ may naturally be
identified with Rγ so that jγ “ pjλq

γ ˝ jλ|Rĺγ . Now one can denote the standard and
proper objects of R for the original stratification by

 

ρ∆pbq :“ jλ! Pλpbq
ˇ

ˇ λ P Λ, b P Bλ

(

,
 

ρ∆̄pbq :“ jλ! Lλpbq
ˇ

ˇ λ P Λ, b P Bλ

(

,

and the standard and proper standard objects of R for the refined stratification by
 

σ∆pbq :“ jγ! Pγpbq
ˇ

ˇ γ P Γ, b P Bγ

(

,
 

σ∆̄pbq :“ jγ! Lγpbq
ˇ

ˇ γ P Γ, b P Bγ

(

.

The standard and proper standard objects of Rλ for its induced stratification are
 

∆λpbq :“ pjλq
γ
! Pγpbq

ˇ

ˇ b P
Ť

γPq´1pλqBγ

(

,
 

∆̄λpbq :“ pjλq
γ
! Lγpbq

ˇ

ˇ b P
Ť

γPq´1pλqBγ

(

,

and for such b we have that σ∆pbq “ jλ! ∆λpbq, σ∆̄pbq “ jλ! ∆̄λpbq since jγ! “ jλ! ˝ pjλq
γ
! .

We deduce for all b P B that

ρ∆pbq� σ∆pbq, σ∆̄pbq� ρ∆̄pbq, (3.14)

Similar notation can be introduced for the costandard objects, and one sees that

ρ∇̄pbq ãÑ σ∇̄pbq, σ∇pbq ãÑ ρ∇pbq (3.15)

since jγ˚ “ jλ˚ ˝ pjλq
γ
˚.

Lemma 3.66. Let R be an Abelian category equipped with an admissible stratification
pB, L, ρ,Λ,ďq. Let pB, L, σ,Γ,ĺq be a refinement of it in the sense of Definition 3.65.

(1) If R is fully stratified with respect to the original stratification, and the strata
Rλ are fully stratified with respect to their induced stratifications for all λ P Λ,
then R is fully stratified with respect to the refined stratification.

4The axiom (R1) is needed so that this notation is unambiguous.
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(2) If R is fully stratified with respect to the refined stratification, and the functors
jλ! , j

λ
˚ : Rλ Ñ Rďλ are exact for all λ P Λ, then R is fully stratified with respect

to the original stratification.

Proof. Due to the local nature of the definition of “fully stratified” in the lower finite
case, the proof reduces just to the finite, essentially finite and upper finite cases. We
assume we are in one of these three situations for the remainder of the argument.

(1) Note that the functors jγ! and jγ˚ are exact since they are compositions of exact
functors. In view of Lemma 3.20(iv), it remains to show that P pbq has a σ∆-flag with
σ∆pbq at the top and other sections of the form σ∆pcq for c P B with σpcq ą σpbq. To
see this, let λ :“ ρpbq. As R is fully stratified with respect to the original stratification,
P pbq has a ρ∆-flag with ρ∆pbq at the top and other sections of the form ρ∆pcq for c P B
with ρpcq ą ρpbq. Moreover each ρ∆pbq has a σ∆-flag with σ∆pbq at the top and other
sections of the form σ∆pcq for c P Bλ with σpcq ą σpbq; this follows by applying the
exact functor jλ! to a ∆λ-flag in Pλpbq.

(2) To show that R is fully stratified with respect to the original stratification, both jλ!
and jλ˚ are exact by assumption, so it suffices to show that each P pbq has a ρ∆̄-flag. This
follows because P pbq has a σ∆̄-flag and each σ∆̄pbq has a ρ∆̄pbq-flag; to see the latter
assertion apply the exact functor jλ! to a composition series of ∆̄λpbq. �

Corollary 3.67. Let R be fully stratified category with stratification pB, L, ρ,Λ,ďq.
Assume that each stratum Rλ pλ P Λq is a highest weight category with weight poset

pΓλ,ĺλq and labelling function Lλ. Let Γ :“
Ů

λPΛ Γλ, σ : B
„
Ñ Γ be the bijection

such that jλLpbq – Lλpσpbqq for b P Bλ, and ĺ be the partial order on Γ defined by
σpbq ĺ σpcq if and only if either ρpbq ă ρpcq, or λ :“ ρpbq “ ρpcq and σpbq ĺλ σpcq.
Then pB, L, σ,Γ,ĺq is a refinement of the original stratification which makes R into a
highest weight category.

Remark 3.68. It is also interesting to consider changing the underlying partial order
on the set Λ. For a fully stratified category R with stratification pB, L, ρ,Λ,ďq, one
can always replace the given order ď by the minimal order ĺ, that is, the partial order
generated by the relation that λ ă µ if r∇pbq : Lpcqs ` r∆̄rbs : Lpcqs ‰ 0 for some b P
Bλ, c P Bµ. Then R is also fully stratified with respect to pB, L, ρ,Λ,ĺq with all the same
strata, standard objects, etc.. For highest weight categories, Coulembier [Cou2], [Cou3]
has made the following elegant observation: if R is a finite Abelian, locally finite Abelian
or Schurian category, tLpλq | λ P Λu is a full set of pairwise inequivalent irreducible
objects, and R possesses a contravariant autoequivalence preserving isomorphism classes
of irreducible objects, then all partial orders on Λ making R into a highest weight
category give rise to the same minimal order. There are examples showing that this
statement is false for essentially finite highest weight categories.

4. Tilting modules and semi-infinite Ringel duality

We now develop the theory of tilting objects and Ringel duality. Even in the finite
case, we are not aware of a complete exposition of these results in the existing literature
in the general ε-stratified setting.

4.1. Tilting objects in the finite and lower finite cases. In this subsection, R
is a finite or locally finite Abelian category with a finite or lower finite stratification
pB, L, ρ,Λ,ďq, and ε : Λ Ñ t˘u is a fixed sign function with respect to which R is a
finite or lower finite ε-stratified category, respectively; see Definitions 3.7 and 3.50. By
an ε-tilting object, we mean an object of the following full subcategory of R:

T iltεpRq :“ ∆εpRq X∇εpRq. (4.1)

The following shows that the additive subcategory T iltεpRq of R is Karoubian.
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Lemma 4.1. Direct summands of ε-tilting objects are ε-tilting objects.

Proof. This follows easily from the homological criteria from Theorems 3.11 and 3.14. In
the lower finite case, one needs to pass first to a finite ε-stratified subcategory containing
the object in question using Theorem 3.59. �

The next goal is to construct and classify ε-tilting objects. Our exposition of this
is based roughly on [Don4, Appendix], which in turn goes back to the work of Ringel
[Rin]. There are some additional complications in the ε-stratified setting.

Theorem 4.2 (Classification of ε-tilting objects). Assume that R is a finite or lower
finite ε-stratified category. For b P Bλ there is an indecomposable object Tεpbq P T iltεpRq
satisfying the following properties:

(i) Tεpbq has a ∆ε-flag with bottom section isomorphic to ∆εpbq;
(ii) Tεpbq has a ∇ε-flag with top section isomorphic to ∇εpbq;

(iii) Tεpbq P Rďλ and jλTεpbq –

"

Pλpbq if εpλq “ `
Iλpbq if εpλq “ ´

.

These properties determine Tεpbq uniquely up to isomorphism: if U is any indecompos-
able object of T iltεpRq satisfying any one of the properties (i)–(iii) then U – Tεpbq;
hence, it satisfies the other two properties as well.

Proof. By replacing R by the Serre subcategory associated to a sufficiently large but
finite lower set Λ� in Λ, chosen so as to contain λ and (for the uniqueness statement)
all ρpbq for b such that rT : Lpbqs ‰ 0, one reduces to the case that R is a finite
ε-stratified category. This reduction depends only on Theorem 3.59. Thus, we may
assume henceforth that Λ is finite.

Existence: The main step is to construct an indecomposable object Tεpbq P T iltεpRq
such that (iii) holds. The argument for this proceeds by induction on |Λ|. If λ P Λ is
minimal, we set Tεpbq :“ ∆pbq if εpλq “ ` or ∇pbq if εpλq “ ´. Since ∆̄pbq “ Lpbq “ ∇̄pbq
by the minimality of λ, this has both a ∆ε- and a ∇ε-flag. It is indecomposable, and we
get (iii) from Lemma 2.27.

For the induction step, suppose that λ is not minimal and pick µ ă λ that is minimal.
Let Λ� :“ Λztµu,B� :“ ρ´1pΛ�q, and j : RÑ R� be the corresponding Serre quotient.
By induction, there is an indecomposable object T �

ε pbq P T iltεpR�q satisfying the analog
of (iii). Now there are two cases according to whether εpµq “ ` or ´.

Case εpµq “ `: For any V P R, let d`pV q :“
ř

cPBµ
dim Ext1

Rp∆pcq, V q. We recursively

construct n ě 0 and T0, T1, . . . , Tn so that d`pT0q ą d`pT1q ą ¨ ¨ ¨ ą d`pTnq “ 0 and the
following properties hold for all m:

(1) Tm P ∆εpRq.
(2) jλTm – Pλpbq if εpλq “ ` or Iλpbq if εpλq “ ´.
(3) Ext1

Rp∆εpaq, Tmq “ 0 for all a P BzBµ.

To start with, set T0 :“ j!T
�
ε pbq. This satisfies all of the above properties: (1) follows

from Theorem 3.18(6); (2) follows because jλ factors through j and we know that T �
ε pbq

satisfies the analogous property; (3) follows by Theorem 3.18(5). For the recursive step,
assume that we are given Tm satisfying (1), (2) and (3) and d`pTmq ą 0. We can find
c P Bµ and a non-split extension

0 ÝÑ Tm ÝÑ Tm`1 ÝÑ ∆pcq ÝÑ 0. (4.2)

This constructs Tm`1. We claim that d`pTm`1q ă d`pTmq and that Tm`1 satisfies (1),
(2) and (3) too. Part (1) is clear from the definition. For (2), we just apply the exact
functor jλ to the exact sequence (4.2), noting that jλ∆pcq “ 0. For (3), take a P BzBµ

and apply the functor HomRp∆εpaq, ?q to the short exact sequence (4.2) to get

Ext1
Rp∆εpaq, Tmq ÝÑ Ext1

Rp∆εpaq, Tm`1q ÝÑ Ext1
Rp∆εpaq,∆pcqq.
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The first and last term are zero by hypothesis and (3.10), implying Ext1
RpTm`1,∇εpaqq “

0. It remains to show d`pTm`1q ă d`pTmq. For a P Bµ, we have Ext1
Rp∆paq,∆pcqq “ 0

by (3.10), so again we have an exact sequence

HomRp∆paq,∆pcqq
f
ÝÑ Ext1

Rp∆paq, Tmq ÝÑ Ext1
Rp∆paq, Tm`1q ÝÑ 0.

This shows that dim Ext1
Rp∆paq, Tm`1q ď dim Ext1

Rp∆paq, Tmq, and we just need to
observe that the inequality is actually a strict one in the case a “ c. To see this, note
that the first morphism f is non-zero in the case a “ c as fpid∆pcqq ‰ 0 due to the fact
that the original short exact sequence was not split. This completes the proof of the
claim. We have now defined an object Tn P ∆εpRq such that jλTn – Pλpbq if εpλq “ `
or Iλpbq if εpλq “ ´, and moreover Ext1

Rp∆εpaq, Tnq “ 0 for all a P B. By Theorem 3.11,
we deduce that Tn P ∇εpRďλq too, hence, it is an ε-tilting object. Decompose Tn into
indecomposables Tn “ Tn,1 ‘ ¨ ¨ ¨ ‘ Tn,r. Then each Tn,i is also an ε-tilting object by
Lemma 4.1. Since jλTn is indecomposable, we must have that jλTn “ jλTn,i for some
unique i. Then we set Tεpbq :“ Tn,i for this i. This gives us the desired indecomposable
ε-tilting object.

Case εpµq “ ´: Let d´pV q :“
ř

cPBµ
dim Ext1

RpV,∇pcqq. This time, one recursively

constructs T0 :“ j˚T
�
ε pbq, T1, . . . , Tn so that d´pT0q ą ¨ ¨ ¨ ą d´pTnq “ 0 and

(11) Tm P ∇εpRq.
(21) jλTm – Pλpbq if εpλq “ ` or Iλpbq if εpλq “ ´.
(31) Ext1

RpTm,∇εpaqq “ 0 for all a P BzBµ.

Since this is this is just the dual construction to the case εpµq “ ` already treated, i.e.,
it is the same construction in the opposite category, we omit the details. Then, at the
end, one decomposes Tn into indecomposables Tn “ Tn,1 ‘ ¨ ¨ ¨ ‘ Tn,r. By Theorem 3.14
each Tn,i is an ε-tilting object. Since jλTn is indecomposable, we must have that jλTn “
jλTn,i for some unique i, and set Tεpbq :“ Tn,i for this i.

This completes the construction of Tεpbq in general. We have shown it satisfies (iii).
Let us show that it also satisfies (i) and (ii). For (i), we know by (iii) that Tεpbq
belongs to Rďλ, and it has a ∆ε-flag. By (3.10), we may order this flag so that the
sections ∆εpcq for c P Bλ appear at the bottom. Thus, there is a short exact sequence
0 Ñ K Ñ Tεpbq Ñ Q Ñ 0 such that K has a ∆ε-flag with sections ∆εpcq for c P Bλ

and jλQ “ 0. Then jλK – jλTεpbq. If εpλq “ `, this is Pλpbq. Since jλ is exact and
jλ∆pcq “ Pλpcq for each c P Bλ, we must have that K – ∆pbq, and (1) follows. Instead,
if εpλq “ ´, the bottom section of the ∇̄-flag of K must be ∇̄pbq since jλK – Iλpbq has
irreducible socle Lλpbq, giving (i) in this case too. The proof of (ii) is similar.

Uniqueness: Let T :“ Tεpbq and U be some other indecomposable object of T iltεpRq
satisfying one of the properties (i)–(iii). We must prove that T – U . By the argument
from the previous paragaph, we may assume actually that U satisfies either (i) or (ii). We
just explain how to see this in the case that U satisfies (i); the dual argument treats the

case that U satisfies (ii). So there are short exact sequences 0 Ñ ∆εpbq
f
Ñ U Ñ Q1 Ñ 0

and 0 Ñ ∆εpbq
g
Ñ T Ñ Q2 Ñ 0 such that Q1, Q2 have ∆ε-flags. Applying HomRp?, T q

to the first and using Ext1
RpQ1, T q “ 0, we get that HomRpU, T q � HomRp∆εpbq, T q.

Hence, g extends to a homomorphism ḡ : U Ñ T . Similarly, f extends to f̄ : T Ñ U . We
have constructed morphisms making the triangles in the following diagram commute:

U

∆εpbq

T

ḡ

f

g

f̄

Since f̄ ˝ ḡ ˝ f “ f , we deduce that f̄ ˝ ḡ is not nilpotent. Since U is indecomposable,
Fitting’s Lemma implies f̄ ˝ḡ is an isomorphism. Similarly, so is ḡ˝f̄ . Hence, U – T . �
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Remark 4.3. Let b P Bλ. When εpλq “ `, Theorem 4.2 implies that pTεpbq : ∆εpbqq “ 1
and pTεpbq : ∆εpcqq “ 0 for all other c P Bλ. Similarly, when εpλq “ ´, we have that
pTεpbq : ∇εpbqq “ 1 and pTεpbq : ∇εpcqq “ 0 for all other c P Bλ.

The following corollaries show that ε-tilting objects behave well with respect to pas-
sage to lower and upper sets, extending Theorems 3.17, 3.59 and 3.18. This follows
easily from those theorems plus the characterization of tilting objects in Theorem 4.2;
the situation is just like [Don4, Lem. A4.5].

Corollary 4.4. Let R be a finite or lower finite ε-stratified category and R� be the finite
ε-stratified subcategory associated to a finite lower set Λ� of Λ. For b P B� :“ ρ´1pΛ�q,
the corresponding indecomposable ε-tilting object of R� is Tεpbq (the same as in R).

Corollary 4.5. Assume R is a finite ε-stratified category and let Λ� be an upper set
in Λ with associated quotient j : R Ñ R�. Let b P B� :“ ρ´1pΛ�q. The corresponding
indecomposable ε-tilting object T �

ε pbq of R� satisfies T �
ε pbq – jTεpbq. Also jTεpbq “ 0 if

b R B�.

The next result is concerned with tilting resolutions.

Definition 4.6. Assume that R is a finite or lower finite ε-stratified category. An
ε-tilting resolution d : T‚ Ñ V of V P R is the data of an exact sequence

¨ ¨ ¨
d2
ÝÑ T1

d1
ÝÑ T0

d0
ÝÑ V ÝÑ 0

such that

(TR1) Tm P T iltεpRq for each m “ 0, 1, . . . ;
(TR2) im dm P ∇εpRq for m " 0.

Similarly, an ε-tilting coresolution d : V Ñ T ‚ of V P R is the data of an exact sequence

0 ÝÑ V
d0

ÝÑ T 0 d1

ÝÑ T 1 d2

ÝÑ ¨ ¨ ¨

such that

(TC1) Tm P T iltεpRq for m “ 0, 1, . . . ;
(TC2) coim dm P ∆εpRq for m " 0.

We say it is a finite resolution (resp., coresolution) if there is some n such that Tm “ 0
(resp., Tm “ 0) for m ą n. Note in the finite case that axioms (TR2) and (TC2) are
redundant since the zero object belongs to both ∇εpRq and ∆εpRq.

Lemma 4.7. Assume that R is a finite or lower finite ε-stratified category.

(1) If d : T‚ Ñ V is an ε-tilting resolution of V P R then im dm P ∇εpRq for all
m ě 0. In particular, V P ∇εpRq.

(2) If d : V Ñ T ‚ is an ε-tilting coresolution of V P R then coim dm P ∆εpRq for
all m ě 0. In particular, V P ∆εpRq.

Proof. (1) It suffices to show for any exact sequence A
f
Ñ B

g
Ñ C in a finite or lower

finite ε-stratified category that B P ∇εpRq and im f P ∇εpRq implies im g P ∇εpRq.
Since im f “ ker g, there is a short exact sequence 0 Ñ im f Ñ B Ñ im g Ñ 0. Now
apply Corollary 3.13 (or Corollary 3.58).

(2) An ε-tilting coresolution of V in R is the same thing as a p´εq-tilting resolution of
V in Rop. Hence, this follows as it is the dual statement to (1). �

Theorem 4.8 (Tilting resolutions and coresolutions). Let R be a finite or lower finite
ε-stratified category and take V P R.

(1) V has an ε-tilting resolution if and only if V P ∇εpRq.
(2) V has an ε-tilting coresolution if and only if V P ∆εpRq.
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Proof. We just prove (1), since (2) is the equivalent dual statement. If V has an ε-tilting
resolution, then we must have that V P ∇εpRq thanks to Lemma 4.7(1). For the converse,
we claim for V P ∇εpRq that there is a short exact sequence 0 Ñ SV Ñ TV Ñ V Ñ 0
with SV P ∇εpRq and TV P T iltεpRq. Given the claim, one can construct an ε-tilting
resolution of V by “Splicing” (e.g., see [Wei, Fig. 2.1]), to complete the proof.

To prove the claim, we argue by induction on the length
ř

bPBpV : ∇εpbqq of a ∇ε-
flag of V . If this number is one, then V – ∇εpbq for some b P B, and there is a
short exact sequence 0 Ñ SV Ñ TV Ñ V Ñ 0 with SV P ∇εpbq and TV :“ Tεpbq
due to Theorem 4.2(ii). If it is greater than one, then there is a short exact sequence
0 Ñ U Ñ V ÑW Ñ 0 such that U and W have strictly shorter ∇ε-flags. By induction,
there are short exact sequences 0 Ñ SU Ñ TU Ñ U Ñ 0 and 0 Ñ SW Ñ TW ÑW Ñ 0
with SU , SW P ∇εpRq and TU , TW P T iltεpRq. It remains to show that these short
exact sequences can be assembled to produce the desired short exact sequence for V .
The argument is like in the proof of the Horseshoe Lemma in [Wei, Lem. 2.2.8].

0 0 0

0 SU TU U 0

0 SV TV V 0

0 SW TW W 0

0 0 0

i

f

j

gk̂

k

(4.3)

Since Ext1
RpTW , Uq “ 0, we can lift k : TW Ñ W to k̂ : TW Ñ V so that k “ g ˝ k̂. Let

TV :“ TU‘TW and j : TV Ñ V be diagpfi, k̂q. This gives us a split short exact sequence
in the middle column in (4.3), such that the right hand squares commute. Then we let
SV :“ ker j, and see that there are induced maps making the left hand column and
middle row into short exact sequences such that the left hand squares commute too. �

4.2. Finite Ringel duality. In this subsection, we review the theory of Ringel duality
for finite ε-stratified categories. Our exposition is based in part on [Don4, Appendix],
which gives a self-contained treatment in the highest weight setting, and [AHLU], where
the `-highest weight case is considered assuming Λ “ t1 ă ¨ ¨ ¨ ă nu; the survey in [Rei,
Ch. 3] is also helpful. Throughout, we assume that R is a finite ε-stratified category
with the usual stratification pB, L, ρ,Λ,ďq.

Definition 4.9. Let R be a finite ε-stratified category. By an ε-tilting generator T for
R, we mean an object T P T iltεpRq such that T has a summand isomorphic to Tεpbq
for each b P B. Given such an object, we define the Ringel dual of R relative to T to be
the finite Abelian category R1 :“ B-modfd where B :“ EndRpT q

op. We also define the
two (covariant) Ringel duality functors

F :“ HomRpT, ?q : RÑ R1, (4.4)

G :“ CohomRpT, ?q “ HomRp?, T q
˚ : RÑ R1. (4.5)

Note for the second of these that HomRpV, T q is naturally a finite-dimensional right
B-module for V P R, hence, its dual is a left B-module.

Theorem 4.10 (Finite Ringel duality). In the setup of Definition 4.9, the Ringel dual
R1 of R relative to T is a finite p´εq-stratified category with stratification pB, L1, ρ,Λ,ěq
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and distinguished objects

P 1pbq “ FTεpbq, I 1pbq “ GTεpbq, L1pbq “ hd P 1pbq – soc I 1pbq,

∆1´εpbq “ F∇εpbq, ∇1´εpbq “ G∆εpbq, T 1´εpbq “ FIpbq – GP pbq.

The restrictions F : ∇εpRq Ñ ∆´εpR1q and G : ∆εpRq Ñ ∇´εpR1q are equivalences; in
fact, they induce isomorphisms

ExtnRpV1, V2q – ExtnR1pFV1, FV2q, ExtnRpW1,W2q – ExtnR1pGW1, GW2q, (4.6)

for all Vi P ∇εpRq, Wi P ∆εpRq and n ě 0.

Before the proof, we give some applications.

Corollary 4.11 (Double centralizer property). Suppose that the finite ε-stratified cat-
egory R in Theorem 4.10 is the category A-modfd for a finite-dimensional algebra A,
so that T is an pA,Bq-bimodule. Let T 1 :“ T˚ be the dual pB,Aq-bimodule. Then the
following holds.

(1) T 1 is a p´εq-tilting generator for R1 “ B-modfd and there is an algebra isomor-
phism

µ : A
„
Ñ EndR1pT

1qop (4.7)

sending x P A to µpxq : T 1 Ñ T 1, v ÞÑ vx. So the Ringel dual of R1 relative to
T 1 is equivalent to the original category R.

(2) Denote the Ringel duality functors for R1 relative to T 1 now by

G˚ :“ HomR1pT
1, ?q : R1 Ñ R, (4.8)

F˚ :“ CohomR1pT
1, ?q “ HomR1p?, T

1q˚ : R1 Ñ R. (4.9)

We have that F˚ – TbB? and G – T 1bA?, hence, pF˚, F q and pG,G˚q are
adjoint pairs.

Proof. (1) Note that GA is a p´εq-tilting generator since GP pbq – T 1´εpbq for b P B.
Actually, GA “ HomApA, T q

˚ – T˚ “ T 1. Thus, T 1 is a p´εq-tilting generator for
R1. Its opposite endomorphism algebra is isomorphic to A as stated since G defines an
algebra isomorphism

A – EndApAq
op „
Ñ EndBpGAq

op – EndBpT
1qop.

(2) As F˚ is right exact and commutes with direct sums, a standard argument using
the Five Lemma shows that it is isomorphic to pF˚BqbB? – TbB?. Thus, F˚ is left
adjoint to F . Similarly, G – T 1bA? is left adjoint to G˚. �

The next corollary describes the strata R1λ of the Ringel dual category; see also
Lemma 4.41 below. For λ P Λ, denote the quotient functor R1ěλ Ñ R1λ by pj1qλ, and

denote its left and right adjoints by pj1qλ! : R1λ Ñ R1ěλ and pj1qλ˚ : R1λ Ñ R1ěλ. We also

have the inclusion pi1qěλ : R1ěλ Ñ R1 with left and right adjoints pi1q˚
ěλ and pi1q!ěλ.

Corollary 4.12. For λ P Λ, the strata Rλ and R1λ are equivalent. More precisely:

(1) If εpλq “ ` the functor Fλ :“ pj1qλ ˝ pi1q!ěλ ˝ F ˝ iďλ ˝ j
λ
˚ : Rλ Ñ R1λ is an

equivalence of categories taking Lλpbq “ jλLpbq to L1λpbq “ pj
1qλL1pbq.

(2) If εpλq “ ´ the functor Gλ :“ pj1qλ ˝ pi1q˚
ěλ ˝ G ˝ iďλ ˝ j

λ
! : Rλ Ñ R1λ is an

equivalence of categories taking Lλpbq “ jλLpbq to L1λpbq “ pj
1qλL1pbq.

Proof. We just prove (1), since (2) is similar. So assume that εpλq “ `. We first note
that Fλ is exact. Indeed, jλ˚ is exact by Theorem 3.5, so it sends objects of Rλ to objects
of Rďλ which have filtrations with sections ∇εpbq for b P Bλ. Then we apply the exact
functor iďλ followed by F , which takes short exact sequences in ∇εpRq to short exact
sequences in ∆εpRq, to obtain an object of ∆´εpR1ěλq. The functor pi1q!ěλ is the identity
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on this subcategory, and finally pj1qλ is exact. Adopting the setup of Corollary 4.11, we
can also define

F˚λ :“ jλ ˝ i˚ďλ ˝ F
˚ ˝ pi1qěλ ˝ pj

1qλ! : R1λ Ñ Rλ.

A similar argument to before gives that this is exact too. We complete the proof by
showing that Fλ and F˚λ are quasi-inverse equivalences. Note that F˚λ is left adjoint to
Fλ. The counit of adjunction gives us a natural transformation F˚λ ˝ Fλ Ñ IdRλ

. We
claim this is an isomorphism. Since both functors are exact, it suffices to prove this on
irreducible objects: we have F˚λ pFλLλpbqq – F˚λL

1
λpbq – Lλpbq. Similar argument shows

that the unit of adjunction is an isomorphism in the other direction. �

Corollary 4.13. Let R be a finite ε-stratified category.

(1) All V P ∇εpRq have finite ε-tilting resolutions if and only if all positive strata
are of finite global dimension.

(2) All V P ∆εpRq have finite ε-tilting coresolutions if and only if all negative strata
are of finite global dimension.

Proof. We just explain the proof of (1). By Theorem 4.10, all V P ∇εpRq have finite
ε-tilting resolutions if and only if all V 1 P ∆´εpR1q have finite projective resolutions. By
Lemma 3.23(1), this is equivalent to all negative strata of the p´εq-stratified category
R1 are of finite global dimension. Equivalently, by Corollary 4.12, all positive strata of
the ε-stratified category R are of finite global dimension. �

Corollary 4.14. If R is a finite `-stratified (resp., ´-stratified) category then all
V P ∆pRq (resp., V P ∇pRq) have finite `-tilting coresolutions (resp., finite ´-tilting
resolutions).

The next theorem is a consequence of Happel’s tilting theory for finite-dimensional
algebras. To prepare for this, we explain the connection between ε-tilting objects in our
setting and the general notions of tilting and cotilting modules from that theory; e.g.,
see [Hap], [Rei]. Suppose that R “ A-modfd is a finite ε-stratified algebra for a finite-
dimensional algebra A, and let T be an ε-tilting generator for R. If all negative strata
are of finite global dimension (this assumption being vacuous in the case ε “ `) then T
is a tilting module in the sense of tilting theory; if all positive strata are of finite global
dimension (this assumption being vacuous in the case ε “ ´) then T is a cotilting module.
These assertions follow using Theorem 3.11 to see that Ext1

RpT, T q “ 0, Lemma 3.23
to see that pdT ă 8 or idT ă 8, and Corollary 4.13. Without assumptions on the
global dimensions of strata, T need not be tilting or cotilting, but Theorem 4.8 implies
that it is still an example of a Wakamatsu tilting module5 as defined in [BR, Ch. 3];
see also [Rei, §4.1]. The WT-conjecture formulated in [BR, Ch. 3] is the assertion that
any Wakamatsu tilting module of finite projective (resp., injective) dimension is tilting
(resp., cotilting). This motivates the following conjecture in our special situation; we
will prove this assuming a mild additional hypothesis on strata in Lemma 4.38 below.

Conjecture 4.15 (εT-conjecture). Suppose that R is a finite fully stratified category
and ε is a given sign function. For b P B, the ε-tilting module Tεpbq is of finite projective
(resp., injective) dimension if and only if Tεpbq belongs to T ilt`pRq (resp., T ilt´pRq).

Let RF and LG be the total derived functors of the Ringel duality functors. These
are triangulated functors between the bounded derived categories DbpRq and DbpR1q.

Theorem 4.16 (Derived equivalences). Let R1 be the Ringel dual of a finite ε-stratified
category R. Assume that all negative strata (resp., all positive strata) of R are of finite
global dimension. Then RF : DbpRq Ñ DbpR1q (resp., LG : DbpRq Ñ DbpR1q) is an

5With this in mind, the fact that the map (4.7) is an isomorphism could also be deduced from [Wak,
Cor. 2].
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equivalence of triangulated categories. Moreover, if R is of finite global dimension, then
so is R1.
Proof. Assuming R has finite global dimension, this all follows by [Hap, Lem. 2.9,
Th. 2.10]; the hypotheses there hold thanks to Corollary 4.13. To get the derived
equivalence without assuming R has finite global dimension, we cite instead Keller’s ex-
position of Happel’s result in [Kel, Th. 4.1], since it assumes slightly less; the hypotheses
(a) and (c) there hold due to Corollary 4.13(2) and Lemma 3.23(1). �

Corollary 4.17. If R is `-highest weight (resp., ´-highest weight) and R1 is the Ringel
dual relative to a `-tilting generator (resp., ´tilting generator), then RF : DbpRq Ñ
DbpR1q (resp., LG : DbpRq Ñ DbpR1q) is an equivalence.

Proof of Theorem 4.10. This follows the same steps as in [Don4, pp.158–160]. Assume
without loss of generality that R “ A-modfd for a finite-dimensional algebra A. For
each b P B, let fb P B “ EndBpT q

op be an idempotent such that Tfb – Tεpbq. Then
P 1pbq :“ Bfb is an indecomposable projective B-module and the modules

 

L1pbq :“ hd P 1pbq
ˇ

ˇ b P B
(

give a full set of pairwise inequivalent irreducible left B-modules. Since R1 is a finite
Abelian category, it is immediate that pB, L1, ρ,Λ,ěq is a stratification of it. Let ∆1

´εpbq
and ∇1´εpbq be the p´εq-standard and p´εq-costandard objects of R1 defined from this
stratification. Set V pbq :“ F∇εpbq.

Step 1: For b P B we have that P 1pbq – FTεpbq. This follows immediately from the
equality HomApT, T qfb “ HomApT, Tfbq.

Step 2: The functor F sends short exact sequences of objects in ∇εpRq to short exact
sequences in R1. This follows because Ext1

RpT, V q “ 0 for V P ∇εpRq by the usual
Ext1-vanishing between ∆ε- and ∇ε-filtered objects.

Step 3: For a, b P B, we have that rV pbq : L1paqs “ pTεpaq : ∆εpbqq. The left hand side
is dim faV pbq “ dim fa HomApT,∇εpbqq – dim HomApTεpaq,∇εpbqq, which equals the
right hand side.

Step 4: V pbq is a non-zero quotient of P 1pbq, thus, hd V pbq “ L1pbq. By Theorem 4.2(i),
there is a short exact sequence 0 Ñ K Ñ Tεpbq Ñ ∇εpbq Ñ 0 with K P ∇εpRq. Hence,
Step 2 implies that V pbq is quotient of P 1pbq. It is non-zero by Step 3.

Step 5: We have that V pbq – ∆1´εpbq. Let λ :“ ρpbq. We treat the cases εpλq “ ` and
εpλq “ ´ separately. If εpλq “ ` we must show that V pbq is the largest quotient of P 1pbq
with the property that rV pbq : L1paqs ‰ 0 ñ ρpaq ě ρpbq. We have already observed
in Step 4 that V pbq is a quotient of P 1pbq. Also pTεpaq : ∆εpbqq ‰ 0 ñ ρpbq ď ρpaq by
Theorem 4.2(iii). Using Step 3, this imples that V pbq has the property rV pbq : L1paqs ‰
0 ñ ρpaq ě ρpbq. It remains to show that any strictly larger quotient of P 1pbq fails this
condition. To see this, since εpλq “ `, a ∇ε-flag in Tεpbq has ∇εpbq at the top and other
sections ∇εpcq for c with ρpcq ă ρpbq. In view of Step 4, any strictly larger quotient of
P 1pbq than V pbq therefore has an additional composition factor L1pcq arising from the
head of V pcq for some c with ρpcq ă ρpbq.

Instead, if εpλq “ ´, we use the characterization of ∆1
´εpbq from Lemma 3.1(1): we

must show that V pbq is the largest quotient of P 1pbq with the property that rradV pbq :
L1paqs ‰ 0 ñ ρpaq ą ρpbq. Since εpλq “ ´, we have that pTεpbq : ∇εpbqq “ 1 and
pTεpbq : ∇εpaqq ‰ 0 ñ ρpaq ă ρpbq for a ‰ b. Hence, using Step 3 again, the quotient
V pbq of P 1pbq has the required properties. A ∇ε-flag in Tεpbq has ∇εpbq at the top and
other sections ∇εpcq for c with ρpcq ď ρpbq. So any strictly larger quotient of P 1pbq than
V pbq has a composition factor L1pcq arising from the head of V pcq for c with ρpcq ď ρpbq.
In case c “ b, this violates the requirement that the quotient has L1pbq appearing with
multiplicity one; otherwise, it violates the requirement that all other composition factors
of the quotient are of the form L1paq with ρpaq ą ρpbq.
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Step 6: R1 is a finite p´εq-stratified category. In view of Step 5, it suffices to show that
P 1pbq has a filtration with sectons V pcq for c with ρpcq ď ρpbq. Since Tεpbq has a ∇ε-flag
with sections ∇εpcq for c with ρpcq ď ρpbq, this follows using Steps 1 and 2.

Step 7: For any U P T iltεpRq and V P R, the map f : HomApU, V q Ñ HomBpFU,FV q
induced by F is an isomorphism. It suffices to prove this when U “ T , so that the right
hand space is HomBpB,FV q and FV “ HomApT, V q. This special case follows because
f is the inverse of the isomorphism HomBpB,FV q Ñ FV, θ ÞÑ θp1q.

Step 8: For any V,W P ∇εpRq and n ě 0, the functor F induces a linear isomorphism

ExtnRpV,W q
„
Ñ ExtnR1pFV, FW q. Take an ε-tilting resolution d : T‚ Ñ V in the sense of

Definition 4.6, which exists thanks to Theorem 4.8. The functor F takes this resolution
to a complex

¨ ¨ ¨ ÝÑ FT1 ÝÑ FT0 ÝÑ FV ÝÑ 0.

In fact, this complex is exact. To see this, take m ě 0 and consider the short exact
sequence 0 Ñ ker dm Ñ Tm Ñ im dm Ñ 0. All of ker dm, Tm and im dm have ∇ε-flags
due to Lemma 4.7(1). Hence, thanks to Step 2, we get a short exact sequence

0 ÝÑ F pker dmq
i
ÝÑ FTm

p
ÝÑ F pim dmq ÝÑ 0

on applying F . Since F is left exact, the canonical map F pim dmq Ñ FTm´1 is a
monomorphism. Its image is all θ : T Ñ Tm´1 with image contained in im dm. As p is
an epimorphism, any such θ can be written as dm ˝φ for φ : T Ñ Tm, i.e., θ P impFdmq.
Thus, F pim dmq – impFdmq, and 0 Ñ kerpFdmq ÝÑ FTm Ñ impFdmq Ñ 0 is exact, as
required. In view of Step 1, we have constructed a projective resolution of FV in R1:

¨ ¨ ¨ ÝÑ FT1 ÝÑ FT0 ÝÑ FV ÝÑ 0.

Next, we use the projective resolution just constructed to compute ExtnR1pFV, FIq
for any injective I P R. We have a commutative diagram

0 HomRpV, Iq HomRpT0, Iq HomRpT1, Iq ¨ ¨ ¨

0 HomR1pFV, FIq HomR1pFT0, F Iq HomR1pFT1, F Iq ¨ ¨ ¨

f f0 f1

with vertical maps induced by F . The maps f0, f1, . . . are isomorphisms due to Step 7.
Also the top row is exact as I is injective. We deduce that the bottom row is exact at
the positions HomR1pFTm, F Iq for all m ě 1. It is exact at positions HomR1pFV, FIq
and HomR1pFT0, F Iq as HomR1p?, F Iq is left exact. Thus, the bottom row is exact
everywhere. So the map f is an isomorphism too and ExtnR1pFV, FIq “ 0 for n ą 0.

Finally, take a short exact sequence 0 Ñ W Ñ I Ñ Q Ñ 0 in R with I injective.
We have that Q P ∇εpRq by Corollary 3.13. Hence, using Step 2 and the previous
paragraph, there is a commutative diagram

HomRpV,W q HomRpV, Iq HomRpV,Qq Ext1
RpV,W q

HomR1pFV, FW q HomR1pFV, FIq HomR1pFV, FQq Ext1
R1pFV, FW q

f1 f2 f3 f4

with exact rows. As f2 is an isomorphism, we get that f1 is injective. Since this is
proved for all W , this means that f3 is injective too. Then a diagram chase gives that
f1 is surjective, hence, f3 is surjective and f4 is an isomorphism. Degree shifting now
gives the isomorphisms ExtnRpV,W q

„
Ñ ExtnR1pFV, FW q for n ě 2 as well.

Step 9: We have that T 1´εpbq – FIpbq. By Steps 5 and 8, we get that

Ext1
R1p∆

1
´εpaq, F Ipbqq – Ext1

Rp∇εpaq, Ipbqq “ 0
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for all a P B. Hence, by the homological criterion for ∇´ε-flags in the p´εq-stratified
category R1, the A-module FIpbq has a ∇´ε-flag. It also has a ∆´ε-flag with bottom
section isomorphism to ∆1

´εpbq due to Steps 2 and 5. So FIpbq P T ilt´εpR1q. It is
indecomposable as EndR1pFIpbqq – EndRpIpbqq by Step 8, which is local. Therefore
FIpbq – T 1´εpbq due to Theorem 4.2(i).

Step 10: The restriction F : ∇εpRq Ñ ∆´εpR1q is an equivalence of categories. It is full
and faithful by Step 8. It remains to show that it is dense, i.e., for any V 1 P ∆´εpR1q
there exists V P ∇εpRq with FV – V 1. The proof of this goes by induction on the length
of a ∆´ε-flag of V 1. If this length is one, we are done by Step 5. For the induction step,
consider V 1 fitting into a short exact sequence 0 Ñ U 1 Ñ V 1 Ñ W 1 Ñ 0 for shorter
U 1,W 1 P ∆´εpR1q. By induction there are U,W P ∇εpRq such that FU – U 1 and
FW – W 1. Then we use the isomorphism Ext1

R1pFW,FUq – Ext1
RpW,Uq from Step 8

to see that there is an extension V of U and W in R such that FV – V 1.

Step 11: The dual right A-module T˚ to T is a p´εq-tilting generator for Rop “ modfd-A
such that EndApT

˚qop “ Bop. Moreover, letting F op :“ HomApT
˚, ?q : modfd-A Ñ

modfd-B be the corresponding Ringel duality functor, we have that G –?˚ ˝ F op˝?˚.
The first statement is clear from Theorem 3.9, observing that EndApT

˚qop – EndApT q
since ˚ : A-modfd Ñ modfd-A is a contravariant equivalence. It remains to observe that
˚ ˝ F op ˝ ˚ – HomApT

˚, ?˚q˚ – HomAp?, T q
˚ “ G.

Step 12: The restriction G : ∆εpRq Ñ ∇´εpR1q is an equivalence of categories inducing
isomorphisms as in (4.6), such that GTεpbq – I 1pbq, G∆εpbq – ∇1´εpbq and GP pbq –
T 1´εpbq. This follows using Step 11 and the analogs for F op of the statements about F
establishd thus far. �

4.3. Tilting objects in the upper finite and essentially finite cases. Throughout
the subsection, R will be either be an upper finite or an essentially finite ε-stratified
category with the usual stratification pB, L, ρ,Λ,ďq. It is still possible to make sense of ε-
tilting objects but now the iterative procedure used to construct the indecomposable ones
in the proof of Theorem 4.2 does not terminate after finitely many steps. Consequently,
we must allow for tilting objects which have infinite ∆ε- and ∇ε-flags; see (6.6) below
for a baby example of this phenomenon.

Suppose to start with that R is an upper finite ε-stratified category. Using the notions
of ascending ∆ε-flags and descending ∇ε-flags introdued in Definition 3.35, we set

T iltεpRq :“ ∆asc
ε pRq X∇dsc

ε pRq. (4.10)

We emphasize that objects of T iltεpRq are in particular objects of R, so all of their com-
position multiplicities are finite. Like in Lemma 4.1, T iltεpRq is an additive Karoubian
subcategory of R.

Theorem 4.18 (Classification of tilting objects in the upper finite case). Assume that
R is an upper finite ε-stratified category. For b P Bλ, there is an indecomposable object
Tεpbq P T iltεpRq satisfying the following properties:

(i) Tεpbq has an ascending ∆ε-flag with bottom section6 isomorphic to ∆εpbq;
(ii) Tεpbq has a descending ∇ε-flag with top section7 isomorphic to ∇εpbq;

(iii) Tεpbq P Rďλ and jλTεpbq –

"

Pλpbq if εpλq “ `
Iλpbq if εpλq “ ´

.

These properties determine Tεpbq uniquely up to isomorphism: if T is any indecomposable
object of T iltεpRq satisfying any one of the properties (i)–(iii) then T – Tεpbq; hence,
it satisfies the other two properties as well.

6We mean that there is an ascending ∆ε-flag pVωqωPΩ in which Ω has a smallest non-zero element 1
such that V1 – ∆εpbq.
7Similarly, we mean that V {V1 – ∇εpbq.
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Proof. Existence: Replacing R by Rďλ if necessary and using Theorem 3.41, we reduce
to the special case that λ is the largest element of the poset Λ. Assuming this, the first
step in the construction of Tεpbq is to define a direct system pVωqωPΩ of objects of R.
This is indexed by the directed set Ω of all finite upper sets in Λ. Let V∅ :“ 0. Then take
∅ ‰ ω P Ω and denote it instead by Λ�. Letting j : RÑ R� be the corresponding finite
ε-stratified quotient of R, we set Vω :“ j!T

�
ε pbq. By Theorem 3.42(6), this has a ∆ε-flag.

Given also ω ă υ P Ω, i.e., another upper set Λ�� containing Λ�, let k : R Ñ R�� be
the corresponding quotient. Then j factors as j “ ̄ ˝ k for an induced quotient functor
̄ : R�� Ñ R�. Since ̄T ��

ε pbq – T �
ε pbq by Corollary 4.5, we deduce from Corollary 3.19(2)

that there is a short exact sequence

0 ÝÑ ̄!T
�
ε pbq ÝÑ T ��

ε pbq ÝÑ Q ÝÑ 0

such that Q has a ∆ε-flag with sections ∆��
ε pcq for c with ρpcq P Λ��zΛ�. Applying k! and

using the exactness from Theorem 3.42(6) again, we deduce that there is an embedding
fυω : Vω ãÑ Vυ with coker fυω P ∆εpRq. Thus, we have a direct system pVωqωPΩ. Now let
Tεpbq :“ lim

ÝÑ
Vω P IndpRcq. Using the induced embeddings fω : Vω ãÑ Tεpbq, we identify

each Vω with a subobject of Tεpbq. We have shown for ω ă υ that Vυ{Vω P ∆εpRq and,
moreover, jVυ “ jVω where j : RÑ R� is the quotient associated to ω.

In this paragraph, we show that Tεpbq actually lies in R rather than IndpRcq, i.e., all
of the composition multiplicities rTεpbq : Lpcqs are finite. To see this, take c P B. Let
ω “ Λ� P Ω be some fixed finite upper set such that ρpcq P Λ�, and j : R Ñ R� be the
quotient functor as usual. Then for any υ ě ω we have that

rVυ : Lpcqs “ rjVυ : L�pcqs “ rjVω : L�pcqs “ rVω : Lpcqs.

Hence, rTεpbq : Lpcqs “ rVω : Lpcqs ă 8.
So now we have defined Tεpbq P R together with an ascending ∆ε-flag pVωqωPΩ. The

smallest non-empty element of Ω is ω :“ tλu, and Vω “ jλ! Pλpbq “ ∆εpbq if εpλq “ `,
or jλ! Iλpbq if εpλq “ ´. Since jλTεpbq “ jλVω, we deduce that (iii) holds. Also by
construction Tεpbq has an ascending ∆ε-flag. To see that it has a descending ∇ε-flag,
take any a P B. Let ω “ Λ� P Ω be such that ρpaq P Λ�. Then ∆εpaq “ j!∆

�
εpaq and

jTεpbq “ jVω “ T �
ε pbq, so by Theorem 3.42(5) we get that

Ext1
Rp∆εpaq, Tεpbqq – Ext1

R�p∆�
εpaq, T

�
ε pbqq “ 0.

By Theorem 3.39, this shows that Tεpbq P ∇dsc
ε pRq.

Note finally that Tεpbq is indecomposable. This follows because jTεpbq is indecompos-
able for every j : RÑ R� (adopting the usual notation). Indeed, by the construction we
have that jTεpbq – T �

ε pbq This completes the construction of the indecomposable object
Tεpbq P T iltεpRq. We have shown that it satisfies (iii), and it follows easily that it also
satisfies (i) and (ii).

Uniqueness: Since (iii) implies (i) and (ii), it suffices to show that any indecomposable
U P T iltεpRq satisfying either (i) or (ii) is isomorphic to the object T :“ Tεpbq just
constructed. We explain this just in the case of (i), since the argument for (ii) is similar.
We take a short exact sequence 0 Ñ ∆εpbq Ñ T Ñ QÑ 0 with Q P ∆asc

ε pRq. Using the
Ext-vanishing from Lemma 3.36, we deduce like in the proof of Theorem 4.2 that the
inclusion f : ∆εpbq ãÑ T extends to f̄ : U Ñ T . In fact, f̄ is an isomorphism. To see
this, take a finite upper set Λ� containing λ and consider the quotient j : R Ñ R� as
usual. Both jU and jT are isomorphic to T �

ε pbq by the uniqueness in Theorem 4.2. The
proof there implies that any homomorphism jT Ñ jU which restricts to an isomorphism
on the subobject ∆�

εpbq is an isomorphism. We deduce that jf̄ is an isomorphism. Since
holds for all choices of Λ�, it follows that f̄ itself is an isomorphism. �

Corollary 4.19. Any object of T iltεpRq is isomorphic to
À

bPB Tεpbq
‘nb for unique

multiplicities nb P N. Conversely, any such direct sum belongs to T iltεpRq.
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Proof. Let us first show that any direct sum U :“
À

bPB Tεpbq
‘nb belongs to T iltεpRq.

The only issue is to see that U actually belongs to R rather than IndpRcq, i.e., it has
finite composition multiplicities. But for a given c P B, the multiplicity rTεpbq : Lpcqs
is zero unless ρpcq ď ρpbq. There are only finitely many such b P B, so rU : Lpcqs “
ř

bPB nbrTεpbq : Lpcqs ă 8.
Now take any U P T iltεpRq. Let Ω be the directed set of all finite upper sets in Λ.

Take ω “ Λ� P Ω. Let j : RÑ R� be the quotient functor as usual. Then we have that
jU P T iltεpR�q, so it decomposes as a finite direct sum as jU –

À

bPB� T �
ε pbq

‘nbpωq

for nbpωq P N. There is a corresponding direct summand Tω –
À

bPB� Tεpbq
‘nbpωq of

U . Then T “ lim
ÝÑ

Tω. Moreover, for b P B�, the multiplicities nbpωq are stable in the

sense that nbpυq “ nbpωq for all υ ą ω. We deduce that U –
À

bPB Tεpbq
‘nb where

nb :“ nbpωq for any sufficiently large ω. �

It remains to discuss tilting objects in the essentially finite case. So now we assume
that R is an essentially finite ε-stratified category with stratification pB, L, ρ,Λ,ďq.
Since Λ is interval finite, finite unions of lower sets of the form p´8, λs are upper
finite. If R� is the Serre subcategory of R associated to such an upper finite lower set
then its Schurian envelope EnvpR�q in the sense of Lemma 2.22 is a Cartan-bounded
upper finite ε-stratified category which is naturally embedded into EnvpRq. This follows
from Theorem 3.17. For b P B, we define the corresponding ε-tilting object Tεpbq P
EnvpRq as follows: pick any upper finite lower set Λ� such that ρpbq P Λ�, let R�

be the corresponding Serre subcategory of R, then let Tεpbq be the ε-tilting object in
EnvpR�q from Theorem 4.18. This is well-defined independent of the choice of Λ� by the
uniqueness part of Theorem 4.18. Thus, we have defined the indecomposable ε-tilting
objects tTεpbq | b P Bu in the essentially finite case too, although these may be of infinite
length, i.e., in general they belong to EnvpRq rather than to R itself.

Definition 4.20. Suppose that R is a lower finite, upper finite or essentially finite ε-
stratified category with the usual stratification. We say that it is tilting-bounded if the
matrix

pdim HomRpTεpaq, Tεpbqqa,bPB (4.11)

has finitely many non-zero entries in each row and each column.

The matrix (4.11) is analogous to the Cartan matrix (2.23) with projectives/injectives
replaced by ε-tilting objects. In the lower finite case, all entries of this matrix are
obviously ă 8, but in the upper finite or essentially finite cases it is possible that some
of these dimensions are 8. However they are all finite in the tilting-bounded case:

Lemma 4.21. If R is tilting-bounded then the spaces HomRpTεpaq, Tεpbqq are finite-
dimensional for all a, b P B.

Proof. In the lower finite case, the indecomposable tilting objects are of finite length,
so these spaces are finite-dimensional even without the assumption that R is tilting-
bounded. In the remaining upper finite or essentially finite cases, we have that

dim HomRpTεpaq, Tεpbqq “
ÿ

cPB

pTεpaq : ∇εpcqqpTεpbq : ∆εpcqq P NY t8u. (4.12)

All of the multiplicities pTεpaq : ∇εpcqq and pTεpbq : ∆εpcqq are finite. Moreover, if
pTεpaq : ∆εpcqq ‰ 0 then HomRpTεpaq, Tεpcqq ‰ 0. Hence, assuming the tilting-bounded
hypothesis, only finitely many of the terms in the sum on the right hand side are non-
zero. �

Assuming R is an essentially finite ε-stratified category once again, assume that R is
also tilting-bounded. Then the ε-tilting objects Tεpbq actually belong to

T iltεpRq :“ ∆εpRq X∇εpRq, (4.13)
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i.e., they belong to R rather than to EnvpRq of R. Thus, we are in a similar situation to
(4.1). Theorem 4.2 carries over easily, to show that tTεpbq | b P Bu gives a full set of the
indecomposable objects in the additive Karoubian category T iltεpRq. The construction
of Theorem 4.8 also carries over unchanged. So all objects of ∇εpRq have ε-tilting
resolutions and all objects of ∆εpRq have ε-cotilting resolutions.

Remark 4.22. Most of the interesting examples of essentially finite highest weight cat-
egories which arise “in nature” seem to satisfy the tilting-bounded hypothesis, although
there is no reason for this to be the case from the recursive construction of Theorem 4.18.
We refer the reader to Remark 6.2 for an example which is not tilting-bounded.

Remark 4.23. The tilting-bounded hypothesis is also interesting in the lower finite
case; see Corollary 4.28 below. Using (4.12), it is easy to see in the lower finite case that
R is tilting-bounded if and only if for each b P B the multiplicities pTεpaq : ∆εpbqq and
pTεpaq : ∇εpbqq are zero for all but finitely many a P B. Natural examples of lower finite
highest weight categories which are definitely not tilting-bounded include the categories
ReppGq for reductive groups G (unless this is actually a semisimple category), as follows
from the results in [Cou1, §5]. In situations involving quantum groups at roots of
unity, tilting-boundedness can be checked combinatorially by considering properties of
Kazhdan-Lusztig polynomials; e.g., see [Soe], [Str].

4.4. Semi-infinite Ringel duality. Now we extend Ringel duality to lower finite and
upper finite ε-stratified categories. The situation is not as symmetric as in the finite
case and demands different constructions when going from lower finite to upper finite
or from upper finite to lower finite. If we start with a lower finite ε-stratified category,
the Ringel dual is an upper finite p´εq-stratified category:

Definition 4.24. Let R be a lower finite ε-stratified category with the usual stratifica-
tion pB, L, ρ,Λ,ďq. An ε-tilting generator for R is an object T “

À

iPI Ti P IndpRq with
a given decomposition as a direct sum of objects Ti P T iltεpRq such that each Tεpbq is
isomorphic to a summand of T . Define the Ringel dual of R relative to T “

À

iPI Ti to
be the Schurian category R1 :“ A-modlfd where

A :“

˜

à

i,jPI

HomRpTi, Tjq

¸op

.

Identifying IndpR1cq with A-mod as explained in (2.3), we have the Ringel duality functor

F :“
à

iPI

HomRpTi, ?q : IndpRq Ñ IndpR1cq. (4.14)

This functor takes objects of R to objects of R1.

Theorem 4.25 (Lower to upper semi-infinite Ringel duality). In the setup of Defini-
tion 4.24, R1 is an upper finite p´εq-stratified category with stratification pB, L1, ρ,Λ,ěq
and distinguished objects

P 1pbq – FTεpbq, L1pbq – hd P 1pbq,

∆1´εpbq – F∇εpbq, T 1´εpbq – FIpbq.

The restriction F : ∇asc
ε pRq Ñ ∆asc

´ε pR1q is an equivalence of categories.

The proof will be explained later in the subsection.
In the other direction, if we start from an upper finite ε-stratified category, the Ringel

dual is a lower finite p´εq-stratified category:

Definition 4.26. Let R be an upper finite ε-stratified category with the usual strat-
ification pB, L, ρ,Λ,ďq. An ε-tilting generator is an object T P T iltεpRq such that
Tεpbq is isomorphic to a summand of T for every b P B. Let C :“ CoendRpT q be
the coalgebra that is the continuous dual of the pseudo-compact topological algebra
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B :“ EndRpT q
op; see Lemma 2.10. Then the Ringel dual of R relative to T is the cat-

egory R1 :“ comodfd-C “ B-modfd. Recalling Lemma 2.11, the Ringel duality functor
is

G :“ CohomRpT, ?q “ HomRp?, T q
ˇ : IndpRcq Ñ IndpR1q, (4.15)

which sends finitely generated objects of R to objects of R1.

Theorem 4.27 (Upper to lower semi-infinite Ringel duality). In the setup of Defini-
tion 4.26, R1 is a lower finite p´εq-stratified category with stratification pB, L1, ρ,Λ,ěq
and distinguished objects

I 1pbq “ GTεpbq, L1pbq “ soc I 1pbq,

∇1´εpbq “ G∆εpbq, T 1´εpbq “ GP pbq.

The restriction G : ∆asc
ε pRq Ñ ∇asc

´ε pR1q is an equivalence of categories.

Again the proof will be explained later.
We proceed to formulate several consequences of Theorems 4.25 and 4.27. The first is

concerned with a special case. Recall the definition of Cartan-bounded from just before
Lemma 2.22, and the definition of tilting-bounded from Definition 4.20.

Corollary 4.28. The Ringel dual of a tilting-bounded lower finite ε-stratified category
is a Cartan-bounded upper finite p´εq-stratified category. Conversely, the Ringel dual
of a Cartan-bounded upper finite ε-stratified category is a tilting-bounded lower finite
p´εq-stratified category.

Proof. From either Theorem 4.25 or Theorem 4.27, it follows that the Cartan matrix
(2.23) for the upper finite category is equal to the matrix (4.11) for the lower finite
category. �

The next two corollaries give the analogs of the double centralizer property from
Corollary 4.11 in the semi-infinite setting.

Corollary 4.29 (Lower to upper double centralizer property). Let notation be as in
Definition 4.24. Assume in addition that R “ comodfd-C for a coalgebra C. Let B :“
C˚ be the dual algebra, so that T is a pB,Aq-bimodule. Let T 1 :“ Tf be the dual
pA,Bq-bimodule.

(1) T 1 is a p´εq-tilting generator for R1 and there is an algebra isomorphism

µ : B
„
Ñ EndR1pT

1qop (4.16)

sending y P B to µpyq : T 1 Ñ T 1, v ÞÑ vy. Equivalently, there is a coalgebra
isomorphism

µˇ : CoendR1pT
1q
„
Ñ C, cpiqr,s ÞÑ c̃piqr,s (4.17)

where c
piq
r,s is the element of CoendR1pT

1q corresponding to v
piq
s b u

piq
r P Ti b T˚i

according to (2.13) for dual bases v
piq
1 , . . . , v

piq
dpiq for Ti and u

piq
1 , . . . , u

piq
dpiq for T˚i ,

and c̃
piq
r,s P C is defined so that the structure map of the right C-comodule Ti

sends v
piq
s ÞÑ

řdpiq
r“1 v

piq
r b c̃

piq
r,s. So the Ringel dual of R1 relative to T 1 in the sense

of Definition 4.26 is equivalent to the original category R.
(2) Denote the Ringel duality functor for R1 relative to T 1 now by

F˚ :“ CohomR1pT
1, ?q “ HomR1p?, T

1qˇ : IndpR1cq Ñ IndpRq. (4.18)

We have that F˚ – TbA?, hence, pF˚, F q is an adjoint pair; cf. Lemma 2.11.

Proof. By Lemma 2.2, we have natural isomorphisms HomCpTi, Cq – T˚i as right B-
modules, hence, FC – T 1 as an pA,Bq-bimodule. Since every Ipbq appears as a summand
of the regular comodule, and FIpbq – T 1´εpbq by Theorem 4.25, we deduce that T 1 is a
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p´εq-tilting generator for R1. To see that B – EndApT
1qop, we use the fact that F is an

equivalence on ∇-filtered objects to deduce that

EndApT
1qop – EndApFCq

op – EndCpCq
op – B,

using Lemma 2.2 again for the final algebra isomorphism. This produces the isomor-

phism µ. To deduce (4.17), we need to show that µˇpc
piq
r,sq and c̃

piq
r,s take the same value

on y P B. The left hand side gives c
piq
r,spµpyqq “ v

piq
s pu

piq
s bq. For the right hand side,

we have that yv
piq
s “

řdpiq
r“1 c̃

piq
r,spyqv

piq
r , so c

piq
r,spyq “ pyv

piq
s qu

piq
r . These are equal. This

establishes (1). Then (2) follows from Lemma 2.11. �

Corollary 4.30 (Upper to lower double centralizer property). Let notation be as in Def-
inition 4.26, and assume in addition that R “ A-modlfd for a locally finite-dimensional
locally unital algebra A “

À

i,jPI eiAej. Let Ti “ eiT and T 1i :“ T˚i , so that T 1 :“
À

iPI T
1
i “ Tf. This is a pB,Aq-bimodule.

(1) T 1 “
À

iPI T
1
i is a p´εq-tilting generator for R1 and there is an algebra isomor-

phism

µ : A
„
Ñ

˜

à

i,jPI

HomR1pT
1
i , T

1
jq

¸op

(4.19)

sending a P eiAej to µpaq : T 1i Ñ T 1j , v ÞÑ va. So the Ringel dual of R1 relative

to T 1 in the sense of Definition 4.24 is equivalent to the original category R.
(2) Denote the Ringel duality functor for R1 relative to T 1 now by

G˚ :“
à

iPI

HomR1pT
1
i , ?q : IndpR1q Ñ IndpRcq. (4.20)

We have that G – T 1bA?, hence, pG,G˚q is an adjoint pair.

Proof. Note that GpAeiq “ HomApAei, T q
˚ “ peiT q

˚ “ Ti. So Theorem 4.27 implies
that T “

À

iPI Ti is a p´εq-tilting generator for R1. Moreover,

HomR1pTi, Tjq “ HomR1pGpAeiq, GpAejqq – HomRpAei, Aejq “ eiAej .

This proves (1) and then (2) follows from Lemma 2.11. �

Remark 4.31. Combining Corollary 4.28 with the double centralizer properties just
explained, one obtains a restricted version of semi-infinite Ringel duality giving a corre-
spondence
"

Tilting-bounded lower finite
highest weight categories

*

Ringel duality
ÐÝÝÝÝÝÝÝÑ

"

Cartan-bounded upper finite
highest weight categories

*

.

In the upper finite to lower finite direction, this appeared already in the work of Marko
and Zubkov [MZ]. In more detail, if R is the category of finite-dimensional modules over
a descending quasi-hereditary pseudo-compact algebra in the sense of [MZ, Def. 3.19]
and the indecomposable projectives in R are of finite length as assumed in [MZ, §4],
then R is an essentially finite highest weight category with upper finite weight poset,
hence, EnvpRq is a Cartan-bounded upper finite highest weight category. In this case,
the indecomposable tilting modules T pλq P EnvpRq were constructed already in [MZ,
§4], and the appropriate (lower finite) Ringel dual category appears in [MZ, §6]. Also
[MZ, Lem. 6.5] establishes a double centralizer property which is equivalent to Corol-
lary 4.30(1) for such categories.

In the setup of Definition 4.24, one can also define a functor

G :“ CohomRpT, ?q “ HomRp?, T q
f : ∆εpRq Ñ ∇´εpR1q. (4.21)

Theorem 4.25 plus an argument with duality like in Steps 11–12 of the proof of Theo-
rem 4.10 shows that G is an equivalence of categories such that G∆εpbq – ∇1´εpbq and
GTεpbq – I 1pbq for all b P B. Likewise, in the setup of Definition 4.26, one can also define

F :“ HomRpT, ?q : ∆εpRq Ñ ∇´εpR1q. (4.22)
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Theorem 4.27 plus an argument involving duality shows that F is an equivalence of
categories such that FIpbq – T 1´εpbq and F∇εpbq – ∆1´εpbq for all b P B. These func-
tors are needed to formulate the following, which is the semi-infinite counterpart of
Corollary 4.12. The proof is similar to the finite case; see also Lemma 4.41 below.

Corollary 4.32. If R is a lower finite or an upper finite ε-stratified category and R1 is
the Ringel dual category relative to some ε-tilting generator as above, the strata Rλ and
R1λ are equivalent for all λ P Λ. More precisely:

(1) If εpλq “ ` the functor Fλ :“ pj1qλ ˝ pi1q!ěλ ˝ F ˝ iďλ ˝ j
λ
˚ : Rλ Ñ R1λ is an

equivalence of categories taking Lλpbq “ jλLpbq to L1λpbq “ pj
1qλL1pbq.

(2) If εpλq “ ´ the functor Gλ :“ pj1qλ ˝ pi1q˚
ěλ ˝ G ˝ iďλ ˝ j

λ
! : Rλ Ñ R1λ is an

equivalence of categories taking Lλpbq “ jλLpbq to L1λpbq “ pj
1qλL1pbq.

In view of Corollary 4.4, Corollary 4.13 can be applied also in any lower finite ε-
stratified category (without any need to appeal to semi-infinite Ringel duality). In par-
ticular, if R is a lower finite `-stratified (resp., ´-stratified) category then all V P ∇pRq
(resp., V P ∆pRq) have finite ´-tilting resolutions (resp., finite `-tilting coresolutions).
Using Theorem 4.25, one sees that this assertion is equivalent to Lemma 3.43.

We have not investigated derived equivalences or any analog of Theorem 4.16 in the
semi-infinite setting.

Proof of Theorem 4.25. We may assume that R “ comodfd-C for a coalgebra C. Let
B :“ C˚ be the dual algebra, so that R is identified also with B-modfd. We can
replace the ε-tilting generator T “

À

iPI Ti with any other. This just has the effect of
transforming A into a Morita equivalent locally unital algebra. Consequently, without
loss of generality, we may assume that I “ B and T “

À

bPB Tεpbq. Then

A “

˜

à

a,bPB

HomRpTεpaq, Tεpbq

¸op

is a pointed locally finite-dimensional locally unital algebra with (primitive) distin-
guished idempotents teb | b P Bu. Let P 1pbq :“ Aeb and L1pbq :“ hd P 1pbq. Then
R1 “ A-modlfd is a Schurian category, the A-modules tL1pbq | b P Bu give a full set
of pairwise inequivalent irreducible objects, and P 1pbq is a projective cover of L1pbq
in IndpR1cq “ A-mod. It is immediate that pB, L1, ρ,Λ,ěq is a stratification of R1.
Let ∆1´εpbq and ∇1´εpbq be its p´εq-standard and p´εq-costandard objects. Also let
V pbq :“ F∇εpbq. Now one checks that Steps 1–6 from the proof of Theorem 4.10 carry
over to the present situation with very minor modifications. We will not rewrite these
steps here, but cite them freely below. In particular, Step 6 establishes that R1 is an
upper finite p´εq-stratified category. Also, F∇εpbq – ∆1´εpbq by Step 5. It just remains
to show:

‚ F restricts to an equivalence of categories between ∇asc
ε pRq and ∆asc

´ε pR1q.
‚ FIpbq – T 1´εpbq, the indecomposable p´εq-tilting object of R1 labelled by b P B.

This requires some different arguments compared to the ones from Steps 7–10 in the
proof of Theorem 4.10.

Let Ω be the directed poset consisting of all finite lower sets in Λ. Take ω “ Λ� P Ω.
Let ∇εpR, ωq be the full subcategory of ∇εpRq consisting of the ∇ε-filtered objects with
sections ∇εpbq for b P B� :“ ρ´1pΛ�q. Similarly, we define the subcategory ∆´εpR1, ωq
of ∆´εpR1q. By Steps 2 and 5, F restricts to a well-defined functor

F : ∇εpR, ωq Ñ ∆´εpR1, ωq. (4.23)

We claim that this is an equivalence of categories. To prove it, let i : R� Ñ R be the
finite ε-stratified subcategory of R associated to Λ�. Let e :“

ř

bPB� eb P A. Then T � :“
À

bPB� Tεpbq is an ε-tilting generator for R�. As EndR�pT �qop “ eAe, the Ringel dual
pR�q1 of R� relative to T � is identified with the quotient category pR1q� :“ eAe-modfd of
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R1. Let F � :“ HomRpT
�, ?q : R� Ñ pR1q� be the corresponding Ringel duality functor.

We also know from Theorem 3.42 that pR1q� is the finite p´εq-stratified quotient of R1
associated to Λ� (which is a finite upper set in pΛ,ěq). Let j1 : R1 Ñ pR1q� be the
quotient functor, i.e., the functor defined by multiplication by the idempotent e. For a
right C-comodule V , we have that

F �pi!V q –
à

bPB�

HomRpTεpbq, i
!V q – e

à

bPB

HomRpTεpbq, V q – j1pFV q.

This shows that
F � ˝ i! – j1 ˝ F, (4.24)

so in particular following diagram commutes up to a natural isomorphism:

R R1

R� pR�q1 ” pR1q�.

F

i! j1

F�

By Theorem 4.10, F � restricts to an equivalence ∇εpR�q Ñ ∆´εppR1q�q. Also the
restrictions i! : ∇εpR, ωq Ñ ∇εpR�q and j1 : ∆´εpR1, ωq Ñ ∆´εppR1q�q are equivalences.
This is clear for i!. To see it for j1, one shows using Theorem 3.42 that the left adjoint
pj1q! gives a quasi-inverse equivalence. Putting these things together, we deduce that
(4.23) is an equivalence as claimed.

Now we can show that F defines an equivalence F : ∇asc
ε pRq Ñ ∆asc

´ε pR1q. Take
V P ∇asc

ε pRq. Then V has a distinguished ascending ∇ε-flag pVωqωPΩ indexed by the
set Ω of finite lower sets in Λ. This is defined by setting Vω :“ i!V in the notation
of the previous paragraph; see the proof of Theorem 3.56. As each comodule Tεpbq is
finite-dimensional, hence, compact, the functor F commutes with direct limits. Hence,
FV – lim

ÝÑ
pFVωq. In fact, pFVωqωPΩ is the data of an ascending ∆´ε-flag in FV P R1.

To see this, we have that FVω P ∆´εpR1q by the previous paragraph. For ω ă υ the
quotient Vυ{Vω has a ∇ε-flag thanks to Corollary 3.58, so FVυ{FVω – F pVυ{Vωq has a
∆´ε-flag. We still need to show that FV is locally finite-dimensional. For this, we prove
that dim HomApFV, I

1pbqq ă 8 for each b P B. Since I 1pbq has a finite ∇´ε-flag, this
reduces to checking that dim HomApFV,∇1´εpbqq ă 8 for each b. To see this, pick a finite
lower set ω containing ρpbq. Then for υ ą ω, FVυ{FVω has a ∇´ε-flag with all sections
different from ∇1´εpbq, so HomApFVυ{FVω,∇1´εpbqq “ Ext1

ApFVυ{FVω,∇1´εpbqq “ 0. It
follows that HomApFVυ,∇1´εpbqq – HomApFVω,∇1´εpbqq and

HomApFV,∇1´εpbqq “ HomAplimÝÑpFVυq,∇
1
´εpbqq – HomApFVω,∇1´εpbqq,

which is finite-dimensional.
At this point, we have proved that F induces a well-defined functor

F : ∇asc
ε pRq Ñ ∆asc

´ε pR1q.
We prove that this is an equivalence by showing that the left adjoint F˚ :“ TbA? to F
gives a quasi-inverse. The left mate of (4.24) gives an isomorphism

i ˝ pF �q˚ – F˚ ˝ pj1q!. (4.25)

Combining this with Corollary 4.11, we deduce that F˚ restricts to a quasi-inverse of the
equivalence (4.23) for each ω P Ω. Also, F˚ commutes with direct limits, and again any
V 1 P ∆asc

´ε pR1q has a distinguished ascending ∆´ε-flag pV 1ωqωPΩ as we saw in the proof
of Theorem 3.37. These facts are enough to show that F˚ restricts to a well-defined
functor F˚ : ∆asc

´ε pR1q Ñ ∇asc
ε pRq which is quasi-inverse to F .

Finally, we check that FIpbq – T 1´εpbq. Let V :“ Ipbq and pVωqωPΩ be its distinguished
ascending ∇ε-flag indexed by the set Ω of finite lower sets in Λ as above. Using the
same notation as above, for ω “ Λ� P Ω such that ρpbq P Λ�, we know that Vω is
an injective hull of Lpbq in R�. Hence, by Theorem 4.10, F �Vω is the indecomposable
p´εq-tilting object of R� labelled by b. From this, we see that the ascending ∆´ε-flag
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pFVωqωPΩ in FIpbq coincides with the distinguished ascending ∆´ε-flag in T 1´εpbq from
the construction from the proof of Theorem 4.18. �

Proof of Theorem 4.27. We may assume that R “ A-modlfd for a pointed locally finite-
dimensional locally unital algebra A “

À

a,bPB eaAeb, so that T is a locally finite-

dimensional left A-module. Let C :“ TfbAT viewed as a coalgebra according to (2.14).
By Lemma 2.10 this coalgebra is the continuous dual of B “ EndApT q

op, and we may
identify R with the locally finite Abelian category comodfd-C. Applying Lemma 2.11,
the Ringel duality functor G becomes the functor TfbA? : A-mod Ñ comod-C, with
the comodule structure map of GV :“ Tf bA V being defined as in (2.17). Let

I 1pbq :“ GTεpbq, L1pbq :“ soc I 1pbq, ∇1´εpbq :“ G∆εpbq. (4.26)

Each I 1pbq is an indecomposable injective right C-comodule, and tL1pbq | b P Bu is a full
set of pairwise inequivalent irreducible C-comodules. To show that R1 is a lower finite
p´εq-stratified category, we must show for each finite upper set Λ� in Λ that the Serre
subcategory pR1q� of R1 generated by tL1pbq|b P B� :“ ρ´1pΛ�qu is a finite p´εq-stratified
category for the induced stratification pB�, L1, ρ,Λ,ěq.

The functor G sends short exact sequences of objects in ∆asc
ε pRq to short exact

sequences in IndpR1q. This follows because HomRp?, T q has this property thanks to the
Ext1-vanishing from Lemma 3.36. Since ∆εpbq ãÑ Tεpbq, we deduce that that ∇1´εpbq ãÑ

I 1pbq. Thus, we have that L1pbq “ soc ∇1´εpbq.
Now let R� be the Serre quotient of R associated to some finite upper set Λ� Ď Λ

and let j : RÑ R� be the quotient functor. This is a finite ε-stratified category thanks
to Theorem 3.42. In fact, R� “ A�-modfd where A� :“ eAe for e :“

ř

bPB� eb; the
quotient functor j is the idempotent truncation functor defined by multiplying by e. By
the upper finite analog of Corollary 4.5, T � :“ eT is an ε-tilting generator for R�. Let
B� :“ EndA�pT �qop be its (finite-dimensional) endomorphism algebra. Then pR�q1 :“
B�-modfd is the Ringel dual of R� relative to T �. By the finite Ringel duality from
Theorem 4.10, pR�q1 is a finite p´εq-stratified category. Let G� :“ CohomRpT

�, ?q “
HomRp?, T

�q˚ : R� Ñ pR�q1 be its Ringel duality functor. The functor j defines an
algebra homomorphism π : B Ñ B�, hence, we get a functor π˚ : pR�q1 Ñ R1. We claim
that this gives an isomorphism identifying pR�q1 with the subcategory pR1q� of R1. This
will be proved in the next paragraph. Moreover, making this identification, we have that

i1 ˝G� – G ˝ j!., (4.27)

i.e., the following diagram commutes up to natural isomorphism:

R� pR�q1 ” pR1q�

R R1.

G�

j! i1

G

This follows because the northeast composition is the functor TfebeAe? while the south-
west composition is Tf bA AebeAe?, and Tfe – Tf bA Ae as bimodules. Since we
already know that pR�q1 is a finite p´εq-category, it follows that pR1q� one too, with
costandard objects

i1pG�∆εpbqq – Gpj!∆
�
εpbqq – G∆εpbq “ ∇1´εpbq

thanks again to Theorem 4.10 plus Theorem 3.42(6).
To prove the claim, let C� :“ pB�q˚ be the (finite-dimensional) dual coalgebra so

that pR�q1 “ comodfd-C�. Consider the short exact sequence

0 ÝÑ AebeAe eT ÝÑ T ÝÑ Q ÝÑ 0

which comes from the upper finite counterpart of Lemma 3.19(2); thus, Q P ∆asc
ε pRq

and all of its sections are of the form ∆εpbq for b R B�, while Ae beAe eT P ∆εpRq has
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sections of the form ∆εpbq for b P B�. Applying G and using the exactness noted in the
second paragraph of the proof, we get a short exact sequence

0 ÝÑ C� ÝÑ C Ñ GQÑ 0.

The first map C� Ñ C here is dual to the algebra homomorphism π : B Ñ B�, so
it is a coalgebra homomorphism. It identifies pR�q1 with the the Abelian subcate-
gory comodfd-C� of R1 “ comodfd-C. Note also that the irreducible objects of R1 are
tL1pbq | b P B1u. To complete the proof of the claim, it suffices using Lemma 2.25 to
show that the socle of GQ only has constituents of the for L1pbq for b R B�. Fix an
ascending ∆ε-flag pVωqωPΩ in Q. As G commutes with direct limits, we deduce that
GQ “ lim

ÝÑ
pGVωq. The sections in a ∆ε-flag in Vω are ∆εpbq for b R B�, hence, GVω has

a ∇´ε-flag with sections ∇1´εpbq for b R B�. It follows that soc pGVωq is of the desired
form for each ω, hence, the socle of GQ is too.

We can now complete the proof of the theorem. We have shown already that R1 is
a lower finite p´εq-stratified category. Theorem 4.10 plus Corollary 4.4 shows for Λ�

chosen to contain ρpbq that

T 1´εpbq – G�pjP pbqq – Gpj!pjP pbqqq – GP pbq.

Also, for a, b P B�, we have that

HomR1pT
1
´εpaq, T

1
´εpbqq – HompR1q�pT

1
´εpaq, T

1
´εpbqq – HomA�pA�ea, A

�ebq – eaAeb.

These things are true for all choices of Λ�, so we see that the Ringel dual of R1 relative
to

À

bPB T
1
´εpbq is the original category R “ A-modlfd. This puts us in the situation

of Corollary 4.29, and finally we invoke that corollary (whose proof did not depend on
Theorem 4.27) to establish that G : ∆asc

ε pRq Ñ ∇asc
´ε pR1q is an equivalence. �

4.5. Essentially finite Ringel duality. To complete our account of infinite versions
of Ringel duality, it remains to discuss the essentially finite case. For this, we impose
the tilting-bounded assumption from Definition 4.20.

Definition 4.33. Assume R is an essentially finite ε-stratified category with stratifica-
tion pB, L, ρ,Λ,ďq. Assume in addition that R is tilting-bounded. An ε-tilting generator
for R means an object T “

À

jPJ Tj P EnvpRq with a given decomposition as a direct

sum of objects Tj P T iltεpRq such that each Tεpbq appears as an indecomposable sum-
mand of T with multiplicity that is non-zero and finite. Then we define the Ringel dual
of R relative to T to be the category R1 :“ B-modfd where

B :“

˜

à

i,jPJ

HomRpTi, Tjq

¸op

.

We denote the system of distinguished idempotents of B arising from the identity endo-
morphisms of each Tj by tfj | j P Ju. Also define the two Ringel duality functors

F :“
à

jPJ

HomRpTj , ?q : RÑ R1, (4.28)

G :“ CohomRpT, ?q “ HomRp?, T q
˚ : RÑ R1. (4.29)

Theorem 4.34 (Essentially finite Ringel duality). In the setup of Definition 4.33, the
Ringel dual category R1 is a tilting-bounded essentially finite p´εq-stratified category with
stratification pB, L1, ρ,Λ,ěq and distinguished objects

P 1pbq “ FTεpbq, I 1pbq “ GTεpbq, L1pbq “ hd P 1pbq – soc I 1pbq,

∆1´εpbq “ F∇εpbq, ∇1´εpbq “ G∆εpbq, T 1´εpbq “ FIpbq – GP pbq.

The restrictions F : ∇εpRq Ñ ∆´εpR1q and G : ∆εpRq Ñ ∇´εpR1q are equivalences.
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Proof. We may assume that R “ A-modfd for an essentially finite-dimensional pointed
locally unital algebra A “

À

i,jPI eiAej . Replacing the ε-tilting generator T “
À

jPJ Tj
by any other changes B to a Morita equivalent algebra, so we may as well assume simply
that J “ B and T “

À

bPB Tεpbq. Then the algebra B “
À

a,bPB faBfb is a pointed
locally unital algebra. The assumption that R is tilting-bounded implies that

ÿ

aPB

dim HomRpTεpaq, Tεpbqq ă 8,
ÿ

bPB

dim HomRpTεpaq, Tεpbqq ă 8

for each a, b P B. Thus, B is essentially finite-dimensional, i.e., R1 is essentially finite
Abelian. The module P 1pbq :“ Afb is an indecomposable projective A-module, and

 

L1pbq :“ hd P 1pbq
ˇ

ˇ b P B
(

is a full set of pairwise inequivalent irreducibles. Now pB, L1, ρ,Λ,ěq defines a stratifi-
cation of R1. One checks that Steps 1–12 from the proof of Theorem 4.10 all go through
essentially unchanged in the present setting. This completes the proof except for one
point: we must observe finally that R1 is tilting-bounded. This follows because the
relevant matrix from Definition 4.20 (with each Tεpbq now being replaced by T 1´εpbq) is
the Cartan matrix

`

dim HomApP paq, P pbqq
˘

a,bPB

of A. Its rows and columns have only finitely many non-zero entries as A is essentially
finite-dimensional. �

Corollary 4.35 (Essentially finite double centralizer property). Continuing in the
general setup of Definition 4.33, suppose that the ε-stratified category R is A-modfd

for an essentially finite-dimensional locally unital algebra A “
À

i,jPI eiAej, so that

T “
À

jPJ Tj is an pA,Bq-bimodule. For i P I, let T 1i :“ peiT q
˚ P B-modfd, so that

T 1 :“
À

iPI T
1
i is a pB,Aq-bimodule.

(1) The module T 1 “
À

iPI T
1
i is a p´εq-tilting generator for R1 “ B-modfd and

there is an algebra isomorphism

µ : A
„
Ñ

˜

à

i,jPI

HomR1pT
1
i , T

1
jq

¸op

(4.30)

sending a P eiAej to µpaq : T 1i Ñ T 1j , t ÞÑ ta. So the Ringel dual of R1 relative

to T 1 “
À

iPI T
1
i is equivalent to the original category R.

(2) Denote the Ringel duality functors from R1 to R by

G˚ :“
à

iPI

HomR1pT
1
i , ?q : R1 Ñ R, (4.31)

F˚ :“ CohomRpT
1, ?q “ HomRp?, T

1q˚ : R1 Ñ R. (4.32)

respectively. We have that F˚ – TbB? and G – T 1bA?, hence, pF˚, F q and
pG,G˚q are adjoint pairs.

Proof. For (1), note that
À

iPI GpAeiq is a p´εq-tilting generator for R1 since GP pbq –
T 1´εpbq for b P B. Actually, GpAeiq “ HomApAei, T q

˚ – peiT q
˚ “ T 1i . Thus, T 1 “

À

iPI T
1
i is a p´εq-tilting generator for R1. To obtain the isomorphism between A

and the locally finite endomorphism algebra of T 1, apply the functor G to the canon-

ical isomorphism A –

´

À

i,jPI HomApAei, Aejq
¯op

. To prove (2), we note first that

F˚pBfjq – T bB Bfj . It then follows that F˚pV q – T bB V on any finite-dimensional
B-module V by taking a resolution P2 Ñ P1 Ñ V Ñ 0 in which P1, P2 are direct
sums of modules of the form Bfj , then using the Five Lemma. The argument for G is
similar. �

We leave it to the reader to adapt Corollary 4.12 to the essentially finite setting.
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4.6. Tilting-rigidity. We begin by recalling some well-known definitions:

(QF) A finite Abelian category R is quasi-Frobenius if all projective objects are in-
jective. In that case, there is a unique bijection ν : B Ñ B, the Nakayama
permutation, such that

P pbq – Ipνpbqq

for each b P B, where P pbq and Ipbq are projective covers and injective hulls of
of the irreducible objects tLpbq | b P Bu.

(WS) A finite Abelian category R is weakly symmetric if it is quasi-Frobenius with
Nakayama permutation being the identity function. Equivalently, P pbq – Ipbq
for all b P B.

(S) A finite Abelian category R is symmetric if there is a natural isomorphism of
vector spaces

HomRpP, V q – HomRpV, P q
˚ (4.33)

for all P, V P R with P projective.

These are equivalent to saying that every algebra realization A of R is quasi-Frobenius,
Frobenius, or symmetric, respectively; see [GHK, §4.4] and [Ric, Th. 3.1]. Of course,
(QF) ñ (WS) ñ (S). We are going to investigate some properties of fully stratified
categories which involve the properties (QF), (WS) and (S) at the level of strata.

We assume from now on that R is a fully stratified category, by which we mean a
fully stratified category of any one of the four types, finite, essentially finite, upper finite
or lower finite. We use the usual notation pB, L, ρ,Λ,ďq for its stratification.

Definition 4.36. Let R be a fully stratified category. We say that R is tilting-rigid if

T ilt`pRq “ T ilt´pRq.
For this to make sense in the essentially finite case, it is necessary to assume implicitly
that R is tilting-bounded in the sense of Definition 4.20 for some choice (equivalently,
all choices) of sign function ε.

Highest weight categories are automatically tilting-rigid for trivial reasons, so that
Definition 4.36 is not needed when working just with highest weight categories. The im-
portance of tilting-rigidity first became apparent in the context of fibered highest weight
categories in [MO], [FM], where it is formulated as the property “tilting “ cotilting”.
The following lemma shows in a tilting-rigid category that the subcategories T iltεpRq
coincide for all choices of ε, so that we can denote them all simply by T iltpRq.

Theorem 4.37 (Tilting-rigid categories have quasi-Frobenius strata). Let R be a tilting-
rigid fully stratified category. There is a unique bijection ν : B Ñ B such that

T`pbq – T´pνpbqq.

For λ P Λ, this function leaves Bλ Ď B invariant, and the stratum Rλ is quasi-Frobenius
with Nakayama permutation ν|Bλ . Moreover, for any sign function ε : Λ Ñ t˘u, we
have that

Tεpbq –

"

T`pbq if εpλq “ `,
T`pν

´1pbqq if εpλq “ ´.
(4.34)

Proof. There is obviously a unique function ν : B Ñ B such that T`pbq – T´pνpbqq.
This function is injective and leaves each of the finite subsets Bλ invariant, hence, it
is actually a bijection. To see that Rλ is quasi-Frobenius with ν|Bλ as its Nakayama
permutation, we must show that Pλpbq – Iλpνpbqq for each b P Bλ. This follows using
T`pbq – T´pνpbqq together with Theorem 4.2(3) or Theorem 4.18(3) (which one depends
on the particular setting we are in). Finally, take b P Bλ and a sign function ε. Then
T`pbq – T´pνpbqq has both a ∆-flag and a ∇-flag, hence, it has a ∆ε-flag and a ∇ε-flag.
It follows that it is isomorphic to Tεpb

1q for a unique b1 P Bλ. Applying jλ and using
Theorems 4.2 or 4.18 again gives that b1 “ b if εpλq “ ` or b1 “ νpbq if εpλq “ ´, and
the formula (4.34) follows. �
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The argument used to prove the next lemma is based on the proof of [CM, Th. 2.2].
Note this proves Conjecture 4.15 assuming an additional hypothesis on the strata.

Lemma 4.38. Suppose that R is a finite fully stratified category and ε : Λ Ñ t˘u is
some given sign function.

(1) Assume that Lλpaq is isomorphic to a subobject of a projective object in Rλ for
all a P Bλ and λ P Λ with εpλq “ `. Then for b P B, Tεpbq has finite injective
dimension if and only if Tεpbq P T ilt´pRq.

(2) Assume that Lλpaq is isomorphic to a quotient of an injective object in Rλ for
all a P Bλ and λ P Λ with εpλq “ ´. Then for b P B, Tεpbq has finite projective
dimension if and only if Tεpbq P T ilt`pRq.

Proof. We just prove (1), (2) being the equivalent dual statement. If Tεpbq P T ilt´pRq
then Tεpbq has a ∇-flag, so it has finite injective dimension thanks to Corollary 3.24.
Conversely, suppose that Tεpbq has finite injective dimension. Since Tεpbq P T iltεpbq, it
has both a ∆ε-flag and a ∇ε-flag. Hence, as R is fully stratified, it has both a ∆̄-flag
and a ∇̄-flag. To show that Tεpbq P T ilt´pRq, it remains to show that Tεpbq has a
∇-flag. This follows from the homological criterion (Theorem 3.11) if we can show that
Ext1

Rp∆̄pcq, Tεpbqq “ 0 for all c P B. By assumption, Tεpbq has finite injective dimension,

so there is a greatest d such that ExtdRp∆̄paq, Tεpbqq ‰ 0 for some a P B. Now the goal
is to show that d “ 0.

Suppose for a contradiction that d ‰ 0. Since ExtdRp∆εpaq, Tεpbqq “ 0, we must have
that a P Bλ for λ with εpλq “ `. By the assumption on strata, there exists a1 P Bλ

such that Lλpaq ãÑ Pλpa
1q. Let 0 “ V0 ă ¨ ¨ ¨ ă Vn “ ∆pa1q be the ∆̄-flag for ∆pa1q

obtained by applying the exact functor jλ! to a composition series for Pλpa
1q chosen so

that its bottom section is isomorphic to Lλpaq. For each r “ 1, . . . , n we have that
Vr{Vr´1 – ∆̄parq for some ar P Bλ with a1 “ a. Applying HomRp?, Tεpbqq to the short

exact sequence 0 Ñ Vr´1 Ñ Vr Ñ ∆̄parq Ñ 0 and using Extd`1
R p∆̄parq, Tεpbqq “ 0 gives

a surjection ExtdRpVr, Tεpbqq � ExtdRpVr´1, Tεpbqq. Since ExtdRpV1, Tεpbqq ‰ 0 by the

choice of a, we deduce that ExtdRpVr, Tεpbqq ‰ 0 for all r “ 1, . . . , n. Taking r “ n gives

ExtdRp∆pa
1q, Tεpbqq ‰ 0. This is a contradiction since Tεpbq has a ∇̄-flag. �

The following extends [CM, Th. 2.2] from fibered highest weight categories to fully
stratified categories; cf. Remark 3.30.

Theorem 4.39 (Homological criterion for tilting-rigidity). For a finite fully stratified
category R, the following properties are equivalent:

(i) R is tilting-rigid;
(ii) R is Gorenstein8 and all of its strata are quasi-Frobenius;

(iii) R is Gorenstein and for each λ P Λ and b P Bλ the irreducible object Lλpbq
appears in the socle of some projective in Rλ;

(iii1) R is Gorenstein and for each λ P Λ and b P Bλ the irreducible object Lλpbq
appears in the head of some injective in Rλ.

Proof. We may assume that R “ A-modfd for a finite-dimensional algebra A.

(i)ñ(ii). All strata are quasi-Frobenius by Theorem 4.37. The injective left A-module A˚

has a finite ´-tilting resolution 0 Ñ Tn Ñ ¨ ¨ ¨ Ñ T1 Ñ T0 Ñ A˚ Ñ 0 by Corollary 4.14.
As R is tilting-rigid, this is also a finite `-tilting-resolution, so each Ti has a ∆-flag.
Using Corollary 3.24, it follows that each Ti has finite projective dimension. We deduce
that A˚ has finite projective dimension by arguing as in the proof of [Wei, Th. 4.3.1];
cf. the proof of (2)ñ(1) from [CM, Th. 2.2]. The dual argument gives that A has finite
injective dimension. Hence, A is Gorenstein.

8All projectives have finite injective dimension and all injectives have finite projective dimension.
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(ii)ñ(iii), (iii1). This follows immediately since Pλpbq – Iλpνpbqq for all b P Bλ, where ν
is the Nakayama permutation.

(iii)ñ(i). It suffices to show that each T`pbq belongs to T ilt´pRq. As
À

bPB T`pbq is tilt-
ing in the general sense of tilting theory (cf. the discussion before Conjecture 4.15), the
assumption that A is Gorenstein together with [HU, Lem. 1.3] implies that

À

bPB T`pbq
is cotilting. Hence, it has finite injective dimension, so each T`pbq has finite injective
dimension. Then we apply Lemma 4.38(1) with ε “ `.

(iii1)ñ(i). This follows by the dual argument to the proof of (iii)ñ(i). �

Corollary 4.40. If R is a finite fibered highest weight category, it is tilting-rigid if and
only if it is Gorenstein.

Proof. In a fibered highest weight category each stratum has a unique irreducible object
(up to isomorphism). Therefore the second parts of (iii) and (iii1) in Theorem 4.39 hold
automatically. �

Now we are going to consider the Ringel dual R1 of a tilting-rigid fully stratified
category R as in Definitions 4.9, 4.24, 4.26 or 4.33 (depending on the setting). These
definitions all involve the choice of a sign function ε and the choice of an ε-tilting
generator T . By (4.34), an ε-tilting generator for some choice of ε is an ε-tilting generator
for all ε, so it makes sense to drop the prefix ε, referring to T simply as a tilting generator.
Fixing such a choice, let R1 be the corresponding Ringel dual category, and let F and
G be the Ringel duality functors from those definitions together with (4.21) and (4.22)
in the lower finite and upper finite cases, respectively. Note these functors only depend
on the choice of tilting generator, not on the choice of sign function ε, i.e., they are the
same functors for all ε. For each λ P Λ, there are now two equivalences of categories

Fλ “ pj
1qλ ˝ pi1q!ěλ ˝ F ˝ iďλ ˝ j

λ
˚ : Rλ Ñ R1λ, (4.35)

Gλ “ pj
1qλ ˝ pi1q˚ěλ ˝G ˝ iďλ ˝ j

λ
! : Rλ Ñ R1λ (4.36)

between strata; see Corollary 4.12 (which also holds in the essentially finite case) and
Corollary 4.32. The following lemma gives a more explicit description of these functors.

Lemma 4.41. Let R be a finite, tilting-bounded essentially finite, upper finite or lower
finite ε-stratified category with the usual stratification pL,B, ρ,Λ,ďq. Suppose that R1 is
the Ringel dual of R with respect to some given tilting generator T “

À

iPI Ti such that
the index set I contains B and Tb pb P Bq is a direct sum of Tεpbq and copies of Tεpcq
for c P B with ρpcq ă ρpbq. For λ P Λ, let Tλ :“

À

bPBλ
Tb P Rďλ. There is an algebra

isomorphism
φλ : Aλ

„
Ñ EndRλ

pjλTλq
op

between the natural algebra realization Aλ for the stratum R1λ and the endomorphism
algebra of jλTλ P Rλ. Moreover:

(1) If εpλq “ ` then Fλ – HomRλ
pjλTλ, ?q : Rλ Ñ Aλ-modfd with the action of Aλ

defined via φλ.
(2) If εpλq “ ´ then Gλ – HomRλ

p?, jλTλq
˚ : Rλ Ñ Aλ-modfd with the action of

Aλ defined via φλ.

Proof. We just explain the argument in detail if R is a finite ε-stratified category; the
other cases are similar but there are minor notational differences. We have that R1 “
A-modfd for A :“ EndRpT q

op. The functors F and G are HomRpT, ?q and HomRp?, T q
˚,

respectively. Let eb P A be the projection of T onto Tεpbq and set eλ :“
ř

bPBλ
eb. Let

Aěλ be the quotient of A by the two-sided ideal generated by the idempotents teµ | µ P
Λ with µ ğ λu. This is the natural realization of the Serre subcategory R1ěλ of R1.
Then the stratum R1λ is realized by the basic finite-dimensional algebra Aλ :“ ēλAěλēλ,
where we write x̄ for the canonical image of x P A under the quotient map A � Aěλ.
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The idempotents tēb | b P Bλu are representatives for the conjugacy classes of primitive
idempotents in Aλ.

By Theorem 4.2(3), jλTλ is a minimal projective generator for Rλ if εpλq “ ` or
a minimal injective cogenerator for Rλ if εpλq “ ´. In either case, EndRλ

pjλTλq
op

is the basic algebra realizing the stratum Rλ. Since Rλ and R1λ are equivalent, it
follows that Aλ – EndRλ

pjλTλq
op. However, the argument so far does not produce

the desired explicit isomorphism φλ between these algebras. To obtain this, since we
have already seen that the dimensions agree, it suffices to construct a surjective algebra
homomorphism φλ : Aλ � EndRλ

pjλTλq
op.

Let Rěλ be the Serre quotient of R associated to the upper set pλ,8s, so that Rěλ
has irreducible objects labelled by Běλ. Denote the quotient functor by jěλ : RÑ Rěλ.
The functor jěλ defines an algebra homomorphism

A “ EndRpT q
op Ñ EndRěλpj

ěλT qop. (4.37)

This homomorphism is surjective. To see this, Corollary 3.19(2) gives a short exact

sequence 0 Ñ jěλ! jěλT Ñ T Ñ QÑ 0 in which Q has a ∆ε-flag. Applying HomRp?, T q
to this gives surjectivity of the first map below:

HomRpT, T q� HomRpj
ěλ
! jěλT, T q

„
Ñ HomRěλpj

ěλT, jěλT q.

The second map comes from the adjunction. The composite is the map (4.37), so indeed
it is surjective. Now we note that this map sends each eµ for µ ğ λ to zero, so it
factors through the quotient A � Aěλ to give a surjective homomorphism Aěλ �
EndRěλpj

ěλT qop. Then we restrict to ēλAěλēλ to obtain the homomorphism φλ.
It just remains to prove (1) and (2). The universal property of Serre quotients pro-

duces a unique fully faithful functor iλ making the following diagram of functors com-
mute:

R Rěλ

Rďλ Rλ.

jěλ

iďλ

jλ

iλ

Thus, jěλ ˝ iďλ – iλ ˝ j
λ. Composing on the left with jěλ˚ and on the right with jλ˚ ,

using that jλ ˝ jλ˚ – Id and jěλ˚ ˝ jěλ – Id on objects in the image of iďλ ˝ j
λ
˚ , we deduce

that
jěλ˚ ˝ iλ – iďλ ˝ j

λ
˚ . (4.38)

Using this, we have that

Fλ – pj
1qλppi1q!ěλ HomRpT, j

ěλ
˚ piλ?qqq – ēλ HomRěλpj

ěλT, iλ?q “ HomRλ
pjλTλ, ?q,

proving (1). The proof of (2) is similar, using the isomorphism jěλ! ˝ iλ – iďλ ˝ j
λ
! in

place of (4.38). �

Returning to the setup before the lemma, so R is a tilting-rigid fully stratified category
and R1 is its Ringel dual relative to some tilting generator T , we next discuss the labelling
of irreducible objects in R1. In the general tilting-rigid setting, this depends on a choice
of sign function ε, since one needs to fix a specific labelling tTεpbq | b P Bu of the
isomorphism classes of indecomposable summands of T . Put another way, the labelling
of irreducible objects in R1 depends on a labelling tL1bpλq | b P Bλu of irreducible objects
in each of the strata R1λ, which we do given a choice of ε by declaring that

L1λpbq :“

"

FλLλpbq if εpλq “ `,
GλLλpbq if εpλq “ ´.

(4.39)

In the next theorem, we see for the first time the advantage of assuming that all of
the strata of R are symmetric, or at least weakly symmetric, since then the labelling of
irreducibles in R1 does not depend on the choice of ε here.
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Theorem 4.42 (Ringel duality for tilting-rigid fully stratified categories). Let R be a
tilting-rigid fully stratified category. The Ringel dual R1 of R with respect to some tilting
generator is again tilting-rigid. Moreover, the following hold for λ P Λ:

(1) Rλ is weakly symmetric if and only if FλLλpbq – GλLλpbq for all b P Bλ.
(2) Rλ is symmetric if and only if Fλ – Gλ.

Proof. Taking ε “ ` in the appropriate Ringel duality theorem (one of Theorems 4.10,
4.25, 4.27 or 4.34) gives that R1 is ´-stratified with indecomposable ´-tilting objects
tFIpbq | b P Bu in the finite, lower finite or essentially finite cases and tGP pbq | b P Bu
in the finite, upper finite or essentially finite cases. Taking ε “ ´ gives that R1 is `-
stratified with indecomposable `-tilting objects tFIpbq | b P Bu in the finite, lower finite
or essentially finite cases and tGP pbq | b P Bu in the finite, upper finite or essentially
finite cases. It follows R1 is fully stratified and its indecomposable ´-tilting objects and
`-tilting objects are the same, i.e., T ilt`pR1q “ T ilt´pR1q and R1 is tilting-rigid.

To prove (1) and (2), let ε be any sign function. We may assume that the tilting
generator is T “

À

bPB Tεpbq. Let Tλ :“
À

bPBλ
Tεpbq and Aλ – EndRλ

pjλTλq
op be as

in Lemma 4.41. Using the explicit descriptions of Fλ and Gλ from Lemma 4.41(1)–(2),
we deduce that FλLλpbq – GλLλpbq if and only if

HomRλ
pjλTλ, Lλpbqq – HomRλ

pLλpbq, j
λTλq

˚

as left Aλ-modules (notation as in Lemma 4.41). The left hand side is the irreducible
Aλ-module associated to the primitive idempotent that is the projection of jλTλ onto
the summand isomorphic to Pλpbq, and the right hand side is the irreducible Aλ-module
associated to the primitive idempotent that is the projection of jλTλ onto the summand
isomorphic to Iλpbq. Thus, these modules are isomorphic for all b P Bλ if and only if
Pλpbq – Iλpbq for all b P Bλ, i.e., the Nakayama permutation of Rλ is the identity, and
Rλ is weakly symmetric. This proves (1).

To prove (2), using Lemma 4.41 again, we have that Fλ – Gλ if and only if there is
a natural isomorphism of left Aλ-modules

HomRλ
pjλTλ, V q – HomRλ

pV, jλTλq
˚

for V P Rλ. Since jλTλ is a projective generator for Rλ and Aλ “ EndRλ
pjλTλq

op,
there is such an Aλ-module isomorphism if and only if there is a natural vector space
isomorphism as in (4.33) for all P, V P Rλ with P projective, i.e., Rλ is symmetric
according to the definition we gave earlier. �

In the sequel, we will only consider tilting-rigid fully stratified categories with the
additional property that all strata are weakly symmetric. By Theorem 4.37, a tilting-
rigid fully stratified category has this property if and only if ν “ id. Thus, a fully
stratified category is tilting-rigid with weakly symmetric strata if and only if

T`pbq – T´pbq (4.40)

for all b P B. In that case, T`pbq – Tεpbq for all sign functions ε, so that one can simply
write T pbq in place of Tεpbq. Moreover, if R1 is the Ringel dual category to R with respect
to some tilting generator, the irreducible objects of R1 are labelled unambiguously by
the set B; the induced labelling of irreducible objects of the stratum R1λ satisfies

L1λpbq – FλLλpbq – GλLλpbq (4.41)

for all λ P Λ and b P Bλ.

4.7. Bases for morphism spaces between ∆- and ∇-filtered objects. In this
subsection, we explain how to extend the construction of [AST, Th. 3.1] first to ε-
stratified and then to fully stratified categories. These results will be used in the next
section to construct triangular bases for endomorphism algebras of tilting generators.
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Theorem 4.43. Let R be a finite, lower finite or tilting-bounded essentially finite ε-
stratified category with stratification pB, L, ρ,Λ,ďq. Suppose for each b P B that we are
given Tb P T iltεpRq such that Tb is a direct sum of Tεpbq and copies of Tεpcq for c with
ρpcq ă ρpbq. Take M P ∆εpRq and N P ∇εpRq. For each b P B, choose an embedding
ιb : ∆εpbq ãÑ Tb, a projection πb : Tb � ∇εpbq, and subsets

Yb Ă HomRpM,Tbq, Xb Ă HomRpTb, Nq

so that
 

ȳ :“ πb ˝ y
ˇ

ˇ y P Yb
(

is a basis for HomRpM,∇εpbqq and
 

x̄ :“ x ˝ ιb
ˇ

ˇ x P Xb

(

is a basis for HomRp∆εpbq, Nq, as illustrated by the diagram:

∆εpbq� _

ιb

��

x

""

M
y

//

y
""

Tb

πb
����

x
// N

∇εpbq

. (4.42)

Then the morphisms x ˝ y for all py, xq P
Ť

bPB Yb ˆXb give a basis for HomRpM,Nq.

Proof. We proceed by induction on `∆ε
pMq ` `∇εpNq where `∆ε

pMq :“
ř

bPBpM :
∆εpbqq and `∇εpNq :“

ř

bPBpN : ∇εpbqq. The base case is this number is zero, hence,
M “ N “ 0 too, which is trivial. For the induction step, we can replace R by the Serre
subcategory of R associated to the lower set of Λ generated by all tλ | pM : ∆εpbqq`N :
∇εpbqq ‰ 0 for some b P Bλu to assume that there is some maximal element λ P Λ such
that such that pM : ∆εpbqq`pN : ∇εpbqq ‰ 0 for some b P Bλ. Then we let Λ� :“ Λztλu,
B� :“ ρ´1pΛ�q, and i : R� Ñ R be the natural inclusion of the corresponding Serre
subcategory of R. Let j : RÑ Rλ be the quotient functor.

In this paragraph, we treat the special case N P R�. Let M� :“ i˚M . Note by the
choice of λ that `∆εpM

�q``∇εpNq| ă `∆εpMq``∇εpNq. By (3.10) and Theorem 3.17(2),
we have that M� P ∆εpR�q, and there is a short exact sequence 0 Ñ K ÑM ÑM� Ñ 0
where K has a ∆ε-flag with sections of the form ∆εpbq for b P Bλ. It follows that the
natural inclusion HomRpM

�, Nq ãÑ HomRpM,Nq is an isomorphism. For b P B�, all of
the morphisms ty : M Ñ Tb | y P Ybu factor through M� too. Hence, we can apply the
induction hypothesis to deduce that the morphisms x ˝ y for all py, xq P

Ť

bPB� Yb ˆXb

give a basis for HomRpM
�, Nq “ HomRpM,Nq. Since Xb “ ∅ for b P Bλ, we have that

Ť

bPB Yb ˆXb “
Ť

bPB� Yb ˆXb, so this is just what is needed.

Now suppose that N R R� and let N� :“ i!N P R�. We again have that `∆εpM
�q `

`∇εpNq| ă `∆ε
pMq ` `∇εpNq. By (3.10) and Theorem 3.17(4), we have that N� P

∇εpR�q, and there is a short exact sequence 0 Ñ N� Ñ N
π
Ñ Q Ñ 0 where Q has a

∇ε-flag with sections of the form ∇εpbq for b P Bλ. Applying HomRpM, ?q to this and
using Theorem 3.14 gives a short exact sequence

0 Ñ HomRpM,N�q Ñ HomRpM,Nq Ñ HomRpM,Qq Ñ 0.

For b P B�, the morphisms tx : Tb Ñ N | x P Xbu have image contained in N� and
are lifts of a basis for HomR�p∆εpbq, N

�q. By induction, we get that HomRpM,N�q has
basis given by the compositions x ˝ y for all py, xq P

Ť

bPB� Yb ˆ Xb. In view of this
and the above short exact sequence, we are therefore reduced to showing that the mor-
phisms π ˝ x ˝ y for py, xq P

Ť

bPBλ
Yb ˆXb give a basis for HomRpM,Qq. We have that

Q – j˚jQ by Corollary 3.19(1), hence, the exact quotient functor j defines isomorphisms

HomRpM,Qq
„
Ñ HomRλ

pjM, jQq. Similarly, HomRpM,∇εpbqq
„
Ñ HomRλ

pjM, j∇εpbqq

and HomRp∆εpbq, Nq
„
Ñ HomRλ

pj∆εpbq, jNq for b P Bλ. Moreover, jπ : jN Ñ jQ
is an isomorphism. Thus, we are reduced to showing that the morphisms jx ˝ jy give
a basis for HomRλ

pjM, jNq for all py, xq P
Ť

bPBλ
Yb ˆ Xb. The sets of morphisms
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Ȳb :“ tjy : jM Ñ jTb | y P Ybu and X̄b :“ tjx : jTb Ñ jN | x P Xbu appear-
ing here are characterized equivalently as lifts of bases for HomRλ

pjM, j∇εpbqq and
HomRλ

pj∆εpbq, jNq, respectively. Let M̄ :“ jM and N̄ :“ jN .
To complete the proof, we consider the two cases εpλq “ ` and εpλq “ ´ separately.

The arguments are similar, so we just explain the former. In this case, for b P Bλ,
we have that j∇εpbq – Lλpbq and j∆εpbq – Pλpbq – jTb by Theorem 4.2(3). The
module M̄ is projective in Rλ. We are trying to show that the morphisms x̄ ˝ ȳ for all
pȳ, x̄q P

Ť

bPBλ
Ȳb ˆ X̄b give a basis for HomRλ

pM̄, N̄q where:

‚ Ȳb Ă HomRλ
pM̄, Pλpbqq is a set lifting a basis of HomRλ

pM̄, Lλpbqq;
‚ X̄b is a basis of HomRλ

pPλpbq, N̄q.

Since M̄ is projective, the proof reduces to the case that M̄ “ Pλpbq, when the assertion
is clear. �

The following restatement in the special case of a highest weight categories recovers
[AST, Th. 3.1].

Corollary 4.44. Let R be a finite, lower finite or tilting-bounded essentially finite high-
est weight category with poset pΛ,ďq and labelling function L. Suppose for each λ P Λ
that we are given Tλ P T iltpRq such that Tλ is a direct sum of T pλq and copies of T pµq
for µ ă λ. Take M P ∆pRq and N P ∇pRq. For each λ P Λ, choose an embedding
ιλ : ∆pλq ãÑ Tλ, a projection πλ : Tλ � ∇pλq, and subsets

Yλ Ă HomRpM,Tλq, Xλ Ă HomRpTλ, Nq

so that
 

ȳ :“ πλ ˝ y
ˇ

ˇ y P Yλ
(

is a basis for HomRpM,∇pλqq and
 

x̄ :“ x ˝ ιb
ˇ

ˇ x P Xb

(

is a basis for HomRp∆pλq, Nq. Then the morphisms x ˝ y for all py, xq P
Ť

λPΛ Yλ ˆXλ

give a basis for HomRpM,Nq.

For tilting-rigid fully stratified categories, there is a more refined version of Theo-
rem 4.43.

Theorem 4.45. Let R be a finite, lower finite or essentially finite fully stratified category
with stratification pB, L, ρ,Λ,ďq such that R is tilting-rigid with weakly symmetric strata.
Suppose for each b P B that we are given Tb P T iltpRq such that Tb is a direct sum of
T pbq and copies of T pcq for c with ρpcq ă ρpbq. Take M P ∆pRq and N P ∇pRq. For
a, b P B, choose embeddings ιa : ∆paq ãÑ Ta, ῑb : ∆̄pbq ãÑ Tb, projections π̄a : Ta �
∇̄paq, πb : Tb � ∇pbq, and subsets

Ya Ă HomRpM,Taq, Hpa, bq Ă HomRpTa, Tbq, Xb Ă HomRpTb, Nq

so that
 

ȳ :“ π̄a ˝y
ˇ

ˇy P Ya
(

is a basis for HomRpM, ∇̄paqq,
 

h̄ :“ πb ˝h˝ ιa
ˇ

ˇh P Hpa, bq
(

is a basis for HomRp∆paq,∇pbqq, and
 

x̄ :“ x˝ ῑb
ˇ

ˇx P Xb

(

is a basis for HomRp∆̄pbq, Nq,
as illustrated by the diagram:

∆paq� _

ιa

��

h̄ // ∇pbq

M
y

//

y !!

Ta

π̄a
����

h
// Tb

πb

OOOO

x // N

∇̄paq ∆̄pbq

x

==

?�

ῑb

OO
. (4.43)

Then the morphisms x ˝ h ˝ y for all py, h, xq P
Ť

a,bPB YaˆHpa, bq ˆXb give a basis for

HomRpM,Nq.

Proof. This follows by the same strategy as was used in the proof of Theorem 4.43. The
only substantial difference is in the final paragraph of the proof. By that point, we have
reduced to showing for projective and injective objects M̄, N̄ P Rλ, respectively, that
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the morphisms x̄ ˝ h̄ ˝ ȳ for all pȳ, h̄, x̄q P
Ť

a,bPBλ
Ȳa ˆ H̄pa, bq ˆ X̄b give a basis for

HomRλ
pM̄, N̄q where:

‚ Ȳa Ă HomRλ
pM̄, Pλpaqq is a set lifting a basis of HomRλ

pM̄, Lλpaqq;
‚ H̄pa, bq is a basis for HomRλ

pPλpaq, Iλpbqq;
‚ X̄b Ă HomRλ

pIλpbq, N̄q is a set lifting a basis of HomRλ
pLλpbq, N̄q.

Using that M̄ is projective and N̄ is injective, the proof of this reduces to the case that
M̄ “ Pλpaq and N̄ “ Iλpbq, when the assertion is clear. �

4.8. Chevalley dualities. Finally, in this section we discuss some further aspects of
Ringel duality. These results will be used in the next section to construct symmet-
ric triangular bases for endomorphism algebras of tilting generators. Like in §4.6, the
phrase “fully stratified category” means a fully stratified category R that is either finite,
essentially finite, upper finite or lower finite.

Given a finite-dimensional algebra A and an algebra anti-automorphism σ : A Ñ A,
there is a contravariant autoequivalence

?©σ : A-modfd Ñ A-modfd (4.44)

taking V to its linear dual V ˚ viewed as a left module by restricting the natural right
action along σ. If R is a finite Abelian category and ?_ : R Ñ R is a contravariant
autoequivalence, we call a pair pA, σq consisting of a finite-dimensional algebra A and
an anti-automorphism σ a realization of pR, ?_q if there is an equivalence of categories
F : R Ñ A-modfd such that F˝?_ –?©σ ˝ F . The following lemma shows that any
contravariant autoequivalence of R admits a realization in this sense. In fact, we will
only ever consider contravariant autoequivalences that preserve isomorphism classes of
irreducible objects, in which case we can say a little more about σ as explained at the
end of the lemma.

Lemma 4.46. Let A be a finite-dimensional algebra. Suppose that ?_ is a contravariant
autoequivalence of A-modfd. Then there exists an algebra anti-automorphism σ : AÑ A
such that ?_ –?©σ . Moreover, if ?_ preserves isomorphism classes of irreducible A-
modules, then σ can be chosen so that it fixes each of a given set tei | i P Iu of mutually
orthogonal idempotents in A.

Proof. Consider the functor F :“?˚˝?_ : A-modfd Ñ Aop-modfd. Since this is right
exact and preserves direct sums, we have that F – FAbA? where FA is the pAop, Aq-
bimodule obtained by applying F to the regular pA,Aq-bimodule A. Note that the right
action of x P A on FA here is defined by applying F to the left A-module homomorphism
rx : AÑ A, a ÞÑ ax.

Viewing A as a left Aop-module with action x ¨ y :“ yx, we claim that FA – A as
left Aop-modules. To see this, let tLpbq | b P Bu be a full set of pairwise inequivalent
irreducible left A-modules. Then A –

À

bPB P pbq
‘ dimLpbq as left A-modules, where

P pbq is the projective cover of Lpbq. Let B Ñ B, b ÞÑ b1 be the bijection defined from
Lpbq_ – Lpb1q. Then P pbq_ – Ipb1q, the injective hull of Lpb1q. Hence FP pbq – Ipb1q˚

as left Aop-modules. Here, Ipbq˚ is the projective cover of the left Aop-module Lpbq˚.
Using that dimLpbq “ dimLpb1q˚, we deduce that

FA –
à

bPB

pIpb1q˚q
À

dimLpbq –
à

bPB

pIpbq˚q
À

dimLpbq˚ – A

as left Aop-modules. This proves the claim. Similarly, under the additional hypothesis
that ?_ preserves isomorphism classes of irreducible objects and we are given mutually
orthogonal idempotents tei | i P Iu, we get that F pAeiq – eiA as left Aop-modules for
each i P I.

Now we let φ : FA
„
Ñ A be some choice of a left Aop-module isomorphism. When

the additional hypothesis holds, we may pick this so that it restricts to isomorphisms
F pAeiq

„
Ñ eiA for each i P I. Transporting the right A-module structure on FA through
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φ, we make the left Aop-module A into an pAop, Aq-bimodule, which we will denote by
Aσ´1 . Explicitly, left action of x P Aop on y P Aσ´1 is given by x ¨ y :“ yx as in the
previous paragraph, while the new right action of x P A is by y ¨ x :“ pφ ˝ pprxq

_q˚ ˝

φ´1qpyq. Since EndAoppAq – A, this right action of x can be written as left multiplication
by a unique element x1 P A. The resulting map A Ñ A, x ÞÑ x1 is an algebra anti-
automorphism. Let σ : A Ñ A be the inverse anti-automorphism. Note then that the
right action of x P A on y P Aσ´1 is by y ¨ x “ σ´1pxqy, explaining our earlier choice of
notation. When the additional hypothesis holds, the choice of φ ensures that peiq

1 “ ei
for i P I, hence, σpeiq “ ei for each i P I.

For a left A-module V , let σV be V viewed instead as a left Aop-module by restricting
along σ. Then σA is an pAop, Aq-bimodule which is isomorphic via σ : Aσ´1

„
Ñ σA to

the pAop, Aq-bimodule Aσ´1 – FA from the previous paragraph. Thus, we have shown
that F – Aσ´1bA? – σAbA? – σ? : A-modfd Ñ Aop-modfd. Applying ?˚ gives finally
that ?_ –?©σ . �

Remark 4.47. In the setup of Lemma 4.46, assume that ?_ preserves isomorphism
classes of irreducible A-modules. Then we can take the set of mutually orthogonal
idempotents at the end of the lemma to be a mutually orthognal set teb | b P Bu of
representatives for the conjugacy classes of primitive idempotents in A. Then the lemma
shows that we can choose the anti-automorphism σ so that σpebq “ eb for all b P B.
Conversely, if σ : A Ñ A is an anti-automorphism fixing such a set of reprentatives for
the conjugacy classes of primitive idempotents on A, it is obvious that the contravariant
autoequivalence ?©σ preserves isomorphism classes of irreducible A-modules.

To adapt the above from finite Abelian categories to essentially finite Abelian cat-
egories, Schurian categories or locally finite Abelian categories, we need the following
definitions:

‚ If A “
À

i,jPI eiAej is an essentially or locally finite-dimensional locally unital
algebra, a locally unital algebra anti-automorphism σ : A Ñ A gives rise to a
contravariant autoequivalence ?©σ of the categories A-modfd or A-modlfd, respec-
tively. This is defined by first applying the usual duality from left modules to
right modules, either ?˚ : A-modfd Ñ modfd-A or ?f : A-modlfd Ñ modlfd-A
depending on the case, and then converting right modules back to left modules
by restricting along σ.

‚ If A is a pseudo-compact topological algebra, that is, A – C˚ for a coalgebra
C, an algebra anti-automorphism σ : AÑ A gives rise to a contravariant autoe-
quivalence ?©σ of A-modfd – comodfd-C. Note in this case that σ is necessarily
continuous so that it is the dual of a coalgebra anti-automorphism σˇ : C Ñ C;
the definition of the duality ?©σ could also be formulated in terms of comodules
using σˇ.

Then given an essentially finite Abelian category, a Schurian category, or a locally finite
Abelian category R with a contravariant autoequivalence ?_, a realization of pR, ?_q
means a pair pA, σq consisting of an algebra A and an anti-automorphism σ : A Ñ A
of the appropriate type such that ?©σ ˝ F – F˝?_ for some equivalence F from R
to A-modfd, A-modlfd or A-modfd, respectively. The following lemmas are analogs of
Lemma 4.46 in each of these new settings.

Lemma 4.48. Suppose that A “
À

i,jPI eiAej is either an essentially or a locally finite-
dimensional locally unital algebra. Let ?_ be a contravariant autoequivalence of A-modfd

or A-modlfd, respectively, which preserves isomorphism classes of irreducible objects.
There exists a locally unital algebra anti-automorphism σ : AÑ A such that ?_ –?©σ .

Proof. In the locally finite-dimensional case, let F :“?f˝?_ : A-modlfd Ñ Aop-modlfd.
Viewing

À

iPI F pAeiq as an pAop, Aq-bimodule in the natural way, we have tat F –
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p
À

iPI F pAeiqqbA?. Then we observe for each i P I that F pAeiq – eiA as left Aop-
modules as ?_ preserves isomorphism classes of irreducibles. Now argue as in proof of
Lemma 4.46. The essentially finite-dimensional case is similar. �

Lemma 4.49. Suppose that A is a pseudo-compact topological algebra. Let ?_ be a
contravariant autoequivalence of A-modfd which preserves isomorphism classes of irre-
ducible objects. Then there exists an algebra anti-automorphism σ : A Ñ A such that
?_ –?©σ . Moreover, given a family tei | i P Iu of mutually orthogonal idempotents in A,
σ can be chosen so that σpeiq “ ei for all i P I.

Proof. The functor ?_ : A-modfd Ñ A-modfd extends to ?_ : A-modpc Ñ A-modds

with plim
ÐÝ

Vωq
_ :“ lim

ÝÑ
pV _ω q, taking limits over finite-dimensional submodules Vω ď V .

Composing with ?˚ gives an equivalence F :“?˚˝?_ : A-modpc Ñ Aop-modpc. Moreover,
for each i P I we have that F pAeiq – eiA as a pAop, Aq-bimodule as ?_ preserves
isomorphism classes of irreducibles. Then we argue as in Lemma 4.46 to obtain an
algebra anti-automorphism σ : A Ñ A with σpeiq “ ei for each i P I such that F is
isomorphic to the functor A-modpc Ñ Aop-modpc defined by restriction along σ. The
lemma follows on composing with ?ˇ then restricting to A-modfd. �

With these preliminaries in place, we can now prove a result which explains how to
transfer a contravariant autoequivalence on a fully stratified category to its Ringel dual.

Theorem 4.50 (Dualities commute with Ringel duality). Suppose that R is a fully strat-
ified category with stratification pB, L, ρ,Λ,ďq such that R is tilting-rigid with weakly
symmetric strata, i.e., (4.40) holds. Assume also that R possesses a contravariant au-
toequivalence ?_ which preserves isomorphism classes of irreducible objects. Then we
have that T pbq_ – T pbq for all b P B. Moreover, letting R1 be the Ringel dual category
with respect to some choice of tilting generator and F,G be the usual Ringel duality func-
tors, there is an induced contravariant autoequivalence ?^ on R1 preserving isomorphism
classes of irreducible objects such that

F˝?_ – ?^ ˝G, G˝?_ – ?^ ˝ F (4.45)

whenever these functors make sense (e.g., these isomorphisms always hold on ∆εpRq
and on ∇εpRq, respectively, for any choice of ε).

Proof. We just explain the proof in the case that R is a finite fully stratified category,
leaving the minor modifications needed in the other three cases to the reader. By
Lemma 4.46, we may assume that R “ A-modfd for a finite-dimensional algebra A and
that ?_ : RÑ R is the functor ?©σ taking a left A-module V to the dual right A-module
viewed as a left module by restricting the natural right action along some given anti-
automorphism σ : A

„
Ñ A. (In the other three cases, one needs to use Lemmas 4.48–4.49

here in place of Lemma 4.46.)
Since T`pbq has a ∆-flag with ∆pbq at the bottom, and also a ∇̄-flag, we see using

Lemma 3.3 that T`pbq
_ has a ∇-flag with ∇pbq at the top, and also a ∆̄-flag. So it is

isomorphic to T´pbq. As R is tilting-rigid, T pbq :“ T`pbq – T´pbq, so we have shown
that T pbq_ – T pbq for all b P B.

We are given some full tilting module T defining the Ringel dual category R1, i.e.,
R1 “ B-modfd for B “ EndApT q

op. From the previous paragraph, we get that T – T_.

Let φ : T
„
Ñ T_ be an isomorphism of left A-modules. Equivalently, φ is the data of

a non-degenerate pairing x¨, ¨y : T ˆ T Ñ k with xv, wy :“ φpvqpwq, and we have that
xxv,wy “ xv, σpxqwy for v, w P T , x P A. Let τ : B Ñ B be the anti-automorphism of
B defined so that xvy, wy “ xv, wτpyqy for v, w P T , y P B. It follows that φ is also an
isomorphism of right B-modules for the right B-module structure on T_ obtained by
restricting its natural left action on T˚ along τ . Now we can define the contravariant
autoequivalence ?^ : B-modfd Ñ B-modfd to be ?©τ .
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In this paragraph, we check (4.45). We just prove the first of these isomorphisms; the
latter follows from former (with the roles of A and B reversed) on taking adjoints. Take
V P R. Then we have natural left B-module isomorphisms

pGV q^ – HomApV, T q – HomApT
_, V _q – HomApT, V

_q “ F pV _q,

as required. (On the space HomApV, T q here, the left B-module structure is defined by
restricting the natural right action along τ .)

It remains to check that ?^ preserves isomorphism classes of irreducible objects in
R1. Since the strata are weakly symmetric, we have that

∇1pbq^ – pG∆pbqq^ – F p∆pbq_q – F∇pbq – ∆1pbq.

This implies that L1pbq^ – L1pbq. �

In examples coming from Lie theory, highest weight categories usually come equipped
with dualities arising from anti-involutions which restrict to the identity on the Cartan
part. The material in the rest of the subsection is an attempt to axiomatize the essential
features of such dualities in the more general setting of fully stratified categories. We
start with a definition which will be relevant at the level of strata.

Definition 4.51. Let A be a finite-dimensional algebra and σ : A Ñ A be an anti-
involution. We say that A is σ-symmetric if the following hold:

(σS1) There is a set teb |b P Bu of representatives for the conjugacy classes of primitive
idempotents in A such that σpebq “ eb for all b P B.

(σS2) There is a non-degenerate associative symmetric bilinear form p¨, ¨q : AˆAÑ k
such that px, yq “ pσpxq, σpyqq for all x, y P A.

If A is σ-symmetric in the sense of Definition 4.51 then it is a symmetric algebra in
the usual sense. Moreover, every finitely generated projective left A-module P possesses
a non-degenerate symmetric bilinear form x¨, ¨y such that xxv,wy “ xv, σpxqwy for v, w P
P, x P A; in particular, P – P©σ . To see this, we may assume without loss of generality
that P is indecomposable and that P “ Ae for a σ-invariant primitive idempotent e.
Then the form x¨, ¨y : P ˆP Ñ k defined in terms of the given σ-symmetric form p¨, ¨q on
A by xv, wy :“ pσpvq, wq for v, w P P has these properties; it is non-degenerate because
by associativity

A “ eAe‘ reAp1´ eq ` p1´ eqAes ‘ p1´ eqAp1´ eq (4.46)

is an orthogonal decomposition of A with respect to p¨, ¨q and the subspaces eAp1 ´ eq
and p1´ eqAe are isotropic.

The following lemma shows that σ-symmetry is preserved by Morita equivalence.
The basic point underlying this is that if A is σ-symmetric and e P A is a σ-invariant
idempotent, then σ restricts to an anti-involution of eAe. Moreover a σ-symmetric
form p¨, ¨q on A restricts to such a form on eAe so that eAe is also σ-symmetric; the
non-degeneracy of this restriction follows from the orthogonal decomposition (4.46).

Lemma 4.52. Let A be a finite-dimensional algebra which is σ-symmetric for some
anti-involution σ. Let B be another finite-dimensional algebra that is Morita equivalent
to A, so that there is an equivalence of categories F : B-modfd Ñ A-modfd. Then B
possesses an anti-involution τ : B Ñ B such that ?©σ ˝F – F˝?©τ , and B is τ -symmetric
for any such anti-involution τ . Moreover, τ can be chosen in such a way that it fixes
each of some given set tfi | i P Iu of mutually orthogonal idempotents in B.

Proof. Let teb | b P Bu be a set of mutually orthogonal representatives for the conjugacy
classes of primitive idempotents in A with σpebq “ eb for all b. Let e :“

ř

bPB eb. Then
eAe is the basic algebra that is Morita equivalent to A, and it is σ-symmetric too. The
functors ?©σ on A-modfd and eAe-modfd obviously commute with the idempotent trunca-
tion functor giving an equivalence A-modfd Ñ eAe-modfd. All of this means that we can
replace A with eAe if necessary to assume that A itself is basic with 1 “

ř

bPB eb being



80 J. BRUNDAN AND C. STROPPEL

a decomposition of its identity element into mutually orthogonal σ-invariant primitive
idempotents.

Now suppose that B is Morita equivalent to A via some given F : B-modfd Ñ

A-modfd. Let P :“ FB be the pA,Bq-bimodule obtained by applying F to the reg-
ular pB,Bq-bimodule. Note that P “

À

iPI Pfi where tfi | i P Iu is the given set of
mutually orthogonal idempotents in B; we are assuming here that

ř

iPI fi “ 1B which
we can clearly do by adding one more idempotent to this set if necessary. As an A-

module, we have for each i P I that Pfi –
À

bPBAe
‘dipbq
b for integers dipbq ą 0; the

numbers dpbq “
ř

iPI dipbq are the dimensions of the irreducible B-modules. Moreover,
eiBej – EndApPei, P ejq

op. Fixing such isomorphisms, we may assume simply that

P “
À

iPI Pfi with Pfi “
À

bPBAe
‘dipbq
b , B “ EndApP q

op with fi being the projection
of P onto the i-th summand Pfi, and F “ PbB?.

Next we observe that B “ EndApP q
op is isomorphic to an algebra of block matrices,

with blocks indexed by the set I ˆ B, and the block in the row indexed by pi, aq and
column indexed by pj, bq being a dipaq ˆ djpbq matrix with entries in eaAeb. The mul-
tiplication is just matrix multiplication combined with multiplication in A. From this
description, it is clear that B possesses an anti-involution τ defined by taking the trans-
pose of a matrix and applying σ to all of the entries of the result. For i P I, b P B and
1 ď r ď dipbq, let fi,b;r P B be the matrix with all entries equal to zero except for the r-th
entry in its pi, bq-th diagonal block, which is equal to eb. This is a primitive idempotent in
B, and it is fixed by τ . This verifies the axiom (σS1) for this particular anti-involution τ
of B. Next we check that the axiom (σS2) is satisfied. Let tr : AÑ k, x ÞÑ p1A, xq be the
trace function associated to a σ-symmetric form on A. Define tr1 : B Ñ k by mapping
a matrix in B to the sum of the scalars obtained by applying tr to each of its diagonal
entries. Then let p¨, ¨q1 : B ˆB Ñ k be the bilinear form defined from px, yq1 :“ tr1pxyq.
This is a non-degenerate symmetric bilinear form on B with pτpxq, τpyqq1 “ px, yq1.

It is clear that F˝?©τ –?©σ ˝ F since F is isomorphic to the idempotent truncation
functor defined by f :“

ř

fi,b;1 summing over all i P I, b P B such that dipbq ‰ 0. We

also have that fi “
ř

bPB

řdipbq
r“1 fi,b;r, so τpfiq “ fi for each i P I. So we have now proved

the existence of an anti-involution τ with all of the desired properties. It remains to note
given another other anti-involution ω : B Ñ B with F˝?©ω –?©σ ˝ F that ?©ω˝?©τ – Id,
hence, we have that ω ˝ τ “ γ for some inner automorphism γ : B Ñ B, x ÞÑ uxu´1;
equivalently, ω “ γ ˝ τ . If that is the case, then B is also ω-symmetric since the bilinear
form p¨, ¨q1 constructed in the previous paragraph also satisfies

pωpxq, ωpyqq1 “ puτpxqu´1, uτpyqu´1q “ pτpxq, τpyqq “ px, yq1

for x, y P A. �

Definition 4.53. Let R be a fully stratified category with stratification pB, L, ρ,Λ,ďq.
We say that a contravariant autoequivalence ?_ of R is a Chevalley duality if there is
a realization pA, σq of pR, ?_q in which σ is a Chevalley anti-involution, meaning that
σ2 “ id and the following two properties hold:

(Ch1) There exists a set tea | a P Bu of mutually orthogonal σ-invariant idempotents
in A such that dim eaLpbq “ δa,b for all b P B with ρpbq ­ą ρpaq; here, Lpbq is the
irreducible A-module labelled by b P B.

(Ch2) Let Aďλ be the quotient of A by the two-sided ideal generated by the idempo-
tents tea |a P B with ρpaq ę λu and Aλ :“

À

a,bPBλ
ēaAďλēb. For each λ P Λ, we

require that Aλ possesses a non-degenerate associative symmetric bilinear form
p¨, ¨qλ such that pσλpxq, σλpyqqλ “ px, yqλ for all x, y P Aλ, where σλ : Aλ Ñ Aλ
is the anti-involution induced by σ.

In view of the following lemma, axiom (Ch2) is vacuous in the case that R is a highest
weight category, since then we have that Aλ “ k and σλ “ id.
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Lemma 4.54. Suppose that pA, σq is a realization of pR, ?_q in which σ is a Chevalley
involution as in Definition 4.53. The algebra Aλ from (Ch2) is the basic algebra realizing
the stratum Rλ, and it is σλ-symmetric in the sense of Definition 4.51. We also have
that Lpbq_ – Lpbq for all b P B, i.e., Chevalley dualities preserve isomorphism classes
of irreducible objects.

Proof. Let I be the two-sided ideal of A generated by tea | a P B with ρpaq ę λu. We
claim that Rďλ is the full subcategory of R consisting of all objects V such that IV “ 0.
To see this, if IV “ 0 then eaV “ 0 for all a P B with ρpaq ę λ then rV : Lpaqs “ 0 for
all such a thanks to axiom (Ch1). So we have that V P Rďλ. Conversely, if V P Rďλ
and ρpaq ę λ then the idempotent ea is zero on every irreducible subquotient of V by
(Ch1), hence, eaV “ 0. This implies that IV “ 0.

By the claim, the algebra Aďλ “ A{I gives a realization of Rďλ. Let ēb denote the
image of eb in Aďλ. For b P Bλ, we have that ēbLpcq “ δb,c for all c P Bλ. This shows
that the mutually orthogonal idempotents tēb | b P Bλu are primitive in Aďλ. Hence,
Aλ “

À

a,bPBλ
ēaAďλēb is the basic algebra realizing the stratum Rλ. It is immediate

from the axioms (Ch1)–(Ch2) and the definition that Aλ is σλ-symmetric.
Finally to show that Lpbq©σ – Lpbq for all b P B, suppose that b P Bλ. We have

that eaLpbq
©σ – peaLpbqq

˚ “ 0 for all a with ρpaq ę λ, so Lpbq©σ P Rďλ. Moreover,
ebLpbq

©σ – pebLpbqq
˚ is one-dimensional. Since ēb is primitive in Aďλ this implies that

Lpbq©σ – Lpbq. �

Theorem 4.55 (Chevalley dualities commute with Ringel duality). Let R be a fully
stratified category with stratification pB, L, ρ,Λ,ďq. Assume that R possesses a Cheval-
ley duality ?_. Fix also a realization pA, σq of pR, ?_q in which σ is a Chevalley involu-
tion, and let T pbq denote the left A-module corresponding to T`pbq P R.

(1) If R is tilting-rigid and char k ‰ 2 then for each b P B there exists a non-
degenerate symmetric bilinear form x¨, ¨y : T pbqˆT pbq Ñ k satisfying the follow-
ing σ-adjunction property:

xxv,wy “ xv, σpxqwy (4.47)

for v, w P T pbq and x P A.
(2) Suppose that we are given objects of R corresponding to A-modules tTb | b P Bu

such that each Tb is a direct sum of T pbq and copies of T pcq for c P B with
ρpcq ă ρpbq. Assume moreover that each Tb is equipped with a non-degenerate
symmetric bilinear form x¨, ¨y satisfying the σ-adjunction property. Then, R is
tilting-rigid with symmetric strata, and there is an induced Chevalley duality ?^

on the Ringel dual R1 of R satisfying (4.45).

Proof. (1) Suppose that b P Bλ for some λ P Λ. For the purpose of proving (1) for T pbq,
we can replace R by Rďλ and the algebra A realizing R by the corresponding quotient
algebra to assume without loss of generality that R “ Rďλ. So now R is either finite or
upper finite, and the chosen algebra A is either a finite-dimensional algebra or a locally
finite-dimensional locally unital algebra, respectively. Let tea | a P Bu be the mutually
orthogonal σ-invariant idempotents given by the axiom (Ch1). Let eλ :“

ř

bPBλ
eb and

Aλ :“ eλAeλ. By Lemma 4.54, this is the basic finite-dimensional algebra realizing the
top stratum Rλ, and teb | b P Bλu is a set of representatives for the conjugacy classes of
primitive idempotents in Aλ. The anti-involution σ of A restricts to an anti-involution
σλ of Aλ. Also eλT pbq is isomorphic to the indecomposable projective Aλ-module Aλeb.

Claim 1: Let ψ : T pbq Ñ T pbq be an A-module homomorphism and ψ̄ : eλT pbq Ñ eλT pbq
be its restriction, which is an Aλ-module homomorphism. Then ψ is an isomorphism if
and only if ψ̄ is an isomorphism. The forward implication is clear. For the converse,
let E :“ EndApT pbqq

op and Eλ :“ EndAλpeλT pbqq
op. As eλT pbq is an indecomposable

Aλ-module, the algebra Eλ is a finite-dimensional local algebra, so its Jacobson radical
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is of codimension one and any non-unit is nilpotent. The algebra E is also a finite-
dimensional local algebra in the finite case, while in the upper finite case it is a pseudo-
compact topological algebra with Jacobson radical JpEq having codimension one. In
either case, any element of E is either a unit or it belongs to JpEq. Let Ē be the image
of E under the homomorphism E Ñ Eλ defined by restriction. The Jacobson radical of
Ē is the image of JpEq, so it is again of codimension one9 in Ē. We are given ψ P E
such that ψ̄ is a unit in Eλ. This means that ψ̄ is not nilpotent, hence, it is also a unit
in Ē. It follows that ψ̄ R JpĒq so ψ R JpEq. This shows that ψ is a unit in E, i.e., it is
an isomorphism as required.

Claim 2: Let x¨, ¨y be a bilinear form on T pbq with the σ-adjunction property. Then x¨, ¨y
is non-degenerate if and only if its restriction x¨, ¨yλ to eλT pbq is non-degenerate. To
see this, observe that the form x¨, ¨y induces an A-module homomorphism θ : T pbq Ñ
T pbq©σ with θpvqpwq “ xv, wy, and the form is non-degenerate if and only if this induced
homomorphism is an isomorphism. Similarly, the restriction x¨, ¨yλ induces an Aλ-module
homomorphism θ̄ : eλT pbq Ñ peλT pbqq

©σ , and the restricted form is non-degenerate if and
only if θ̄ is an isomorphism. If we identify peλT pbqq

©σ with eλpT pbq
©σq in the natural way,

we see that θ̄ is the restriction of θ. We are given that R is tilting-rigid, and its strata are
σλ-symmetric which implies that they are weakly symmetric, so there is an A-module
isomorphism φ : T pbq©σ

„
Ñ T pbq according to Theorem 4.50. This restricts to an Aλ-

module isomorphism φ̄ : eλpT pbq
©σq Ñ eλT pbq. Now Claim 2 is reduced to showing that

the A-module homomorphism φ ˝ θ : T pbq Ñ T pbq is an isomorphism if and only if its
restriction φ̄ ˝ θ̄ : eλT pbq Ñ eλT pbq is an isomorphism. This follows from Claim 1.

Claim 3: The socle of Aλeb is irreducible, and any non-zero vector zb P soc pAλebq
satisfies σλpzbq “ zb. By (Ch2), there is a non-degenerate associative symmetric bilinear
form p¨, ¨qλ on Aλ with pσλpxq, σλpyqqλ “ px, yqλ for all x, y P Aλ. By the discussion
before Lemma 4.52, Aλeb is self-dual, so it has irreducible socle isomorphic to its head.
Moreover, p¨, ¨qλ restricts to a non-degenerate associative symmetric bilinear form on
ebAλeb. This is a local symmetric algebra, so its Jacobson radical J is a two-sided ideal
of codimension one and JK is a two-sided ideal of dimension one. Let zb be a non-zero
vector in JK. We must have that peb, zbqλ ‰ 0 by the non-degeneracy of the form.
Moreover, zb also spans the socle of Aλeb. It remains to show that σλpzbq “ zb. Since
σλ leaves JK invariant we certainly have that σλpzbq “ czb for c P k. Now we use the
σλ-symmetry of the form:

peb, zbqλ “ pσλpebq, σλpzbqqλ “ peb, czbqλ.

Since peb, zbqλ ‰ 0, this implies that c “ 1.

Claim 4: Suppose that x¨, ¨yλ is a bilinear form on Aλeb with the σλ-adjunction property,
i.e., the analog of (4.47) with σ replaced by σλ holds for all x P Aλ. This form is
non-degenerate if and only if xeb, zbyλ ‰ 0 for zb as in Claim 3. Suppose first that
xeb, zbyλ ‰ 0. Take any 0 ‰ x P Aλeb. Since the socle of Aλeb is one-dimensional, there
exists y P Aλ such that yx “ zb. Then xeb, yxyλ ‰ 0 so xσpyqeb, xyλ ‰ 0. This shows that
the function Aλeb Ñ pAλebq

˚, x ÞÑ x?, xyλ is injective, hence, the form is non-degenerate.
Conversely, suppose that xeb, zbyλ “ 0. Then the Aλ-submodule tx P Aλeb |xx, zbyλ “ 0u
contains eb, hence, it is all of Aλeb. So the form is degenerate.

Now we can complete the proof of (1). As noted in the proof of Claim 2, T pbq – T pbq©σ .
Let r¨, ¨s be the bilinear form on T pbq corresponding to such an isomorphism. This form
is non-degenerate and has the σ-adjunction property. However, it is not necessarily
symmetric, so we symmetrize by letting x¨, ¨y be the form on T pbq defined from

xv, wy :“ rv, ws ` rw, vs.

9In fact, one can show that Ē “ Eλ but we do not need to use this here.
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Using that σ is an involution, it is easy to check that this new form still has the σ-
adjunction property, and now it is symmetric, but we do not yet know that it is non-
degenerate. To see this, let ι : Aλeb

„
Ñ eλT pbq be an Aλ-module isomorphism. Let

r¨, ¨sλ and x¨, ¨yλ be the bilinear forms on Aλeb defined from rx, ysλ :“ rιpxq, ιpyqs and
xx, yyλ :“ xιpxq, ιpyqy. Applying Claim 2, we see that the form r¨, ¨sλ is non-degenerate,
and the goal is to show that x¨, ¨yλ is non-degenerate. Applying Claim 4, we have that
reb, zbsλ ‰ 0 and we need to show that xeb, zbyλ ‰ 0. This follows since

xeb, zbyλ “ reb, zbsλ ` rzb, ebsλ “ reb, zbsλ ` reb, σλpzbqsλ “ 2reb, zbsλ ‰ 0,

using that σλpzbq “ zb by Claim 3 together with the hypothesis that char k ‰ 2.

(2) We are given non-degenerate symmetric bilinear forms x¨, ¨y on each Tb satisfying
the σ-adjunction property. It follows that Tb – T©σ

b . Since T`pbq
_ – T´pbq for each

b P B, this is enough to deduce that R is tilting-rigid. Also the assumption that ?_

is a Chevalley duality implies that the basic algebra Aλ realizing Rλ is σλ-symmetric,
hence, Rλ is symmetric.

Now the argument proceeds in a similar way to the proof of Theorem 4.50. We just
explain the details in the finite case; the other three cases are similar but there are
slight notational differences. We may assume that the tilting generator used to define
the Ringel dual category is T “

À

bPB Tb. Then R1 “ B-modfd for B :“ EndApT q
op.

The given forms on each Tb give us a non-degenerate symmetric bilinear form x¨, ¨y
on T satisfying (4.47), with the summands Tb being mutually orthogonal. Define an
anti-automorphism τ of B from the equation xvy, wy “ xv, wτpyqy for v, w P T and
y P B. This gives us a contravariant autoequivalence ?_ :“?©τ on R1, and we get the
isomorphisms (4.45) like in the proof of Theorem 4.50.

As x¨, ¨y is symmetric and T is a faithful B-module, the following calculation implies
that τ2 “ id:

xvy, wy “ xv, wτpyqy “ xwτpyq, vy “ xw, vτ2pyqy “ xvτ2pyq, wy.

For each b P B, let fb P B be the idempotent projecting T onto the summand Tb. Using
that the restriction of the form x¨, ¨y to this summand is non-degenerate, it follows that
τpfbq “ fb. So tfb | b P Bu is a set of mutually orthogonal τ -invariant idempotents in B.
The idempotent fb is equal to the primitive idempotent projecting Tb onto its summand
T pbq plus other orthogonal primitive idempotents which project onto summands T paq
for a P Băρpbq. Bearing in mind we are using the opposite ordering on Λ on the Ringel
dual side, this is just what we need for the property (Ch1).

Finally, to see that property (Ch2) holds, let Bλ be the algebra obtained from B ac-
cording to the construction of (Ch2) and τλ : Bλ Ñ Bλ be the anti-involution induced by
τ . The pair pBλ, τλq is a realization of pR1λ, ?^q, where ?^ here is the contravariant autoe-
quivalence of R1λ induced by the one on R1. We also have the pair pAλ, σλq realizing Rλ

with its contravariant autoequivalence induced by ?_. We know already by Lemma 4.54
that Aλ is σλ-symmetric, and (Ch2) follows if we can show that Bλ is τλ-symmetric.
This follows from Lemma 4.52 since the functor Fλ : Aλ-modfd Ñ Bλ-modfd is an
equivalence satisfying Fλ˝?

_ –?^ ˝ Fλ. Indeed, Theorem 4.42(2) gives that Fλ – Gλ,
while (4.45) and the definitions (4.35)–(4.36) give that the dualities ?_ : Rλ Ñ Rλ and
?^ : R1λ Ñ R1λ satisfy Gλ˝?

_ –?^ ˝ Fλ. �

5. Generalizations of quasi-hereditary algebras

Now we give some applications of semi-infinite Ringel duality. First, we use it to show
that any upper finite highest weight category can be realized as A-modlfd for an upper fi-
nite based quasi-hereditary algebra A. The latter notion, which is Definition 5.1, already
exists in the literature in some equivalent forms. When A is finite-dimensional, it gives
an alternative algebraic characterization of the usual notion of quasi-hereditary alge-
bra. Then, in §5.2, we introduce further notions of based ε-stratified algebras and based
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ε-quasi-hereditary algebras, which correspond to ε-stratified categories and ε-highest
weight categories, respectively. In §5.3, we introduce based stratified algebras and based
properly stratified algebras corresponding to fully stratified and fibered highest weight
categories, respectively. Finally, in §§5.4–5.5, we discuss the related notions of triangular
bases and a triangular decompositions.

5.1. Based quasi-hereditary algebras. The following definition is a simplified version
of [ELau, Def. 2.1] translated from the framework of k-linear categories to that of locally
unital algebras. Also, for finite-dimensional algebras, it is equivalent to [KM, Def. 2.4].
These assertions will be explained in more detail in Remarks 5.7–5.8 below.

Definition 5.1. By a finite (resp., upper finite, resp., essentially finite) based quasi-
hereditary algebra, we mean a finite-dimensional (resp., locally finite-dimensional, resp.,
essentially finite-dimensional) locally unital algebra A “

À

i,jPI eiAej with the following
additional data:

(QH1) A subset Λ Ď I indexing special idempotents teλ | λ P Λu.
(QH2) A partial order ď making the set Λ into a poset which is upper finite in the

upper finite case and interval finite in the essentially finite case.
(QH3) Sets Y pi, λq Ă eiAeλ, Xpλ, jq Ă eλAej for λ P Λ, i, j P I.

Let Y pλq :“
Ť

iPI Y pi, λq and Xpλq :“
Ť

jPI Xpλ, jq. We impose the following axioms:

(QH4) The products yx for py, xq P
Ť

λPΛ Y pλq ˆXpλq are a basis for A.
(QH5) For λ, µ P Λ, the sets Y pµ, λq and Xpλ, µq are empty unless µ ď λ.
(QH6) We have that Y pλ, λq “ Xpλ, λq “ teλu for each λ P Λ.

We say that A is symmetrically based if there is also some given algebra anti-involution
σ : AÑ A with σpeiq “ ei and Y pi, λq “ σpXpλ, iqq for all i P I, λ P Λ.

We refer to the given basis for A from (QH4) as the triangular basis; it is certainly not
unique since one can replace any Y pi, λq or Xpλ, jq by another basis that spans the same
subspace up to “higher terms”. If A is symmetrically based rather than merely based,
this basis is a cellular basis in the general sense of [GL], [Wes]. However, Definition 5.1
is considerably more restrictive than the general notions of cellular algebra or category
introduced in loc. cit.. In fact, for finite-dimensional algebras, Definition 5.1 is equivalent
to the usual notion of quasi-hereditary algebra, as we will explain more fully below.

Remark 5.2. It is clear from (QH4) that A “
ř

λPΛAeλA. Hence, A is Morita equiva-
lent to the idempotent truncation

À

λ,µPΛ eλAeµ. This means that if one is prepared to
pass to a Morita equivalent algebra then one can assume without loss of generality that
the sets Λ and I in Definition 5.1 are actually equal, i.e., all distinguished idempotents
are special. However, in naturally-occurring examples, one often encounters situations
in which the set I is strictly larger than Λ.

Remark 5.3. A classical example of a finite symmetrically based quasi-hereditary al-
gebra is the Schur algebra Spn, rq with its basis of codeterminants ξi,`pλqξ`pλq,j as con-
structed by Green in [Gre]; one definitely needs I Ľ Λ in this example.

Remark 5.4. For a well-known infinite-dimensional example, consider the path algebra
A of the Temperley-Lieb category T Lpδq for any value of its parameter δ P k. The natural
diagram basis gives a triangular basis making A into an upper finite symmetrically based
quasi-hereditary algebra. For this, one takes I “ Λ “ N ordered by the opposite of the
natural ordering. The set Y pλq (resp., Xpλq) consists of all cap-free Temperley-Lieb
diagrams with λ strings at the bottom (resp., all cup-free Temperley-Lieb diagrams
with λ strings at the top). The anti-automorphism σ is defined by reflecting diagrams
in a horizontal axis.

Lemma 5.5. Let A be a finite, essentially finite or upper finite based quasi-hereditary
algebra. For λ P Λ, any element f of the two-sided ideal AeλA can be written as a linear
combination of elements of the form yx for y P Y pµq, x P Xpµq and µ ě λ.
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Proof. We first consider the upper finite case. By considering the triangular basis, we
may assume that f “ y1x1y2x2 for y1 P Y pµ1q, x1 P Xpµ1, λq, y2 P Y pλ, µ2q, x2 P Xpµ2q

and µ1, µ2 ě λ. If µ1 “ µ2 “ λ then x1 “ eλ “ y2 and f “ y1x2, as required. This
finished the proof for λ maximal. If µr ą λ for some r P t1, 2u, then we have that
f P AeµrA for this r, and are done by downward induction on the partial order on Λ.

The finite and essentially finite cases are similar. Now, assuming that f P eiAej for
i, j P I, there are only finitely many µ P Λ such that eiAeµ ‰ 0 or eµAej ‰ 0. Letting
Λ1 be the finite set of all such µ, we can then again proceed by downward induction on
the partial order on Λ1. �

Corollary 5.6. Let Λ� be an upper set in Λ. The two-sided ideal JΛ� of A generated
by teλ | λ P Λ�u has basis

 

yx
ˇ

ˇ py, xq P
Ť

λPΛ� Y pλq ˆXpλq
(

.

Proof. Let J be the subspace of A with basis given by the products yx for y P Y pλq, x P
Xpλq and λ P Λ�. For any such element yx P J , we have that yx “ yeλx, hence, yx P JΛ� .
This shows that J Ď JΛ� . Conversely, any element of JΛ� is a linear combination of
elements of AeλA for λ P Λ�. In turn, Lemma 5.5 shows that any element of AeλA for
λ P Λ� is a linear combination of elements yx for y P Y pµq, x P Xpµq and µ ě λ. All of
these elements yx belong to J because Λ� is an upper set; thus JΛ� Ď J . �

Remark 5.7. We have formulated Definition 5.1 only for algebras over our usual ground
field k, but the definition makes sense with k replaced by some more general commutative
ground ring R (“finite-dimensional” being interpreted as “free of finite rank”). Then,
in the symmetrically based upper finite case, Definition 5.1 is equivalent to the notion
of an object-adapted cellular category from [ELau, Def. 2.1]. This can be seen from
Corollary 5.6 and [ELau, Lemmas 2.6-2.8]. Elias and Lauda also note in loc. cit. that
the diagrammatic Hecke category HBSpW,Sq of [EW] associated to a Coxeter system
pW,Sq is an example of an object-adapted cellular category. In our language, the path
algebra H of HBSpW,Sq is an upper finite symmetrically based quasi-hereditary algebra
defined over the ground ring R “ Qrhs, that is, the ring of regular functions arising from
a realization h of pW,Sq. A cellular basis is given by the double light leaves basis. (One
needs some assumptions on the realization as in [EW] for this basis to be defined.)

Remark 5.8. In the finite case, Definition 5.1 is equivalent to the notion of based quasi-
hereditary algebra from [KM, Def. 2.4]. To see this, one takes the set Λ indexing the
special idempotents in our setup to be the set I from loc. cit. (which indexes mutually
orthogonal idempotents ei P A according to [KM, Lem. 2.8]). Then we take our set
I to be the set Λ \ t0u, i.e., we add one more element indexing one more idempotent
e0 :“ 1A ´

ř

λPΛ eλ. Kleshchev and Muth established the equivalence of their notion of
based quasi-hereditary algebra with the original notion of quasi-hereditary algebra from
[CPS1] (providing the partial order on Λ is actually a total order); for ground fields, we
will reprove this equivalence in a different way below. See also [DuR] which established
a similar result using a related notion of standardly based algebra.

Let A be a based quasi-hereditary algebra as in Definition 5.1. For λ P Λ, let Aďλ
be the quotient of A by the two-sided ideal generated by the idempotents eµ for µ ę λ.
For x P A, we often write simply x̄ for the image of x in Aďλ. Corollary 5.6 implies that

Aďλ “
à

i,jPI

ēiAďλēj (5.1)

is based quasi-hereditary in its own right, with special idempotents indexed by elements
of the lower set p´8, λs and basis given by the products ȳx̄ for y P Y pµq, x P Xpµq and
µ P p´8, λs. Define the standard and costandard modules associated to λ P Λ by

∆pλq :“ Aďλēλ ∇pλq “ pēλAďλqf. (5.2)

These are left A-modules which are projective and injective as Aďλ-modules, respec-
tively. In the finite or essentially finite case, ēλAďλ is finite-dimensional and one could
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just take the full linear dual in (5.2), but in general in the upper finite case ∆pλq and
∇pλq are only locally finite-dimensional. The modules ∆pλq may also be called cell
modules and the modules ∇pλq dual cell modules. The vectors tyēλ | y P Y pλqu give the
standard basis for ∆pλq. Similarly, the vectors tēλx | x P Xpλqu are a basis for the right
A-module ēλA; the dual basis to this is the costandard basis for ∇pλq.

Theorem 5.9 (Highest weight categories from based quasi-hereditary algebras). Let A
be a finite (resp., upper finite, resp., essentially finite) based quasi-hereditary algebra.
The modules

tLpλq :“ hd ∆pλq – soc ∇pλq | λ P Λu

give a complete set of pairwise inequivalent irreducible left A-modules. Moreover, the
category R :“ A-modfd (resp., R :“ A-modlfd, resp., R :“ A-modfd) is a finite (resp.,
upper finite, resp., essentially finite) highest weight category with the given weight poset
pΛ,ďq. Its standard and costandard objects ∆pλq and ∇pλq are as defined by (5.2). If
A is symmetrically based with anti-involution σ then ?©σ : R Ñ R is Chevalley duality
of R in the sense of Definition 4.53.

Proof. For λ P Λ, let Pλ be the left ideal Aeλ. We start by establishing the claim that
Pλ has a ∆-flag with ∆pλq at the top and other sections of the form ∆pµq for µ ą λ. To
prove this, fix some λ and set P :“ Pλ for short. This module has basis

 

yx
ˇ

ˇ py, xq P
Ť

µěλ Y pµq ˆ Xpµ, λq
(

. Let tµ1, . . . , µnu be the finite set tµ P rλ,8q | Xpµ, λq ‰ ∅u
ordered so that µr ď µs ñ r ď s; in particular, µ1 “ λ. For 1 ď r ď n let Pr be
the subspace of P spanned by

 

yx
ˇ

ˇ py, xq P
Ťn
s“r`1 Y pµsq ˆ Xpµs, λq

(

. They define a
filtration P “: P0 ą P1 ą ¨ ¨ ¨ ą Pn “ 0, since each Pr is a A-submodule of P . Moreover,
there is, for each 0 ď r ď n an A-module isomorphism

θr :
à

xPXpµr,λq

∆pµrq
„
Ñ Pr´1{Pr (5.3)

which in case r ě 1 sends the basis vector yēµr py P Y pµrqq in the xth copy of ∆pµrq to
yx` Pr P Pr´1{Pr. This defines clearly a linear isomorphism, so we just need to check
that it is an A-module homomorphism. For this take y P Y pj, µrq and u P eiAej . Expand
uy in terms of the triangular basis as

ř

p cpyp`
ř

q c
1
qy
1
qx
1
q for scalars cp, c

1
q, yp P Y pi, µrq,

y1q P Y pi, νqq, x
1
q P Xpνq, µrq and νq ą µr. Then we have that uyēµr “

ř

p cpypēµr and

uyx ` Pr “
ř

p cpypx ` Pr, since the “higher terms” y1qx
1
q act as zero on both ēµr and

x ` Pr. This shows that θr intertwines the actions of u and so the claim follows, since
P0{P1 – ∆pλq by construction.

Now we can classify the irreducible A-modules. The first step for this is to show that
∆pλq has a unique irreducible quotient. To see this, note that the “weight space” eλ∆pλq
is one-dimensional with basis ēλ, due to the fact that Y pλ, λq “ teλu. This is a cyclic
vector, so any proper submodule of ∆pλq must intersect eλ∆pλq trivially. It follows that
the sum of all proper submodules is proper, so ∆pλq has a unique irreducible quotient
Lpλq. Since eλLpλq is one-dimensional and all other µ with eµLpλq ‰ 0 satisfy µ ă λ,
the modules tLpλq | λ P Λu are pairwise inequivalent. To see that they give a full set of
irreducible A-modules, let L be any irreducible A-module. In view of Remark 5.2, there
exists λ P Λ such that eλL ‰ 0. Then L is a quotient of Pλ “ Aeλ. By the claim we
proved already, it follows that L is a quotient of ∆pµq for some µ ě λ, i.e., L – Lpµq.

Thus, we have shown that the modules tLpλq | λ P Λu give a full set of pairwise
inequivalent irreducible left A-modules. Now consider the stratification of R arising from
the given partial order on the index set Λ. In the recollement situation of (3.4), the Serre
subcategory Rďλ (resp., Răλ) may be identified with Aďλ-modlfd (resp., Aďλ-modfd),
and the Serre quotient Rλ “ Rďλ{Răλ is Aλ-modfd where Aλ :“ ēλAďλēλ. The
algebra Aλ has basis ēλ, i.e., it is a copy of the ground field k. This shows that all
strata are simple in the sense of Lemma 3.4. Moreover, the standard and costandard
objects in the general sense of (1.1) are obtained by applying the standardization functor
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jλ! :“ AďλēλbAλ? and the costandardization functor jλ˚ :“
À

iPI HomAλpēλAďλēi, ?q to
the irreducible Aλ-module Aλ “ kēλ. Clearly, the resulting modules are isomorphic to

∆pλq and ∇pλq as defined by (5.2). The axiom pyP∆q follows from the claim.
For the final statement about Chevalley duality, the observations made earlier in the

proof establish property (Ch1) from Definition 4.53, and (Ch2) is vacuous as we are in
the highest weight setting. Hence, σ is a Chevalley anti-involution. �

Finally in this subsection we are going to prove a converse to Theorem 5.9. This will
be deduced from the next theorem together with an application of Ringel duality. In
fact, the next theorem is a reformulation of the main result of [AST].

Theorem 5.10 (Based quasi-hereditary algebras from highest weight categories). Let
R be a finite (resp., lower finite, resp., tilting-bounded essentially finite) highest weight
category with weight poset pΛ,ďq and labelling function L. Suppose we are given Λ Ď I
and a tilting generator T “

À

iPI Ti for R such that each Tλ pλ P Λq is a direct sum of
T pλq and other T pµq for µ ă λ. Let

A :“

˜

à

i,jPI

HomRpTi, Tjq

¸op

.

(1) For i, j P I and λ P Λ, pick morphisms

Y pi, λq Ă HomRpTi, Tλq, Xpλ, jq Ă HomRpTλ, Tjq

lifting bases for HomRpTi,∇pλqq and HomRp∆pλq, Tjq as in Corollary 4.44, such
that Y pλ, λq “ Xpλ, λq “ tidTλu. Then

 

yx
ˇ

ˇ py, xq P
Ť

i,jPI

Ť

λPΛ Y pi, λq ˆ

Xpλ, jq
(

is a triangular basis making A into a finite (resp., upper finite, resp.,
essentially finite) based quasi-hereditary algebra with respect to the opposite poset
pΛ,ěq.

(2) If in addition R has a Chevalley duality ?_ and, in a suitable realization, the
modules corresponding to each Ti possess non-degenerate symmetric bilinear
forms satisfying the adjunction property as in (4.47), then the triangular ba-
sis in (1) can be chosen so that A is symmetrically based.

Proof. (1) We have all of the necessary data in place to have a based quasi-hereditary
algebra, taking ei :“ idTi in the obvious way. To check the axioms, Corollary 4.44 checks
(QH4), and we have chosen the lifts so that Y pλ, λq “ teλu “ Xpλ, λq as in (QH6). For
(QH5), note that Y pµ, λq and Xpλ, µq are empty unless µ ě λ because HomRpTµ,∇pλqq
and HomRp∆pλq, Tµq are zero unless λ ď µ.

(2) Suppose that we are working in a particular algebra realization pB, τq of pR, ?_q in
which τ is a Chevalley anti-involution and each Ti admits a non-degenerate symmetric
bilinear form with the τ -adjunction property. Let T :“

À

iPI Ti and x¨, ¨y : T ˆ T Ñ k
be the orthogonal sum of the given forms. Then we obtain an algebra anti-involution
σ : A Ñ A such that xvx,wy “ xc, wσpxqy for all v, w P T , x P A; cf. the proof of
Theorem 4.55(2). This fixes each of the idempotents ei P A. The bilinear form on Ti
induces a B-module isomorphism φi : Ti

„
Ñ T©τ

i . Also let πλ : Tλ � ∇pλq be some choice
of epimorphism for each λ P Λ as needed for Corollary 4.44. Then define the embeddings
ιλ : ∆pλq ãÑ Tλ there so that there are induced isomorphisms ∆pλq

„
Ñ ∇pλq©τ making

the following diagrams commute for all λ P Λ:

∆pλq ∇pλq©τ

Tλ T©τ
λ .

„

ιλ π˚λ

φλ

Now we pick the sets Xpλ, iq lifting bases for HomBp∆pλq, Tjq as in Corollary 4.44. Then

define Y pi, λq :“ tφ´1
λ ˝ x˚ ˝ φi | x P Xpλ, iqu. This set lifts a basis for HomBpTi,∇pλqq
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as stipulated in Corollary 4.44. Using these choices, the construction from the previous
paragraph makes A into a based quasi-hereditary algebra. Moreover, we now have that
Y pi, λq “ σpXpλ, iqq for all i, λ, so A is symmetrically based with the underlying anti-
involution σ. �

Corollary 5.11 (Quasi-hereditary algebras are based quasi-hereditary). Let

A “
à

i,jPI

eiAej

be an algebra realization of a finite (resp., upper finite, resp., tilting-bounded essentially
finite) highest weight category R, with weight poset pΛ,ďq and labelling function L.

(1) There is an idempotent expansion A “
À

i,jPÎ êiAêj of A with Λ Ď Î, and
subsets

Y pi, λq Ă êiAêλ, Xpλ, jq Ă êλAêj

for all λ P Λ and i, j P Î making A into a finite (resp., upper finite, resp.,
essentially finite) based quasi-hereditary algebra with respect to the given ordering
on Λ.

(2) If char k ‰ 2 and R has a Chevalley duality ?_ then the choices in (1) can be
made so that A is symmetrically based with anti-involution σ realizing ?_.

Proof. (1) Let A “
À

i,jPÎ êiAêj be an idempotent expansion indexed by a set Î chosen

so that Λ Ď Î and hd pAêλq – Lpλq for each λ P Λ. We are going to apply the
Ringel duality from Definition 4.9 (resp., Definition 4.26, resp., Definition 4.33). In
the finite or upper finite cases, we fix a choice of tilting generator T for R and let
B :“ EndRpT q

op. In the essentially finite case, we fix a tilting generator T “
À

jPJ Tj

for R then let B :“
´

À

i,jPJ HomRpTi, Tjq
¯op

. Then in all cases the category R1 :“

B-modfd is the Ringel dual of the original category. It is a finite (resp., lower finite,
resp., tilting-bounded essentially finite) highest weight category with irreducible objects
denoted tL1pλq|λ P Λu and weight poset pΛ,ěq. Let T 1i :“ pêiT q

˚ P R1. By Corollary 4.11
(resp., Corollary 4.30, resp., Corollary 4.35), T 1 “

À

iPÎ T
1
i is a tilting generator for R1

such that the original algebra A “
À

i,jPÎ êiAêj is isomorphic as a locally unital algebra

to
´

À

i,jPÎ HomR1pT
1
i , T

1
jq

¯op

. Moreover, T 1λ is the indecomposable tilting module T 1pλq

for each λ P Λ. To make A into a based quasi-hereditary algebra, it remains to apply
Theorem 5.10(1) with R, pΛ,ďq and Ti replaced by R1, pΛ,ěq and T 1i in the present
setup.

(2) Assume that R has a Chevalley duality ?_. Then the category R1 admits a Chevalley
duality ?^ such that the Ringel duality functors intertwine ?_ and ?^ as in (4.45). This
follows by Theorem 4.55, using the assumption that char k ‰ 2 and part (1) of the
theorem to establish the existence of suitable bilinear forms as in part (2). Hence, R1
has a realization pB, τq with τ being a Chevalley involution realizing ?^. Then we can
appeal to Theorem 5.10(2), again using Theorem 4.55(1) to obtain suitable bilinear forms
on each T 1i , to deduce that the triangular basis can be chosen so that A is symmetrically
based. In particular, this gives an anti-involution σ : A Ñ A fixing each êi. It remains
to note that ?©σ realizes ?_. It suffices to check this on finitely generated projectives
when it follows from (4.45) (applied twice since we have used Ringel duality twice). �

In the finite case, Corollary 5.11 recovers [KM, Prop. 3.5] (but note that the result
in loc. cit. is also valid over more general ground rings).

5.2. Based ε-stratified and ε-quasi-hereditary algebras. In this subsection, we
upgrade the results of §5.1 (excluding any that involve Chevalley duality) to ε-stratified
and ε-highest weight categories. The main new definition is as follows.
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Definition 5.12. By a finite (resp., upper finite, resp., essentially finite) based ε-
stratified algebra, we mean a finite-dimensional (resp., locally finite-dimensional, resp.,
essentially finite-dimensional) locally unital algebra A “

À

i,jPI eiAej with the following
additional data:

(εS1) A subset B Ď I indexing the special idempotents teb | b P Bu.
(εS2) A poset pΛ,ďq which is upper finite in the upper finite case and interval finite

in the essentially finite case, such that Λ X I “ ∅.
(εS3) A sign function ε : Λ Ñ t˘u.
(εS4) A function ρ : B Ñ Λ with finite fibers Bλ :“ ρ´1pλq.
(εS5) Sets Y pi, bq Ă eiAeb and Xpb, jq Ă ebAej for all b P B and i, j P I.

Let Y pbq :“
Ť

iPI Y pi, bq and Xpbq :“
Ť

jPI Xpb, jq. There are then four axioms, the first
three of which are as follows:

(εS6) The products yx for py, xq P
Ť

bPB Y pbq ˆXpbq are a basis for A.
(εS7) For a, b P B, the sets Y pb, aq and Xpa, bq are empty unless ρpbq ď ρpaq.
(εS8) The following hold for all λ P Λ and a, b P Bλ:

– if εpλq “ ´ then Y pa, aq “ teau and Y pa, bq “ ∅ for a ‰ b;
– if εpλq “ ` then Xpa, aq “ teau and Xpa, bq “ ∅ for a ‰ b.

To formulate the fourth axiom, let eλ :“
ř

bPBλ
eb for short10 let Aďλ be the quotient

of A by the two-sided ideal generated by teµ | µ ę λu, and set Aλ :“ ēλAďλēλ (where
x̄ P Aďλ denotes the image of x P A as usual). Then:

(εS9) For each λ P Λ, the finite-dimensional algebra Aλ is basic and ēλ “
ř

bPB ēb
is a decomposition of its identity element into mutually orthogonal primitive
idempotents.

Definition 5.12 in the special case that the stratification function ρ is a bijection
deserves its own name:

Definition 5.13. A finite (resp., upper finite, resp., essentially finite) based ε-quasi-
hereditary algebra is a finite-dimensional (resp., locally finite-dimensional, resp., essen-
tially finite-dimensional) locally unital algebra A “

À

i,jPI eiAej with the following
additional data:

(εQH1) A subset Λ Ď I indexing the special idempotents teλ | λ P Λu.
(εQH2) A partial order ď making the set Λ into a poset which is interval finite in the

essentially finite case and upper finite in the upper finite case.
εQH3) A sign function ε : Λ Ñ t˘u.

(εQH4) Sets Y pi, λq Ă eiAeλ, Xpλ, jq Ă eλAej for i, j P I and λ P Λ.

Let Y pλq :“
Ť

iPI Y pi, λq and Xpλq :“
Ť

jPI Xpλ, jq. The axioms are as follows:

(εQH5) The products yx for py, xq P
Ť

λPΛ Y pλq ˆXpλq are a basis for A.
(εQH6) For λ, µ P Λ, the sets Y pµ, λq and Xpλ, µq are empty unless µ ď λ.
(εQH7) If εpλq “ ´ then Y pλ, λq “ teλu, and if εpλq “ ` then Xpλ, λq “ teλu.

(εQH8) For each λ P Λ, the finite-dimensional algebra Aλ as defined in Definition 5.12
is basic and local.

From now on, we just formulate the results for based ε-stratified algebras, since
based ε-quasi-hereditary algebras are a special case. The development below parallels
the treatment in the previous subsection, but there are some additional subtleties.

Remark 5.2 remains true: one can always pass to a Morita equivalent algebra in which
all of the distinguished idempotents are special. The analog of Lemma 5.5 is as follows.

Lemma 5.14. Let A be a finite, essentially finite or upper finite based ε-stratified al-
gebra. For λ P Λ, any element f of the two-sided ideal AeλA can be written as a linear
combination of elements of the form yx for y P Y paq, x P Xpaq and a P Běλ.

10This notation is unambiguous due to the assumption ΛX I “ ∅.
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Proof. This is similar to the proof of Lemma 5.5. We just explain in the upper finite
case. We may assume that f “ y1x1y2x2 for y1 P Y pa1q, x1 P Xpa1, bq, y2 P Y pb, a2q, x2 P

Xpa2q, b P Bλ and a1, a2 P Běλ. If a1 P Bąλ or a2 P Bąλ, we are done by induction.
If a1, a2 P Bλ, there are two cases according to whether εpλq “ ` or εpλq “ ´. The
arguments for these are similar, so we just go through the former case when εpλq “ `.
Then we have that a1 “ b and x1 “ eb. Hence f “ y1y2x2. Then we use the basis again
to expand y1y2 as a linear combination of terms y3x3 for y3 P Y pa3q, x3 P Xpa3, a2q and
a3 P Běλ. If a3 P Bλ then we get that a3 “ a2 and x3 “ ea2

, so y3x3x2 “ y3x2 as
required. If a3 P Bąλ, we can then rewrite y3x3x2 in the desired form by induction. �

Corollary 5.15. Let Λ� be an upper set in Λ and B� :“ ρ´1pΛ�q. The two-sided ideal
JΛ� of A generated by teλ | λ P Λ�u has basis

 

yx
ˇ

ˇ py, xq P
Ť

bPB� Y pbq ˆXpbq
(

.

Let A be a based ε-stratified algebra as in Definition 5.12. For λ P Λ, Corollary 5.15
implies that Aďλ has basis

 

ȳx̄
ˇ

ˇ y P Y pbq, x P Xpbq and b P Bďλ
(

. Hence, the basic
algebra Aλ “ ēλAďλēλ has basis

 

ȳ
ˇ

ˇ y P
Ť

a,bPBλ
Y pa, bq

(

if εpλq “ `,
 

x̄
ˇ

ˇ x P
Ť

a,bPBλ
Xpa, bq

(

if εpλq “ ´.

Let jλ : Aďλ-modlfd Ñ Aλ-modfd, V ÞÑ ēλV be the quotient functor V ÞÑ ēλV , then
define the standardization and costandardization functors

jλ! :“ AďλēλbAλ?, jλ˚ :“
à

iPI

HomAλpēλAďλēi, ?q, (5.4)

which are left and right adjoints of jλ, respectively.

Lemma 5.16. If λ P Λ has εpλq “ ´ then the standardization functor jλ! is exact.

Proof. There is an isomorphism of right Aλ-modules
À

aPBλ

À

yPY paq ēaAλ
„
Ñ Aďλēλ

sending the vector ēa in the yth copy of ēaAλ to ȳ P Aďλēλ. To see this, note as
εpλq “ ´ that the projective Aλ-module ēaAλ has basis

 

x̄
ˇ

ˇ x P
Ť

bPBλ
Xpa, bq

(

, and

Aďλēλ has basis
 

ȳx̄
ˇ

ˇ py, xq P
Ť

a,bPBλ
Y paq ˆ Xpa, bq

(

. Hence, Aďλēλ is a projective
right Aλ-module, and the exactness follows. �

Continuing with A being a based ε-stratified algebra, we let

Pλpbq :“ Aλēb, Iλpbq :“ pēbAλq
f, Lλpbq :“ hd Pλpbq – soc Iλpbq (5.5)

for b P Bλ. These give full sets of indecomposable projective, indecomposable injective,
and irreducible Aλ-modules, respectively. Then we define standard, proper standard,
costandard and proper costandard modules

∆pbq :“ Aďλēb – jλ! Pλpbq, ∆̄pbq :“ jλ! Lλpbq, (5.6)

∇pbq :“ pēbAďλq
f – jλ˚Iλpbq, ∇̄pbq :“ jλ˚Lλpbq, (5.7)

cf. (1.1). Adopt the shorthands ∆εpbq and ∇εpbq from (1.2) too. The module ∆εpbq has
a standard basis indexed by the set Y pbq. In the case that εpλq “ `, when ∆εpbq “ ∆pbq,
this basis is tyēb |y P Y pbqu. In the case that εpλq “ ´, when ∆εpbq “ ∆̄pbq, let ẽb be the
canonical image of ēb under the natural quotient map ∆pbq � ∆̄pbq. Then the basis is
tyẽb | y P Y pbqu. (One can also construct a costandard basis for ∇εpbq indexed by Xpbq
by taking a certain dual basis, but we will not need this here.)

Theorem 5.17 (ε-Highest weight categories from based ε-stratified algebras). Let A be
a finite (resp., upper finite, resp., essentially finite) based ε-stratified algebra as above.
The modules

tLpbq :“ hd ∆εpbq – soc ∇εpbq | b P Bu

give a complete set of pairwise inequivalent irreducible left A-modules. Moreover, R :“
A-modfd (resp., R :“ A-modlfd, resp., R :“ A-modfd) is a finite (resp., upper finite,
resp., essentially finite) ε-stratified category with stratification pB, L, ρ,Λ,ďq. Its strata
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may be identified with the categories Rλ :“ Aλ-modfd with standardardization and co-
standardization functors as in (5.4).

Proof. For b P B, let Pb be the left ideal Aeb. We claim that Pb has a ∆ε-flag with
∆εpbq at the top and other sections of the form ∆εpaq for a P B with ρpaq ě ρpbq.
To prove this, suppose that b P Bλ and set P :“ Pb for short. Note P has basis
 

yx
ˇ

ˇ py, xq P
Ť

aPBěλ
Y paq ˆXpa, bq

(

. Let tµ1, . . . , µnu be the finite set
 

µ P rλ,8q
ˇ

ˇ

Ť

aPBµ
Xpa, bq ‰ ∅

(

ordered so that µr ď µs ñ r ď s; in particular, µ1 “ λ. Let Pr be the subspace of
P spanned by

 

yx
ˇ

ˇ py, xq P
Ťn
s“r`1

Ť

aPBµs
Y paq ˆ Xpa, bq

(

. This defines a filtration

P “ P0 ą P1 ą ¨ ¨ ¨ ą Pn “ 0 in which the section Pr´1{Pr has basis
 

yx` Pr
ˇ

ˇ py, xq P
Ť

aPBµr
Y paq ˆ Xpa, bq

(

. Now we show that each Pr´1{Pr has a ∆ε-flag with sections

of the form ∆εpaq for a P Bµr . There are two cases:

Case 1: εpµrq “ `. In this case, there is an A-module isomorphism

θ :
à

aPBµr

à

xPXpa,bq

∆paq
„
Ñ Pr´1{Pr

sending the basis vector yēa py P Y paqq in the xth copy of ∆paq to yx ` Pr P Pr´1{Pr.
This follows from properties of the basis and is similar to the proof of (5.3).

Case 2: εpµrq “ ´. Note that Pr´1{Pr is naturally an Aďµr -module. Let Qr :“
ēµr pPr´1{Prq. This is an Aµr -module with basis tx ` Pr | x P Xpa, bq, a P Bµru. We
claim that the natural multiplication map

Aďµr ēµr bAµr Qr Ñ Pr´1{Pr, yēµr b px` Prq ÞÑ yx` Pr

is an isomorphism. This follows because the module on the left hand side is spanned by
the vectors

 

yēµr b px` Prq
ˇ

ˇ py, xq P
Ť

aPBµr
Y paq ˆXpa, bq

(

, and the images of these

vectors under multiplication are a basis for the module on the right. Hence, Pr´1{Pr –
jµr! Qr. We deduce that it has a ∆ε-flag with sections of the form ∆̄paq pa P Bµr q on
applying the standardization functor to a composition series for Qr, using the exactness
from Lemma 5.16.

We can now complete the proof of the claim. The only thing left is to check that the
top section of the ∆ε-flag we have constructed so far is isomorphic to ∆εpbq. This
follows from the constructions just explained: in the case εpλq “ ` we showed that
P0{P1 – ∆pbq “ ∆εpbq, while if εpλq “ ´ then the top section is jλ! Lλpbq “ ∆εpbq.

Using the claim just established, we can now classify the irreducible A-modules. For
b P Bλ, the proper standard module ∆εpbq has irreducible head denoted Lpbq. This fol-
lows by the usual properties of adjunctions and the quotient functor jλ : Aďλ-modlfd Ñ

Aλ-modfd, V ÞÑ ēλV . Moreover, Lpbq is the unique (up to isomorphism) irreducible
Aďλ-module such that jλLpbq – Lλpbq, hence, the modules tLpbq | b P Bu are pairwise
inequivalent. To see that they give a full set of irreducible A-modules, let L be any irre-
ducible A-module. By the analog of Remark 5.2, there exists b P B such that ebL ‰ 0.
Then L is a quotient of Pb “ Aeb. Finally, using the claim, we deduce that L is a
quotient of ∆εpaq for some a P B with ρpaq ě ρpbq and thus L is isomorphic to Lpaq.

Having classified the irreducible A-modules tLpbq | b P Bu, pB, L, ρ,Λ,ďq defines a
stratification of R. We are in the recollement situation of (3.4), with Rλ identified
with Aλ-modfd. Since (5.6)–(5.7) agrees with (1.1), the standard, proper standard,
costandard and proper costandard modules are the correct objects. Moreover, the claim

established at the start of the proof verifies the property pyP∆εq. �

The goal in the remainder of the subsection is to prove a converse to Theorem 5.17.

Theorem 5.18 (Based ε-stratified algebras from ε-highest weight categories). Let R be
a finite (resp., lower finite, resp., tilting-bounded essentially finite) ε-stratified category
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with stratification pB, L, ρ,Λ,ďq. Suppose we are given B Ď I disjoint from Λ and an
ε-tilting generator T “

À

iPI Ti such that each Tb pb P Bq is a direct sum of Tεpbq and
other Tεpcq for c with ρpcq ă ρpbq. Let

A :“

˜

à

i,jPI

HomRpTi, Tjq

¸op

For i, j P I and b P B, pick morphisms

Y pi, bq Ă HomRpTi, Tbq, Xpb, jq Ă HomRpTb, Tjq

lifting bases for HomRpTi,∇εpbqq and HomRp∆εpbq, Tjq as in Theorem 4.43 such that
Y pb, bq “ tidTbu when εpbq “ ` and Xpb, bq “ tidTbu when εpbq “ ´. These choices
make A into a finite (resp., upper finite, resp., essentially finite) based p´εq-stratified
algebra with respect to the poset pΛ,ěq (the opposite ordering on Λ compared to R).

Proof. We need to check the axioms (εS6)–(εS9). Theorem 4.43 checks the first one.
The axioms (εS7)–(εS8) also hold. For example, if εpλq “ ` and b P Bλ, we have
that Y pb, bq “ tebu by the choice of lifts, and HomRpTb,∇εpaqq is zero unless a “ b or
ρpaq ă ρpbq (remembering we are checking these axioms for ´ε not ε). It remains to
check the final axiom (εS9). The algebra Aλ in the statement of the axiom (remembering
that we are working now with the opposite ordering) is the same as the algebra Aλ in
Lemma 4.41. By that lemma, there is an algebra isomorphism

φλ : Aλ
„
Ñ EndRλ

pjλTλq
op, (5.8)

where Tλ :“
À

bPBλ
Tb. If εpλq “ ` then jλTλ is a minimal projective generator for Rλ

thanks to Theorem 4.2(3), so the algebra on the right hand side of (5.8) is basic and
ēλ “

ř

bPBλ
ēb is a decomposition of its identity element as a sum of mutually orthogonal

primitive idempotents. If εpλq “ ´, we have instead that jλTλ is a minimal injective
cogenerator for Rλ and the conclusion follows similarly. �

Corollary 5.19. Let R be a finite (resp., upper finite, resp., tilting-bounded essen-
tially finite) ε-stratified category with the usual stratification pB, L, ρ,Λ,ďq. Let A “
À

i,jPI eiAej be an algebra realization of R. There is an idempotent expansion A “
À

i,jPÎ êiAêj with B Ď Î, and finite sets Y pi, bq Ă êiAêb, Xpb, jq Ă êbAêj for all i, j P Î

and b P B, making A into a finite (resp., upper finite, resp., essentially finite) based
ε-stratified algebra with ρ as its stratification function.

Proof. This follows from Theorem 5.18 in the same way as Corollary 5.11 was deduced
from Theorem 5.10. �

5.3. Based stratified and properly stratified algebras. In this subsection, we con-
sider modified versions of Definitions 5.12 and 5.13 which involve bases which do not
depend on the sign function ε. These definitions, which were inspired in part by [ELau,
Def. 2.17], are relevant when studying fully stratified rather than merely ε-stratified
categories.

Definition 5.20. A finite (resp., upper finite, resp., essentially finite) based stratified
algebra is a finite-dimensional (resp., locally finite-dimensional, resp., essentially finite-
dimensional) locally unital algebra A “

À

i,jPI eiAej with the following additional data:

(S1) A subset B Ď I indexing special idempotents teb | b P Bu.
(S2) A poset pΛ,ďq which is upper finite in the upper finite case and interval finite

in the essentially finite case, such that Λ X I “ ∅.
(S3) A function ρ : B Ñ Λ with finite fibers Bλ :“ ρ´1pλq.
(S4) Sets Y pi, aq Ă eiAea, Hpa, bq Ă eaAeb, Xpb, jq Ă ebAej for i, j P I and a, b P B.

Let Y paq :“
Ť

iPI Y pi, aq and Xpbq :“
Ť

jPI Xpb, jq. The axioms are as follows:

(S5) The products yhx for py, h, xq P
Ť

a,bPB Y paq ˆHpa, bq ˆXpbq are a basis for A.
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(S6) For a, b P B with a ‰ b, the set Hpa, bq is empty unless ρpaq “ ρpbq, the sets
Y pb, aq and Xpa, bq are empty unless ρpbq ă ρpaq, and Y pa, aq “ Xpa, aq “ teau.

(S7) The finite-dimensional algebra Aλ defined as in Definition 5.12 is basic and
ēλ “

ř

bPBλ
ēb is a decomposition of its identity element as a sum of mutually

orthogonal primitive idempotents.

We say that A is symmetrically based if there is also some given algebra anti-involution
σ : AÑ A with σpeiq “ ei and Y pi, bq “ σpXpb, iqq for all i P I, b P B, such that each of
the algebras Aλ pλ P Λq is σλ-symmetric in the sense of Definition 4.51, where σλ here
is the anti-involution of Aλ induced by σ.

Here is the same definition rewritten in the special case that the stratification function
ρ is a bijection.

Definition 5.21. A finite (resp., upper finite, resp., essentially finite) based properly
stratified algebra is a finite-dimensional (resp., locally finite-dimensional, resp., essen-
tially finite-dimensional) locally unital algebra A “

À

i,jPI eiAej with the following
additional data:

(PS1) A subset Λ Ď I indexing special idempotents teλ | λ P Λu.
(PS2) A poset pΛ,ďq upper finite in the upper finite case and interval finite in the

essentially finite case.
(PS3) Sets Y pi, λq Ă eiAeλ, Hpλq Ă eλAeλ, Xpλ, iq Ă eλAei for λ P Λ, i P I.

Let Y pλq :“
Ť

iPI Y pi, λq and Xpλq :“
Ť

iPI Xpλ, iq. The axioms are as follows.

(PS4) The products yhx for py, h, xq P
Ť

λPΛ Y pλq ˆHpλq ˆXpλq are a basis for A.
(PS5) For λ, µ P Λ, the sets Y pµ, λq and Xpλ, µq are empty unless µ ď λ, and Y pλ, λq “

Xpλ, λq “ teλu.
(PS6) The finite-dimensional algebra Aλ defined as in Definition 5.13 is basic and local.

We say that A is symmetrically based if there is also some given algebra anti-involution
σ : A Ñ A with σpeiq “ ei and Y pi, λq “ σpXpλ, iqq for all i P I, λ P Λ, such that each
of the algebras Aλ pλ P Λq is σλ-symmetric, where σλ here is the anti-involution of Aλ
induced by σ.

In the remainder of the subsection, we just explain the results for based stratified
algebras, since based properly stratified algebras are a special case. For the next lemma,
we adopt the shorthands

Y Hpi, bq :“
 

yh
ˇ

ˇ py, hq P
Ť

aPB Y pi, aq ˆHpa, bq
(

, (5.9)

HXpb, jq :“
 

hx
ˇ

ˇ ph, xq P
Ť

aPBHpb, aq ˆXpa, jq
(

. (5.10)

Also set Y Hpbq :“
Ť

iPI Y Hpi, bq and HXpbq :“
Ť

jPI HXpb, jq.

Lemma 5.22. Suppose that A is a based stratified algebra as in Definition 5.20. Also
let ε : Λ Ñ t˘u be any choice of sign function. Then A is a based ε-stratified algebra
in the sense of Definition 5.12 with the required sets Y pi, bq and Xpb, jq for that being
the sets Y Hpi, bq and Xpb, jq in the present setup if εpρpbqq “ `, or the sets Y pi, bq and
HXpb, jq in the present setup if εpρpbqq “ ´.

Proof. This follows on comparing Definitions 5.12 and 5.20. �

This means that the results from the previous subsection apply to based stratified
algebras too. In particular, we define the standard, proper standard, costandard and
proper costandard modules as in (5.6)–(5.7). The modules ∆pbq and ∆̄pbq have standard
bases tyēb | y P Y Hpbqu and tyẽb | y P Y pbqu, respectively. Similarly, one can introduce
costandard bases for ∇pbq and ∇̄pbq indexed by the sets HXpbq and Xpbq, respectively.
Note also that the basic algebra

Aλ “
à

a,bPBλ

ēaAλēb
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has basis
 

h̄
ˇ

ˇ h P
Ť

a,bPBλ
Hpa, bq

(

.

Theorem 5.23 (Fully stratified categories from based stratified algebras). Let A be a
finite (resp., upper finite, resp., essentially finite) based stratified algebra as above. The
modules

tLpbq :“ hd ∆pbq – hd ∆̄pbq – soc ∇̄pbq – soc ∇pbq | b P Bu

give a full set of pairwise inequivalent irreducible left A-modules. Moreover, R :“
A-modfd (resp., R :“ A-modlfd, resp., R :“ A-modfd) is a finite (resp., upper fi-
nite, resp., essentially finite) fully stratified category with stratification pB, L, ρ,Λ,ďq
with strata Rλ :“ Aλ-modfd. If A is symmetrically based with anti-involution σ then
?©σ : RÑ R is a Chevalley duality of R in the sense of Definition 4.53.

Proof. Using Lemma 5.22, the first part follows from Theorem 5.17 applied twice, once
with ε “ ` and once with ε “ ´. For the final part about Chevalley duality, axiom
(Ch1) from Definition 4.53 is established in the course of the proof of Theorem 5.17,
and (Ch2) follows from the definition of symmetrically based stratified algebra. �

For the converse recall the definition of tilting-rigid from Definition 4.36.

Theorem 5.24 (Based stratified algebras from fully stratified categories). Let R be
a finite (resp., lower finite, resp., essentially finite) fully stratified category with strat-
ification pB, L, ρ,Λ,ďq. Assume that R is tilting-rigid with weakly symmetric strata.
Suppose we are given B Ď I disjoint from Λ and a tilting generator T “

À

iPI Ti such
that each Tb pb P Bq is a direct sum of T pbq and other T pcq for c with ρpcq ă ρpbq. Let

A :“

˜

à

i,jPI

HomRpTi, Tjq

¸op

(1) For i, j P I and a, b P B, pick morphisms

Y pi, aq Ă HomRpTi, Taq, Hpa, bq Ă HomRpTa, Tbq, Xpb, jq Ă HomRpTb, Tjq

lifting bases for HomRpTi, ∇̄paq, HomRp∆paq,∇pbqq and HomRp∆̄pbq, Tjq as in
Theorem 4.45 such that Y pb, bq “ Xpb, bq “ tidTbu. These choices give a tri-
angular basis making into a finite (resp., upper finite, resp., essentially finite)
based stratified algebra with respect to the poset pΛ,ěq (the opposite ordering on
Λ compared to R).

(2) If in addition R has a Chevalley duality ?_ and, in a suitable realization, the
modules corresponding to each Ti possess non-degenerate symmetric bilinear
forms satisfying the adjunction property as in (4.47), then the triangular ba-
sis in (1) can be chosen so that A is symmetrically based.

Proof. Part (1) is similar to the proof of Theorem 5.18, using Theorem 4.45 in place of
Theorem 4.43. Part (2) follows in the same way as in the proof of Theorem 5.11(2). �

Corollary 5.25. Let R be a finite (resp., upper finite, resp., essentially finite) fully
stratified category with stratification pB, L, ρ,Λ,ďq. Let A “

À

i,jPI eiAej be an algebra
realization of R.

(1) Assume that R is tilting-rigid with weakly symmetric strata. Then there is an

idempotent expansion A “
À

i,jPÎ êiAêj with B Ď Î, and finite sets

Y pi, aq Ă êiAêa, Hpa, bq Ă êaAêb, Xpb, jq Ă êbAêj

for all i, j P Î and a, b P B, making A into an upper finite (resp., essentially
finite) based stratified algebra.

(2) Assume that R is tilting-rigid with a Chevalley duality ?_ and that char k ‰ 2.
Then the choices in (1) can be made so that A is symmetrically based with anti-
involution σ realizing ?_.
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Proof. This follows from Theorem 5.24 in the same way as Corollary 5.11 was deduced
from Theorem 5.10. One also needs to use the fact that the Ringel dual R1 of R is
tilting-rigid by Theorem 4.42. �

5.4. Algebras with a triangular basis. The final axiom (S7) of Definition 5.20,
namely, that the algebra Aλ is basic, is quite restrictive. However, this assumption
is not essential, as we will explain in this subsection. The following simply repeats Def-
inition 5.20 with the final axiom dropped, but at the same time we switch to using the
notation B : S Ñ Λ where we had ρ : B Ñ Λ before.

Definition 5.26. Let A “
À

i,jPI eiAej be a finite-dimensional (resp., locally finite-

dimensional, resp., essentially finite-dimensional) locally unital algebra. We say that A
has a triangular basis if we are given the following additional data:

(TB1) A subset S Ď I indexing special idempotents tes | s P Su.
(TB2) A poset pΛ,ďq which is upper finite in the locally finite-dimensional case and

interval finite in the essentially finite-dimensional case, such that Λ X I “ ∅.
(TB3) A function B : S Ñ Λ with finite fibers Sλ :“ B´1pλq.
(TB4) Sets Y pi, sq Ă eiAes, Hps, tq Ă esAet, Xpt, jq Ă etAej for i, j P I and s, t P S.

Let Y psq :“
Ť

iPI Y pi, sq and Xptq :“
Ť

jPI Xpt, jq. The axioms are as follows:

(TB5) The products yhx for py, h, xq P
Ť

s,tPS Y psq ˆHps, tq ˆXptq are a basis for A.

(TB6) For s, t P S with s ‰ t, the set Hps, tq is empty unless Bpsq “ Bptq, the sets
Y pt, sq and Xps, tq are empty unless Bptq ă Bpsq, and Y ps, sq “ Xps, sq “ tesu.

Suppose that A has a triangular basis as in Definition 5.26. We define algebras
Aλ “ ēλAďλēλ for each λ P Λ like at the end of Definition 5.12. Thus, we let eλ :“
ř

sPSλ
es, then set Aλ :“ ēλAďλēλ where Aďλ is the quotient of A by the two-sided ideal

generated by teµ | µ ę λu. Corollary 5.15 carries over to show that Aďλ has basis ȳh̄x̄
for all y P Y psq, h P Hps, tq, x P Xptq and s, t P S with Bpsq, Bptq ď λ. Hence, Aλ has
basis

 

h̄
ˇ

ˇ h P
Ť

s,tPSλ
Hps, tq

(

. Let jλ : Aďλ-mod Ñ Aλ-mod, V ÞÑ ēλV be the quotient

functor and define jλ! and jλ˚ analogously to (5.4).

Lemma 5.27. The functors jλ! and jλ˚ are exact.

Proof. By the argument from the proof of Lemma 5.16, there is an isomorphism of right
Aλ-modules

À

sPSλ

À

yPY psq ēsAλ
„
Ñ Aďλēλ sending the vector ēs in the yth copy of

ēsAλ to ȳ P Aďλēλ. So the right Aλ-module Aďλēλ is projective, which implies the
exactness of jλ! . Similarly, the left Aλ-module ēλAďλ is projective, which implies the
exactness of jλ˚ . �

The following theorem is essentially [GRS, Th. 3.5], although we give a self-contained
proof since our notation is different enough. See Remark 5.30 for further historical
discussion.

Theorem 5.28 (Fully stratified categories from triangular bases). Let A be a finite-
dimensional (resp., locally finite-dimensional, resp. essentially finite-dimensional al-
gebra with a triangular basis as above. Let ρ : B Ñ Λ be a function whose fibers
Bλ :“ ρ´1pλq label a full set tLλpbq | b P Bλu of pairwise inequivalent irreducible left
Aλ-modules. Let ∆̄pbq :“ jλ! Lλpbq and ∇̄pbq :“ jλ˚Lλpbq for b P Bλ. Then the modules

tLpbq :“ hd ∆̄pbq – soc ∇̄pbq | b P Bu

give a full set of pairwise inequivalent irreducible left A-modules. Moreover, R :“
A-modfd (resp., R :“ A-modlfd, resp., R :“ A-modfd) is a finite (resp., upper finite,
resp., essentially finite) fully stratified category with stratification pB, L, ρ,Λ,ďq. Its
strata are the categories Rλ :“ Aλ-modfd, with standardization and costandardization
functors as in (5.4).
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Proof. Take u P Sλ and any b P Bλ such that ēuLλpbq ‰ 0. We claim that Aeu has a
∆̄-flag with ∆̄pbq at the top and other sections of the form ∆̄pcq for c with ρpcq ě λ. To
see this, let P :“ Aeu for short. Note P has basis

 

yhx
ˇ

ˇ py, h, xq P
Ť

µěλ

Ť

s,tPSµ
Y psq ˆHps, tq ˆXpt, uq

(

.

Let tµ1, . . . , µnu be the finite set
 

µ P rλ,8q
ˇ

ˇ

Ť

tPSµ
Xpt, uq ‰ ∅

(

enumerated in some

order refining ď. There is a filtration P “ P0 ą P1 ą ¨ ¨ ¨ ą Pn “ 0 in which the section
Pr´1{Pr has basis

 

yhx ` Pr
ˇ

ˇ py, h, xq P
Ť

s,tPSµr
Y psq ˆHps, tq ˆXpt, uq

(

. Moreover,

Pr´1{Pr – jµr! Qr where Qr :“ ēµr pPr´1{Prq. This follows by a similar argument to the
Case 2 in the proof of Theorem 5.17. Since jµr! is exact by Lemma 5.27, it follows that
Pr´1{Pr has a ∆̄-flag with sections ∆̄pcq for c P Bµr . So we have proved that P has a
∆̄-flag with sections ∆̄pcq for c P B with ρpcq ě λ. Moreover, P0{P1 – jλ! pAλēuq. Since
Aλēu has Lλpbq in its head, it follows that the ∆̄-flag can be chosen so that it has ∆̄pbq
at its top.

Now we can classify the irreducible left A-modules. As in the penultimate paragraph
of the proof of Theorem 5.17, the modules tLpbq :“ hd ∆̄pbq | b P Bu are pairwise
inequivalent irreducible A-modules. It remains to show that any irreducible left A-
module L is isomorphic to some such module. There exists u P S such that euL ‰ 0.
Hence, L is a quotient of Aeu. By considering the filtration of Aeu from the previous
paragraph we deduce that L is a quotient of ∆̄pcq for some c P B, i.e., L – Lpcq.

At this point, we have in hand the data of a stratification of R with strata Rλ :“
Aλ-modfd and standardization and costandardization functors as in (5.4). For each
b P Bλ, choose u P Sλ such that ēuLλpbq ‰ 0 then set Pb :“ Aeu. The claim estab-
lished in the first paragraph of the proof checks that these modules satisfy the property

pyP∆´q, hence, R is an upper finite (resp., essentially finite) ´-stratified category. Fi-
nally we deduce that it is fully stratified using the criterion from Lemma 3.20(iv) plus
Lemma 5.27. �

Corollary 5.29. Let A be as above. If each of the finite-dimensional algebras Aλ is
quasi-hereditary (e.g., they could all be semisimple), then the stratification can be refined
to make the category R from Theorem 5.28 into a highest weight category.

Proof. Combine Theorem 5.28 and Corollary 3.67. �

Remark 5.30. We did not fully appeciate the utility of Definition 5.26 before seeing
[GRS], in which Gao, Rui and Song introduce a notion of an algebra with a weak
triangular decomposition and give a (slightly different) proof of Theorem 5.28 for such
algebras. They justify their definition by constructing several interesting families of
examples, namely, cyclotomic quotients of the affine oriented Brauer and HOMFLY-
PT skein categories and of the affine Brauer and Kauffman skein categories. In the
special case that I “ S, i.e., all distinguished idempotents are special, our notion of an
algebra with a triangular basis is exactly equivalent to the notion of an algebra with
a weak triangular decomposition. More precisely, a weak triangular decomposition is
the data of subspaces A´ “

À

i,jPI eiA
´ej , A

˝ “
À

i,jPI eiA
˝ej , A

` “
À

i,jPI eiA
`ej for

i, j P I subject to certain axioms. Picking homogeneous bases Y pi, jq, Hpi, jq and Xpi, jq
for eiA

´ej , eiA
˝ej and eiA

`ej , respectively, produces a triangular basis in the sense
of Definition 5.26. Conversely given a triangular basis one obtains a weak triangular
decomposition by replacing the bases by the subspaces that they span.

5.5. Algebras with a triangular decomposition. Let A be an algebra with a tri-
angular basis as in Definition 5.26 and assume in addition that I “ S, i.e., all of the
distinguished idempotents are special. Let A5 and A7 be the subspaces spanned by
 

yh
ˇ

ˇ py, hq P
Ť

i,jPI Y piqˆHpi, jq
(

and
 

hx
ˇ

ˇ ph, xq P
Ť

i,jPI Hpi, jqˆXpjq
(

, respectively.
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If it happens that these subspaces are locally unital subalgebras11 of A then A has a
triangular decomposition in the following sense.

Definition 5.31. Let A “
À

i,jPI eiAej be a finite-dimensional (resp., locally finite-

dimensional, resp., essentially finite-dimensional) locally unital algebra. A triangular
decomposition of A is the following additional data:

(TD1) A poset pΛ,ďq which is upper finite in the locally finite-dimensional case or
interval finite in the essentially finite-dimensional case.

(TD2) A function B : I Ñ Λ with finite fibers Iλ :“ B´1pλq.
(TD3) Locally unital subalgebras A5 and A7.

We call A5 and A7 the negative and positive Borel subalgebras. Let A˝ :“ A5 XA7. This
is also a locally unital subalgebra called the Cartan subalgebra. The following axioms
are required to hold:

(TD4) A5 is a projective right A˝-module and A7 is a projective left A˝-module.
(TD5) The natural multiplication map A5 bA˝ A

7 Ñ A is a linear isomorphism.
(TD6) For i, j P I, ejA

5ei and eiA
7ej are zero unless Bpjq ď Bpiq, and eiA

5ej “ eiA
7ej

when Bpiq “ Bpjq.

Remark 5.32. Our formulation of Definition 5.31 has been influenced by the defini-
tion of a triangular category from a recent preprint of Sam and Snowden [SS]; these are
finite-dimensional categories satisfying equivalent axioms to algebras with an upper finite
triangular decomposition in the above sense in which the Cartan subalgebra is semisim-
ple. In an earlier draft, we had formulated a slightly more restrictive notion which we
now refer to a split triangular decomposition, as follows. Let A “

À

i,jPI eiAej be a

finite-dimensional (resp., locally finite-dimensional, resp., essentially finite-dimensional)
locally unital algebra. We say that A has a split triangular decomposition if we have the
additional data:

(STD1) A poset pΛ,ďq which is upper finite in the locally finite-dimensional case and
interval finite in the essentially finite-dimensional case.

(STD2) A function B : I Ñ Λ with finite fibers Iλ :“ B´1pλq.
(STD3) Locally unital subalgebras A´, A˝ and A`.

Letting K :“
À

iPI kei, the axioms are:

(STD4) The subspaces A5 :“ A´A0 and A7 :“ A0A` are subalgebras.
(STD5) The natural multiplication map A´ bK A

˝ bK A
` Ñ A is a linear isomorphism.

(STD6) For i, j P I with i ‰ j, eiA
˝ej is zero unless Bpiq “ Bpjq, ejA

´ei and eiA
`ej are

zero unless Bpjq ă Bpiq, and eiA
´ei “ eiA

`ei “ kei for all i P I.

The axiom (STD5) implies that A5 – A´ bK A˝ and A7 – A˝ bK A7. Hence, by
associativity of tensor product we have that

A5 bA˝ A
7 – A´ bK A

˝ bA˝ A
˝ bK A

` – A´ bK A
˝ bK A

` – A,

proving (TD5). Moreover, the isomorphisms A5 – A´ bK A
˝ and A7 – A˝ bK A

7 show
that A5 and A7 are I-free in the sense of Definition 2.17 as right and left A˝-modules,
respectively, which implies (TD4). Axiom (TD6) is also easily deduced from (STD6).
When they hold, the axioms (STD4)–(STD6) are easier to check than (TD4)–(TD6),
so this gives a practical way to obtain triangular decompsitions. In fact, most of the
examples of triangular decompositions arising from diagrammatic monoidal categories
considered in [SS] and elsewhere are split triangular decompositions, so the split formu-
lation is useful.

Remark 5.33. In [HN], Holmes and Nakano introduced a notion of a Z-graded algebra
with a triangular decomposition. To explain the connection to our setup, suppose we

11Locally unital subalgebra means subspace closed under multiplication and containing all of the dis-
tinguished idempotents.
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are given a unital Z-graded algebra Ã “
À

λPZ Ãλ. There is an associated locally unital

algebra A “
À

λ,µPZ eλAeµ with eλAeµ :“ Ãλ´µ and multiplication induced by multi-

plication in Ã in the natural way. Moreover, any Z-graded left Ã-module V “
À

λPZ Vλ
can be viewed as a left A-module with eλV :“ Vλ; this defines an isomorphism from
the usual category Ã-grmod of Z-graded Ã-modules and degree-preserving morphisms
to the category A-mod of locally unital A-modules. If we start with Ã that is a finite-
dimensional Z-graded algebra with a triangular decomposition pÃ´, Ã˝, Ã`q as in [HN]
(see also [BT, Def. 3.1]) then the essentially finite-dimensional locally unital algebra A
and the subalgebras A˝, A´ and A` obtained via this construction has a split triangular
decomposition, with I “ Λ “ Z ordered in the natural way.

To make the connection with Definition 5.26, suppose that A has a triangular de-
composition. For λ P Λ, let 1λ :“

ř

iPIλ
ei. The axioms imply that eiA

˝ej “ 0 unless

Bpiq “ Bpjq, so 1λA
˝1µ “ 0 for λ ‰ µ. It follows that t1λ |λ P Λu are mutually orthogonal

central idempotents in A˝, and the Cartan subalgebra has the “block” decomposition

A˝ “
à

λPΛ

A˝λ where A˝λ :“ 1λA
˝ “ A˝1λ. (5.11)

Lemma 5.34. Let A be as in Definition 5.31 with Λ X I “ ∅. Suppose we are given
S Ď I such that all eiA

5 and A7ej are S-free as right and left A˝-modules, respectively.

For i, j P I, s, t P S, one can choose subsets Y pi, sq Ă eiA
5es, Xpt, jq Ă etA

7ej so that

(i) eiA
5 “

À

sPS

À

yPY pi,sq yA
˝ with yA˝ – esA

˝ for y P Y pi, sq;

(ii) A7ej “
À

tPS

À

xPXpt,jqA
˝x with A˝x – A˝et for x P Xpt, jq;

(iii) Y pt, tq “ Xpt, tq “ tetu for all t P S.

Also let Hps, tq be a basis for esA
˝et. This makes A “

À

i,jPÎ eiAej into an algebra with
a triangular basis in the sense of Definition 5.26 with B : S Ñ Λ being the restriction
of the given function B : I Ñ Λ. For λ P Λ and eλ :“

ř

sPSλ
es, the subquotient

Aλ “ ēλAďλēλ defined after Definition 5.26 is isomorphic to the subalgebra eλA
˝
λeλ of

A˝λ. Moreover, we have that A˝λ “ A˝λeλA
˝
λ so Aλ is Morita equivalent to A˝λ.

Proof. By the definition of S-free, there are subsets Y pi, sq Ă eiA
5es as in (i). Since

eiA
5es is zero unless Bpiq ď Bpsq, we have that Y pi, sq “ ∅ unless Bpiq ď Bpsq. Suppose

that t P Sλ :“ SX Iλ. By (TD6), we have that

etA
51λ “ etA

˝
λ “

à

sPSλ

à

yPY pt,sq

yA˝λ,

i.e., the sets Y pt, sq for s P Sλ come from an S-free decomposition of etA
˝
λ. This means

we can choose them so that Y pt, tq “ tetu as in (iii), in which case Y pt, sq “ ∅ for
s P Sλ with s ‰ t. Hence, for s, t P S with s ‰ t, we have that Y pt, sq “ ∅ unless
Bptq ă Bpsq. Similarly, we choose subsets Xpt, jq Ă etA

7ej according to (ii) and (iii),
and then for s, t P S with s ‰ t we have that Xps, tq “ ∅ unless Bptq ă Bpsq. Note also
that Hps, tq “ ∅ unless Bpsq “ Bptq due to (5.11). Thus we have the required data from
(TB1)–(TB4), and the conditions of (TB6) are satisfied.

In this paragraph, we check (TB5). Let Y psq “
Ť

iPI Y pi, sq and Xptq “
Ť

jPI Xpt, jq.

We have seen already that A5 “
À

sPS

À

yPY psq yA
˝ and A7 “

À

tPS

À

xPXptqA
˝x. Ten-

soring these together, we deduce that

A5 bA˝ A
7 “

à

s,tPS

à

yPY psq,xPXptq

yA˝ bA˝ A
˝x.

Each summand yA˝bA˝ A
˝x here is isomorphic to esA

˝bA˝ A
˝et – esA

˝et. We deduce
that A5 bA˝ A

7 has basis
 

yh b x “ y b hx
ˇ

ˇ py, h, xq P
Ť

s,tPS Y psq ˆ Hps, tq ˆ Xptq
(

.

Then we use (TD5) to see that the axiom (TB5) is satisfied.
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Finally we must identify the algebra Aλ. The quotient map A � Aďλ restricts to a
homomorphism φ : A˝ Ñ Aďλ which further restricts to

φλ : eλA
˝
λeλ

„
Ñ Aλ. (5.12)

The subalgebra A˝λ has basis tyhx | py, h, xq P
Ť

i,jPIλ,s,tPSλ
Y pi, sq ˆHps, tq ˆXpt, jqu,

hence, A˝λ “ A˝λeλA
˝
λ. The subalgebra Aλ of eλA

˝
λeλ has basis

Ť

s,tPSλ
Hps, tq. It follows

that φλ sends a basis to a basis, so it is an isomorphism. �

The freeness assumption in Lemma 5.34 may seem restrictive, but one can always
pass to an idempotent expansion so that this is the case. In fact, we can do this in such
a way that the algebras Aλ are basic, thereby giving A the structure of a based stratified
algebra rather than merely an algebra with a triangular basis:

Theorem 5.35 (Based stratified algebras from triangular decompositions). Suppose
that A has a triangular decomposition as in Definition 5.31. Let A˝ “

À

i,jPÎ êiA
˝êj be

an idempotent expansion of A˝ “
À

i,jPI eiA
˝ej such that

(i) Î X Λ “ ∅;

(ii) Î contains a subset B indexing a full set têb | b P Bu of pairwise non-conjugate
primitive idempotents in A˝;

(iii) there is a function q : Î Ñ I with |q´1piq| ă 8 and ei “
ř

jPq´1piq êj for i P I.

Then A “
À

i,jPÎ êiAêj has a triangular decomposition with the given Borel subalgebras,

taking the function from (TD2) now to be ρ :“ B˝q : Î Ñ Λ. Moreover, êiA
5 and A7êj are

B-free as right and left A˝-modules, respectively. Hence, we can apply the construction
of Lemma 5.34 to A “

À

i,jPÎ êiAêj to make A into a based stratified algebra in the
sense of Definition 5.26 with ρ : B Ñ Λ defined by restriction.

Proof. The fact that we have in hand a triangular decomposition of A “
À

i,jPÎ êiAêj is

immediately clear from the nature of Definition 5.31. Since 1λA
7êj is a finite-dimensional

projective left A˝λ, Lemma 2.18 implies that it is B-free as a left Aλ-module. Hence

A7êj “
À

λPΛ 1λA
7êj is B-free as a left module. Similarly, we get that êiA

5 is B-free
as a right module. So now Lemma 5.34 can be applied and we obtain a triangular
basis such that Aλ – êλA

˝
λêλ for êλ :“

ř

bPBλ
êb. By the choice of the idempotents

têb | b P Bu, êλA
˝
λêλ is the basic algebra that is Morita equivalent to A˝λ, checking the

remaining axiom (S7) needed in order to have a based stratified algebra. �

Corollary 5.36. If A has a triangular decomposition in which the Cartan subalgebra
A˝ is semisimple, then there is an idempotent refinement A “

À

i,jPÎ eiAej of A with
the structure of a based quasi-hereditary algebra in the sense of Definition 5.1.

Proof. The construction in the theorem produces an idempotent refinement of A that
is a based stratified algebra with stratification function ρ : B Ñ Λ. Let Γ :“ B with
partial order ĺ on Γ defined by a ĺ b if and only if a “ b or ρpaq ă ρpbq. Since Aλ
is basic and semisimple, we have for a, b P Bλ that Hpa, bq is empty unless a “ b and
Hpa, aq may be chosen to be têau. It follows that A is actually a based quasi-hereditary
algebra with weight poset pΓ,ĺq and the basis which we have constructed. �

Remark 5.37. The construction used to prove Theorem 5.35 suggests yet another vari-
ation on all of these definitions, which is weaker than having a triangular decomposition
but stronger than having a triangular basis. For A like in Definition 5.31 we say that it
has a Cartan decomposition if there is the following additional data:

(CD1) A poset pΛ,ďq which is upper finite in the locally finite-dimensional case and
interval finite in the essentially finite-dimensional case.

(CD2) A function B : I Ñ Λ with finite fibers Iλ :“ B´1pλq.
(CD3) A locally unital subalgebra A˝ and pA˝, A˝q-subbimodules A5 and A7 of A.

The axioms are:



100 J. BRUNDAN AND C. STROPPEL

(CD4) A5 is a projective right A˝-module and A7 is a projective left A˝-module.
(CD5) The natural multiplication map A5 bA˝ A

7 Ñ A is a linear isomorphism.
(CD6) For i, j P I, eiA

˝ej is zero unless Bpiq “ Bpjq, eiA
5ej and ejA

7ei are zero unless

Bpiq ď Bpjq, and eiA
5ej “ eiA

˝ej “ eiA
7ej when Bpiq “ Bpjq.

The proof of Theorem 5.35 carry over to such algebras essentially unchanged. However
we do not know of any compelling examples, whereas as we noted in Remarks 5.30, 5.33
and 5.32 there are plenty of important examples of algebras with triangular bases and
with triangular decompositions, justifying both of those definitions.

If A is a finite-dimensional (resp., locally finite-dimensional, resp. essentially finite-
dimensional) algebra with a triangular decomposition, then we can apply Theorems 5.35
and 5.23 to deduce that A-modfd (resp., A-modlfd, resp., A-modfd) is a finite (resp.,
upper finite, resp., essentially finite) fully stratified category. We end the section by
making this structure more explicit. We first define some global standardization and
costandardization functors.

‚ The axioms imply that A is a projective right A7-module and that there is a
locally unital projection homomorphism A7 � A˝. Let

j! : A˝-modfd Ñ A-mod (5.13)

be the exact functor defined by first inflating along this projection homorphism
A7 � A˝ and then applying the exact induction functor AbA7? : A7-mod Ñ
A-mod. The fact that it takes finite-dimensional modules to finite-dimensional or
locally finite-dimensional modules (as appropriate for the case) follows because
as functors to A5-mod we have that AbA7? – A5bA˝? due to (TD5).

‚ The axioms imply that A is a projective left A5-module and that there is a
locally unital projection homomorphism A5 � A˝. Let

j˚ : A˝-modfd Ñ A-mod (5.14)

be the exact functor defined by first inflating along the projection A5 � A˝

then applying the exact coinduction functor
À

iPI HomA5 pAei,´q : A5-mod Ñ
A-mod. It takes finite-dimensional modules to finite-dimensional or locally
finite-dimensional modules (as appropriate for the case) follows because as a
functor to A7-mod it is isomorphic to

À

iPI HomA˝
`

A7ei, ?
˘

.

The following theorem can be proved by mimicking standard arguments from Lie theory;
see [CouZ] noting that pA5, A˝q and pA˝, A7q are Borelic pairs in the sense defined there.
We will deduce it instead from the work already done in Theorems 5.35 and 5.23.

Theorem 5.38 (Fully stratified categories from algebras with a triangular decomposi-
tion). Suppose that A has a triangular decomposition of one of the three types as above.
Let tL˝pbq | b P Bu be a full set of pairwise inequivalent irreducible left A˝-modules. Let
ρ : B Ñ Λ be the function sending b P B to the unique λ P Λ such that L˝pbq is an
irreducible A˝λ-module. Let ∆̄pbq :“ j!L

˝pbq and ∇̄pbq :“ j˚L
˝pbq; cf. (5.13)–(5.14).

Then
 

Lpbq :“ hd ∆̄pbq – soc ∇̄pbq
ˇ

ˇ b P B
(

is a complete set of pairwise inequivalent irreducible left A-modules. Moreover, the
category R :“ A-modfd (resp., A-modlfd, resp., A-modfd) is a finite (resp., upper finite,
resp., essentially finite) fully stratified category with stratification pB, L, ρ,Λ,ďq. Its
strata may be identified with the categories A˝λ-modfd pλ P Λq with standardization and
costandardization functors defined by the restrictions of j! and j˚, respectively.

Proof. As explained by Theorem 5.35, we can pass to an idempotent refinement if nec-
essary to assume without loss of generality that the set I indexing the distinguished
idempotents is disjoint from Λ and contains B as a subset in such a way that L˝pbq –
hd pA˝ebq for each b P B. The function ρ : B Ñ Λ is then the restriction of B : I Ñ Λ.
Now Theorem 5.35 gives bases making A into a based stratified algebra. We we deduce
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that R is a finite (resp., upper finite, resp., essentially finite) fully stratified category
with stratification pB, L, ρ,Λ,ďq by applying Theorem 5.23. However for this the strata
and the labelling function L are produced in a different way to the formulation here,
so we need to argue a little further to see that the standardization and costandardiza-
tion functors here and the ones from earlier may be identified. Using the isomorphism
(5.12), the quotient functor jλ : Aďλ-mod Ñ Aλ-mod in the setup of (5.4) may be
identified with the functor j : Aďλ-mod Ñ eλA

˝
λeλ-mod obtained by restriction to A˝

then multiplication by the idempotent eλ. Since A˝λ and eλA
˝
λeλ are Morita equivalent,

we can instead use the algebra A˝λ to realize the stratum, and then this quotient functor
gets replaced by the functor obtained by restriction to A˝ then multiplication by 1λ. It
remains to observe that the restrictions of j! and j˚ to A˝λ-mod are left and right adjoint
to this functor, respectively. �

Corollary 5.39. Suppose that A has a triangular decomposition of one of the three
types and that its Cartan subalgebra A˝ is semisimple. Let tL˝pγq |γ P Γu be a full set of
pairwise inequivalent irreducible left A˝-modules. Let ρ : Γ Ñ Λ be the function sending
γ to the unique λ such that L˝pγq is an irreducible A˝λ-module. Then R :“ A-modfd

(resp., A-modlfd, resp. A-modfd) is a finite (resp., upper finite, resp., essentially finite)
highest weight category with weight poset pΓ,ĺq for ĺ defined by β ĺ γ if either β “ γ
or ρpβq ă ρpγq. Its standard and costandard modules are ∆pγq :“ j!L

˝pγq and ∇pγq :“
j˚L

˝pγq for γ P Γ.

Proof. This follows from the theorem and Corollary 5.36. �

Remark 5.40. We end by mentioning one last variation on the definitions in this
subsection. We say that a triangular decomposition of A as in Definition 5.31 is a
symmetric triangular decomposition if in addition there is given a locally unital algebra
anti-involution σ : A Ñ A which leaves A˝ invariant and interchanges A7 and A5,
such that for each λ P Λ the subalgebras eλA

λeλ are σλ-symmetric in the sense of
Definition 4.51, where σλ denotes the restriction of σ. Then there is an enhanced
version of Theorem 5.35 making A into a symmetrically based stratified algebra, and
an enhanced version of Theorem 5.38 making R into a fully stratified category with a
Chevalley duality ?©σ . We omit the details.

6. Examples

In this section, we explain several examples. For the ones in §§6.5–6.7 we give very
few details but have tried to indicate the relevant ingredients from the existing literature.

6.1. A finite-dimensional example via quiver and relations. Let A and B be the
basic finite-dimensional algebras defined by the following quivers:

A p1 ą 2q : 1s
$$ y

// 2 t
zz

with relations s2 “ 0, t2 “ 0, ty “ 0,

B p1 ă 2q : 1z
$$

u
((
2

v

hh with relations z2 “ 0, uv “ 0, vuzv “ 0.

The algebra A has basis e1, s; e2, t; y, ys and B has basis e1, z, vu, vuz, zvu, zvuz; e2, uzv;
v, zv; u, uz, uzvu, uzvuz. The irreducible A- and B-modules are indexed by the set t1, 2u.
We are going to consider A-modfd and B-modfd with the stratifications defined by the
orders 1 ą 2 and 1 ă 2, respectively.

We first look at A-modfd. As usual, we denote its irreducibles by Lpiq, indecompos-
able projectives by P piq, standards by ∆piq, etc.. The indecomposable projectives and
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injectives look as follows (where we abbreviate the irreducible module Lpiq just by i):

P p1q “

1
s y

1
y

2

2

, P p2q “
2
t

2

, Ip1q “
1
s

1

, Ip2q “

1

2 1

s

2
t y

.

It follows easily that A-modfd is a fibered highest weight category in the sense of Defi-
nition 3.7 with the structure of the standards and costandards as follows:

∆p1q “ P p1q, ∆̄p1q “
1
y

2

, ∆p2q “ P p2q, ∆̄p2q “ Lp2q,

∇p1q “ Ip1q, ∇̄p1q “ Lp1q, ∇p2q “
2
t

2

, ∇̄p2q “ Lp2q.

This can also be seen from Theorem 5.23 on noting that A is a based properly stratified
algebra in the sense of Definition 5.21 with Y p2, 1q “ tyu, Xp1, 2q “ ∅ and Hp1q “
te1, su, Hp2q “ te2, tu. The basic local algebras realizing the strata are krss{ps2q and
krts{pt2q. Next we look at the tilting modules in A-modfd. If one takes the sign function
ε “ pε1, ε2q to be either p`,`q or p´,`q then one finds that the indecomposable ε-tilting
modules are:

T`p1q “ P p1q “

∆̄p1q

∆̄p1q

“

∇p1q

∇̄p2q ∇̄p2q
, T`p2q “ P p2q “ ∆p2q “

∇̄p2q

∇̄p2q
.

These cases are not very interesting since the Ringel dual category is just A-modfd

again. Assume henceforth that ε “ p´,´q or p`,´q. Then the indecomposable ε-tilting
modules are:

T´p1q “

1
s y

2
t

1
y

2 2
t

2

“

∆̄p2q ∆̄p2q

∆p1q

“

∇p1q

∇p2q ∇p2q
, T´p2q “ P p2q.

To see this, one just has to check that these modules are indecomposable with the
appropriate ∆ε- and ∇ε-flags. This analysis reveals that A-modfd is not tilting-rigid.

The minimal projective resolution of T´p1q takes the form

¨ ¨ ¨ ÝÑ P p2q ‘ P p2q ÝÑ P p2q ‘ P p2q ÝÑ P p1q ‘ P p2q ‘ P p2q ÝÑ T´p1q ÝÑ 0.

In particular, it is not of finite projective dimension, as follows also from Lemma 4.38
since T´p1q fl T`p1q. Observe also that there is a non-split short exact sequence 0 Ñ
X Ñ T´p1q Ñ X Ñ 0 where

X “
1
y

2
t

2
.

Now let T :“ T´p1q ‘ T´p2q. We claim that EndApT q
op is the algebra B defined

above. To prove this, one takes z : T´p1q Ñ T´p1q to be an endomorphism whose image
and kernel is the submodule X of T´p1q, u : T´p2q Ñ T´p1q to be a homomorphism
which includes T´p2q as a submodule of X Ď T´p1q, and v : T´p1q Ñ T´p2q to be a
homomorphism with kernel containing X and image Lp2q Ď T´p2q. Hence, B-modfd is
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the Ringel dual of A-modfd relative to T . Note also that the algebra B is based p`,`q-
and p´,`q-quasi-hereditary but it is not based p`,´q- or p´,´q-quasi-hereditary (cf.
Definition 5.13).

One can also analyze B-modfd directly. Its projective modules have the following
structure:

P 1p1q “

1
u z

2
v

1
u

1
z

2
v

1
u

1
z

2 1
u

2

, P 1p2q “

2
v

1
z

1
u

2

,

Continuing with ε “ p´,´q or ε “ p`,´q, it is easy to check directly from this that
B-modfd is p´εq-highest weight, as we knew already due to Theorem 4.10. However, it
is not ε-highest weight for either of these choices of ε, so it is not fibered highest weight.

We leave it to the reader to compute explicitly the indecomposable p´εq-tilting mod-
ules T 1`p1q and T 1`p2q in B-modfd. Their structure reflects the structure of the injectives
Ip1q and Ip2q in A-modfd. Let T 1 :“ T 1`p1q ‘ T 1`p2q – T˚. By the double centralizer
property from Corollary 4.11, we have that A “ EndBpT

1qop, as may also be checked
directly. By Theorem 4.16, the functor RHomBpT

1, ?q : DbpB-modfdq Ñ DbpA-modfdq

is an equivalence. Note though that RHomApT, ?q : DbpA-modfdq Ñ DbpB-modfdq is
not one; this follows using [Kel, Th. 4.1] since T´p1q does not have finite projective
dimension.

6.2. An explicit semi-infinite example. In this subsection, we give a baby example
involving a lower finite highest weight category. Let C be the coalgebra with basis

 

c
p`q
i,j

ˇ

ˇi, j, ` P Z, 0 ď i, j ď `
(

,

counit defined by εpc
p`q
i,j q :“ δi,`δj,`, and comultiplication δ : C Ñ C b C defined by

c
piq
i,j ÞÑ

j
ÿ

k“0
iıjp2q

c
piq
i,k b c

pjq
k,j `

i
ÿ

k“j
k”ip2q

c
piq
i,k b c

pkq
k,j , c

pjq
i,j ÞÑ

i
ÿ

k“0
iıjp2q

c
piq
i,k b c

pjq
k,j `

j
ÿ

k“i
k”jp2q

c
pkq
i,k b c

pjq
k,j ,

c
p`q
i,j ÞÑ c

p`q
i,` b c

p`q
`,j `

i
ÿ

k“0
iı`p2q

c
piq
i,k b c

p`q
k,j `

`´1
ÿ

k“i
k”`p2q

c
pkq
i,k b c

p`q
k,j `

j
ÿ

k“0
jı`p2q

c
p`q
i,k b c

pjq
k,j `

`´1
ÿ

k“j
k”`p2q

c
p`q
i,k b c

pkq
k,j

for i, j ě 0 and ` ą maxpi, jq. We will show that R :“ comodfd-C is a lower finite
highest weight category with weight poset Λ :“ N ordered in the natural way. Then
we will determine the costandard, standard and indecomposable injective and tilting
objects explicitly, and describe the Ringel dual category R1. To do this, we mimic some
arguments for reductive groups which we learnt from [Jan1].

We will need comodule induction functors, which we review briefly. For any coalgebra
C with comultiplication δ, a right C-comodule V with structure map ηR : V Ñ V b C,
and a left C-comodule W with structure map ηL : W Ñ C bW , the cotensor product
V �C W is the subspace of the vector space V bW that is the equalizer of the diagram

V bW
ηRbid
ÝÑ
ÝÑ

idbηL

V b C bW.
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In particular, ηR : V Ñ V b C is an isomorphism from V to the subspace V �C C,
and similarly ηL : W

„
Ñ C �C W . Now suppose that π : C Ñ C 1 is a coalgebra

homomorphism and V is a right C 1-comodule. Viewing C as a left C 1-comodule with
structure map δL :“ pπ b idq ˝ δ : C Ñ C 1 b C, we define the induced comodule to be

indCC1 V :“ V �C1 C.

This is a subcomodule of the right C-comodule V b C (with structure map idbδ). In

fact, indCC1 : comod-C 1 Ñ comod-C defines a functor which is right adjoint to the exact
restriction functor resCC1 , so it is left exact and sends injectives to injectives.

Now let C be the coalgebra defined above, and consider the natural quotient maps
π5 : C � C5 and π7 : C � C7, where C5 and C7 are the quotients of C by the

coideals spanned by
 

c
p`q
i,j

ˇ

ˇ ` ą j
(

or
 

c
p`q
i,j

ˇ

ˇ ` ą i
(

, respectively. These coalgebras have

bases denoted
 

ci,j :“ π5pc
pjq
i,j q

ˇ

ˇ 0 ď i ď j
(

and
 

ci,j :“ π7pc
piq
i,jq

ˇ

ˇ i ě j ě 0
(

, and

comultiplications δ5 and δ7 satisfying

δ5pci,jq “ ci,i b ci,j `
j
ÿ

k“i`1
k”jp2q

ci,k b ck,j , δ7pci,jq “ci,j b cj,j `
i
ÿ

k“j`1
k”ip2q

ci,k b ck,j , (6.1)

respectively. Also let C˝ –
À

iě0 k be the semisimple coalgebra with basis tci | i ě 0u

and comultiplication δ˝ : ci ÞÑ ci b ci. Note C˝ is a quotient of both C5 and C7 via
the obvious maps sending ci,j ÞÑ δi,jci; hence, it is also a quotient of C. It may also be

identified with a subcoalgebra of both C5 and C7 via the maps sending ci ÞÑ ci,i.
Let L˝piq be the one-dimensional irreducible right C˝-comodule spanned by ci,i. Since

C˝ is semisimple with these as its irreducible comodules, any irreducible right C˝-
comodule V decomposes as V “

À

iPI Vi with the “weight spaces” Vi being a direct
sum of copies of L˝piq. Similarly, any left C˝-comodule V decomposes as V “

À

iPI iV .

This applies in particular to left and right C5, C7 or C-comodules, since these may be
viewed as C˝-comoodules by restriction.

Since C˝ is a subcoalgebra of C5, the irreducible comodule L˝piqmay also be viewed as
an irreducible right C5-comodule. We denote this instead by L5piq; it is the subcomodule

of C5 spanned by the vector ci,i. For i ě 0, let Ipiq :“ iC – indCC˝ L
˝piq, let ∇piq be

the subcomodule of Ipiq spanned by the vectors tc
piq
i,j | 0 ď j ď iu, and let Lpiq be the

one-dimensional irreducible subcomodule of ∇piq spanned by the vector c
piq
i,i . Now we

proceed in several steps.

Claim 1: Viewed as a functor to vector spaces, the induction functor indCC5 is isomorphic
to the functor V ÞÑ V �C˝ C7 –

À

iě0 Vi b iC
7. Hence, this functor is exact. To prove

this, let δLR :“ pπ5b̄π7q ˝ δ : C Ñ C5 �C˝ C7. As δLRpc
p`q
i,j q “ ci,` b c`,j and these

vectors for all ` ě maxpi, jq give a basis for C5�C˝ C7, this map is a linear isomorphism.
Moreover, the following diagram commutes:

C
δL

ÝÝÝÝÑ C5 b C

δLR

§

§

đ

§

§

đ

idbδLR

C5 �C˝ C7 ÝÝÝÝÑ
δ5bid

C5 b C5 �C˝ C7.

The vertical maps are isomorphisms. Using the definition of indCC5 , it follows for any right

C5-comodule V with structure map η that the induced module indCC5 V is isomorphic as
a vector space (indeed, as a right C7-comodule) to the equalizer of the diagram

V b C5 �C˝ C7
ηbidb id
ÝÑ
ÝÑ

idbδ5bid

V b C5 b C5 �C˝ C7.
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Since indC
5

C5 V – V , this is naturally isomorphic to V �C˝ C7. As C7 –
À

iě0 iC
7, we

get finally that V �C˝ C7 –
À

iě0 Vi b iC
7.

Claim 2: For i ě 0, the right C5-comodule iC
5 – indC

5

C˝ L
˝piq has an exhaustive ascending

filtration 0 ă V0 ă V1 ă ¨ ¨ ¨ such that V0 – L5piq and Vr{Vr´1 – L5pi`2r´1q‘L5pi`2rq
for r ě 1. Also, the modules tL5piq | i ě 0u give a full set of pairwise inequivalent
irreducible right C5-comodules. The first statement follows from (6.1), defining V0 to
be the subspace spanned by ci,i, and Vr is spanned by ci,i`2r´1, ci,i`2r. To prove the

second statement, take any irreducible C5-comodule L. Take a non-zero homomorphism

resC
5

C˝L Ñ L˝piq for some i. Then use adjointness of resC
5

C˝ and indC
5

C˝ to obtain an

embedding L ãÑ iC
5. Hence, L – L5piq as a C5-comodule.

Claim 3: We have that ∇piq – indCC5 L
5piq and it is uniserial with composition factors

Lpiq, Lpi ´ 2q, Lpi ´ 4q, . . . , Lpaq, Lpbq, ¨ ¨ ¨Lpi ´ 3q, Lpi ´ 1q (for pa, bq P tp0, 1q, p1, 0qu
depending on parity of i) in order from bottom to top:

∇piq “

i´ 1

i´ 3

i´ 2

i

(6.2)

The restriction of δL : C Ñ C5bC to ∇piq gives an embedding of ∇piq into indCC5 L
5piq.

This embedding is an isomorphism since we know indCC5 L
5piq has the same dimension

pi ` 1q as ∇piq thanks to Claim 1. The determinaton of the subcomodule structure is

straightforward using the definition of δpc
piq
i,jq for 0 ď j ď i.

Claim 4: The injective C-comodule Ipiq has an exhaustive filtration 0 ă I0 ă I1 ă ¨ ¨ ¨
such that I0 – ∇piq and Ir{Ir´1 – ∇pi` 2r ´ 1q ‘∇pi` 2rq for r ě 1:

Ipiq “

∇pi` 3q ∇pi` 4q

∇pi` 1q ∇pi` 2q

∇piq

(6.3)

This follows from Claims 1, 2 and 3.

Claim 5: The C-comodules tLpiq | i ě 0u give a full set of pairwise inequivalent irre-
ducibles. Moreover, Ipiq is the injective hull of Lpiq. By Claim 3, the last part of Claim
2, and an adjunction argument, any irreducible C-comodule embeds into ∇piq for some
i, hence, it is isomorphic to Lpiq. The module Ipiq is injective, and it has irreducible
socle Lpiq by another adjunction argument. Hence, it is the injective hull of Lpiq.

Claim 6: The category R :“ comodfd-C is a lower finite highest weight category with
costandard objects ∇piq pi ě 0q. It also possesses a Chevalley duality. We use the
criterion from Corollary 3.61. From Claim 4, it follows that the largest submodule of
Ipiq that belongs to Rďi is ∇piq, which is finite-dimensional. This shows that Rďi has
enough injectives with the injective hull of Lpiq being ∇piq. We also know already that

r∇piq : Lpiqs “ 1, and the property pxI∇
asc
q follows from Claim 4. Hence, R is a lower

finite highest weight category. Finally, the Chevalley duality is defined using the evident

coalgebra antiautomorphism of C which maps c
p`q
i,j ÞÑ c

p`q
j,i .
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Claim 7: The indecomposable tilting comodule T piq is equal to Lpiq “ ∆piq “ ∇piq if
i “ 0, and there are non-split short exact sequences

0 Ñ ∆piq Ñ T piq Ñ ∆pi´ 1q Ñ 0, 0 Ñ ∇pi´ 1q Ñ T piq Ñ ∇piq Ñ 0

for i ą 0.
This is immediate in the case i “ 0. Now for i ą 0, let T piq be the non-split exten-
sion of ∇pi ´ 1q by ∇piq that is the subcomodule of Ipi ´ 1q spanned by the vectors

tc
pi´1q
i´1,j , c

piq
i´1,k | 0 ď j ď i ´ 1, 0 ď k ď iu. Then one checks that this submodule is

self-dual. Since it has a ∇-flag it therefore also has a ∆-flag, so it must be the desired
tilting object by Theorem 4.2.

Claim 8: The Ringel dual category R1 is the category A-modlfd of locally finite-dimensional
left modules over the locally unital algebra A defined by the following quiver:

A : 0

y0
((
1

x0

hh

y1
,,
2 ¨ ¨ ¨

x1

ii with relations yi`1yi “ xixi`1 “ xiyi “ 0.

We need to find an isomorphism of algebras

A
„
Ñ

´

à

i,jě0

HomCpT piq, T pjqq
¯op

.

For this, we consider T piq pi “ 0, 1, 2, 3, . . . q with the ∇-flags:

0 x0
ÝÑ

y0
ÐÝ

0

1

0

x1
ÝÑ

y1
ÐÝ

1

0

2

0

1

x2
ÝÑ

y2
ÐÝ

2

0

1

3

1

0

2

y3
ÐÝ
x3
ÝÑ

¨ ¨ ¨ (6.4)

We will describe the images, also called ei, xi, yi, of the generators of A. We send ei to the
identity endomorphism of T piq, xi to the morphism T piq Ñ T pi`1q sending the quotient
∇piq of T piq to the subcomodule ∇piq of T pi`1q and yi to the morphism T pi`1q Ñ T piq
sending the quotient ∆piq of T pi` 1q to the submodule ∆piq of T piq. The relations are
easy to check (remembering the op, e.g., one must verify that y2 ˝ x2 “ 0 ‰ x2 ˝ y2).
Since the algebra A is very easy to understand, one also sees that this homomorphism
is injective, then it is an isomorphism by dimension considerations.

Remark 6.1. The above analysis of comodfd-C relies ultimately on the observation that
the coalgebra C has a triangular decomposition in a precise sense which is the analog for
coalgebras of Definition 5.31. There are also coalgebra analogs of the other definitions
from the previous section, which we intend to develop in more detail in a sequel to this
article. The coalgebra analog of Definition 5.1 is the notion of a based quasi-hereditary
coalgebra. The dual of such a coalgebra whose weight poset is finitely generated and
good in the sense of [MZ, Def. 3.9] is an ascending quasi-hereditary pseudo-compact
algebra as defined in [MZ, Def. 3.11].

One can argue in the opposite direction too, starting from the algebra A just de-
fined and computing its Ringel dual to recover the coalgebra C (in fact, this is how
we discovered the coalgebra C in the first place). Note for this that A is an upper
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finite based quasi-hereditary algebra with the given basis. In fact, it has an upper fi-
nite split triangular decomposition in the sense of Remark 5.32 with A˝ “

À

iPN kei,
A` “

À

iPNpkei ‘ kyiq and A´ “
À

iPNpkei ‘ kxiq. Hence, A-modlfd is an upper finite
highest weight category. Its standard and costandard modules have the structure

∆1piq “
i
y

i` 1

, ∇1piq “
i` 1
x

i

. (6.5)

Using the characterization from Theorem 4.18(i), it follows that the indecomposable
tilting modules for A have a similar structure to T 1p0q, which is as follows (to get T 1piq
in general one just has to add i to all of the labels):

T 1p0q “

5
xy

3
y x

1
y x

¨ ¨ ¨ 6 4 2 0
y

2
yx

4
yx

6
x

¨ ¨ ¨

1 3 5

(6.6)

This diagram demonstrates that T 1p0q has both an infinite ascending ∆-flag with ∆1p0q at
the bottom and subquotients as indicated by the straight lines, and an infinite descending
∇-flag with ∇1p0q at the top and subquotients indicated by the wiggly lines; cf. Claim 4
above. Given the indecomposable tilting modules T 1piq for A, one can now compute
the coalgebra C arising from the tilting generator T 1 :“

À

iě0 T
1piq according to the

general recipe from Definition 4.26. We leave this to the reader, but display below the

homomorphisms f
p`q
i,j : T 1piq Ñ T 1pjq in the endomorphism algebra B :“ EndApT

1qop

which are dual to the basis elements c
p`q
i,j of the coalgebra C “ Bˇ as above.

The map f
piq
i,i : T 1piq Ñ T 1piq is the identity endomorphism, and f

p`q
i,j : T 1piq Ñ T 1pjq

for ` ą maxpi, jq has irreducible image and coimage isomorphic to L1p`q, i.e., it sends
the (unique) irreducible copy of L1p`q in the head of T 1piq to the irreducible L1p`q in

the socle of T 1pjq. The remaining maps f
piq
i,j , f

pjq
i,j : T 1piq Ñ T 1pjq for i ‰ j are depicted

below:

f
pjq
i,j

iıjp2q

:

j

¨ ¨ ¨ j ` 1 ¨ ¨ ¨

i` 1

i

i` 1 ¨ ¨ ¨

ÞÑ

¨ ¨ ¨ j ` 1

j j ` 2 ¨ ¨ ¨

j ` 1

f
pjq
i,j

i”jp2q

: j

j ` 1 ¨ ¨ ¨

i` 1

¨ ¨ ¨ i` 2 i

¨ ¨ ¨

ÞÑ

¨ ¨ ¨ j ` 1

j j ` 2 ¨ ¨ ¨

j ` 1
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f
piq
i,j

iıjp2q

:

i` 1

¨ ¨ ¨ i` 2 i

i` 1 ¨ ¨ ¨

ÞÑ ¨ ¨ ¨ i` 1 ¨ ¨ ¨

i

¨ ¨ ¨ j ` 1

j

j ` 1

f
piq
i,j

i”jp2q

:

i` 1

¨ ¨ ¨ i` 2 i

i` 1 ¨ ¨ ¨

ÞÑ

¨ ¨ ¨ i` 1

i

¨ ¨ ¨ j ` 1

j

j ` 1 ¨ ¨ ¨

Remark 6.2. The above example can be changed slightly to obtain an essentially finite
example with weight poset Λ :“ Z ordered by the opposite of the natural ordering. To
do this, let D be the essentially finite-dimensional locally unital algebra defined by the
following quiver:

D : ¨ ¨ ¨ ´1

y´1

))
0

y0
((

x´1

mm 1
x0

hh

y1
++
2 ¨ ¨ ¨

x1

hh with relations yi`1yi “ xixi`1 “ xiyi “ 0.

Like for A, this algebra has a triangular decomposition, so D-modfd is an essentially
finite highest weight category. Recalling that the construction of tilting modules in the
essentially finite case explained in §4.5 is by passing to an upper finite truncation, the
indecomposable tilting module T p0q for D has the same structure as for A; see (6.6).
This module is infinite-dimensional; thus D-modfd is not tilting-bounded. Note also that
this algebra D can be obtained from the general construction from Remark 5.33, starting
from the obvious triangular decomposition of the Z-graded algebra Ā “ kxx, y | x2 “

y2 “ 0, xy “ 0y with x in degree 1 and y in degree ´1; cf. [BT, Ex. 5.12].

6.3. Category O for affine Lie algebras. Perhaps the first naturally-occurring ex-
amples of finite highest weight categories came from the blocks of the BGG category
O for a semisimple Lie algebra. This context also provides natural examples of finite
fibered highest weight categories; see [Maz1] for a survey. To get examples of semi-
infinite highest weight categories, one can consider instead blocks of the category O for
an affine Kac-Moody Lie algebra. We briefly recall the setup referring to [Kac], [Car]
for more details.

Let
˝

g be a finite-dimensional semisimple Lie algebra over C and

g :“
˝

g bCCrt, t´1s ‘ Cc‘ Cd

be the corresponding affine Kac-Moody algebra. Fix also a Cartan subalgebra
˝

h con-

tained in a Borel subalgebra
˝

b of
˝

g. There are corresponding subalgebras h and b of g,
namely,

h :“
˝

h ‘Cc‘ Cd, b :“
´

˝

b bCCrts`
˝

g bCtCrts
¯

‘ Cc‘ Cd.

Let tαi | i P Iu Ă h˚ and thi | i P Iu Ă h be the simple roots and coroots of g and p¨|¨q be
the normalized invariant form on h˚, all as in [Kac, Ch. 7–8]. The basic imaginary root
δ P h˚ is the positive root corresponding to the canonical central element c P h under
p¨|¨q. The linear automorphisms of h˚ defined by si : λ ÞÑ λ´λphiqαi generate the Weyl
group W of g. Let ρ P h˚ be the element satisfying ρphiq “ 1 for all i P I and ρpdq “ 0.
Then define the shifted action of W on h˚ by w ¨ λ “ wpλ` ρq ´ ρ for w PW , λ P h˚.

We define the level of λ P h˚ to be pλ` ρqpcq P C. It is critical if it equals the level of
λ “ ´ρ, i.e., it is zero12. We usually restrict our attention to integral weights λ, that is,

12Many authors define the level to be λpcq, in which case the critical level is ´ȟ, where ȟ is the dual

Coxeter number.
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weights λ P h˚ such that λphiq P Z for all i P I. The level of an integral weight is either
positive, negative or critical (“ zero). For any λ P h˚, we define

λ1 :“ ´λ´ 2ρ. (6.7)

Since w ¨ p´λ´2ρq “ ´w ¨λ´2ρ, weights λ and µ are in the same orbit under the shifted
action of W if and only if so are λ1 and µ1. Note also that the level of λ is positive (resp.,
critical) if and only if the level of λ1 is negative (resp., critical). A crucial fact is that
the orbit W ¨ λ of an integral weight λ of positive level contains a unique weight λmax

such that λmax ` ρ is dominant; e.g., see [Kum, Ex. 13.1.E8a, Prop. 1.4.2]. By [Kum,
Cor. 1.3.22], this weight is maximal in its orbit with respect to the usual dominance
ordering ď on weights, i.e., µ ď λ if λ´ µ P

À

iPI Nαi. If λ is integral of negative level,
we deduce from this discussion that its orbit contains a unique minimal weight λmin.

For λ P h˚, let ∆pλq be the Verma module with highest weight λ and Lpλq be its
unique irreducible quotient. Although Verma modules need not be of finite length, the
composition multiplicities r∆pλq : Lpµqs are always finite. There is also the dual Verma
module ∇pλq which is the restricted dual ∆pλq# of ∆pλq, i.e., the sum of the duals of the
weight spaces of ∆pλq with the g-action twisted by the Chevalley antiautomorphism. All
of the modules just introduced are objects in the category O consisting of all g-modules
M which are semisimple over h with finite-dimensional weight spaces and such that the
set of weights of M is contained in the lower set generated by a finite subset of h˚; see

[Kum, §2.1]. There is also a larger category pO consisting of the g-modules M which are
semisimple over h and locally finite-dimensional over b.

Let „ be the equivalence relation on h˚ generated by λ „ µ if there exists a positive
root γ and n P Z such that 2pλ`ρ|γq “ npγ|γq and λ´µ “ nγ. For a „-equivalence class

Λ, let OΛ (resp., pOΛ) be the full subcategory of O (resp., pO) consisting of all M P O
(resp., M P pO) such that rM : Lpλqs ‰ 0 ñ λ P Λ. In view of the linkage principle from

[KK, Th. 2], these subcategories may be called the blocks of O and of pO, respectively.
In particular, by [DGK, Th. 4.2], any M P O decomposes uniquely as a direct sum
M “

À

ΛPh˚{„MΛ with MΛ P OΛ. Note though that O is not the coproduct of its

blocks in the strict sense since it is possible to find M P O such that MΛ is non-zero for

infinitely many different Λ. The situation is more satisfactory for pO: pO is the product
of its blocks since by [Soe, Th. 6.1] the functor

ź

ΛPh˚{„

pOΛ Ñ pO, pMΛqΛPh˚{„ ÞÑ
à

ΛPh˚{„

MΛ (6.8)

is an equivalence of categories. Note also that r∆pλq : Lpµqs ‰ 0 implies that the level
of λ equals that of µ, since the scalars by which c acts on Lpλq and Lpµq must agree.
Consequently, we can talk simply about the level of a block.

A general combinatorial description of the „-equivalence classses Λ can be found for
instance in [Fie3, Lem. 3.9]. For simplicity, we restrict ourselves from now on to integral
blocks. In non-critical levels, one gets exactly the W -orbits W ¨λ of the integral weights
of non-critical level. In critical level, one needs to incorporate also the translates by Zδ.
From this description, it follows that the poset pΛ,ďq underlying an integral block OΛ

is upper finite with unique maximal element λmax if OΛ is of positive level, and lower
finite with unique minimal element λmin if OΛ is of negative level. In case of the critical
level, the poset is neither upper finite nor lower finite, but it is always interval finite.

Example 6.3. Here we give some explicit examples of posets which can occur for
g “ ŝl2, the Kac-Moody algebra for the Cartan matrix

`

2 ´2
´2 2

˘

. The labelling set for

the principal block is W ¨ 0 “ tλk, µk | k ě 0u where λk :“ ´ 1
2kpk` 1qα0 ´

1
2kpk´ 1qα1

and µk :“ ´ 1
2kpk ´ 1qα0 ´

1
2kpk ` 1qα1. This is a block of positive level with maximal

element λ0 “ µ0 “ 0. Applying the map (6.7), we deduce that W ¨ p´2ρq “ tλ1k, µ
1
k |

k ě 0u. This is the labelling set for a block of negative level with minimal element
λ10 “ µ10 “ ´2ρ. Finally, we have that W ¨ pα0 ´ ρq \W ¨ pα1 ´ ρq “ tλ̄k, µ̄k | k P Zu



110 J. BRUNDAN AND C. STROPPEL

where λ̄k :“ pk ` 1qα0 ` kα1 ´ ρ and µ̄k :“ kα0 ` pk ` 1qα1 ´ ρ. This is the labelling
set for a block of critical level, and it is neither upper nor lower finite.

0
s1 s0

λ̄2

δ
s1

µ̄2

δ
s0

µ13 λ13

µ1

s0

λ1

s1

λ̄1

δ
s1

µ̄1
s0

δ

λ12

s1

µ12

s0

λ2

s1

µ2

s0

, λ̄0

s1
δ

µ̄0

δ
s0

, µ11

s0

λ11

s1

.

µ3 λ3 λ̄´1 µ̄´1 ´2ρ
s1 s0

Positive level Critical level Negative level

Recall the definitions of upper finite and lower finite highest weight categories from
Definitions 3.34 and 3.50, respectively.

Theorem 6.4. Let OΛ be an integral block of O of non-critical level. Then it is an upper
finite or lower finite highest weight category according to whether the level is positive or
negative, respectively. In both cases, the standard and costandard objects are the Verma
modules ∆pλq and the dual Verma modules ∇pλq, respectively, for λ P Λ. The partial
order ď on Λ is the dominance order.

Proof. First, we prove the result for an integral block OΛ of positive level. As explained
above, the poset Λ is upper finite in this case. Let λmax be its unique maximal weight.

Claim 1: In the positive level case, OΛ is the full subcategory of pOΛ consisting of all
modules M such that rM : Lpλqs ă 8 for all λ P Λ. To prove this, given M P OΛ, it is
obvious that all of its composition multiplicities are finite since M has finite-dimensional

weight spaces. Conversely, suppose that all of the composition multiplicities of M P pOΛ

are finite. All weights of M lie in the lower set generated by λmax. Moreover, for
λ ď λmax, the dimension of the λ-weight space of M is

dimMλ “
ÿ

µPΛ

rM : Lpµqs dimLpµqλ.

Since the poset is upper finite, there are only finitely many µ P Λ such that the λ-weight
space Lpµqλ is non-zero, and these weight spaces are finite-dimensional, so we deduce
that dimMλ ă 8. This proves the claim.

Now we observe that the Verma module Mpλmaxq with maximal possible highest weight

is projective in pOΛ. From this and a standard argument involving translation functors
through walls (see e.g. [Nei]) and the combinatorics from [Fie1, §4] (see also the intro-

duction of [Fie2]), it follows that there are projective modules Pλ P pOΛ with (finite)

∆-flags as in the axiom (yP∆). Since each ∆pλq belongs to OΛ, we actually have that
Pλ P OΛ. All that is left to complete the proof of the theorem in the positive level case

is to show that OΛ is a Schurian category. Let A :“
´

À

λ,µPΛ HomgpPλ, Pµq
¯op

. Since

the multiplicities rPµ : Lpλqs are finite, A is a locally finite-dimensional locally unital

algebra. Using Lemma 2.4, we deduce that pOΛ is equivalent to the category A-mod
of all left A-modules. As explained in the discussion after (2.22), A-modlfd is the full
subcategory of A-mod consisting of all modules with finite composition multiplicities.

Combining this with Claim 1, we deduce that the equivalence between pOΛ and A-mod
restricts to an equivalence between OΛ and A-modlfd. Hence, OΛ is a Schurian category.
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We turn our attention to an integral block OΛ of negative level. In this case, we know
already that the poset Λ is lower finite with a unique minimal element λmin.

Claim 2: In the negative level case, the category OΛ is the full subcategory of pOΛ con-

sisting of all modules of finite length. For this, it is obvious that any module in pOΛ of
finite length belongs to OΛ. Conversely, any object in OΛ is of finite length thanks to
the formula [Kum, 2.1.11(1)], taking λ therein to be λmin.

From Claim 2 and Lemma 2.1, it follows that R :“ OΛ is a locally finite Abelian category.
By [Fie1, Th. 2.7] the Serre subcategory R� of R associated to Λ� is a finite highest
weight category for each finite lower set Λ� of Λ. We deduce that R is a lower finite
highest weight category according to Definition 3.50. �

Let OΛ be an integral block of non-critical level. The following assertions about
projective and injective modules follow from Theorem 6.4 and the general theory from
§§2.1–2.3; see also [Soe, Rem. 6.5].

‚ In the positive level case, when OΛ is a Schurian category, pOΛ has enough projec-
tives and injectives. Moreover, the projective covers of the irreducible modules
are the modules tP pλq | λ P Λu constructed in the proof of Theorem 6.4, and
these belong to OΛ. Their restricted duals Ipλq :“ P pλq# are the indecompos-

able injective modules in pOΛ, and also belong to OΛ.
‚ The situation is completely different in the negative level case, as we need to

pass to pOΛ, which is the ind-completion of the finite Abelian category OΛ,

before we can talk about injective modules. In pOΛ, the irreducible module

Lpλq pλ P Λq has an injective hull Ipλq in pOΛ, which possesses a (possibly

infinite) ascending ∇-flag in the sense of Definition 3.52. However, pOΛ usually
does not have any projectives at all (although one could construct such modules
in the pro-completion of OΛ as done e.g. in [Fie2]).

The following results about tilting modules are consequences of the general theory de-
veloped in §4.1 and §4.3. They already appeared in an equivalent form in [Soe].

‚ In the negative level case, tilting modules are objects in OΛ admitting both a
(finite) ∆-flag and a (finite) ∇-flag. The isomorphism classes of indecomposable
tilting modules in OΛ are parametrized by their highest weights. They may also
be constructed by applying translation functors to the Verma module ∆pλminq.

‚ In the positive level case, tilting modules are objects in OΛ which admit both a
(possibly infinite) ascending ∆-flag and a (possibly infinite) descending ∇-flag in
the sense of Definition 3.35. Again, the isomorphism classes of indecomposable
tilting modules are parametrized by their highest weights.

In both cases, our characterization of the indecomposable tilting module T pλq of highest
weight λ is slightly different from the one given in [Soe, Def. 6.3]. From our definition,
one sees immediately that T pλq# – T pλq.

Remark 6.5. Elsewhere in the literature dealing with positive level, it is common to
pass to a different category of modules, e.g., to the Whittaker category in [BY] or to
truncated versions of O in [SVV, §3], before contemplating tilting modules.

Our next result is concerned with the Ringel duality between integral blocks of positive
and negative level. This depends crucially on a special case of the Arkhipov-Soergel
equivalence from [Ark], [Soe]. Let S be Arkhipov’s semi-regular bimodule, which is the
bimodule Sγ of [Soe] with γ :“ 2ρ as in [Soe, Lem. 7.1]. For λ P h˚, let T pλq be the
indecomposable tilting module from [Soe, Def. 6.3] (which is the same as in the previous
paragraph for integral λ of positive or negative level). Also let P pλq be a projective

cover of Lpλq in pO whenever such an object exists; cf. [Soe, Rem. 6.5(2)].
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Theorem 6.6 (Arkhipov-Soergel equivalence). Tensoring with the semi-regular bimod-
ule defines an equivalence SbUpgq? : ∆pOq Ñ ∇pOq between the exact subcategories of
O consisting of objects with (finite) ∆- and ∇-flags, respectively. Moreover:

(1) S bUpgq ∆pλq – ∇pλ1q.
(2) S bUpgq P pλq – T pλ1q (assuming P pλq exists).

Corollary 6.7. Assume that OΛ is an integral block of negative level. Let O1Λ be the
Ringel dual of OΛ relative to some choice of T “

À

iPI Ti as in Definition 4.24, and let
F be the Ringel duality functor from (4.14). Also let Λ1 :“ tλ1 | λ P Λu. Then there is
an equivalence of categories E : O1Λ Ñ OΛ1 such that E ˝ F : ∇pOΛq Ñ ∆pOΛ1q is a
quasi-inverse to the Arkhipov-Soergel equivalence SbUpgq? : ∆pOΛ1q Ñ ∇pOΛq.

Proof. Note to start with that OΛ1 is an integral block of positive level. Moreover, the
map pΛ,ěq Ñ pΛ1,ďq, λ ÞÑ λ1 is an order isomorphism.

Choose a quasi-inverse D to SbUpgq? : ∆pOΛ1q Ñ ∇pOΛq, and set Pi :“ DTi. By
Theorem 6.6(2), pPiqiPI is a projective generating family for OΛ1 . Moreover, recalling

that O1Λ is the category A-modlfd where A :“
´

À

i,jPI HomOΛ
pTi, Tjq

¯op

, the functor D

induces an isomorphism via which we can identify A with
´

À

i,jPI HomOΛ1
pPi, Pjq

¯op

.

As explained in the proof of Theorem 6.4, the functor

H :“
à

iPI

HomOΛ1
pPi, ?q : OΛ1 Ñ A-modlfd

is an equivalence of categories. Moreover, we have that

H ˝D “
à

iPI

HomOΛ1
pPi, D?q –

à

iPI

HomOΛ
pS bUpgq Pi, ?q –

à

iPI

HomOΛ
pTi, ?q “ F.

Letting E be a quasi-inverse equivalence to H, it follows that E ˝ F – D. �

Remark 6.8. In the setup of Corollary 6.7, the Arkhipov-Soergel equivalence extends
to an equivalence SbUpgq? : ∆ascpOΛ1q Ñ ∇ascpOΛq, which is a quasi-inverse to E ˝ F :
∇ascpOΛq Ñ ∆ascpOΛ1q. These functors interchange the indecomposable injectives in
pOΛ with the indecomposable tiltings in OΛ1 .

Finally we discuss the situation for an integral critical block OΛ. As we have already
explained, in this case the poset Λ is neither upper nor lower finite. In fact, these blocks
do not fit into the framework of this article at all, since the Verma modules have infinite
length and there are no projectives. One sees this already for the Verma module ∆p´ρq

for g “ psl2, which has composition factors Lp´ρ´mδq for m ě 0, each appearing with
multiplicity equal to the number of partitions of m; see e.g. [AF1, Th. 4.9(1)]. However,

there is an autoequivalence Σ :“ Lpδqb? : pOΛ Ñ pOΛ, which makes it possible to pass to

the restricted category pOres
Λ , which we define next.

Let An be the vector space of natural transformations Σn Ñ Id. This gives rise to a

graded algebra A :“
À

nPZAn. Then the restricted category pOres
Λ is the full subcategory

of pOΛ consisting of all modules which are annihilated by the induced action of An for
n ‰ 0; cf. [AF1, §4.3]. The irreducible modules in the restricted category are the same

as in pOΛ itself. There are also the restricted Verma modules

∆pλqres :“ ∆pλq

N

ÿ

ηPA‰0

im
`

η∆pλq : Σn∆pλq Ñ ∆pλq
˘

(6.9)

from [AF1, §4.4]. In other words, ∆pλqres is the largest quotient of ∆pλq that belongs
to the restricted category. Similarly, the restricted dual Verma module ∇pλqres is the
largest submodule of ∇pλq that belongs to the restricted category.
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The restricted category pOres
Λ is no longer indecomposable: by [AF2, Th. 5.1] it de-

composes further as
pOres

Λ “
ź

ΛPΛ{W

pOres
Λ

(6.10)

where Λ{W denotes the orbits of W under the dot action. For instance, the poset Λ
for the critical level displayed in Example 6.3 splits into two orbits W ¨ pα0 ´ ρq and

W ¨ pα1 ´ ρq (i.e., one removes the edges labelled by δ). In the most singular case, pOres
´ρ

is a product of simple blocks; in particular, ∆resp´ρq “ Lp´ρq “ ∇resp´ρq.

Conjecture 6.9 (Critical block conjecture). Let pOres
Λ

be a regular integral critical block

in the sense of [AF2]. Let Ores
Λ

:“ Fin
´

pOres
Λ

¯

be the full subcategory consisting of all

modules of finite length. Then Ores
Λ

is an essentially finite highest weight category

with standard and costandard objects ∆pλqres and ∇pλqres for λ P Λ. Moreover, the
indecomposable projective modules in Ores

Λ
are also its indecomposable tilting modules,

and therefore Ores
Λ

is tilting-bounded and Ringel self-dual.

This conjecture is true for the basic example of a critical block from Example 6.3
thanks to [Fie3, Th. 6.6]; the same category arises as the principal block of category O
for gl1|1pCq discussed in §6.7 below. The conjecture is also consistent with the so-called

Feigin-Frenkel conjecture [AF1, Conj. 4.7], which says that composition multiplicities of
restricted Verma modules are related to the periodic Kazhdan-Lusztig polynomials from
[Lus] (and Jantzen’s generic decomposition patterns from [Jan2]). These polynomials
depend on the relative position of the given pair of weights and, when not too close to
walls, they vanish for weights that are far apart. This is consistent with the conjectured
existence of indecomposable projectives of finite length in regular blocks of the restricted
category.

Remark 6.10. It seems to us that the Feigin-Frenkel conjecture might have an explana-
tion in terms of a sequence of equivalences of categories similar to [FG, (7)]. Ultimately
this should connect Ores

Λ
with representations of the quantum group analog of Jantzen’s

thickened Frobenius kernel G1T . Assuming that ` (the order of the root of unity) is odd
and bigger than or equal to the Coxeter number, the latter are known by [AJS, §17] to be
essentially finite highest weight categories controlled by the periodic Kazhdan-Lusztig
polynomials. Also, in these categories, tilting modules are projective, hence, the Ringel
self-duality would be an obvious consequence.

6.4. Rational representations. As we noted in Remark 3.62, the definition of lower
finite highest weight category originated in the work of Cline, Parshall and Scott [CPS1].
As well as the BGG category O already mentioned, their work was motivated by the
representation theory of a reductive algebraic group G in positive characteristic, as
developed for example in [Jan1]: the symmetric tensor13 category ReppGq of finite-
dimensional rational representations of G is a lower finite highest weight category. Tilting
modules for G were studied in [Don3], although our formulation of semi-infinite Ringel
duality from §4.4 is not mentioned explicitly there: Donkin instead took the approach
pioneered in [Don2] of truncating to a finite lower set before taking Ringel duals. In
fact, now, there is monoidal structure in play and the story is even richer.

To give more details, we fix a maximal torus T contained in an opposite pair of
Borel subgroups B` and B´ of G. Then the weight poset Λ is the set X`pT q of dom-
inant characters of T with respect to B`. We denote the natural duality on ReppGq
by V ÞÑ V ˚ (with action defined via g ÞÑ g´1). The costandard objects are the in-
duced modules H0pλq :“ H0pG{B´,Lλq and the standard objects are the Weyl mod-
ules V pλq :“ H0pG{B`,L˚λq˚. For the partial order ď, one can use the usual dominance
ordering on X`pT q, or the more refined Bruhat order of [Jan1, §II.6.4]. This makes

13Locally finite Abelian, monoidal, rigid, Endp1q “ k.
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ReppGq into a lower finite highest weight category by [Jan1, Prop. II.4.18] and [Jan1,
Prop. II.6.13]. In fact, in the case of ReppGq, all of the general results about ascend-
ing ∇-flags found in §3.5 were known already before the time of [CPS1], e.g., they are
discussed in Donkin’s book [Don1] (and called there good filtrations).

Let T iltpGq be the full subcategory of ReppGq consisting of all tilting modules. A
key theorem in this setting is that tensor products of tilting modules are tilting; this is
the Donkin-Mathieu-Wang theorem [Don1], [Mat], [Wan]. Thus, T iltpGq is a symmetric
pseudo-tensor14 category. Let pTiqiPI be a monoidal generator for T iltpGq, i.e., each Ti
is a tilting module and every indecomposable tilting module is isomorphic to a summand
of a tensor product Ti :“ Ti1 b ¨ ¨ ¨ b Tin for some n ě 0 and i “ pi1, . . . , inq P I

n. Then
define A to be the category with objects I :“

Ů

ně0 I
n and morphisms defined from

HomApj, iq :“ HomGpTi, Tjq, composition being induced by the opposite of composition
in ReppGq. The category A is naturally a strict symmetric monoidal category, with the
tensor product of objects being by concatenation of sequences. The evident monoidal
functor AÑ T iltpGqop extends to the Karoubi envelope of A, and the resulting functor
KarpAq Ñ T iltpGqop is a symmetric monoidal equivalence.

Forgetting the monoidal structure, one can think instead in terms of the locally finite-
dimensional locally unital algebra A “

À

i,jPI eiAej that is the path algebra of A in the

sense of Remark 2.3. It becomes convenient to identify T “
À

iPI Ti and Tf “
À

iPI T
˚
i

with the tensor algebras

T “ T pV q, Tf “ T pV ˚q where V :“
à

iPI

Ti. (6.11)

Note that T is naturally a right A-module and Tf is a left A-module. Since T is a
tilting generator for ReppGq in the sense of Definition 4.24, A-modlfd is the Ringel dual
of ReppGq with respect to T . Theorem 4.25 implies that A-modlfd is an upper finite
highest weight category with poset pX`pT q,ěq. Moreover, by Corollary 4.29, Tf is a
tilting generator for A-modlfd with CoendApT

fq – krGs as coalgebras.
At this point, the monoidal structure on the category A comes back into the picture

since the A-module T comes from a faithful symmetric monoidal functor (“fiber functor”)
T : A Ñ pVecfdqop. Consequently, by classical arguments of Tannaka duality (e.g., see
[DM, §2] and [EGNO, §5.4]), CoendApT

fq can be endowed with the structure of a
commutative Hopf algebra which reconstructs the coordinate algebra of G. To explain
this in more detail, we use the setup of (2.13), so now we are identifying the coalgebra
CoendApT

fq with
C :“ T bA T

f “ T pV q bA T pV
˚q. (6.12)

Then the algebra structure on C is induced by the natural multiplication on the tensor
product of algebras T pV q b T pV ˚q, that is,

pv b uq ¨ pv1 b u1q :“ pv b v1q b pub u1q (6.13)

for v, v1 P T pV q and u, u1 P T pV ˚q. If we pick a basis v
piq
1 , . . . , v

piq
dpiq for each Ti and let

u
piq
1 , . . . , u

piq
dpiq be the dual basis for T˚i , then the elements

 

cpiqr,s :“ vpiqs b upiqr
ˇ

ˇ i P I, 1 ď r, s ď dpiq
(

(6.14)

generate C as an algebra. The coalgebra structure satisfies

δpcpiqr,sq “

dpiq
ÿ

t“1

cpiqr,s b c
piq
t,s, εpcpiqr,sq “ δr,s. (6.15)

Now the reconstruction theorem can be formulated as follows.

14Additive Karoubian, monoidal, rigid, Endp1q “ k.
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Theorem 6.11 (Tannakian reconstruction). The above construction makes the coal-
gebra C “ CoendApT

fq into a commutative Hopf algebra which is isomorphic to the

coordinate algebra krGs via the unique algebra homomorphism sending c
piq
r,s P C to the

matrix coefficient function c̃
piq
r,s P krGs defined by gv

piq
s “

řdpiq
r“1 c̃

piq
r,spgqv

piq
r for g P G.

Proof. For i “ pi1, . . . , inq P In and r “ pr1, . . . , rnq, s “ ps1, . . . , snq P Zn with 1 ď

rk, sk ď dpikq for each k, let c
piq
r,s :“ pv

pi1q
r1 b ¨ ¨ ¨ b v

pinq
rn q b pu

pi1q
r1 b ¨ ¨ ¨ b u

pinq
rn q P C. These

are the elements in the formula (4.17), and they span C. The coalgebra isomorphism

C
„
Ñ krGs from Corollary 4.29(i) sends c

piq
r,s P C to c̃

pi1q
r1,s1 ¨ ¨ ¨ c̃

pinq
rn,sn P krGs. So to be

an algebra isomorphism, we must have that c
piq
r,s “ c

pi1q
r1,s1 ¨ ¨ ¨ c

pinq
rn,sn , which is exactly the

definition of multiplication given above. �

Theorem 6.11 recovers a classical result: it is a special case of [DM, Th. 2.11], which
implies that krGs is isomorphic to CoendpF q where F : ReppGq Ñ Vecfd is the forgetful
functor. To deduce Theorem 6.11 from this statement, one also needs to observe that
CoendpF q – CoendApT q; this holds because the algebraic group G is isomorphic to its
image in its representation on V “

À

iPI Ti by weight considerations.

Remark 6.12. To get a full set of relations between the generators (6.14) of C, one
just needs to take the equations vxb u “ v b xu for x : iÑ j running over a system of
monoidal generators for A and all v P Ti, u P T

˚
j .

Remark 6.13. Theorem 5.10 can often be applied in this context to give A (or some
idempotent expansion of A) the structure of an upper finite (perhaps symmetrically)
based quasi-hereditary algebra.

The first example comes from G “ SL2. For this, we may take I :“ t|u and T| to
be the natural two-dimensional representation V of G with its standard basis v1, v2; we
also use u1, u2 to denote the dual basis of V ˚. The module V is a monoidal generator for
T iltpGq by weight considerations. Note also that V possesses an invariant symplectic
form such that pv1, v2q “ 1, hence, V – V ˚. The object set I “ t|bn | n P Nu in
the above setup may be identified with N. Hence, T “

À

ně0 Tn is the tensor algebra

T pV q “
À

ně0 T
npV q and Tf is T pV ˚q. As is well known, the monoidal category A in

this case is the Temperley-Lieb category T Lp´2q; see e.g. [GW]. It is easy to verify that

C “ T pV q bA T pV
˚q – krc1,1, c1,2, c2,1, c2,2s{pdet´1q

where cr,s “ vs b ur as above and det “ c1,1c2,2 ´ c2,1c1,2. Of course this is krSL2s.
This example becomes more interesting if we replace the Temperley-Lieb category

T Lp´2q with its q-analog T Lp´q ´ q´1q for q P kˆ. Recall that this is generated as a
strictly pivotal monoidal category by one object | and two morphisms : 0 Ñ 2 and

: 2 Ñ 0 subject to “ ´q ´ q´1. Assuming q has a square root q1{2 P k, it is
braided with braiding defined by

:“ q1{2 ` q´1{2 , “ q´1{2 ` q1{2 . (6.16)

As mentioned in Remark 5.4, the natural diagram basis makes the path algebra A of
A :“ T Lp´q ´ q´1q into an upper finite based quasi-hereditary algebra with weight
poset pN,ěq. Hence, A-modlfd is an upper finite highest weight category.

Next let V be a two-dimensional vector space with basis v1, v2 and p¨, ¨q : V ˆ V Ñ k
be the bilinear form with pv1, v2q “ 1, pv2, v1q “ ´q´1 and pv1, v1q “ pv2, v2q “ 0. A
relation check shows that there is a monoidal functor T : A Ñ pVecfdqop such that
T p|q “ V and

T
` ˘

: V b V Ñ k, vi b vj ÞÑ pvi, vjq, (6.17)

T p q : kÑ V b V, 1 ÞÑ v2 b v1 ´ qv1 b v2. (6.18)
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Equivalently, the tensor algebra T “ T pV q is a right A-module, and its dual Tf “ T pV ˚q
is a left A-module. Then we define C as in (6.12). The coend construction makes C into
a cobraided Hopf algebra, hence, comodfd-C is a braided tensor category. Now one can
check directly using the homological criterion for ∇-flags from Theorem 3.39 that Tf

is a tilting generator for A-modlfd. Hence, comodfd-C is the Ringel dual of the upper
finite highest weight category A-modlfd, so it is a lower finite highest weight category
thanks to Theorem 4.27.

Let us compute C explicitly. Let u1, u2 be the basis for V ˚ dual to v1, v2. Then C
is generated by tcr,s :“ vs b ur | r, s “ 1, 2u, and the comultiplication and counit are
defined by δpcr,sq “ cr,1b c1,s` cr,2b c2,s, εpcr,sq “ δr,s. By Remark 6.12, the following
equations give a full set of relations for the algebra C:

pvi b vjq b
`

1
˘

“
`

vi b vj
˘

b 1,

p1 q b pui b ujq “ 1b p ui b ujq .

To expand these, note that the left A-module Tf “ T pV ˚q comes from the monoidal
functor Tf : AÑ Vecfd defined by Tfp|q “ V ˚ and

Tf p q : V ˚ b V ˚ Ñ k, ui b uj ÞÑ pvj , viq
´1, (6.19)

Tf
` ˘

: kÑ V ˚ b V ˚, 1 ÞÑ u1 b u2 ´ q
´1u2 b u1. (6.20)

Using this, the relations become c1,ic2,j ´ q
´1c2,ic1,j “ pvi, vjq and ci,2cj,1 ´ qci,1cj,2 “

pvj , viq
´1, hence, we get

ˆ

c2,2 ´qc1,2
´q´1c2,1 c1,1

˙ˆ

c1,1 c1,2
c2,1 c2,2

˙

“

ˆ

c1,1 c1,2
c2,1 c2,2

˙ˆ

c2,2 ´qc1,2
´q´1c2,1 c1,1

˙

“ I2.

So C is generated by c1,1, c1,2, c2,1, c2,2 subject to the relations needed to ensure that
ˆ

c1,1 c1,2
c2,1 c2,2

˙´1

“

ˆ

c2,2 ´qc1,2
´q´1c2,1 c1,1

˙

. (6.21)

Equivalently, C is generated by c1,1, c1,2, c2,1, c2,2 subject to the relations

ci,2ci,1 “ qci,1ci,2, c2,jc1,j “ qc1,jc2,j ,

c1,2c2,1 “ c2,1c1,2, c2,2c1,1 “ c1,1c2,2 ` pq ´ q
´1qc1,2c2,1,

and detq :“ c1,1c2,2´q
´1c1,2c2,1 “ 1. Thus, we have recovered the well-known quantized

coordinate algebra kqrSL2s, and comodfd-C is the category of rational representations
of quantum SL2.

When at a root of unity over the ground field is C, the indecomposable projectives
and injectives in the category of rational representations of quantum SL2 (or indeed
the quantum group corresponding to a reductive group) are all finite-dimensional, i.e.,
the category is essentially finite Abelian. Tiltings are also finite-dimensional, indeed,
the category is tilting-bounded in the sense of Definition 4.20. The structure of the
principal block can be worked out explicitly (e.g., see [AT, Th. 3.12, Def. 3.3]): it is
Morita equivalent to the locally unital algebra that is the path algebra of the quiver

0
x0

((
1

y0

hh

x1
((
2

x2
++

y1

hh 3 ¨ ¨ ¨
y2

hh with relations xi`1xi “ yiyi`1 “ xiyi ´ yi`1xi`1 “ 0.

The appropriate partial order on the weight poset N is the natural order 0 ă 1 ă ¨ ¨ ¨ .
The indecomposable projectives have the following structure:

P p0q “

0
x

1
y

0

, P p1q “

1
y x

0
x

2
y

1

, P p2q “

2
y x

1
x

3
y

2

, P p3q “

3
y x

2
x

4
y

3

, . . .
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The tilting objects are T p0q :“ Lp0q and T pnq :“ P pn ´ 1q for n ě 1. From this, it
is easy to see that the Ringel dual is described by the same quiver with one additional
relation, namely, that y0x0 “ 0 (and of course the partial order is reversed).

6.5. Tensor product categorifications. Until quite recently, most of the naturally-
occurring examples were highest weight categories (like the ones described in the previous
two subsections). But the work of Webster [Web1], [Web2] and Losev and Webster [LW]
has brought to prominence a very general source of examples that are fully stratified
but seldom highest weight.

Fundamental amongst these new examples are the categorifications of tensor products
of irreducible highest weight modules of symmetrizable Kac-Moody Lie algebras. Rather
than attempting to repeat the definition of these here, we refer the reader to [LW]. All
of these examples are finite fully stratified categories possessing a Chevalley duality.
They are also tilting-rigid; the proof of this depends on an argument involving transla-
tion/projective functors. Consequently, the Ringel dual is again a finite fully stratified
category that is tilting-rigid. In fact, the Ringel dual category is always another ten-
sor product categorification15 (reverse the order of the tensor product). In the earlier
article [Web2], Webster also wrote down explicit finite-dimensional algebras which give
realization of these categories. In view of Theorem 5.25, all of Webster’s algebras admit
bases making them into symmetrically based stratified algebras, although these bases
are usually hard to construct explicitly.

In [Web1], Webster also introduced some more general tensor product categorifica-
tions, including ones which categorify the tensor product of an integrable lowest weight
module tensored with an integrable highest weight module. The latter are particularly
important since they may be realized as generalized cyclotomic quotients of the Kac-
Moody 2-category. They are upper finite fully stratified categories. In type A, they
can also be realized as generalized cyclotomic quotients of the (degenerate or quantum)
Heisenberg category; see [BSW, Th. B]. In the latter realization, they should possess
explicit triangular bases, generalizing the ones for the cyclotomic quotients of central
charge zero discussed in [GRS].

6.6. Deligne categories. Another source of upper finite highest weight categories
comes from various Deligne categories. The definition of these categories is diagrammatic
in nature. For example, in characteristic zero, the Deligne category ReppGLδq is the
Karoubi envelope of the oriented Brauer category OBpδq. This case was studied in the
PhD thesis of Reynolds [Rey] based on the observation that it admits a symmetric split
triangular decomposition; see also [Bru] which treats the HOMFLY-PT skein category at
the same time. Rui and Song [RS] have analysed the Brauer category and the Kauffman
skein category by similar techniques. Similar ideas have been developed independently
by Sam and Snowden [SS], who also consider other types of Deligne category.

The category of locally finite-dimensional representations of the Deligne category
ReppGLδq can also be interpreted as a special case of the lowest weight tensored highest
weight tensor product categorifications discussed in the previous subsection; see the
introduction of [Bru]. The Ringel dual in this example is equivalent to the Abelian
envelope RepabpGLδq of Deligne’s category constructed by Entova, Hinich and Serganova
[EHS], which is a monoidal lower finite highest weight category. In [Ent], it is shown that
RepabpGLδq categorifies a highest weight tensored lowest weight representation, which
is the dual result to the one from [Bru]. This example will be discussed further in the
sequel to this article, where we give an explicit description of the blocks of RepabpGLδq
via Khovanov’s arc coalgebra (an interesting explicit example of a based quasi-hereditary
coalgebra), thereby proving a conjecture formulated in the introduction of [BS2].

15This was noted in Remark 3.10 of the arxiv version of [LW] but the authors removed this remark in
the published version.
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These and the other classical families of Deligne categories ReppOδq, ReppP q and
ReppQq are being investigated actively along similar lines by several groups of authors
and there has been considerable recent progress; e.g., see [Cou4], [SS]. There are also
many interesting connections here with rational representations of the corresponding
families of classical supergroups.

6.7. Representations of Lie superalgebras. Finally, we mention briefly an interest-
ing source of essentially finite highest weight categories: the analogs of the BGG category
O for classical Lie superalgebras. A detailed account in the case of the Lie superalgebra
glm|npCq can be found in [BLW]. Its category O gives an essentially finite highest weight
category which is neither lower finite nor upper finite. Moreover, it is tilting-bounded
as in Definition 4.20, so that the Ringel dual category is also an essentially finite highest
weight category.

There is one very easy special case: the principal block of category O for gl1|1pCq
is equivalent to the category of finite-dimensional modules over the essentially finite-
dimensional locally unital algebra which is the path algebra of the following quiver:

¨ ¨ ¨ ´1

x´1

))
0

x0
((

y´1

mm 1
y0

hh

x1
++
2 ¨ ¨ ¨

y1

hh with relations xi`1xi “ yiyi`1 “ xiyi´yi`1xi`1 “ 0,

see e.g. [BS1, p. 380]. This is very similar to the Uqpsl2q-example from §6.4, but now
the poset Z (ordered naturally) is neither lower nor upper finite. From the category O
perspective, this example is rather misleading since its projective, injective and tilting
objects coincide, hence, it is Ringel self-dual.

One gets similar examples from ospm|2npCq, as discussed for example in [BW] and

[ES]. The simplest non-trivial case of osp3|2pCq produces the path algebra of a D8
quiver (replacing than the A8 quiver above); see [ES, §II]. The “strange” families pnpCq
and qnpCq also exhibit similar structures. The former has not yet been investigated
systematically (although basic aspects of the finite-dimensional finite-dimensional rep-
resentations and category O were recently studied in [B+9] and [CC], respectively). It is
an interesting example of a naturally-occurring highest weight category which does not
admit a Chevalley duality. For qnpCq, we refer to [BD2] and the references therein. In
fact, the integral blocks for qnpCq are fibered highest weight categories; this observation
is due to Frisk [Fri2].
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