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ABSTRACT. We develop axiomatics of highest weight categories and quasi-hereditary
algebras in order to incorporate two semi-infinite situations which are in Ringel
duality with each other; the underlying posets are either upper finite or lower finite.
We also consider various more general sorts of stratified categories. In the upper
finite cases, we give an alternative characterization of these categories in terms
of based quasi-hereditary algebras and based stratified algebras, which are certain
locally unital algebras possessing triangular bases.
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1. INTRODUCTION

Highest weight categories were introduced by Cline, Parshall and Scott [CPS1] in
order to provide an axiomatic framework encompassing a number of important examples
which had previously arisen in representation theory. In the first part of this article,
we give a detailed exposition of two semi-infinite variants, which we call lower finite
and upper finite highest weight categories. Lower finite highest weight categories were
already included in the original work of Cline, Parshall and Scott, although they did
not use this language. Well-known examples include the category Rep(G) of finite-
dimensional rational representations of a (connected) reductive algebraic group. On the
other hand, the upper finite highest weight categories studied here do not fit into the
locally Artinian framework of [CPS1]. Nevertheless, there are many examples of upper
finite highest weight categories already in the literature, often of a diagrammatic nature,
and an appropriate axiomatic framework was sketched out by Elias and Losev in [ELos,
§6.1.2]. There are plenty of subtleties, so a full treatment seems desirable.

Then, in the next part, we extend Ringel duality to the semi-infinite setting:

lower finite Ringel duality upper finite
highest weight categories highest weight categories |

Other approaches to “semi-infinite Ringel duality” exist in the literature, but these
typically require the existence of a Z-grading; e.g., see [Soe] (in a Lie algebra setting)
and also [Maz2]. We avoid this by working with finite-dimensional comodules over a
coalgebra in the lower finite case, and with locally finite-dimensional modules over a lo-
cally finite-dimensional locally unital algebra in the upper finite case. Another approach
to semi-infinite Ringel duality based around pseudo-compact topological algebras was
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initiated by Marko and Zubkov [MZ]. However, their theory requires some additional
finiteness assumptions which are not satisfied in important examples including all non-
semisimple categories of the form Rep(G) for a reductive group G; see Corollary 4.28,
Remark 4.31 and Remark 4.23.

Finally, as an application of semi-infinite Ringel duality, we give an elementary alge-
braic characterization of upper finite highest weight categories, showing that any such
category is equivalent to the category of locally finite-dimensional modules over an up-
per finite based quasi-hereditary algebra. This is an algebraic formulation of the notion
of object-adapted cellular category from [ELau, Def. 2.1], and a generalization of the
based quasi-hereditary algebras of [KM, Def. 2.4]. As well as Ringel duality, the proof
of this characterization uses a construction from [AST] to construct bases for endomor-
phism algebras of tilting objects. The observation that the bases arising from [AST] are
object-adapted cellular bases was made already by Elias and several others, and appears
in recent work of Andersen [And].

Throughout the article, we systematically develop the entire theory in the more gen-
eral setting of what we call e-stratified categories. The idea of this definition is due to
Agoston, Dlab and Lukécs: in [ADL, Def. 1.3] one finds the notion of a stratified algebra
of type ¢; the category of finite-dimensional left modules over such a finite-dimensional
algebra is an example of a e-stratified category in our sense. The various other gener-
alizations of highest weight category that have been considered in existing literature fit
naturally into our e-stratified framework.

To explain the contents of the paper in more detail, we start by explaining our precise
setup in the finite-dimensional case, since even here it does not seem to have appeared
explicitly elsewhere in the literature. Consider a finite Abelian category, that is, a cat-
egory R equivalent to the category A-modgq of finite-dimensional left A-modules for
some finite-dimensional algebra A over an algebraically closed field k. A stratification
of R is a quintuple (B, L, p, A, <) consisting of a set B, a labelling function L such
that {L(b) | b € B} is a full set of pairwise inequivalent irreducible objects of R, and a
stratification function p : B — A for a poset (A, <).

Given a stratification, let P(b) (resp., I(b)) be a projective cover (resp., injective hull)
of L(b). For A € A, let Ry (resp., R<)) be the Serre subcategory of R generated by
the irreducibles L(b) for b € B with p(b) < A (resp., p(b) < A). Define the stratum
R to be the Serre quotient R<x/R<) with quotient functor j* : Rex — Ry For
be By :=p t(\), let Ly(b) := j*L(b). These give a full set of pairwise inequivalent
irreducible objects in Ry. Still for b € By, let P\(b) (resp., I(b)) be a projective cover
(resp., injective hull) of Ly(b) in Ry.

The functor j* has a left adjoint j and a right adjoint j3. We refer to these as
the standardization and costandardization functors, respectively, following the language
of [LW, §2]. Then we introduce the standard, proper standard, costandard and proper
costandard objects of R for A€ A and b € Bjy:

AB) =G Pa(b),  A®) =G Lad),  V(0) i= gy Ia(b),  V(b) i=jyLa(b).  (1.1)
Equivalently, A(b) (resp., V(b)) is the largest quotient of P(b) (resp., the largest subob-
ject of I(b)) that belongs to R<x, and A(b) (resp., V(b)) is the largest quotient of A(b)
(resp., the largest subobject of V(b)) such that all composition factors apart from its
irreducible head (resp., its irreducible socle) belong to R .

Fix a sign function ¢ : A — {£} and define the e-standard and e-costandard objects

_ J A®) ife(p(b)) =+ _ [ V) ife(p(d) =+
20 ={ 30 oo - V0= 3 we -
By a A.-flag (resp., a V.-flag) of an object of R, we mean a (necessarily finite) filtration

whose sections are of the form A.(b) (resp., V(b)) for b € B. Then we call R an
e-stratified category if one of the following equivalent properties holds:

(1.2)
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(PA.) For every b € B, the projective object P(b) has a A.-flag with sections A.(c)
for ¢ € B with p(c) = p(b).

(IV.) For every b € B, the injective object I(b) has a V.-flag with sections V.(c¢) for
c € B with p(c) = p(b).

The fact that these two properties are indeed equivalent was established in [ADL, Th. 2.2]

(under slightly more restrictive hypotheses than here), extending the earlier work of Dlab

[Dlal]. We give a self-contained proof in Theorem 3.5; see also §6.1 for some elementary

examples. An equivalent statement is as follows.

Theorem 1.1 (Dlab,...). Let R be a finite Abelian category equipped with a stratifica-
tion (B,L,p,A\,<) and ¢ : A — {x} be a sign function. Then R is e-stratified if and
only if R°P is (—e)-stratified.

If the stratification function p : B — A is a bijection, i.e., each stratum R has a
unique irreducible object (up to isomorphism), then we can use p to identify B with A,
and denote the various distinguished objects simply by L(X), P(A), Ac(A), ...for A€ A
instead of by L(b), P(b), A.(b), ...for b€ B. When (PA.)—(IV.) hold in this situation,
we instead call R an e-highest weight category with weight poset (A, <) and labelling
function L. The notion of e-highest weight category generalizes the original notion of
highest weight category from [CPS1]: a (finite) highest weight category in the sense of
loc. cit. is an e-stratified category in which each stratum R, is actually simple, i.e.,
equivalent to Vecyq. This stronger assumption means not only that p is a bijection but
also that Ly(\) = Pyx(A\) = I,()\), hence, A(A) = A()\) and V(\) = V()) for each A € A.
Consequently, in highest weight categories, the sign function ¢ plays no role and may be
omitted entirely, and the above properties simplify to the following:

(PA) Each P(X) has a A-flag with sections A(u) for p = A.

(IV) Each I()\) has a V-flag with sections V(i) for p = A.

In fact, in this context, the equivalence of (PA) and (I'V) was established already in
[CPS1]. Moreover, in loc. cit., it is shown that A-modsq is a highest weight category if
and only if A is a quasi-hereditary algebra.

The next important special cases arise when ¢ is the constant function + or —. The
idea of a +-stratified category originated in the work of Dlab [Dlal] already mentioned,
and in another work of Cline, Parshall and Scott [CPS2]. In particular, the “standardly
stratified categories” of [CPS2, Def. 2.2.1] are +-stratified categories.

We say that a finite Abelian category R equipped with a stratification (B, L, p, A, <) is
a fully stratified category if it is both a +-stratified category and a —-stratified category;
in that case, it is e-stratified for all choices of the sign function € : A — {£}. Such
categories arise as categories of modules over the fully stratified algebras introduced
in a remark after [ADL, Def. 1.3]. In fact, these sorts of algebras and categories have
appeared several times elsewhere in the literature but under different names: they are
called “weakly properly stratified” in [Fril], “exactly properly stratified” in [CouZ], and
“standardly stratified” in [LW]. The latter seems a particularly confusing choice since
it clashes with the established notion from [CPS2] but we completely agree with the
sentiment of [LW, Rem. 2.2]: fully stratified categories have a well-behaved structure
theory. One reason for this is that all of the standardization and costandardization
functors in a fully stratified category are exact. We note also that any e-stratified
category with duality is automatically fully stratified; see Corollary 3.21 for a precise
statement.

We use the language fibered highest weight category in place of fully stratified category
when the stratification function p is a bijection. Equivalently, a fibered highest weight
category is a category which is e-highest weight for all choices of the sign function e.
Such categories arise as the categories of finite-dimensional modules over the properly
stratified algebras introduced in [Dla2]. It is perhaps worth pointing out that any finite
Abelian category can be given the structure of a fully stratified category in a trivial way
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Finite-dimensional algebra A | Finite Abelian category A-modg
Quasi-hereditary algebra Highest weight category
e-Quasi-hereditary algebra e-Highest weight category
Properly stratified algebra Fibered highest weight category
e-Stratified algebra e-Stratified category

Stratified algebra Fully stratified category

TABLE 1. Dictionary between algebras and categories

taking the poset A to be a singleton. Fibered highest weight categories are at the other
extreme with A being as big as possible.

Table 1 gives a dictionary between the various different types of finite Abelian category
R discussed so far and the language we adopt for the underlying finite-dimensional
algebras A such that R is equivalent to A-modgy. Some of this language is non-standard;
see Remark 3.8 for further discussion.

There are many classical examples of highest weight categories, including blocks of the
BGG category O for a semisimple Lie algebra, the classical Schur algebra and Donkin’s
generalized Schur algebras introduced in [Don2], and many more examples arising from
categories of perverse sheaves with stratifications of geometric origin [BBD]. Further
examples of fully stratified categories and fibered highest weight categories which are
not highest weight arise in the context of categorification. This includes the pioneering
examples of categorified tensor products of finite dimensional irreducible representations
for the quantum group attached to sl from [FKS] (in particular Remark 2.5 therein), and
the categorified induced cell modules for Hecke algebras from [MS, 6.5]. Building on these
examples and the subsequent work of Webster [Web1], [Web2], Losev and Webster [LW]
formulated the important axiomatic definition of a tensor product categorification. These
are fully stratified categories which have been used to give a categorical interpretation
of Lusztig’s construction of tensor product of based modules for a quantum group.

The device of incorporating the sign function € into the definition of e-stratified or
e-highest weight category seems to be quite convenient as it streamlines many of the
subsequent definitions and proofs. It also leads to some interesting new possibilities
when it comes to the “tilting theory” which we discuss next.

Assume R is an e-stratified category as above. An e-tilting object is an object of
R which has both a A.-flag and a V.-flag. Isomorphism classes of indecomposable
e-tilting objects are parametrized in a canonical way by the set B; see Theorem 4.2.
The construction of these objects is a non-trivial generalization of Ringel’s classical
construction via iterated extensions of standard objects: in general one takes a mixture of
extensions of standard objects on the top for positive strata and extensions of costandard
objects on the bottom for negative strata. We denote the indecomposable e-tilting
objects by {T.(b) | b € B}.

Now let T be an e-tilting generator, i.e., an e-tilting object in which every T.(b) ap-
pears at least once as a summand. If ¢ = + or — (the constant functions) then T is a
tilting or cotilting module, respectively, for the underlying finite-dimensional algebra in
the general sense of tilting theory; for more general e, T' is an example of a Wakamatsu
tilting module as defined in [Rei, §4.1]. The Ringel dual of R relative to T is the category
R’ := B-modgg where B := Endg(T)° (so that T is a right B-module). The isomor-
phism classes of irreducible objects in R’ are in natural bijection with the isomorphism
classes of indecomposable summands of T', hence, they may be indexed by the same set
B that labels the irreducibles in R. We denote them by {L'(b) | b€ B}. Let

F := Homg(T,7): R > R/,
G := Cohomg (T,?) = Homz (?,7)* : R — R'.
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These are the Ringel duality functors. The following theorem is well known for highest
weight categories (where it is due to Ringel [Rin] and Happel [Hap]) and for +- and
—-stratified categories (where it is developed in the framework of standardly stratified
algebras in [AHLU]). We prove it for general e-stratified categories in Theorem 4.10.

Theorem 1.2 (Ringel, Happel, ...). Let R’ be the Ringel dual of R relative to an
e-tilting generator T as above. Let —e : A — {+} be the negation of the original sign
function €.

(1) The quintuple (B,L',p,A,>) is a stratification of R’ making it into a (—¢)-
stratified category with weight poset (A, =), that is, the opposite of the poset
used for R. Moreover, each stratum R\ :=RL,/RL of R' is equivalent to the
corresponding stratum Ry := R<x/R<xr of R.

(2) The functor F defines an equivalence of categories between the category of V-
filtered objects in R and the category of A_.-filtered objects in R'. It sends
e-tilting objects (resp., injective objects) in R to projective objects (resp., (—¢)-
tilting objects) in R'.

(8) The functor G defines an equivalence of categories between the category of Ag-
filtered objects in R and the category of V_.-filtered objects in R'. It sends
e-tilting objects (resp., projective objects) in R to injective objects (resp., (—¢)-
tilting objects) in R'.

(4) Assume that Ry is of finite global dimension for all strata A with e(\) = —
(resp., e(A) = +). Then the total derived functor RF : D*(R) — D*(R') (resp.,
LG : D*(R) — D*(R')) is an equivalence between the bounded derived categories.

In the setup of the theorem, let P be a projective generator for R. Then 7" := GP
is a (—e¢)-tilting generator for R’ such that A := Endg(P)°® = Endg/(T")°P. Since R
is equivalent to A-modgg, this shows that R is equivalent to the Ringel dual (R’)" of
R’ relative to T”. Thus, the original category R can be recovered from its Ringel dual
R’. This statement can be interpreted as a double centralizer property: starting from
R = A-modgq so that T is an (A, B)-bimodule, and taking the projective generator P
to be the left regular A-module so that A = End4(P)°P, the (B, A)-bimodule 7" = GP
is isomorphic to the dual T* of T. Now Theorem 1.2(3) implies that A =~ Endp(T*)°P.

We do not consider here derived equivalences in the case of infinite global dimension,
but instead refer to [PS], where this and involved ¢-structures are treated in detail by
generalizing the classical theory of co(resolving) subcategories. This requires the use of
certain coderived and contraderived categories in place of ordinary derived categories.

Now we shift our attention to the semi-infinite case, which is really the main topic
of the article. Following [EGNO], a locally finite Abelian category is a category that is
equivalent to the category comod¢y-C' of finite-dimensional right comodules over some
coalgebra C. Let R be such a category. A lower finite stratification of R is a quintuple
(B, L, p, A, <) cousisting of a set B, a function L labelling a full set {L(b) | b € B} of
pairwise inequivalent irreducible objects, a stratification function p : B — A required
now to have finite fibers B := p~!(\), and a lower finite poset (A, <) (i.e., the intervals
(—oo, ] are finite for all 4 € A). Fix also a sign function € : A — {£}. For any
lower set (i.e., ideal of the poset) A' in A, we can consider the Serre subcategory R*
of R generated by the objects {L(b) | b € B*} where BY := p~1(A!). The restriction
of the stratification of R gives a stratification (B*, L, p, A, <) of R'. We say that R is
a lower finite e-stratified category if R* is a finite Abelian category that is e-stratified
in the earlier sense for every finite lower set A‘ of A; cf. Definition 3.50. By the same
procedure one also obtains definitions of lower finite e-highest weight, lower finite fully
stratified, lower finite fibered highest weight, and lower finite highest weight categories.

In a lower finite e-stratified category R, there are e-standard and e-costandard objects
A.(b) and V.(b); they are the same as the e-standard and e-costandard objects of the
Serre subcategory R* defined from any finite lower set A' containing p(b). As well as
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(finite) A.- and V.-flags, one can consider certain infinite V.-flags in objects of the ind-
competion Ind(R) (which is the category comod-C of all right C-comodules in the case
that R = comodgy-C). We refer to these as ascending V.-flags; see Definition 3.52 for
the precise formulation. Theorem 3.56 establishes a homological criterion for an object
to possess an ascending V. -flag similar to the well-known criterion for good filtrations in
rational representations of reductive groups [Janl, Prop. I1.4.16]. From this, it follows
that the injective hull I(b) of L(b) in Ind(R) has an ascending V.-flag. Moreover, the
multiplicity of V¢ (c) as a section of such a flag satisfies

(I(b) : Ve(e)) = [Ac(c) : L(D)],
generalizing BGG reciprocity. This leads to alternative “global” characterizations of
lower finite e-stratified and fully stratified categories; see Theorems 3.60 and 3.63. The

latter involves an Ext?-vanishing condition which first appeared in work of Dlab and
Ringel [DR].

In a lower finite e-stratified category, there are also e-tilting objects. Isomorphism
classes of the indecomposable ones are labelled by B just like in the finite case. In fact,
for b € B the corresponding indecomposable e-tilting object of R is the same as the
object T.(b) of the Serre subcategory R* defined from any finite lower set At containing
p(b). By an e-tilting generator for R, we now mean an object T' = @,; T; € Ind(R)
with a given decomposition as a direct sum of e-tilting objects T; € R such that each
T.(b) appears at least once as a summand of T. Then the Ringel dual R’ of R relative
to T is the category A-modg of locally finite-dimensional left modules over the locally
finite-dimensional locally unital algebra

[0)
A= ( D HomR(Ti7Tj)) v
i,5el
where the op denotes that multiplication in A is the opposite of composition in R; see
Definition 4.24. Saying that A is locally unital means that A = P, ,; e;Ae; where {e;i €
I} are the mutually orthogonal idempotents defined by the identity endomorphisms of
each T;, and locally finite-dimensional means that dime;Ae; < oo for all 4,5 € 1. A
locally finite-dimensional module is an A-module V' = @,_; ;V with dime;V < oo for
each i. As e;Ae; = Homg (T;,T}) is finite-dimensional, each left ideal Ae; is a locally
finite-dimensional projective module.

This brings us to the notion of an upper finite e-stratified category, whose definition
may be discovered by considering the nature of the categories R’ that can arise as Ringel
duals of lower finite e-stratified categories. We refer to Definition 3.34 for the intrinsic
formulation; there are also upper finite counterparts of e-highest weight, fully stratified,
fibered highest weight and highest weight categories. Starting from R that is a lower
finite e-stratified category as above, the Ringel dual R’ comes equipped with an upper
finite stratification (B, L, p, A, =) making it into an upper finite (—e)-stratified category;
see Theorem 4.25 which extends parts (1) and (2) of Theorem 1.2.

In general, in an upper finite e-stratified category, the underlying poset is required
to be upper finite, i.e., all of the intervals [\, o0) are finite. There are e-standard and
e-costandard objects, but now these can have infinite length (although composition mul-
tiplicities in such objects are finite). On the other hand, the indecomposable projectives
and injectives do still have finite A -flags and V.-flags, exactly like in (PA;) and (IV.).
Perhaps the most interesting feature is that one can still make sense of e-tilting objects.
These are objects possessing certain infinite flags: both an ascending A.-flag and a
descending V.-flag; see Definition 3.35. This allows us to define the Ringel dual of an
upper finite e-stratified category relative to an e-tilting generator T': it is the category
comodgg-C for the coalgebra C := Coendg (T) that is the continuous dual of the oppo-
site endomorphism algebra B := Endg (T)°P; see Theorem 4.27 which extends parts (1)
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and (3) of Theorem 1.2. This makes sense because B is a pseudo-compact topological
algebra; see Lemma 2.10.

Again there are double centralizer properties. For R’ arising as the Ringel dual of a
lower finite e-stratified category R relative to T' = @,.; Tj, the indecomposable (—¢)-
tilting objects in R’ are the images of the indecomposable injective objects of R under

F:= P Homg(T;,?) : R >R’

iel
and, given a (—¢)-tilting generator T” for R’, the Ringel dual (R')" of R’ relative to T”
is equivalent to the original category R; see Corollary 4.29 and also §6.2 for an explicit
example. Similarly, for R’ arising as the Ringel dual of an upper finite e-stratified
category relative to T, the indecomposable (—¢)-tilting objects of R’ are the images
of the indecomposable projective objects of R under G := Cohomg (7, ?) and, given a
(—¢)-tilting generator T" = @, ; T for R', the Ringel dual (R’)" of R’ relative to 7" is
equivalent to R; see Corollary 4.30.

In §5.1, we apply semi-infinite Ringel duality together with arguments from [AST]
to give an elementary algebraic characterization of upper finite highest weight cate-
gories in terms of upper finite based quasi-hereditary algebras. In the finite-dimensional
setting, these are the based quasi-hereditary algebras defined by Kleshchev and Muth
in [KM], who proved that their definition of based quasi-hereditary algebra is equiva-
lent to the original definition of quasi-hereditary algebra from [CPS1]; we have stream-
lined the definition a little further here. Our more general algebras are locally finite-
dimensional locally unital algebras rather than unital algebras. Viewing them instead
as finite-dimensional categories, that is, small k-linear categories with finite-dimensional
morphism spaces, the definition translates into something equivalent to the notion of
an object-adapted cellular category which was introduced already by Elias and Lauda
[ELau, Def. 2.1]. (In turn, the Elias-Lauda definition evolved from work of Westbury
[Wes], who extended the definition of cellular algebra due to Graham and Lehrer [GL]
from finite-dimensional algebras to finite-dimensional categories.)

We say that a fully stratified category is tilting-rigid if there is a bijection v : B — B
such that T4 (b) = T_(v(b)) for all b € B; see Definition 4.36. In the finite case, R is
tilting-rigid if and only if it is Gorenstein with strata that are quasi-Frobenius (then
v encodes their Nakayama permutations); see Theorem 4.39 which generalizes [CM,
Th. 2.2]. The situation is even better if in addition all of the strata are symmetric, since
in that case the tilting objects T.(b) are isomorphic for all choices of the sign function
€ so that they may all be denoted by T'(b). Most of the naturally-occurring examples
of fully stratified categories are tilting-rigid with symmetric strata, including the tensor
product categorifications from [LW] mentioned earlier. For us, the key point about the
tilting-rigid hypothesis is that the Ringel dual of a tilting-rigid fully stratified category
is again a tilting-rigid fully stratified category; see Theorem 4.42. This is important in
§5.3, when we introduce notions of based stratified algebras and based properly stratified
algebras; see Definitions 5.20 and 5.21. These have a similar flavor to the fibered object-
adapted cellular categories of [ELau, Def. 2.17]. We show that the category of locally
finite-dimensional modules over an upper finite based stratified algebra (resp., upper
finite based properly stratified algebra) is an upper finite fully stratified (resp., fibered
highest weight) category, and conversely any such category which is also tilting-rigid
with symmetric strata can be realized in this way.

The definition of an upper finite based stratified algebra A involves certain basic
finite-dimensional algebras Ay (A € A) which provide explicit realizations of the strata.
Their direct sum @, , Ay is a locally unital algebra which plays the role of “Cartan
subalgebra”, although in general it is not a subalgebra of A. The assumption that the
algebras A, are basic can in fact be dropped entirely. On doing that one obtains a
weaker notion which we call an algebra with a triangular basis; see Definition 5.26. Our
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TABLE 2. Upper finite algebras and categories

understanding of this definition was influenced by the recent preprint [GRS] in which
the authors introduce the closely-related notion of an algebra with a weak triangular
decomposition; up to a choice of basis, this is the same as an algebra with a triangular
basis in our sense in which all distinguished idempotents are special. It is still the
case that the category of locally finite-dimensional modules over such an algebra is
an upper finite fully stratified category, just like for based stratified algebras. This
observation is due to Gao, Rui and Song [GRS, Th. 3.5]; we give a slightly different
proof in Theorem 5.28. Gao, Rui and Song also discuss some interesting examples
arising from cyclotomic quotients of the affine Brauer and oriented Brauer categories
and their ¢g-analogs.

For many of the naturally occurring algebras A with a triangular basis, the upper
and lower halves of the basis span a pair of opposite Borel subalgebras A’ and A?;
this includes all of the level one cyclotomic quotients from [GRS] but not the ones
of higher level. In Definition 5.31, we formalize this idea with the final notion of an
algebra with a triangular decomposition. The first author came upon essentially this
definition originally from considerations involving the oriented Brauer category and its
g-analog; see [Rey], [Bru] and also [RS], which applies a similar approach in the context
of the Brauer category. A closely related notion of triangular category was developed
independently by Sam and Snowden [SS] in order to study these and other examples;
see also [CouZ]. In the presence of a triangular decomposition, the “Cartan subalgebra”
@D, cp Ax may be identified with A° := A A Af so that now it is actually a subalgebra of
A, and the standardardization/costandardization functors can be realized as parabolic
induction/coinduction functors. In Theorem 5.35, we explain a general construction to
make any algebra with a triangular decomposition into a based stratified algebra. If A° is
semisimple, as is the case for the examples arising from the (oriented) Brauer category
in characteristic zero but not in positive characteristic, this produces a based quasi-
hereditary algebra. There are other advantages to having a triangular decomposition
rather than merely a triangular basis, e.g., see [SS] where triangular decompositions are
used to show that many of the motivating examples are Noetherian.

Table 2 summarizes some of the connections established between these various types
of algebras and their module categories. In the main body of the text, we also dis-
cuss a parallel situation involving essentially finite rather than upper finite algebras



SEMI-INFINITE HIGHEST WEIGHT CATEGORIES 9

and categories. For example, the finite-dimensional graded algebras with a triangular
decomposition studied in [HN], [BT] fit naturally into our more general framework of
algebras with an essentially finite triangular decomposition; see Remark 5.33.

As we have already mentioned, the category R := Rep(G) for a reductive group G
is the archetypical example of a lower finite highest weight category. Its Ringel dual
‘R’ is an upper finite highest weight category. This case has been studied in particular
by Donkin (e.g., see [Don2], [Don3]), but Donkin’s approach involves truncating to a
finite-dimensional algebra from the outset. The double centralizer property allowing R
to be reconstructed from R’ in this case can be interpreted as a shadow of the Tannakian
formalism; see Theorem 6.11. Other important examples of semi-infinite Ringel duality
come from blocks of category O over an affine Lie algebra: in negative levels one obtains
lower finite highest weight categories, while positive levels produce the upper finite ones
which are their Ringel duals. These and several other prominent examples are outlined
in §§6.3-6.7.

We would finally like to remark that our semi-infinite versions of highest weight
categories should not be confused with the affine highest weight categories of [Kle], and
our based quasi-hereditary algebras are not affine quasi-hereditary algebras in the sense
of [Kle]. The latter are special examples of affine cellular algebras introduced in [Xi],
[KX]. They are not covered by out setup since we require that strata can be realized by
finite-dimensional algebras over an algebraically closed field. To incorporate them, one
would need to develop the theory here over more general commutative ground rings as
suggested in Remark 5.7.

Acknowledgements. The first author would like to thank Ben Elias, Alexander Kleshchev
and Ivan Losev for many illuminating discussions. In particular, the fact that Ringel du-
ality could be extended to upper finite highest weight categories was originally explained
to this author by Losev. The second author would like to thank Henning Andersen,
Shrawan Kumar and Wolfgang Soergel for several useful discussions on topics related
to this paper. The authors also thank Tomoyuki Arakawa, Peter Fiebig and Julian
Kiilshammer for helpful comments, and Kevin Coulembier for pointing out a mistake in
the treatment of ind-completions in §2.3 of the first version of this article.

2. SOME FINITENESS PROPERTIES ON ABELIAN CATEGORIES

We fix an algebraically closed field k. All algebras, categories, functors, etc. will
be assumed to be linear over k. We write ® for ®x. The naive terms direct limit and
inverse limit will be used for small filtered colimits and limits, respectively. We begin
by introducing some language for Abelian categories with various finiteness properties;
see Table 3.

2.1. Finite and locally finite Abelian categories. According to [EGNO, Def. 1.8.5],
a finite Abelian category is a category that is equivalent to the category A-modgq of finite-
dimensional (left) modules over some finite-dimensional algebra A. We refer to a choice
for the algebra A here as an algebra realization of R. Note that the opposite category is
also a finite Abelian category as it is equivalent to the category A°P-mod¢y = modgy-A
due to the existence of the contravariant equivalence

?* . A-modgg — mod-A (2.1)

taking a finite-dimensional left A-module to the linear dual viewed as a right A-module
in the natural way.

A finite Abelian category can also be characterized as a category which is equivalent
to the category comodgy-C' of finite-dimensional (right) comodules over some finite-
dimensional coalgebra C. To explain this in more detail, recall that the dual A := C*
of a finite-dimensional coalgebra C' has a natural algebra structure with multiplication
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[ Finite Abelian categories ]

(2.21)

(2.21)

Essentially finite
Abelian categories

(2.20) (2.2\27\\
Locally finite ~~4 Schurian
Abelian categories categories

TABLE 3. Finiteness properties

A® A — A that is the dual of the comultiplication C' — C ® C'; for this, one needs to
use the canonical isomorphism

C*RC* > (CR®C)*, fR®g— (VW f(v)g(w)) (2.2)
to identify C* ® C* with (C® C)*. Then any right C-comodule can be viewed as a left
A-module with action defined from av := >} | a(c;)v; assuming here that the structure
mapn:V —> V®C sends v — Y, v; ® ¢;. Conversely, the C-comodule structure on
V' can be recovered uniquely from the action of A. Thus, the categories comodgg-C and
A-modgq are isomorphic.

A locally finite Abelian category is a category R that is equivalent to comod¢g-C' for a
(not necessarily finite-dimensional) coalgebra C'. We refer to a choice of C as a coalgebra
realization of R. The following result of Takeuchi gives an intrinsic characterization
of locally finite Abelian categories; see [Tak] and [EGNO, Th. 1.9.15]. It is a version
of [Gab, Th. IV.4] adapted to our situation. Note Takeuchi’s original paper uses the
language “locally finite Abelian” slightly differently (following [Gab]) but his formulation
of the result is equivalent to the one here (which follows [EGNO, Def. 1.8.1]). In loc. cit.
it is shown moreover that C' can be chosen so that it is pointed, i.e., all of its irreducible
comodules are one-dimensional; in that case, C' is unique up to isomorphism.

Lemma 2.1. An essentially small category R is a locally finite Abelian category if and
only if it is Abelian, all of its objects are of finite length, and all of its morphism spaces
are finite-dimensional.

In view of Lemma 2.1, one could also define a locally finite Abelian category to be a
category that is equivalent to A-modgy for a (not necessarily finite-dimensional) unital
algebra A, but we prefer to work in terms of comodules since this language facilitates
the passage to the ind-completion. To explain this in more detail, consider the locally
finite Abelian category

R = comody-C.
Fix a full set of pairwise inequivalent irreducible objects {L(b) |b € B} in R. By Schur’s
Lemma, we have that Endg (L(b)) = k for each b € B. Note that the opposite category
R°P is again a locally finite Abelian category, and a coalgebra realization for it is given
by the opposite coalgebra C°°P. This follows because there is a contravariant equivalence

?7* . comod¢yg-C — C-comodsq (2.3)

sending a finite-dimensional right comodule to the dual vector space viewed as a left
comodule in the natural way: if vy,...,v, is a basis for V, with dual basis f1,..., fn
for V*, and the structure map V — V ® C sends v; — Y. | v; ® ¢; ; then the dual’s
structure map V¥ — C®V* sends f; — Y., ¢; ;® f;. Since we have that C-comodgq =
comodgy-C°°P, we deduce that R°P is equivalent to comodgg-C°P.



SEMI-INFINITE HIGHEST WEIGHT CATEGORIES 11

In general, R need not have enough injectives or projectives. To get injectives, we
pass to the ind-completion Ind(R); see e.g. [KS, §6.1]. For V,W € Ind(R), we write
Ext (V, W), or sometimes Exts(V, W), for Ext?nd(n)(V, W); it may be computed via
an injective resolution of W in the ind-completion. This convention is unambiguous due
to [KS, Th. 15.3.1]; see also [Cou3, Th. 2.2.1]. One can also consider the right derived
functors R™F of a left exact functor F' : Ind(R) — R’ to an Abelian category R’.

Let comod-C' be the category of all right C-comodules. Every comodule is the union
(hence, the direct limit) of its finite-dimensional subcomodules. Moreover, a comodule
V' is compact, i.e., the functor Home (V,?) commutes with direct limits, if and only if
it is finite-dimensional. Using this, [KS, Cor. 6.3.5] implies that the canonical functor
Ind(R) — comod-C is an equivalence of categories. This means that one can work with
comod-C' in place of Ind(R), as we do in the next few paragraphs.

The category comod-C' is a Grothendieck category: it is Abelian, it possesses all
small coproducts, direct colimits of monomorphisms are monomorphisms, and there
is a generator. A generating family may be obtained by choosing representatives for
the isomorphism classes of finite-dimensional C-comodules. By the general theory of
Grothendieck categories, every C-comodule has an injective hull. We use the notation
I(b) to denote an injective hull of L(b). The right regular comodule decomposes as

C =@ I[p)etmEe), (2.4)
beB
By Baer’s criterion for Grothendieck categories (e.g., see [KS, Prop. 8.4.7]), arbitrary
direct sums of injectives are injective. It follows that an injective hull of V' € comod-C
comes from an injective hull of its socle: if soc V' =~ @, g L(bs) then @, ¢ I(bs) is an
injective hull of V.

In any Abelian category, we write [V : L] for the composition multiplicity of an
irreducible object L in an object V. By definition, this is the supremum of sizes of the
sets {i = 1,...,n|V;/Vi_1 = L} over all finite filtrations 0 = Vj < V1 < --- < V,, = V;
possibly, [V : L] = oo. Composition multiplicity is additive on short exact sequences.
For any right C-comodule V', we have by Schur’s Lemma that

[V : L(b)] = dim Hom¢(V, I(D)). (2.5)
When C is infinite-dimensional, the map (2.2) is not an isomorphism, but one can
still use it to make the dual vector space B := C* into a unital algebra. Since C' is

the union of its finite-dimensional subcoalgebras, the algebra B is the inverse limit of
its finite-dimensional quotients, i.e., the canonical homomorphism B — lim(B/J) is an
isomorphism where the limit is over all two-sided ideals J of B of finite codimension.
These two-sided ideals J form a base of neighborhoods of 0 making B into a pseudo-
compact topological algebra; see [Gab, Ch. IV] or [Sim, Def. 2.4]. We refer to the topology
on B defined in this way as the profinite topology. The coalgebra C' can be recovered
from B as the continuous dual

B* := {f € B*| f vanishes on some two-sided ideal J of finite codimension}. (2.6)

It has a natural coalgebra structure dual to the algebra structure on B. This is discussed
further in [Sim, §3]; see also [EGNO, §1.12] where B* is called the finite dual. We
note that any left ideal I of B of finite codimension contains a two-sided ideal J of
finite codimension, namely, J := Anng(B/I). So, in the definition (2.6) of continuous
dual, “two-sided ideal J of finite codimension” can be replaced by “left ideal I of finite
codimension”. Similarly for right ideals.

Any right C-comodule V is naturally a left B-module by the same construction as
in the finite-dimensional case. We deduce that the category comod-C' of all right C-
comodules is isomorphic to the full subcategory B-modgs of B-mod consisting of all
discrete left B-modules, that is, all B-modules which are the unions of their finite-
dimensional submodules. In particular, comodg-C' and B-modg are identified under
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this construction. This means that any locally finite Abelian category may be realized
as the category of finite-dimensional modules over an algebra which is pseudo-compact
with respect to the profinite topology; see also [Sim, §3].

The definition of the left C-comodule structure on the linear dual V* of a right C-
comodule V in (2.3) required V to be finite-dimensional in order for it to make sense.
If V is an infinite-dimensional right C-comodule, it can be viewed equivalently as a
discrete left module over the dual algebra B := C*. Then its dual V* is a pseudo-
compact right B-module, that is, a B-module isomorphic to the inverse limit of its finite-
dimensional quotients. Viewing pseudo-compact modules as topological B-modules with
respect to the profinite topology (i.e., submodules of finite codimension form a basis of
neighborhoods of 0), we obtain the category modp.-B of all pseudo-compact right B-
modules and continuous B-module homomorphisms. The functor (2.3) extends to

7% : B-modgs — modp-B. (2.7)
This is a contravariant equivalence with quasi-inverse given by the functor
7% : modpe-B — B-modgs (2.8)

taking V € modpc-B to its continuous dual
V*:={f € V*| f vanishes on some submodule of V' of finite codimension} .

We are using subtlely different notation here (?* vs. ?¥), but confusion seldom arises
due to context.
We record one more basic lemma about comodules over a coalgebra.

Lemma 2.2. Suppose that C is a coalgebra and B := C* is its dual algebra. For any
right C'-comodule V', composing with the counit € : C — k defines an isomorphism of
left B-modules ay : Home(V,C) = V*. When V = C, the right reqular comodule, this
map gives an algebra isomorphism Ende(C)°P ~ B.

Proof. Let n : V. — V ® C be the comodule structure map. To show that ay is an
isomorphism, one checks that the map Sy : V* — Home(V,C), f — (f®id) o n is its
two-sided inverse; cf. [Sim, Lem. 4.9]. It remains to show that a¢c : Ende(C)°P = B is
an algebra homomorphism: for f,g € B we have that

ac(Be(g) o Be(f)) = eo (9®id) ono (f@id) on
= (9®id) o (Id®e) omo (f®id) on = go (f@id)on = fg. DO

2.2. Locally unital algebras. We are going to work with certain Abelian categories
which are not locally finite, but which nevertheless have some well-behaved finiteness
properties. We will define these in the next subsection. First we must review some basic
notions about locally unital algebras. These ideas originate in the work of Mitchell [Mit].

A locally unital algebrais an associative (but not necessarily unital) algebra A equipped
with a distinguished system {e; | i € I'} of mutually orthogonal idempotents such that

A= (:)(%146T
i,j€l
We say A is locally finite-dimensional if each subspace e; Ae; is finite-dimensional.

A locally unital homomorphism (resp., isomorphism) between two locally unital al-
gebras A and B is an algebra homomorphism (resp., isomorphism) which takes distin-
guished idempotents to distinguished idempotents. We say that A is an idempotent
contraction of B, or B is an idempotent expansion of A, if there is an algebra isomor-
phism A 5 B sending each distinguished idempotent in A to a sum of distinguished
idempotents in B. Usually when we use this language it will be the case that B = A
and the isomorphism A — B is the identity function; then A = &P ijel é;Aé; is an idem-

potent expansion of A = @i,je[ e;Ae; if each of the idempotents e; (i € I) is a finite sum

of the idempotents é; (j € I).
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For a locally unital algebra A, an A-module means a left module V' as usual such that
V =@, eV. A vector veV is homogeneous if v € e;V for some i € I. A module V' is

e locally finite-dimensional if dime;V < oo for all i € I;

e finitely generated if V. = Avy + -+ + Auv,, for vectors v1,...,v, € V (which may
be assumed to be homogeneous) or, equivalently, it is a quotient of the finitely
generated projective A-module Ae;, @ --- @ Ae;,, for iq,...,i, €l and n e N;

o finitely presented if there is an exact sequence

Aejl @--~®A€jm —>A€i1 C—BC—BA@M —>V—>0
for é1,...,0n, 41, -+, Jm € I and m,n € N.
Let A-mod (resp., A-modi, resp., A-modg,, resp., A-mods,) be the category of all A-
modules (resp., the locally finite-dimensional ones, resp., the finitely generated ones,

resp., the finitely presented ones). Similarly, we define the categories mod-A, mod;gy-A,
modg,-A and mod,-A of right modules.

Remark 2.3. Any locally unital algebra A = @i’ jel e;Ae; can be viewed as a category
with object set I and Hom 4(j,%) = e;Aej, with the idempotent e; € A corresponding to
the identity endomorphism 1; € End 4(¢). Conversely, any small category A (k-linear,
of course) gives rise to a corresponding locally unital algebra A which we call the path
algebra of A. In these terms, locally finite-dimensional locally unital algebras correspond
to finite-dimensional categories, that is, small categories all of whose morphism spaces
are finite-dimensional. The notion of idempotent expansion of the algebra A becomes
the notion of thickening of the category A, which is a sort of “partial Karoubi envelope”.
Also, a left A-module (resp., a locally finite-dimensional left A-module) is the same as
a k-linear functor from A to the category Vec (resp., Vecq) of vector spaces (resp.,
finite-dimensional vector spaces); right A-modules are functors to Vec°P.

Lemma 2.4. An essentially small category R is equivalent to A-mod for some locally
unital algebra A if and only if R is Abelian, it possesses all small coproducts, and it has
a projective generating family, i.e., there is a family (P;)ier of compact projective objects
such that V # 0 = Homg (P;, V) # 0 for some i€ I.

Proof. This is similar to [Fre, Ex. 5.F]. One shows that R is equivalent to A-mod for
the locally unital algebra A = (P, ;.; e;Ae; defined by setting e;Ae; := Homg (55, Pj)
with multiplication that is the opposite of composition in R. The canonical equivalence
R — A-mod is given by the functor @, ; Homg (P;,?). O
Lemma 2.5. Let A be a locally unital algebra. An A-module V is compact if and only
if it is finitely presented. Also, for projective modules, the notions of finitely presented
and finitely generated coincide.

Proof. This is well known for modules over a ring, and the usual proof in that setting
carries over almost unchanged to the locally unital case. O

Lemma 2.6. Let A be a locally unital algebra. Any A-module is isomorphic to a direct
limit of finitely presented A-modules.

Proof. As any A-module is the union of its finitely generated submodules, it suffices to
show that any finitely generated A-module V' is isomorphic to a direct limit of finitely
presented modules. But then V' is a quotient of P = Ae;, @--- @ Ae;, by a submodule.
This submodule is the union of its finitely generated submodules W, so we have that
V = P/lim W = lim P/W. This is a direct limit of finitely presented modules. O

The following lemma is fundamental. It is the analog of “adjointness of tensor and
hom” in the locally unital setting; see e.g. [BD1, §2.1] for a fuller discussion.

Lemma 2.7. Let A = (—Bm.e] e;Ae; and B = (—BMEJ fiBf; be locally unital algebras,
and let M = @ e; M f; be an (A, B)-bimodule.

iel,jed



14 J. BRUNDAN AND C. STROPPEL

(1) The functor M®p? : B-mod — A-mod is left adjoint to @, ; Homa (M f;,7).
(2) The functor ?®4 M : mod-A — mod-B is left adjoint to @, ; Homp(e; M, 7).

iel
For any locally unital algebra A, there is a contravariant equivalence

?® : A—modlfd - mOd]fd-A (2.9)

sending a left module V to V& := @,_,(e;V)*, viewed as a right module in the obvious

way. The analogous functor ?® : mod;q-A — A-modiq gives a quasi-inverse. The

contravariant functor (2.9) also makes sense on arbitrary left (or right) A-modules. It is
no longer an equivalence, but we still have that

Hom 4 (V, W®) = Hom 4 (W, V) (2.10)
for any V € A-mod and W € mod-A. To prove this, apply Lemma 2.7(1) to the (k, A)-

bimodule W to show that Hom4(V, W®) =~ (W ®4 V)*, then apply Lemma 2.7(2) to
the (A,k)-bimodule V' to show that (W ®4 V)* =~ Hom4 (W, V®).

Lemma 2.8. The dual V® of a projective (left or right) A-module is an injective (right
or left) A-module.

Proof. Just like in the classic treatment of duality for vector spaces from [Mac, IV.2],
(2.10) shows that the covariant functor ?® : A-mod — (mod-A)°P is left adjoint to the
exact covariant functor ?® : (mod-A4)°? — A-mod. So it sends projective left A-modules
to projectives in (mod-A)°P, which are injective right A-modules. O

Now we assume that A is a locally unital algebra and 7' € A-mod¢q. We are going to
give a self-contained account of the construction of a coalgebra Coend 4(T') which is the
continuous dual of the endomorphism algebra End 4 (7")°P. This is the coend construction
which is an essential ingredient in the proof of Lemma 2.1 as discussed for example in
[EGNO, §1.10], although as usual we are using the language of algebras and modules
rather than the language of categories and functors used there. To start with, let

B :=End4(T)°P, (2.11)

which is a unital algebra. Then T is an (A, B)-bimodule and the dual T7® is a (B, A)-
bimodule. Let T} := ¢;T, so that T = @, ; T; and T® = P,_; T*.

Lemma 2.9. Suppose that T = @,.; T; € A-modyq and B := End4(T')°? are as above.
For any V € A-mod, there is a natural isomorphism of right B-modules

Homu (V.T) > (T2 @4 V)*, 0= (f®v— f(8(v))). (2.12)
In particular, taking V =T, we get that (T® ®4 T)* =~ B as (B, B)-bimodules.
Proof. By Lemma 2.7 applied to the (A,k)-bimodule T®, the functor T®®? is left
adjoint to @,.; Homy(T7*, 7). Hence,

(T® @4 V)* = Homy (T® @4 V, k) =~ Homy (V, @Homk(n*,k)) ~ Hom(V, T).
iel

This is the natural isomorphism in the statement of the lemma. We leave it to the reader
to check that it is a B-module homomorphism. O

Continuing with this setup, let
C:=T®R4T. (2.13)
There is a unique way to make this into a coalgebra so that the bimodule isomorphism

B > C* from Lemma 2.9 is actually an algebra isomorphism (viewing the dual C* of a

coalgebra as an algebra as in the previous subsection). Explicitly, let ugi), ey u((;()i) be a
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basis for T; and v@, e ,v(i)) be the dual basis for T*. Let cgfl = vgi) ®u$«i) € C. Then

d(i
the comultiplication § : C' - C' ® C' and counit € : C' — k satisfy

(5(0&2) = cﬁl,{ ® cg, e(cgl) = 0rs (2.14)

foreach i e I and 1 <7, s < d(i). For the next lemma, recall the definition of continuous
dual of a pseudo-compact topological algebra from (2.6).

Lemma 2.10. The endomorphism algebra B = End 4(T)°P of T € A-modygq is a pseudo-
compact topological algebra with respect to the profinite topology, i.e., B is isomorphic
to liLnB/J where the inverse limit is over all two-sided ideals J of finite codimension.
Moreover, the coalgebra C' from (2.13) may be identified with the continuous dual B¥.

Proof. This follows because B =~ C* as algebras. O
Thus, the coalgebra C defined by (2.13) is identified with the continuous dual
Coend4(T) := (Enda(T)°P)* (2.15)

of B. Explicitly, using the formula (2.12), the element (;5«2 = vgi) ®u£i) € C is identified
with the function sending 6 € End4(T") to vs(6(u,)).

Now consider the functor T®®4? : A-mod — B-mod. Since T is locally finite-
dimensional, it takes finitely generated A-modules to finite-dimensional B-modules. Any
A-module V is the union of its finitely generated submodules, and T®® 4? commutes
with direct limits, so we see that T®® 4V is actually a discrete B-module. Since B =~ C*,
the category B-modgs is isomorphic to comod-C. So we have constructed a functor

T®®4? : A-mod — comod-C. (2.16)

For V € A-mod, the comodule structure map on T® ®,4 V is given explicitly by the
formula

d(i)
N: TRV -T®PR,V®C, vgi)®vv—>2v£i)®v®cgl. (2.17)
r=1

Recall the definition of the functor ?* from (2.8).

Lemma 2.11. Suppose that T = @,.; T; € A-modyzq, B := Enda(T)°? and C = B*
are as above. The functor T®Q@4? just constructed is isomorphic to

G = Cohomy (T, 7) := Homu (?,T)* : A-mod — comod-C, (2.18)
and it is left adjoint to the functor
G« = @ Home (T}, ?) : comod-C — A-mod. (2.19)
il

Thus, (G,Gy) is an adjoint pair.

Proof. The fact that (2.16) is left adjoint to (2.19) follows by Lemma 2.7. To see
that it is isomorphic to (2.18), take V € A-mod and consider the natural isomorphism
Homu(V,T) =~ (T®®4V)* of right B-modules from Lemma 2.9. As T®®4V is discrete,
its dual is a pseudo-compact left B-module, hence, Hom 4 (V, T) is pseudo-compact too.
Then we apply *, using that it is quasi-inverse to #, to get that Hom 4 (V, T)* € B-modgs
is naturally isomorphic to T® @4 V. O
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2.3. Schurian categories. By a Schurian category, we mean a category R that is
equivalent to A-modjy for a locally finite-dimensional locally unital algebra A. This
non-standard terminology is considerably more restrictive than other usage of the same
term elsewhere in the literature, where “Schurian category” is typically used to indicate
a k-linear category in which the endomorphism algebras of the indecomposable objects
are one-dimensional® (e.g., see work of Roiter).

By an algebra realization of a Schurian category R, we mean a locally finite-dimensional
locally unital algebra A (together with the set I indexing its distinguished idempotents)
such that R is equivalent to A-mod;tq. Now we assume that

R = A—modlfd

and proceed to summarize some of the basic properties of such categories, referring
to [BD1, §2] for a more detailed treatment. Let {L(b) | b € B} be a full set of pairwise
inequivalent irreducible objects of R. Schur’s Lemma holds: we have that Endg (L(b)) =
k for each b € B. Note that the opposite category R°P is also Schurian, and A°P gives
an algebra realization for it. This follows because R°P = (A-modigg)°P is equivalent to
modigg-A = (A°P)-modjq using (2.9).

Let R be the (not necessarily Abelian) full subcategory of R consisting of all compact
objects, and Ind(R.) be its ind-completion. The canonical functor Ind(R.) — A-mod is
an equivalence of categories. To see this, we note that all finitely generated A-modules
are locally finite-dimensional as A itself is locally finite-dimensional. Hence, finitely
presented A-modules are locally finite-dimensional too, i.e, A-mods, is a subcategory of
A-modygg. In view of Lemma 2.5, this is the category R.. It just remains to apply [KS,
Cor. 6.3.5], using Lemma 2.6 when checking the required hypotheses.

The category A-mod is a Grothendieck category. In particular, this means that every
A-module has an injective hull in A-mod. Since every A-module is a quotient of a direct
sum of projective A-modules of the form Ae;, the category A-mod also has enough
projectives. It is not true that an arbitrary A-module has a projective cover, but we will
see in Lemma 2.14 below that finitely generated A-modules do.

Like we did in §2.1, we write Exty (V, W), or sometimes Ext’y (V, W), in place of
Extihar,) (V. W) for any V, W € Ind(R.). This can be computed either from a projective
resolution of V' or from an injective resolution of W. We can also consider both right
derived functors R™F of a left exact functor F : Ind(R.) — R’ and left derived functors
L, G of a right exact functor G : Ind(R.) — R’. We provide an elementary proof of the
following, but note it also follows from [KS, Th. 15.3.1].

Lemma 2.12. For V,W € R and n = 0, there is a natural isomorphism
ExtR (V, W) = Extlho, (W, V).

Proof. Using (2.9), we must show that Ext’; (V, W) =~ Ext’; (W®, V®) for locally finite-
dimensional A-modules V' and W. To compute Ext’; (V, W), take a projective resolution

—>P1—>P0—>V—>O

of V in A-mod. By Lemma 2.8, on applying the exact functor ®, we get an injective

resolution

of V® in mod-A. Since W is locally finite-dimensional, we can use (2.10) to see that
Hom 4 (P;, W) = Hom 4 (W®, P®) for each i. So Ext’y(V, W) = Ext’} (W®,V®). O

INote also that the present usage is different from several recent papers of the first author: in [BD1], the
phrase “locally Schurian” was used to describe the categories we now call “Schurian”; more precisely,
in [BD1], a locally Schurian category referred to a category of the form A-mod (rather than A-modisq)
for locally finite-dimensional locally unital algebras A. We could not use the phrase “Schurian” in loc.
cit. since that was reserved for a more restrictive notion defined in [BLW, §2.1]; this more restrictive
notion will be discussed in the next subsection, again using different language.
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Let I(b) be an injective hull of L(b) in A-mod. The dual (e;A)® of the projective
right A-module e; A is injective in A-mod. Since End z((e; A)®)°P =~ End4(e; A) = e; Ae;,
which is finite-dimensional, the injective module (e;A)® can be written as a finite direct

sum of indecomposable injectives. To determine which ones, we compute its socle: we
have that Hom 4 (L(b), (e;A)®) =~ Homa(e; A, L(b)®) = (L(b)®)e; = (e;L(b))*, hence,
(e;4)® = @ I(b)®dimeilt) (2.20)
beB
with all but finitely many summands on the right hand side being zero. In particular,
this shows for fixed ¢ that dime;L(b) = 0 for all but finitely many b € B. Conversely,
for fixed b € B, we can always choose i € I so that e;L(b) # 0, and deduce that I(b) is
a summand of (e;A)®. This means that each indecomposable injective I(b) is a locally
finite-dimensional left A-module.
Let P(b) be the dual of the injective hull of the irreducible right A-module L(b)®. By
dualizing the right module analog of the decomposition (2.20), we get also that
Ae; = @ P(b)®dmeil®) (2.21)
beB
with all but finitely many summands being zero. In particular, P(b) is projective in
A-mod, hence, it is a projective cover of L(b) in A-mod. The composition multiplicities
of any A-module satisfy

[V : L(b)] = dimHom(V, I(b)) = dim Hom 4 (P(b), V). (2.22)

Lemma 2.13. For A as above, left A-module V' is locally finite-dimensional if and only
if [V : L(b)] < o for allbe B.

Proof. Note that V is locally finite-dimensional if and only if dim Hom 4 (A4e;, V) < oo for
each i € I. Using the decompositon (2.21), this is if and only if dim Hom 4 (P(b),V) < «©
for each b € B. O

There is a little more to be said about finitely generated modules. Recall from the
previous subsection that a module is finitely generated if V' = Av; + --- + Av, for
homogeneous vectors vy, ...,v, € V. We say that V is finitely cogenerated if its dual
is finitely generated. It is obvious from these definitions that Hom 4 (V, W) is finite-
dimensional either if V' is finitely generated and W is locally finite-dimensional, or if V'
is locally finite-dimensional and W is finitely cogenerated. The following checks that
our naive definitions are consistent with the usual notions of finitely generated and
cogenerated objects of Grothendieck categories.

Lemma 2.14. For V € A-mod, the following properties are equivalent:
(i) V is finitely generated;
(i) the radicalrad V', i.e., the sum of its maximal proper submodules, is a superfluous
submodule and hd V :=V /rad V' is of finite length;
(iii) V is a quotient of a finite direct sum of the modules P(b) for b e B.

Moreover, any finitely generated V' has a projective cover.

Proof. We have already observed that P(b) is a projective cover of L(b). The lemma
follows by standard arguments given this and the decomposition (2.21). O

Corollary 2.15. For V € A-mod, the following properties are equivalent:
(i) V is finitely cogenerated;
(i) soc V is an essential submodule of finite length;
(iii) V is isomorphic to a submodule of a finite direct sum of modules I(b) for b e B.

We say that a locally finite-dimensional locally unital algebra A = (—Bl jel e;Aej is
pointed if A is a basic algebra, i.e., all of its irreducible modules are one-dimensional,
and all of its distinguished idempotents {e; | i € I} are primitive.



18 J. BRUNDAN AND C. STROPPEL

Lemma 2.16. Let A = @

Pick an idempotent expansion A = P, jei é;Aé; such that for some subset B < I the set
{éy | b€ B} is a complete set of pairwise non-conjugate primitive idempotents in A. Let
B := @, yep €aAéy. Then B is a pointed locally unital algebra that is Morita equivalent

to A, and any such pointed locally unital algebra is isomorphic to B.

ijel ejAe; be a locally finite-dimensional locally unital algebra.

Proof. Tt is clear that B is pointed. To see that A and B are Morita equivalent, note
that the functor A-mod — B-mod,V — @), g éV is an equivalence of categories with
quasi-inverse given by the functor ( Pren Aéb)® g?. Finally if B’ another pointed locally
unital algebra that is Morita equivalent to A, let F' : A-mod — B’-mod be an equivalence
of categories. Then we have that B’ = @, g By, for left ideals B =~ F(Aé). So

op
B =~ (@ HomB,(B;,B;,)> ~ (P Homa(Aé,, A&y) = P é,4¢, = B.

a,beB a,beB a,beB

This proves the uniqueness. O
Finally, we introduce some terminology which will not be neeeded until §5.5.

Definition 2.17. Let A = (—BME ; eide; be a locally finite-dimensional locally unital
algebra. Let S € I be a subset. We say that a left A-module V is S-free if there is a
subset X = | |..q X(s) © V such that the following properties hold:

(LF1) V = @,y Az.

(LF2) The homomorphism Aes; — Ax,a — ax is an isomorphism for z € X (s).
Equivalently, there is a K-submodule U of eV := @, g
map Ae ®k U — V is an isomorphism, where Ae := P

Lemma 2.18. Suppose that A = @, ;c;
unital algebra and {ep|b € B} is a full set of pairwise non-conjugate primitive idempotents

in A for some subset B € I. Then every finitely generated projective left A-module is
B-free.

esV such that the multiplication
Aeg and K := P, g kes.

seS seS

ejAe; is a locally finite-dimensional locally

Proof. Any finitely generated projective left A-module V' decomposes as a finite direct
direct sum of indecomposable projectives, and any indecomposable projective is isomor-
phic to Ae;, for some b € B. Hence, we can pick a finite subset X = | |,.g X (b) so that
V =@,.x Az with Az = Ae;, for z € X (b). O

There are obvious right module analogs of these notions.

2.4. Essentially finite Abelian categories. We say that a locally unital algebra A =
@id‘e] e;Ae; is essentially finite-dimensional if each right ideal e; A and each left ideal
Ae; is finite-dimensional. By an essentially finite Abelian category, we mean a category
R that is equivalent to A-modgg for such an A. In that case, we refer to A as an algebra
realization of R. Note that R is essentially finite Abelian if and only if R°P is essentially
finite Abelian. Moreover, if A is an algebra realization for R then A°P is one for R°P by
the obvious contravariant equivalence 7* : A-modsg — modq-A.

Lemma 2.19. An essentially small category R is equivalent to A-modgq for a locally
unital algebra A = (—Bm‘d eiAej such that each left ideal Ae; (resp., each right ideal e; A)
is finite-dimensional if and only if R is a locally finite Abelian category with enough
projectives (resp., enough injectives).

Proof. We just prove the result for left ideals and projectives; the parenthesized state-
ment for right ideals and injectives follows by replacing R and A with R°P and A°P.

Suppose first that A = @—)l jel e;Ae; is a locally unital algebra such that each left
ideal Ae; is finite-dimensional. Then A-modyq is a locally finite Abelian category. It has
enough projectives because the left ideals Ae; are finite-dimensional.
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Conversely, suppose R is a locally finite Abelian category with enough projectives.
Let {L(b) | b € B} be a full set of pairwise inequivalent irreducible objects, and P(b) € R
a projective cover of L(b). Define A to be the locally unital algebra A = @, jcp €aAden
where e, Ae, := Hompg (P(a), P(b)) with multiplication that is the opposite of com-
position in R. This is a pointed locally finite-dimensional locally unital algebra. As
in the proof of Lemma 2.4, the functor @, g Homg (P(b),?) defines an equivalence
R — A-modg. It remains to note that the ideals Ae, are finite-dimensional since they
are the images under this functor of the projectives P(b), which are of finite length. O

Corollary 2.20. An essentially small category R is an essentially finite Abelian category
if and only if it is a locally finite Abelian category with enough injectives and projectives.

Essentially finite Abelian categories are almost as convenient to work with as finite
Abelian categories since one can perform all of the usual constructions of homological
algebra without needing to pass to the ind-completion.

Lemma 2.21. For a category R, the following are equivalent:

(i) R is a finite Abelian category;

(ii) R is a Schurian category with only finitely many isomorphism classes of irre-
ducible objects;

(iii) R is an essentially finite Abelian category with only finitely many isomorphism
classes of irreducible objects;

(iv) R is a locally finite Abelian category with only finitely many isomorphism classes
of irreducible objects and either enough projectives or enough injectives;

(v) R is both a locally finite Abelian category and a Schurian category.

Proof. Clearly, (i) implies (ii) and (iii). The implication (ii)=>(i) follows on considering a
pointed algebra realization of R. The implication (iii)=>(iv) follows from Corollary 2.20.
The implication (iv)=(i) follows from Lemma 2.19. Clearly (ii) and (iv) together imply
(v). Finally, to see that (v) implies (ii), it suffices to note that a Schurian category
with infinitely many isomorphism classes of irreducible objects cannot be locally finite
Abelian: the direct sum of infinitely many non-isomorphic irreducibles is a well-defined
object of R but it is not of finite length. O

Essentially finite Abelian categories with infinitely many isomorphism classes of ir-
reducible objects are not Schurian categories. However they are closely related as we
explain next.

e If R is essentially finite Abelian, we define its Schurian envelope Env(R) to be the
full subcategory of Ind(R) consisting of all objects that have finite composition
multiplicities.

e If R is Schurian, let Fin(R) be the full subcategory of R consisting of all objects
of finite length.

We say that a Schurian category R is Cartan-bounded if its Cartan matrix C has only
finitely many non-zero entries in every row and column, where by Cartan matrix we
mean the matrix

(dim Homg (P(a), P(%)),, yeps = (dim Homp (I(a), 1(5)), pes (2.23)
where B is labelling indecomposable projectives and injectives in the usual way.

Lemma 2.22. If R is an essentially finite Abelian category then Env(R) is a Cartan-
finite Schurian category, and conversely if R is a Cartan-finite Schurian category then
Fin(R) is an essentially finite Abelian category. Morever, Env and Fin are inverses in
the sense that Fin(Env(R)) is equivalent to R for any essentially finite Abelian R, and
Env(Fin(R)) is equivalent to R for any Cartan-finite Schurian R:

( Essentially finite ) Env < Cartan-finite )

Abelian categories ) fi, \ Schurian categories
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Proof. This is easy to see in terms of an algebra realization: if R = A-modg for an
essentially finite-dimensional locally unital algebra A then Env(R) = A-modq, so it
is Schurian. Since the indecomposable injectives and projectives in Env(R) are the
same as in R, they have finite length. Conversely, using Lemma 2.16, we may assume
that R = A-modjgq for a pointed locally finite-dimensional locally unital algebra, such
that all of the indecomposable injectives and projectives are of finite length. Since A is
pointed, this means equivalently that all of the left ideals Ae; and right ideals e; A are
finite-dimensional. Hence, A is essentially finite-dimensional, and Fin(R) = A-modgq is
essentially finite Abelian. d

2.5. Recollement. We conclude the section with some reminders about “recollement”
in our algebraic setting; see [BBD, §1.4] or [CPS1, §2] for further background. We
need this here only for Abelian categories R satisfying finiteness properties as developed
above. The recollement formalism provides us with an adjoint triple of functors (i*,4, ')
associated to the inclusion i : R' — R of a Serre subcategory, and an adjoint triple
of functors (41,7, %) associated to the projection j : R — R' onto a Serre quotient
category, with the image of 7 being the kernel of j. These functors will play an essential
role in all subsequent arguments.

First suppose that R is any Abelian category. Assume that we are given a full
set {L(b) | b € B} of pairwise inequivalent irreducible objects. Let B' be a subset
of B and R' be the full subcategory of R consisting of all the objects V such that
[V : L(b)] # 0 = b € B'. This is a Serre subcategory of R with irreducible objects
{L*(b) | b€ B*} defined by L*(b) := L(b).

Lemma 2.23. In the above setup, the inclusion functor i : R*Y — R has a left adjoint

i* and a right adjoint i':

|
K3

»/i\
-

¥

R R.

The counit of one of these adjunctions and the unit of the other give isomorphisms:
i*0i S Idge > it o
In particular, i is fully faithful.

*

Proof. This is straightforward. Explicitly, i* (resp., i') sends an object of R to the
largest quotient (resp., subobject) that belongs to R*. O

Now we are going to pass to the Serre quotient R' := R/R'. This is an Abelian
category equipped with an exact quotient functor j : R — R satisfying the following
universal property: if h : R — C is any exact functor to an Abelian category C with
hL(b) = 0 for all b€ B*, then there is a unique functor h : R" — C such that h = ho j.
The irreducible objects in R" are {L"(b)|b € B"} where B' := B\B' and L'(b) := jL(b).
For a fuller discussion of these statements, see e.g. [Gab].

The quotient functor j need not have a left or a right adjoint in general, so we need to
impose some additional hypotheses. We first assume that R is finite Abelian, essentially
finite Abelian or Schurian. Then one can understand j rather explicitly as an idempotent
truncation functor and it always has both a left and right adjoint:

Lemma 2.24. Suppose that R is finite Abelian, essentially finite Abelian or Schurian,
B=B'uB',andi:R' >R and j: R > R" = R/R' are as above. Then R* and
R are of the same type (finite Abelian, essentially finite Abelian or Schurian) as R.
Moreover, the quotient functor j : R — R has a left adjoint 51 and a right adjoint jy:
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Jx
PN

J

_

J

R RT.

The counit of one of the adjunctions and the unit of the other give isomorphisms:
jojs = Idrt = joj.
In particular, jy and jy are fully faithful.

Proof. Fix a pointed algebra realization

A= @ e, Aey
a,beB
of R, so A is finite-dimensional, essentially finite-dimensional or locally finite-dimensional
according to whether R is finite Abelian, essentially finite Abelian or Schurian. Let
At = (—D €A ey, = A/(eC |ce BT, AT = @ e, Aey,
a,beB! a,beBT
where Z denotes the canonical image of z € A under the quotient map A —» A*. Then
it is clear that R*' is equivalent to A'-modgy in the finite Abelian or essentially finite
Abelian cases, and to A'-modj¢q in the Schurian case. As A' satisfies the same finiteness
properties as A, we deduce that R* is of the same type as R.
The quotient category R' is realized by the algebra A", and the quotient functor j

becomes the functor that sends an A-module V' to

iVi= @ eV (2.24)

aeBT

with A" acting by restricting the action of A. We deduce that R is again of the same
type as R. Since j is isomorphic to @, g+ Hom4(Aep, —), it has the left adjoint

Jri= ( &) Aeb)®m? : A"-mod — A-mod (2.25)
beBT
thanks to Lemma 2.7(1). From this, it is clear that the unit of adjunction Idzr —
j o 71 is an isomorphism. On the other hand, j is also isomorphic to the tensor functor
(Ppept €6A)®47, so Lemma 2.7(1) also gives that j has the right adjoint

Jx 1= (—B Hom 41 ( @ ebAea,?> : A"-mod — A-mod. (2.26)
aeB beBT
Again using this we see that the counit j o j, — Idg+ is an isomorphism. O

The situation when R is locally finite Abelian is more complicated. Continuing with
the above notation, it follows immediately from Lemma 2.1 that the Serre subcategory
R* and the quotient category R' are locally Schurian too. The following lemma explains
how to obtain an explicit coalgebra realization of R' starting from one for R.

Lemma 2.25. Suppose that R = comody-C for a coalgebra C. Let C* be the largest
right coideal of C belonging to RY. Then C* is a subcoalgebra of C. Moreover, R*
consists of all V € comodg-C' such that the image of the structure map n:V -V QC
is contained in V ® CY, i.e., we have that R' = comody-C*.

Proof. For a right comodule V' with structure map n : V. — V ® C, we can consider
V ® C as a right comodule with structure map id ®5. The coassociative and counit
axioms imply that 7 is an injective homomorphism of right comodules. We deduce that
all irreducible subquotients of V belong to R* if and only if n(V) € V ® C*. Applying
this with V' = C' shows that C' is a subcoalgebra. Applying it to ¥V € R shows that
VeR'if and only if n(V) € V@ C'. O
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For locally finite Abelian R, the quotient category R can also be realized explicitly as
a category of comodules: if R = comodg-C then R' = comod-eCe for an idempotent
e € C* and the quotient functor j becomes the idempotent truncation functor defined by
e. This is reviewed in detail in [Nav]. It follows that the extension j : Ind(R) — Ind(R")
of j to the ind-completions always has a right adjoint j, with jojs = Idpq(rt). However,
this adjoint does not necessarily take objects of R to objects of R, so that the original
functor j : R — R need not have a right adjoint itself. For left adjoints, the situation is
even a bit worse since one should really pass to the pro-completions. For our purposes,
though, it will always be sufficient to impose the stronger condition from (i) of the
following lemma; this ensures that both adjoints exist without any need to pass to ind-
or pro-completions.

Lemma 2.26. Suppose that R is locally finite Abelian, and let B' € B andj : R - R'
be as above. Then the following are equivalent:
(i) L(b) has an injective hull 1(b) and a projective cover P(b) in R for all be B';
(i) R is essentially finite Abelian and the quotient functor j : R — R has a left
adjoint ji and a right adjoint jy:
T

N

J

___—

Jt

R RIT.

When these properties hold, there are isomorphisms j o j, = Idrt = j o ji just like in
Lemma 2.24.

Proof. (1)=>(ii): Let jx : Ind(R") — Ind(R) be the right adjoint of j : Ind(R) — Ind(R")
as in [Nav]. For b€ BT, let I'(b) be an injective hull of L'(b) in Ind(R"). By adjunction
properties, j,I'(b) is an injective hull of L(b) in Ind(R), hence, j,I'(b) =~ I(b) which
has finite length by assumption. From jojs = Idpqrt), we deduce that I'(b) = jI(b) is
of finite length too, so I (b) € R" and R has enough injectives. We have shown that j,
takes I'(b) to I(b) € R, hence using left exactness we deduce that it takes any object of
finite length to an object of finite length. This means that the restriction j, : R" — R
is well-defined and gives a right adjoint to j : R — R'. The dual argument shows that
R has enough projectives and that j : R — R' has a left adjoint j : R" — R. Finally
we deduce that R' is essentially finite Abelian due to Corollary 2.20.

(i))=>(i): We can take I(b) := j,I"(b) and P(b) := 5 P"(b) where I'(b) is an injective
hull and P'(b) is a projective cover of LT(b) in R'. O

In the locally finite Abelian or Schurian cases, we may use the same notations %, i*, '

for the natural extensions of these functors to the ind-completions Ind(R),Ind(R") or
Ind(R.),Ind(R}), respectively. Similarly, we will use the notations j, jx, ji for the ex-
tensions of these to the appropriate ind-completions, assuming the equivalent conditions
from Lemma 2.26 hold in the locally finite Abelian case.

Lemma 2.27. Continuing with the above setup, assume either that R is finite Abelian,
essentially finite Abelian, or Schurian, or that R is locally finite Abelian and the equiv-
alent conditions from Lemma 2.26 hold. For b € B', let P(b) (resp., I(b)) and P'(b)
(resp., I'(b)) be a projective cover (resp., injective hull) of L(b) in R and a projective
cover (resp., injective hull) of L' (b) in R'. Then we have that
JP(O) = P(b),  GI(b)=I'(b),  HP'(b)=POb), il (b) = I(b).

Moreover, the adjunction gives isomorphisms

Homg (P(b),j+V) = Homg: (P'(b),V), Homg(7iV, (b)) = Homp:(V,I'(b)) (2.27)

for Ve R, hence, [V : LT(b)] = [§xV : L(b)] = [V : L(b)] for all b e BT.
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Proof. Take b € B'. By adjunction properties, jiP'(b) is a projective cover of L(b) in R,
so it is isomorphic to P(b). Hence, j(71 P (b)) =~ P'(b) =~ jP(b); similarly for injectives.
The remaining assertions follow. 0

3. GENERALIZATIONS OF HIGHEST WEIGHT CATEGORIES

In this section, we define the various generalizations of highest weight categories
and derive some of their fundamental properties in the four settings of finite Abelian,
essentially finite Abelian, Schurian, and locally finite Abelian categories. The important
definitions in the section are Definitions 3.7, 3.34 and 3.50. The reader new to these
ideas may find it helpful to assume initially that all of the strata are simple in the sense
of Lemma 3.4, when the definitions specialize to the notions of finite, essentially finite,
upper finite and lower finite highest weight categories, respectively.

3.1. Stratifications and the associated standard and costandard objects. Let
(A, <) be a poset. It is interval finite (vesp., upper finite, resp., lower finite) if the
interval [\, ] :={ve A|X<v < p} (resp., [\, 0) :={veA| X< v}, resp., (—o0, u] :=
{veA|v < u}) is finite for all \,u € A. A lower set (resp., upper set) means a subset
A* (resp., AT) such that y < A€ A = pe A' (vesp., u > Ae AT = pe A').

A stratification function p : B — A is a function from a set B to a poset (A, <) such
that all of the fibers By := p~!(\) are finite. We often use other obvious notations like
Bg)\ = U/LSA BN,B<)\ = U“<A Bl“ etc..

A stratification of an Abelian category R is a quintuple (B, L, p, A, <) consisting of a
set B, a function L labelling a full set {L(b) | b € B} of pairwise inequivalent irreducible
objects in R, and a stratification function p : B — A for the poset (A, <). In the case
that p is a bijection, one can use it to identify B with A, writing L()\) instead of L(b);
similarly for all of the other families of objects indexed by the set B to be introduced
shortly.

Given a stratification (B, L, p, A, <) of R and X € A, let R¢y and R. be the Serre
subcategories of R associated to the subsets B¢y and B of B, respectively. We denote
the inclusion functors by

Z‘g)\:Rg)\HR, Z‘<)\2R<)\*>R, (31)

The left and right adjoints of i<y are i*, and i', as in Lemma 2.23. We say that the
<A <A
stratification is
(F) a finite stratification if R is a finite Abelian category (so that B is a finite set);
(EF) an essentially finite stratification if R is an essentially finite Abelian category
and the poset A is interval finite;
(LF) a lower finite stratification if R is a locally finite Abelian category and the poset
A is lower finite;
UF) an upper finite stratification if R is a Schurian category and the poset A is upper
( pp gory p PP
finite.

In these four cases, the induced stratifications of the subcategories Ry and R<) are
automatically of the same type.

By an admissible stratification, we mean a stratification of one of the above four types
such that the following axiom is satisfied when in type (LF) (it holds automatically for
the other types):

(A) The irreducible object L(b) has both a projective cover and an injective hull in
Rgp(b) for all b e B.

This is a significant restriction on the sorts of lower finite Abelian categories that can be

considered; for example, the category Rep(G,) of rational representations of the additive

group does not have this property. Using Lemma 2.21 together with Lemma 2.26 in the
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lower finite case, we deduce for A € A that the quotient category Ry := R<r/R<y is
finite Abelian in all cases. Let

i Ren — Ra (3.2)
be the quotient functor. The objects
{LA(b) := j*L(b) | be By} (3.3)

give a full set of pairwise inequivalent irreducible objects in R ). Moreover, we are in a
recollement situation as in Lemmas 2.23, 2.24 and 2.26:

i i
R =, R<x LN Rx. (3.4)

Let Py\(b) be a projective cover and I,(b) be an injective hull of Ly(b) in R). By
Lemma 2.27, these are isomorphic to the images of the projective cover and injective
hull of L(b) in Ry, respectively. Finally, define standard, costandard, proper standard

and proper costandard objects A(b), V(b), A(b) and V(b) according to (1.1).

Lemma 3.1. Suppose we are given an admissible stratification (B,L,p,A;<) of R.
Take b e B and set A := p(b).

(1) The standard object A(b) is a projective cover of L(b) in R<x. The proper
standard object A(b) is the largest quotient of A(b) such that all composition
factors of rad A(b) are of the form L(c) for c€ B.,.

(2) The costandard object V(b) is an injective hull of L(b) in R<x. The proper
costandard object V (b) is the largest subobject of V(b) such that all composition
factors of V(b)/soc V(b) are of the form L(c) for c € B-y.

Proof. We just check (1) since (2) is similar. We have that A(b) is a projective cover of
L(b) in Ry by Lemma 2.27. It remains to prove the statement about A(b). Assume
[A(b) : L(c)] # 0. Since A(b) € R<x, we have p(c) < p(b). If p(c) = p(b) then
[A() : L(e)] = [1*A(b) : j*L(0)] = [La(D) = La(e)] = bp.c-

Thus, A(b) is such a quotient of A(b). To show that it is the largest such quotient, it
suffices to show that the kernel K of A(b) — A(b) is finitely generated with head that
only involves irreducibles L(c) with p(c) = p(b). To see this, apply the right exact functor
Jji* to a short exact sequence 0 — K — Py(b) — Lx(b) — 0 to get an epimorphism
j(\f( — K. Then observe that j.)‘]? is finitely generated as j* is a left adjoint, and
its head only involves irreducibles L(c) with p(c) = p(b). The latter assertion follows
because HomR(j,’\IA(,L(c)) ~ Homp, (K, L(c)) for c € B<,. O

Corollary 3.2. We have that dim Homg (A(b), V(c)) = dim Homg (A(b), V(c)) = ..
for all b,c € B.

Lemma 3.3. Suppose that we are given an admissible stratification (B, L,p, A, <) of
R, and in addition that R possesses a contravariant autoequivalence 7 which preserves
isomorphism classes of irreducibles. Then we have that P(b)Y = I(b), I(b)" = P(b),
AD)Y = V(), A(b)Y = V(b), V(b)Y = A(b) and V(b)Y = A(b) for all b e B.

Proof. Since L(b)Y = L(b), we have that I(b)¥ = P(b) and P(b)¥ = I(b). Then the

statements about A(b)Y,A(b)¥, V(b)Y and V(b)" follow using Lemma 3.1. O

For A € A, we say that the stratum R is simple if it is equivalent to the category
Vecyq of finite-dimensional vector spaces.

Lemma 3.4. The following are equivalent:
(i) all of the strata are simple;
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(ii) p is a bijection and A(N) = A(N) for all X € A;
(i4) p is a bijection and Homg (A(N), V(X)) is one-dimensional;
(iv) p is a bijection and V(A) = V() for all A € A.

Proof. (1)=(ii): Take A € A. As the stratum R is simple, By = {bx} is a singleton and

Py (by) = Lx(by). We deduce that p is a bijection and A(by) = A(by).
(ii)=-(iii): This follows because V() is the injective hull of L(A) in Rgx.
(iii)=>(iv): This follows because A()) is the projective cover of L()) in R¢y.

(iv)=(i): Take A € A. Then Ry has just one irreducible object (up to isomorphism),
namely, j2V()). Since this equals j2V()), it is also projective. Hence, R is simple. [

Given a sign function € : A — {£}, we introduce the e-standard and e-costandard
objects A.(b) and V.(b) as in (1.2). Corollary 3.2 implies that

dim Homg (A (b), Ve(c)) = 0pc (3.5)

for b,c € B. A A.-flag of V € R means a finite filtration 0 = Vy < Vi <--- <V, =V
with sections V,,,/Vn—1 = A (by,) for b, € B. Similarly, we define V.-flags. We denote
the exact subcategories of R consisting of all objects with a A.-flag or a V.-flag by
A.(R) and V.(R), respectively.

A A-flag (vesp., V-flag) is a A.-flag (resp., V.-flag) in the special case that ¢ = +.
A A-flag (vesp., V-flag) is a A.-flag (resp., V.-flag) in the special case that ¢ = —. We
denote the exact subcategories of R consisting of all objects with a A-flag, a A-flag, a
V-flag or a V-flag by A(R), A(R), V(R) and V(R), respectively.

3.2. Finite and essentially finite e-stratified categories. Throughout this sub-
section, R is a finite or essentially finite Abelian category equipped with a finite or
essentially finite stratification (B, L, p, A, <). Also € : A — {+} denotes a sign function.
Let P(b) and I(b) be a projective cover and an injective hull of L(b), respectively. We
also need the objects from (1.1)—(1.2). Consider the following two properties:

(P/ZE) For each b € B, there exists a projective object P, admitting a A.-flag with
A, (b) at the top and other sections A (c) for ¢ € B with p(c) = p(b).
(ﬁg) For each b € B, there exists an injective object I;, admitting a V.-flag with V. (b)
at the bottom and other sections V.(c) for ¢ € B with p(c) = p(b).
It is trivial to see that the property (PA.) formulated in the introduction implies (ISZE),
and similarly (I'V.) implies (IV.). The seemingly weaker properties (ﬁa)f(fv c) are
often easier to check in concrete examples. The essence of the following fundamental
theorem appeared originally in [ADL], extending earlier work of Dlab [Dlal].

Theorem 3.5. The four properties (FZE), (ﬁs), (PA.) and (IV.) are equivalent.
When these properties hold, the standardization functor j!)‘ is exact whenever e(\) = —,
and the costandardization functor jy is ezact whenever e(\) = +.

Remark 3.6. When all strata are simple, the properties (ﬁs)f(ﬁ <) may be written
more succinctly as the following:
(ISZ) For each A € A, there exists a projective object Py admitting a A-flag with A(\)
at the top and other sections of the form A(u) for p e A with p > .
(ﬁ) For each A € A, there exists an injective object I admitting a V-flag with V(\)
at the bottom and other sections of the form V(u) for p € A with p = A.
Theorem 3.5 shows that these are equivalent to the properties (PA)—(IV) from the
introduction, as was explained originally by Cline, Parshall and Scott in [CPS1].

We postpone the proof of Theorem 3.5 until a little later in the the subsection. It
is important because it justifies the next key definition (&S) and its variations (FS),
(eHW), (FHW) and (HW).
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Definition 3.7. Let R be an Abelian category equipped with a finite (resp., essentially

finite) stratification (B, L, p, A, <).

(eS) We say that R is a finite (resp., essentially finite) e-stratified category if one of
the equivalent properties (ﬁs)f(ﬁ ¢) holds for a given choice of sign function
e: A — {£}.

(FS) We say R is a finite (resp., essentially finite) fully stratified category if one of
these properties holds for all choices of sign function € : A — {#£}.

(eHW) We say R is a finite (resp., essentially finite) e-highest weight category if the
stratification function p is a bijection, i.e., each stratum has a unique irreducible
object (up to isomorphism), and one of the equivalent properties (ﬁs)f(ﬁ )
holds for a given choice of sign function e : A — {+}.

(FHW) We say R is a finite (resp., essentially finite) fibered highest weight category if
the stratification function p is a bijection and one of these properties holds for
all choices of sign function.

(HW) We say R is a finite (resp., essentially finite) highest weight category if all of
the strata are simple (cf. Lemma 3.4) and one of the equivalent properties
(PA)~(IV) holds.

Remark 3.8. The language “fibered highest weight” in Definition 3.7 is a departure
from the existing literature, where such categories are usually referred to as properly
stratified categories; this terminology goes back to the work of Dlab [Dla2]. A recent
exposition which takes a more traditional viewpoint than here can be found in [CouZ].
In particular, in [CouZ, Def. 2.7.4], one finds five types of finite-dimensional algebra A
defined in terms of properties of the category A-modgq, namely, standardly stratified
algebras, exactly standardly stratified algebras, strongly stratified algebras, properly
stratified algebras, and quasi-hereditary algebras. In our preferred language, these are
+-stratified algebras, stratified algebras, +-quasi-hereditary algebras, properly stratified
algebras, and quasi-hereditary algebras, respectively, as in Table 1 from the introduction.
For further reference to the original literature, [CouZ, §A.2] is helpful.

We can view {L(b) | b € B} equivalently as a full set of pairwise inequivalent irre-
ducible objects in R°P. The stratification of R is also one of R°P. The indecomposable
projectives and injectives in R°P are I(b) and P(b), while the (—¢)-standard and (—e¢)-
costandard objects in R°P are V.(b) and A.(b), respectively. So we can reinterpret
Theorem 3.5 as the following.

Theorem 3.9. R is e-stratified, fully stratified, e-highest weight, fibered highest weight
or highest weight if and only if R°P is (—e)-stratified, fully stratified, (—e)-highest weight,
fibered highest weight or highest weight, respectively.

Now we must prepare for the proof Theorem 3.5. The main step in the argument
will be provided by the homological criterion for V.-flags from the next Theorem 3.11.
In turn, the proof of this criterion reduces to the following lemma which treats a key
special case. The reader wanting to work fully through the proofs should look also at
this point at the lemmas in §3.4 below.

Lemma 3.10. Assume that R is an Abelian category equipped with a finite or essentially
finite stratification (B, L, p, A, <) and sign function €, such that property (]SZE) holds.
Let X be a mazimal element of A with respect to the ordering <, and V € R be an object
satisfying the following properties:

(i) Exty (A(b),V) =0 for all be B;

(i) soc V = L(by)®---@® L(by,) forby,...,b, € By.
Then V belongs to R<y (so that it makes sense to apply the functor j* to it), and

- {ji(jAV) ife(N) =+,

V)@ dV(b,) ife(N)=—. (3.6)
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Moreover, in the case £(\) = +, the functor ji is exact. Hence, in both cases, we have
that V e V.(R).

Proof (assuming lemmas from §3.4 below). We first prove (3.6) in case e(A) = —. Let
W :=V(by)®---®V(b,). By the maximality of A and Lemma 3.46, this is an injective
hull of soc V. So there is a short exact sequence 0 -V — W — W/V — 0. For any
a € B, we apply Homg (A (a),?) and use property (i) to get a short exact sequence

0 — Homg (A.(a),V) 4, Hompg (A(a), W) — Homg (Ac(a), W/V) — 0. (3.7)

If p(a) # A then Homg(Ac(a), W) = 0 as none of the composition factors of A.(a)
are constituents of soc W. If p(a) = A then A.(a) = A(a) and any homomorphism
A(a) — W must factor through the unique irreducible quotient L(a) of A(a). So its
image is contained in soc W € V| showing that f is an isomorphism. These arguments
show that Homg (A.(a), W/V) = 0 for all a € B. We deduce that soc (W/V) = 0,
hence, W/V = 0, which is what we needed.

Now consider (3.6) when £(\) = +. By Lemma 3.46 again, the injective hull of V' is
V(b1)®--@®V(by), which is an object of R<). Hence, V € R<). The unit of adjunction
gives us a morphism g : V. — W := j}(j*V). Since g becomes an isomorphism when we
apply j*, its kernel belongs to R . In view of property (2), we deduce that ker g = 0, so
g is a monomorphism. Hence, we can identify V' with a subobject of W. To show that g
is an epimorphism as well, we apply Homg (A.(a),?) to0 >V - W — W/V — 0 to get
the short exact sequence (3.7). By adjunction, the middle morphism space is isomorphic
to Homp, (j*Ac(a),j*V), which is zero if p(a) < A. If p(a) = X then A (a) = A(a) is
the projective cover of L(a) in R by Lemma 3.46, and j*A.(a) is the projective cover
of Ly(a) in Ry. We deduce that both the first and second morphism spaces in (3.7)
are of the same dimension [V : L(a)] = [V : Lx(a)], so f must be an isomorphism.
Therefore Homg (A (a), W/V) =0 for all a € B, hence, V = W and (3.6) is proved.

To complete the proof, we must show that j3 is exact when e()\) = +. For this, we use
induction on composition length to show that j3 is exact on any short exact sequence
0> K —> X —> @ — 0in Ry. For the induction step, suppose we are given such an
exact sequence with K,Q # 0. By induction, j2 K and j}Q both have filtrations with
sections V(b) for b € By. Hence, by Lemma 3.48, we have that Ext’ (A (b),j2K) =
Ext (A-(b),72Q) = 0 for all n > 1 and b € B. As it is a right adjoint, j} is left exact,
so there is an exact sequence

0— j2K — j2X — j2Q. (3.8)
Let Y := j2 X/j2 K, so that there is a short exact sequence
00— jpK — jaX — Y — 0. (3.9)

To complete the argument, it suffices to show that ¥ =~ j2Q. To establish this, we show
that Y satisfies both of the properties (i) and (ii); then, by the previous paragraph and
exactness of j*, we get that Y =~ j2(j*Y) = j}(X/K) = j}Q, and we are done. To see
that Y satisfies (i), we apply Homg (A (b),?) to (3.9) to get an exact sequence

Extr (A:(b), j2 X) — Extr (A (0),Y) — Ext (A (0), j3 K).

The first Ext' is zero by Lemma 3.47. Since we already know that the Ext? term is
zero, Extl (A.(b),Y) = 0. To see that Y satisfies (i), note comparing (3.8)~(3.9) that

Y — j2Q, and soc jQ is of the desired form by what we know about its V.-flag. [

Theorem 3.11 (Homological criterion for A.-flags). Assume that R is an Abelian
category equipped with a finite or essentially finite stratification (B, L, p, A, <) and sign
function €, such that property (]SZE) holds. For V € R, the following properties are
equivalent:

(i) V e V(R);

(ii) Exty (AL (b),V) =0 for all be B;
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(11i) Exty(As(b),V) =0 for allbe B and n > 1.
If these properties hold, the multiplicity (V : V(b)) of V<(b) as a section of a V-flag
of V' is well-defined independent of the choice of flag, as it equals dim Homg (A (b), V).

Proof (assuming lemmas from §3.4 below). (iii)=>(ii): Trivial.
(i)=>(iii) and the final assertion of the lemma: These follow directly from Lemma 3.48.

(if)=>(i): Assume that V satisfies (ii). We prove that it has a V.-flag by induction on

d(V) := ). dimHomg (A.(b),V) € N.
beB

The base case when d(V) = 0 is trivial as we have then that V' = 0. For the induction
step, let A € A be minimal such that Homg (A-(b),V) # 0 for some b € B. The
Serre subcategory R« with the induced (finite or essentially finite) stratification also
satisfies (}/DZE) thanks to Lemma 3.45(2). Let W :=iL,V. Because W is a subobject
of V, we have by the minimality of A\ that Homg (A (b), W) # 0 only if b € B,. Hence,
soc W =~ L(by)®---@® L(by,) for by,...,b, € By. Thus, W satisfies the hypothesis (ii)
from Lemma 3.10 (with V' and R there replaced by W and R,).

Now let @ := V/W. Take any b € B and apply Homg (A.(b),?) to the short exact
sequence 0 > W — V — @ — 0 to get the exact sequence

0 — Homg (Ac(b), W) — Homg (A (b), V) — Homp (Ac(b), Q)
— Exty (A (b), W) — 0 — Ext (AL (b), Q) — Ext%: (AL (b), W).

By the definition of W, the socle of @ has no constituent L(b) for b € B¢y. So, for
b € B¢y the space Homg (AL (b),Q) is zero, and we get that Ext%@(Ae(b),W) =
Extz, (A-(b), W) = 0 for all such b. This verifies hypothesis (i) from Lemma 3.10. So
now we can appeal to the lemma to deduce that W e V.(R«»). Hence, W € V.(R).
In view of Lemma 3.48, we get that Ext’z (Ac(b), W) =0 for all n > 1 and b € B. So,
by the above exact sequence again, we get that Exty (A.(b),Q) = 0 for all b € B, and
moreover d(Q) = d(V) —d(W) < d(V). Finally we appeal to the induction hypothesis
to deduce that @ € A.(R). Since we already know that W e A.(R), this shows that
VeA(R). O

Corollary 3.12. In the setup of Theorem 3.11, multiplicities in a V-flag of I(b) satisfy
(I(b) : Ve(c)) = [Ac(c) : L(b)].

Corollary 3.13. For R as in Theorem 3.11, let0 - U — V — W — 0 be a short exact
sequence. If U and V' have V. -flags then so does W.

Proof of Theorem 3.5. Suppose that R satisfies (ﬁa) Since V' = I(b) is injective, it
satisfies the hypothesis of Theorem 3.11(ii). Hence, by that theorem, I(b) has a V.-flag
and the multiplicity (I(b) : V(c)) of Vc(c) as a section of any such flag is given by
(I(b) : Vc(c)) = dimHomg (A.(c), I(b)) = [A(c) : L(b)].

This is zero unless p(b) < p(c). Also the bottom section must be V. (b) since I(b) has
socle L(b). Thus, we have verified that R satisfies (IV.). Moreover, Lemma 3.10 shows
that 52 is exact whenever e(\) = +, giving half of final assertion made in the statement
of the theorem we are trying to prove.

Repeating the arguments in the previous paragraph but with R replaced by R°P
and € replaced with —e show that (ﬁ <) implies (PA.) and that j{ is exact whenever
g(A) = —. Since (PA,) = (IGZE) and (IV.) = (ﬁe), this completes the proof. O

So now Theorem 3.5 is proved and Definition 3.7 is in place. In the remainder of the
subsection, we are going to develop some further fundamental properties of these sorts
of category. We start off in the most general setup with R being a finite or essentially



SEMI-INFINITE HIGHEST WEIGHT CATEGORIES 29

finite e-stratified category. Again some of the proofs that follow invoke parts of the
lemmas from §3.4. From Lemma 3.44 and the dual statement, deduce that

EXt%Z(AE(b)a A5<C)) = EXt%Z(VE(C)a Ve(b)) =0 (310)

for b,c € B with p(b) € p(c). By “dual statement” here, we mean that one takes
Lemma 3.44 with R replaced by R°P and € by —e, which we may do due to Theorem 3.9
and Lemma 2.12, then applies the contravariant isomorphism between R and R°P. In
a similar way, the following theorem follows immediately as it is the dual statement to
Theorem 3.11.

Theorem 3.14 (Homological criterion for V. -flags). Assume that R is a finite or es-
sentially finite e-stratified category. For V € R, the following properties are equivalent:
(i) V € Ac(R);

(ii) Exty(V,V.(b)) =0 for all be B;

(11i) Extm(V, V(b)) =0 for allbe B and n > 1.
Assuming that these properties hold, the multiplicity (V : A.(b)) of A(b) as a sec-
tion of a Ac-flag of V' is well-defined independent of the choice of flag, as it equals
dim Homg (V, V< (b)).

Corollary 3.15. (P(b) : Ac(c)) = [V<(c) : L(D)].

Corollary 3.16. Let 0 > U — V — W — 0 be a short exact sequence in a finite or
essentially finite e-stratified category. If V and W have A.-flags then so does U.

The following results about truncation to lower and upper sets are extremely useful;
some aspects of them were already used in the proof of Theorem 3.11.

Theorem 3.17 (Truncation to lower sets). Assume that R is a finite or essentially
finite e-stratified category. Suppose that A is a lower set in A. Let B* := p~1(AY) and
i:RY — R be the corresponding Serre subcategory of R with the induced stratification.
Then RY is itself a finite or essentially finite e-stratified category according to whether
A is finite or infinite. Moreover:
(1) The distinguished objects in R* satisfy L*(b) =~ L(b), P*(b) = i*P(b), I*(b) =
i'I(b), At(b) = A(b),At(b) = A(b), VI (b) = V(b) and V*(b) = V(b) for be B*.
(2) i* sends short exact sequences of objects in Ac(R) to short exact sequences of
objects in A(RY), with i* A(b) = A*(b) and i*A(b) = A*(b) for b € BY and
i*A(b) = i*A(b) = 0 for b¢ B'.
(3) Exty(V,iW) =~ Exty, (i*V,W) for Ve A (R), W e R" and all n = 0.
(4) i* sends short exact sequences of objects in V.(R) to short exact sequences of
objects in V.(R'), with i*'V(b) = V*(b) and i'V(b) = V(b) for b € B and
i'V(b) =i'V(b) =0 for b ¢ B*.
(5) Extlh (iV,W) = Extl, (V,i'W) for Ve R*, W € V.(R) and alln > 0.
(6) Exty (iV,iW) = Exty, (V,W) for V,W e R* and n > 0.

Proof. Apart from (6), this follows by Lemma 3.45 and its dual. To prove (6), by the
same argument as used to prove Lemma 3.45(4), it suffices to show that (L, i*)V = 0 for
V e R'and n = 1. Since any such V has finite length it suffices to consider an irreducible
object in RY, i.e., we must show that (IL,,i*)L(b) = 0 for b € B* and n > 1. Take a short
exact sequence 0 > K — A_(b) — L(b) — 0 and apply ¢* and Lemma 3.45(3) to get

0— (Ly*)L(b) — i*K — i*A (b)) —> i*L(b) — 0.
But K,A.(b) and L(b) all lie in R* so i* is the identity on them. We deduce that
(Lyi*)L(b) = 0. Degree shifting easily gives the result for n > 1. O

Theorem 3.18 (Truncation to upper sets). Assume that R is a finite or essentially
finite e-stratified category. Suppose that AV is an upper set in A. Let B" := p~1(AT)
and j : R — R" be the corresponding Serre quotient category of R with the induced
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stratification. Then R is itself a finite or essentially finite e-stratified category according
to whether A1 is finite or infinite. Moreover:

(1) For b e B', the distinguished objects L'(b), P'(b), I'(b), AT(b), AT(b), V'(b)
and V'(b) in R' are isomorphic to the images under j of the corresponding
objects of R.

(2) We have that jL(b) = jA(b) = jA(b) = jV(b) = j

(3) Extm (V,jx W) = Extg: (jV,W) for Ve R,W € V.(R'") and all n = 0.

(4) j« sends short exact sequences of objects in V(R ) to short exact sequences of
objects in V(R), with jV'(b) = V(b), j<V'(b) = V(b) and j.I'(b) =~ I(b) for
be BT.

(5) Extg (7 V,W) = Ext: (V,jW) for Ve A, (R"), W e R and alln >

(6) ji sends short exact sequences of objects in A(RT) to short exact sequences of
objects in A (R), with HAT(b) = A(b), HAT(b) = A(b) and 5P (b) = P(b) for
be B.

Proof. Apart from (4) and (6), this follows from Lemma 3.49 and its dual. For (4) and
(6), it suffices to prove (4), since (6) is the equivalent dual statement. The descriptions
of 7.V (b), 7.V (b) and j,I"(b), follow from Lemma 3.49(1). It remains to prove the
exactness. We can actually show slightly more, namely, that (R"j,)V = 0 for V €
V:(R") and n > 1. Take V € V_.(R"). Consider a short exact sequence 0 >V — I —
Q@ — 0in R" with I injective. Apply the left exact functor j4 and consider the resulting
long exact sequence:

V() =0ifb¢ B
T

— M

00— juV — ju — juQ — (le*)V — 0.
As V has a V.-flag, we can use (3) to see that Homg (A.(b), j«V) = Homg: (jA:(b),V)
and Extg (AL (b), jxV) = Exty; (jAL(b), V) for every b e B. Hence, Theorem 3.11, j,V
has a V.-flag with
(V: Vb)) ifbeBT,

(j+V : V(b)) = dimHomg (jAL(b), V) = { 0 otherwise.

Both I and @ have V_-flags too, so we get similar statements for j.I and j.@Q. Since
(I:VIb) = (V:VLb))+(Q: VL)) by the exactness of the original sequence, we
deduce that 0 — 74V — j«I — j.Q — 0 is exact. Hence, (R'j,)V = 0. This proves the
result for n = 1. The result for n > 1 follows by a degree shifting argument. O

Corollary 3.19. Let notation be as in Theorem 3.18 and set B* := B\B'.

(1) For V € V.(R), there is a short exvact sequence 0 — K — V 25 j,(jV) — 0
where v comes from the unit of adjunction, j(jV) has a Ve-flag with sections
V.(b) for be B', and K has a V.-flag with sections V.(c) for c e BY.

(2) For V e A.(R), there is a short exact sequence 0 — 5 (jV) SV 5Q -0
where § comes from the counit of adjunction, 5(jV) has a A.-flag with sections
AL (b) for be BT and Q has a A.-flag with sections A.(c) for c € BY.

Proof. We prove only (1), since (2) is just the dual statement. Using (3.10), we can
order the V .-flag of V' to get a short exact sequence 0 - K — V — @ — 0 such that K
has a V.-flag with sections V. (b) for b € B and Q has a V.-flag with sections V. (c) for
c € BT, For each b € BT, the unit of adjunction V¢(b) — j.(jVe(b)) is an isomorphism;
this follows from Theorem 3.18(4) using the observation that it becomes an isomorphism
on applying j. Since j4 sends short exact sequences of objects in V.(R") to short exact
sequences, we deduce that the the unit of adjunction @ — j.(j@) is an isomorphism
too. It remains to note that jV = j@Q, hence, j.(jV) = j«(7Q). O

We proceed to discuss some of the additional features which show up when in one of
the more refined settings (FS), (¢HW), (FHW) and (HW). By Theorem 3.9, R is a fully
stratified category (resp., fibered highest weight category) if and only if so is R°P. The
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following lemma shows that fully stratified categories in our terminology are the same
as the “standardly stratified categories” defined by Losev and Webster in [LW, §2].

Lemma 3.20. Given a stratification (B, L, p, A, <) of R, the following are equivalent:
(i) R is a fully stratified category;
(i) R is e-stratified for every choice of sign function e : A — {£};
(i1i) R is e-stratified and (—e)-stratified for some choice of sign functione : A — {£};
(iv) R is e-stratified for some € : A — {£} and all of its standardization and costan-
dardization functors are exact;
(v) R is a +-stratified category and each A(b) has a A-flag with sections A(c) for c
with p(e) = p(b);
(vi) R is a —-stratified category and each V(b) has a V-flag with sections V(c) for c
with p(c) = p(b).
Proof. (1)=>(ii)=(iii): Obvious.
(iii)=>(iv): Take € as in (iii) so that R is e-stratified. The standardization functor j{* is
exact when (\) = — by the last part of Theorem 3.5. Also R is (—¢)-stratified, so the
same result gives that j{* is exact when e(\) = +. Similarly, all of the costandardization
functors are exact too.

(iv)=(v): Applying the exact standardization functor j{* to a composition series of Py (b),
we deduce that A(b) has a A-flag with sections A(c) for ¢ with p(c) = p(b). Similarly,
applying j2, we get that V(b) has a V-flag with sections V(c) for ¢ with p(c) = p(b).

To show that R is +-stratified, we check that each I(b) has a V-flag with sections V(c)
for ¢ with p(c) = p(b). This is immediate if (b) = + since we are assuming that R is
e-stratified. If e(b) = — then I(b) has a V-flag with sections V(c) for ¢ with p(c) = p(b).
Hence, by the previous paragraph, it also has the required sort of V-flag.

(v)=(i): We just need to show that R is —-stratified. We know that each P(b) has a
A-flag with sections A(c) for ¢ with p(c) = p(b). Now use the given A-flags of each A(c)
to see that each P(b) also has the appropriate sort of A-flag.

(v)<>(vi): This follows from the above using the observation made earlier that R is fully
stratified if and only if R°P is fully stratified. O

Corollary 3.21. If R is an e-stratified category with a contravariant autoequivalence
which preserves isomorphism classes of irreducible objects, then R is fully stratified.
Moreover, if R is an e-highest weight category with a contravariant autoequivalence
preserving isomorphism classes of irreducible objects, then R is fibered highest weight.

Proof. Since R is e-stratified, R°P is (—¢)-stratified. Using Lemma 3.3, we deduce that
R is (—e)-stratified. This verifies Lemma 3.20(iii) and the first claim follows. The second
is then obvious. g

Lemma 3.22. Suppose that R is a finite or essentially finite fully stratified category.
For b,ce B and n = 0, we have that

Extt (A(5). 9(0)) = { o R LOW L) A

where X := p(b) and p := p(c).

Proof. Choose € so that (A\) = —, hence, A(b) = A_(b). By Lemma 3.20, R is e-
stratified, so we can apply Theorem 3.17(4) with R* = R, to deduce that

Ext (A(b), V(c)) = Extx_, (1Z,A(), V().
This is zero unless A < p. If A < p it is Extyp_ (A(b),V(c)). Now we change € so that

e(u) = +, hence, V(c) = Vc(c). Then by Theorem 3.18(3) with R = R<, and R" =R,

we get that Exty _ (A(D), V(e)) = Exty,, (j*A(b), L(c)). This is zero unless A = p, when
j*A(b) = L(b) and we are done. O
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The next results are concerned with global dimension.

Lemma 3.23. Let R be a finite e-stratified category.

(1) ALV € A.(R) are of finite projective dimension if and only if all negative strata®
have finite global dimension.

(2) AV € V.(R) are of finite injective dimension if and only if all positive strata
have finite global dimension.

Proof. As the two parts are dual statements, it suffices to prove (1). Replacing A by the
finite set p(B) if necessary, we may assume that |A| < oo.

First assume that all negative strata have finite global dimension. By [Wei, Ex. 4.1.2],
it suffices to show that pd A.(b) < oo for each b € B. We proceed by downwards induction
on the partial order on the finite poset A. Take any A € A and consider A, (b) for b € By,
assuming that pd A.(c¢) < o for each ¢ € Boy. We first observe that there is a short
exact sequence 0 — @ — P(b) — A(b) — 0 such that @ has a A.-flag with sections
A.(c) for ¢ € B=y. If €(A) = + this follows immediately from (PA.); if e(\) = — one
also needs to use (3.10) to see that a A.-flag in P(b) can be ordered so that the sections
A(c) with ¢ € By, appear above the sections with ¢ € B~ . By the induction hypothesis,
@ has finite projective dimension, hence, so does A(b). This verifies the induction step
in the case that e(\) = +. Instead, suppose that e(\) = —, i.e., A (b) = A(b). Let
0—> P, »> -+ > Py — Lyx(b) — 0 be a finite projective resolution of L,(b) in the
stratum Ry. Applying j{, which is exact thanks to Theorem 3.5, we obtain an exact
sequence 0 »> V,, —» --- > Vy — A(b) — 0 such that each V,,, is a direct sum of standard
objects A(c) for ¢ € By. The result already established plus [Wei, Ex. 4.1.3] implies that
pdV,, < o for each m. Arguing like in the proof of [Wei, Th. 4.3.1], we deduce that
pd A(b) < o0 too.

Conversely, suppose that pd A.(b) < oo for all b € B. Take A € A with ¢(\) = —.
To show that R, has finite global dimension, it suffices to show that there is some
d(X) = 0 such that Exty (Lx(b),W) = 0 for all n > d(\),b € By and W € Ry. By
Theorems 3.18(3) and 3.17(3), we have that

Bxtip, (La(b), W) = Bxti_ (Ac(b), 53 W) = Extig (A (0), i<a (2 W)
So we can take d(\) = max{pd A.(b) | b€ By}. O

The case when all strata are positive (respectively negative) will be of great impor-
tance.

Corollary 3.24. If R is a finite +-stratified (resp., —-stratified) category then all V €
A(R) (resp., V € V(R)) are of finite projective (resp., injective) dimension.

Corollary 3.25. Suppose that R is a finite e-stratified category. If R is of finite global
dimension then all of its strata are of finite global dimension too.

Proof. Lemma 3.23(1) implies that all negative strata have finite global dimension, and
Lemma 3.23(2) implies that all positive strata have finite global dimension. O

Corollary 3.26. Suppose that R is either a finite +-stratified category or a finite —-
stratified category. If all of the strata are of finite global dimension then R is of finite
global dimension.

Proof. We just explain this in the case that R is —-stratified; the argument in the
+-stratified case is similar. Lemma 3.23(1) implies that A(b) is of finite projective
dimension for each b € B. Moreover, there is a short exact sequence 0 — K — A(b) —
L(b) — 0 where all composition factors of K are of the form L(c) for ¢ with p(c) < p(b).
Ascending induction on the partial order on the finite set p(B) € A implies that each
L(b) has finite projective dimension. O

2We mean the strata R for A € A such that e(A) = —.
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A special case of Corollary 3.26 recovers the following well-known result, see e.g.
[CPS1]. For further detailed remarks about the history of this, and the general notion
of highest weight category, we refer to [Don4, §A5] and [DR].

Corollary 3.27. Finite highest weight categories are of finite global dimension.

Remark 3.28. In the fully stratified case, Lemma 3.22 can be used to give a precise
bound on the global dimension of R in Corollary 3.26. Assuming A is finite, let

A= s max(gl.dimRM,...,gl.dimR,\n)+ _q n>1and A\,...,\, €A
P 2 Pl With A << A=A [

By mimicking the proof of [Don4, Prop. A2.3], one shows that Ext% (L(b), L(c)) = 0 for
b,c € B and any i > |p(b)| + |p(c)|. Hence, gl.dimR < 2max{|\| | A € A}. For finite
highest weight categories, this shows that gl. dim R < 2(n — 1) where n is length of the
longest chain of weights in the weight poset A.

Remark 3.29. Outside of the highest weight case, finitistic dimension is used as a
replacement for global dimension. In particular, finite fibered highest weight categories
have finitistic dimension < 2(n — 1) where n is length of the longest chain of weights in
the weight poset A; this can be proved following the argument of [AHLU, Cor. 2.7]. For
finite fully stratified categories, it should be possible to bound the finitistic dimension
of R in terms of the finitistic dimensions of the strata and chains in the poset like in the
previous remark.

Remark 3.30. Another remarkable result about global dimension of finite highest
weight categories was obtained in [MO], [MP] proving conjectures formulated in [CaeZ],
[EP]: if R is a finite highest weight category with duality, i.e., possessing a contravariant
autoequivalence preserving isomorphism classes of irreducible objects, then the global
dimension of R is equal to twice the projective dimension of a tilting generator (see
Definition 4.9 below). More generally, Mazorchuk and Ovsienko show that the finitisic
dimension is equal to twice the projective dimension of a tilting generator in any finite
fibered highest weight category with duality which is also tilting-rigid in the sense of Def-
inition 4.36 below. Recently, Cruz and Marczinik [CM, Th. 2.2] (see also Corollary 4.40
below) have shown that a finite fibered highest weight category R is tilting-rigid if and
only if it is Gorenstein, in which case the finitistic dimension of R coincides with its
Gorenstein dimension (e.g., see [Che, Lem. 2.3.2]).

3.3. Upper finite e-stratified categories. In this subsection we assume that R is
a Schurian category equipped with an upper finite stratification (B, L, p, A, <). Also
e : A — {£} denotes a sign function. Let I(b) and P(b) be an injective hull and
a projective cover of L(b) in R. Recall (1.1)—(1.2), the properties (PA.)—(IV.) and
(PA)—(IV) from the introduction, and the seemingly stronger properties (P/Zg)f(ﬁg)
and (ﬁ),(ﬁ ) from the previous subsection.

Before formulating the main definitions in the upper finite setting, we prove an analog
of the homological criterion for V .-flags from Theorem 3.11. The proof depends on the
lemmas proved in §3.4 below, which we used already in the previous subsection, together
with the following two technical lemmas, which we prove by truncating to finite Abelian
quotients.

Lemma 3.31. Suppose that R is Schurian with upper finite stratification (B, L, p, A, <)
and sign function €, and assume that the property (J/DZS) holds in R. Let AT be a finite
upper set in A, B" := p~1(A"), and j : R — R be the corresponding Serre quotient
category with the induced stratification. The functor j. sends short exact sequences of
objects in V-(R") to short exact sequences of objects in V(R).

Proof (assuming lemmas in §3.4 below). Take a short exact sequence 0 - K — X —
Q@ — 0 in R" such that K, X and Q have V.-flags. We must show that 0 — j. K —
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JxX — j«Q — 0 is exact with all objects belonging to V.(R). We proceed by induction
on the length of the V.-flag of j,(X), with the base case (length one) following from
Lemma 3.49(1). For the induction step, we may assume that K,Q # 0 and know by
induction that j. K and j,Q have V.-flags. We must show that 0 — j. K — j. X —
j+@Q — 0 is exact. Since jy is left exact, this follows if we can show that
[+ X : L(b)] = [jsxk : L(b)] + [1x@Q : L(b)]

for all b € B. To see this, let A™ be the finite upper set generated by A" and b. Let
B :=p71(A") and k : R — R be the corresponding Serre quotient. By Lemma 2.27,
we have that [« X : L(b)] = [k(§:X) : kL(b)] = [k(j«X) : LT ()], and similarly for K
and Q. Since AT is an upper set in AT, we can also view R' as a quotient of R", and
the quotient functor j factors as j = jo k for another quotient functor 7: R™ — RT.
We have that ky o 7, = js, hence, applying k, we get that 7, =~ k o j,. It follows that
[k(j«X) : LT(b)] = [74X : L™ (b)], and similarly for K and ). We have now reduced
the proof to showing that

[7:. X : LT (0)] = [7u K : LT (0)] + [74Q : LT (B)]-
To see this, we note that R™ and R' are finite e-highest weight categories due to

Lemma 3.49(2) and Theorem 3.5. So we can apply Theorem 3.18(4) to see that the
sequence 0 — 7, K — 7. X — 7:Q — 0 is exact. g

Lemma 3.32. Suppose that R is Schurian with upper finite stratification (B, L, p, A, <)
and sign function €, and assume that the property (1536) holds in R. Let V € R be a
finitely cogenerated object such that Exty (AL (b),V) = 0 for all b € B. Then we have
that V e V(b), and the multiplicity (V : V(b)) of V(b) in any V-flag is equal to the
dimension of Homg (A (D), V).

Proof (assuming lemmas from §3.4 below). Since V is finitely cogenerated, its injective
hull is a finite direct sum of the indecomposable injective objects I(b). This means that
we can find a finite upper set A" and B := p~!(A") so that there is a short exact
sequence
0—V— PIL® —Q—0
beBT

for some ny, = 0. Let j : R — R" be the corresponding Serre quotient. This is a finite
e-stratified category by Lemma 3.49(2) and Theorem 3.5.

Applying j to the above short exact sequence gives us a short exact sequence in
R'. Then we take b € B" and apply the functor Homg: (AL(b),?) to this using also
Lemma 3.49(1) to obtain the long exact sequence

0 —> Homg: (AL(b), jV) — Homp: (AL(b), Dyepr I'(0)°™)
— Homp: (AL(b), jQ) — Extr (AL(H), jV) — 0.
From adjunction and Lemma 3.49(1) again, we get a commuting diagram

0 —Homg: (AL(5), jV)—Homps (AL(b), Dyepr I'(5)™ ) ~Home: (AL(5), jQ) - 0

| l |

0 — Homg (A.(b),V) — Homg (Ag(b),@beBT 1(5)@%) — Homg (A(b),Q) — 0.

The vertical maps are isomorphisms and the bottom row is exact since Exty, (Ac(b), V) =
0. Hence the top row is exact. Comparing with the previously displayed long exact
sequence, it follows that Extz (AL(b),jV) = 0. Now we can apply Theorem 3.11 in the
finite e-stratified category R' to deduce that jV has a V.-flag.

From Lemma 3.31, we deduce that j,jV has a V.-flag. Moreover the multiplicity
of V.(b) in any V.-flag in j,jV is dim Homg (A (b), jxjV) thanks to Lemma 3.48. To
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complete the proof, we show that the unit of adjunction f : V' — j,jV is an isomorphism.
We know from Lemma 3.49(1) that the unit of adjunction is an isomorphism I(b) —
JxJI(b) for each b € B'. Since V embeds into a direct sum of such I(b), it follows that
f is injective. To show that it is surjective, it suffices to show that

[7x5V : L(b)] = [V : L(b)]
for all b € B. To prove this, we fix a choice of b € B then define AT, B™, k : R —
R™ and 7: R — R as in the proof of Lemma 3.31. Since b € B™, we have that
[V : L(b)] = [kV : LT (b)] and [jjV : L(b)] = [k(jxjV) : L (b)]. As in the proof of
Lemma 3.31, k(j«jV) = 7+ (V) = 7:7(kV). Thus, we are reduced to showing that

(73 (kV) : LT (b)] = [kV : LT (b)].

This follows because kV = 7,7(kV). To see this, we repeat the arguments in the previous
paragraph to show that kV € R' has a V.-flag. Since the unit of adjunction is an
isomorphism VI'(b) = 7,7V (b) for each b € B", we deduce using the exactness from
Theorem 3.18(4) that it gives an isomorphism £V = 7,7(kV) too. O

Theorem 3.33. Theorem 3.5 holds in the upper finite setup too.

Proof. This is almost the same as the proof of Theorem 3.5 given in the previous sub-
section. One needs to use Lemma 3.32 in place of Theorem 3.11 to see that I(b) has
a V.-flag with the appropriate multiplicities. The exactness of j2 when e(\) = + fol-
lows from Lemma 3.31 applied to the quotient functor j* : R<yx — Rx. Note for this
that R<) satisfies (I/DZE) due to Lemma 3.45(2), and we have that V.(R)) = R, as
e(N) = +. O

We are ready to proceed to the main definition.

Definition 3.34. Let (B, L, p, A, <) be an upper finite stratification on R.

(eS) We say that R is an upper finite e-stratified category if one of the equivalent
properties (P/’Zg)f(ﬁa) holds for a given choice of sign function € : A — {£}.

(FS) We say that R is an upper finite fully stratified category if one of these properties
holds for all choices of sign function € : A — {£}.

(eHW) We say that R is an upper finite e-highest weight category if the stratification
function p is a bijection, and one of the equivalent properties (ﬁs)f(ﬁ <) holds
for a given choice of sign function € : A — {#£}.

(FHW) We say that R is an upper finite fibered highest weight category if the stratification
function is a bijection and one of these properties holds for all choices of sign
function.

(HW) We say that R is an upper finite highest weight category if all of the stata are
simple (cf. Lemma 3.4) and one of the equivalent properties (ﬁ)f(ﬁ ) holds.

The Ext'-vanishing (3.10) and Theorem 3.9 both still hold in the same way as before.

Next we are going to consider two (in fact dual) notions of ascending A.- and de-
scending V.-flags, generalizing the finite flags discussed already. One might be tempted
to say that an ascending A.-flag in V is an ascending chain 0 = Vp <V} < Vo < ---
of subobjects of V with V' =, _V, such that V,,,/V,,—1 = A.(by,), and a descending
V-flag is a descending chain V = V5 > V; > V5 > ... of subobjects of V' such that
Mpen Vo = 0 and V1 /V,,, = AL(byy,), for by, € B. These would be serviceable defini-
tions when A is countable. In order to avoid this unnecessary restriction, we will work
instead with the following more general formulations.

Definition 3.35. Suppose that R is an upper finite e-stratified category and V € R.

(AA) An ascending A.-flagin V is the data of a directed set {2 with smallest element 0
and a direct system (V,,),eq of subobjects of V' such that Vo =0, >, Vi, =V,
and V,/V,, € A.(R) for each w < v. Let A2%°(R) be the full subcategory of R
consisting of all objects V possessing such a flag.
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(DV) A descending V.-flagin V is the data of a directed set 2 with smallest element 0
and an inverse system (V/V,,)weq of quotients of V' such that Vo = V, (N cq Vi =
0, and V,,/V,, € V.(R) for each w < v. Let VI¢(R) be the full subcategory of
‘R consisting of all objects V' possessing such a flag.

We stress that A%¢(R) and VI¢(R) are subcategories of R: we have not passed to the
completion Ind(R.).
Lemma 3.36. Suppose that R is an upper finite e-stratified category.
(1) For Ve A®(R), W € VI¢(R) and n > 1, we have that Ext% (V,W) = 0.
(2) ForV e A2°(R) the multiplicity of Ac(b) in a Ac-flag may be defined from
(V : AL(b)) := dim Homg (V, V(b)) = sup {(Vi, : Ac(b)) |w € Q} < o0,
where (Vi,)weq is any choice of ascending A.-flag.
(3) For Ve VI¢(R), the multiplicity of V.(b) in a V.-flag may be defined from
(V : V(b)) := dimHomg (A (b), V) = sup {(V/V,, : V(b)) |w € Q} < o0,
where (V/V,)weq is any choice of descending V-flag.
Proof. (1) We first prove this in the special case that W = V.(b). Let (V,,)ueq be an
ascending A.-flag in V, so that V' = lim V,,. Since Extg (V,,, W) = 0 by Lemma 3.48, it
suffices to show that
Extf (V, W) = lim Ext} (V,, W),
To see this, like in [Wei, 3.5.10], we need to check a Mittag-Leffler condition. We show
that the natural map Ext% ' (V,, W) — Extj ' (V,,, W) is surjective for each w < v in
Q. Applying Homg (7, W) to the short exact sequence 0 — V,, —» V, — V,,/V, — 0
gives an exact sequence

Extly 1 (Vy, W) — Ext H(V,, W) — Ext/s (V,,/V,,, W).

It remains to observe that Extk (V,,/V,, W) = 0 by Lemma 3.48 again, since we know
from the definition of ascending A.-flag that V,,/V,, € A.(R).

The dual of the previous paragraph plus Lemma 2.12 gives that Exts (V, W) = 0 for
n=1,V =A.(b) and W e V¥¢(R). Then we can repeat the argument of the previous
paragraph yet again, using this assertion in place of Lemma 3.48, to obtain the result
we are after for general V € A2¢(R) and W € VI5¢(R).

(2) This follows from (1) and (3.5) because
Homz (V, V. (5)) = Homp (lim V.., V. (5)) = lim Homg (V., V. (b)),
which is finite-dimensional as V. (b), hence, each V,,, is finitely cogenerated.
(3) Similarly to (2), we have that
Homg (AL (b), V) = Homg (A (b), lim(V/V,,)) = lim Homg (AL (), V/V.,),

which is finite-dimensional as A.(b) is finitely generated. Then we can apply (1) and
(3.5) once again. O

Theorem 3.37 (Homological criterion for ascending A.-flags). Assume that R is an
upper finite e-stratified category. For V € R, the following are equivalent:

(i) Ve AF(R);
(ii) Exty(V,V.(b)) =0 for allbe B;
(11i) Extm(V, V(b)) =0 for allbe B and n > 1.
Assuming these properties, we have that V € A (R) if and only if it is finitely generated.
Proof. (iii)=>(ii). Trivial.
(i)=(iii). This follows from Lemma 3.36(1).
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(ii)=(i). Let Q be the directed set of finite upper sets in A. Take w € €; it is some finite
upper set AT. Let B' := p71(A") and j : R — R' be the corresponding Serre quotient.
By Lemma 3.49(3), Extg: (jV, V(b)) = 0 for all b e B'. Hence, V,, := 5i(jV) € A(R)
thanks to the dual of Lemma 3.31. Let f, : V,, — V be the morphism induced by the
counit of adjunction. We claim for any b € B' that the map

fu () : Homg (P(b),V,,) = Homg (P(b),V), 0 — f, 00

is an isomorphism. To see this, we assume that R = A-modjy for a pointed locally
finite-dimensional locally unital algebra A = (‘Da,beB eq,Aep. Then R' = eAe-modjgg
where e = ZaeBT eq, and V, = Ae ®. 4. €V. In these terms, the map f, is the natural
multiplication map. For b € BT, this multiplication map gives an isomorphism e;V,, —
epV with inverse epv — ep ® epv. This proves the claim.

Now take v > w, i.e., another finite upper set A™ > AT, and let £ : R — R be the
associated quotient. The quotient functor j : R — R' factors as j = jo k for another
quotient functor 7: R™ — R', and we have that

Vo = Tok(GeR)V) = k(n((kV)),  Vo=hk(kV).

By Corollary 3.19(2), there is a short exact sequence 0 — 71(7(kV)) — kV - Q — 0
such that both 71(7(kV)) and @ belong to A.(R™). Applying k and using the exactness
from the dual of Lemma 3.31, we get an embedding fV : V,, — V,, such that V,,/V,, =~
kQ € A.(R). Since the morphisms all came from counits of adjunction, we have that
Jvoly = fo

Now we can show that each f,, is a monomorphism. It suffices to show that f,(b) :
Homg (P(b),V,,) — Homg (P(b),V) is injective for all b € B. Choose v in the previous
paragraph to be sufficiently large so as to ensure that b € B". We explained already
that f,(b) is an isomorphism. Since f,, = f, o f¥ and fY is a monomorphism, it follows
that f,, (D) is injective too. Thus, identifying V,, with its image under f,,, we have defined
a direct system (V,,),eq of subobjects of V such that V,,/V,, € A.(R) for each w < v. Tt
remains to observe that Vz = 0 for a trivial reason, and ZWEQ V., = V because we know
for each b € B that f,(b) is surjective for sufficiently large w.

Final part: If V € A.(R), it is obvious that it is finitely generated since each A, (b) is
finitely generated. Conversely, suppose that V is finitely generated and has an ascending
A.-flag. To see that it is actually a finite flag, it suffices to show that Homg (V, V(b)) =
0 for all but finitely many b€ B. Say hd V = L(b;) ®--- @ L(b,). TV — V() is a
non-zero homomorphism, we must have that p(b;) < p(b) for some ¢ = 1,...,n. Hence,
there are only finitely many choices for b as the poset is upper finite. O

Corollary 3.38. Let 0 > U -V — W — 0 be a short exact sequence in R.

(1) If U and W belong to A2°(R) (resp., A-(R)) so does V.
(2) If V and W belong to A2°(R) (resp., Ac(R)) so does U.

Theorem 3.39 (Homological criterion for descending V.-flags). Assume that R is an
upper finite e-stratified category. For V € R, the following are equivalent:
(i) V e VE(R);
(ii) Extl (AL(b),V) =0 for all be B;
(11i) Exty(As(b),V) =0 for allbe B and n > 1.
Assuming these properties, V € V.(R) if and only if it is finitely cogenerated.

Proof. This is the equivalent dual statement to Theorem 3.37. d

Corollary 3.40. Let 0 > U -V — W — 0 be a short exact sequence in R.

(1) If U and W belong to VE¢(R) (resp., V.(R)) so does V.
(2) If U and V belong to VI¢(R) (resp., V<(R)) so does W.
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The following is the upper finite analog of Theorem 3.17; we have dropped part (6)
since the proof of that required objects of R* to have finite length.

Theorem 3.41 (Truncation to lower sets). Assume that R is an upper finite e-stratified
category. Suppose that A is a lower set in A. Let B* := p~Y(A') and i : R* - R be
the corresponding Serre subcategory of R with the induced stratification. Then R' is an
upper finite e-stratified category. Moreover:
(1) The distinguished objects in R* satisfy L*(b) =~ L(b), P*(b) =~ i*P(b), I*(b) =
i'I(b), At (b) = A(b),A(b) = A(b), VI (b) = V(b) and V*(b) = V(b) for be B*.
(2) i* sends short exact sequences of objects in A (R) to short exact sequences,
i*A(b) = AY(b) and i*A(b) = AL(b) for b e BY, and i*A(b) = i*A(b) = 0 for
b¢ B
(3) Extl (V,iW) = Ext®, (i*V, W) for Ve A.(R), W e R* and all n > 0.
(4) i* sends short exact sequences of objects in V.(R) to short exact sequences,
i'V(b) = V) and i'V(b) = V*(b) for b € B}, and i'V(b) = i'V(b) = 0 for

b¢ Bt
(5) Exth (iV,W) = Ext, (V,i'W) for Ve R*, W € V.(R) and alln > 0.
Proof. This follows from Lemma 3.45 and the dual statement. O

Next is the upper finite analog of Theorem 3.18.

Theorem 3.42 (Truncation to upper sets). Assume that R is an upper finite e-stratified
category. Suppose that A" is an upper set in A. Let B" := p=1(A") and j : R - R be
the corresponding Serre quotient category of R with the induced stratification. Then R'
is itself a finite or upper finite e-stratified category according to whether A1 is finite or
infinite. Moreover:
(1) For b e B', the distinguished objects L'(b), PT(b), IT(b), AT(b), AT(b), V'(b)
and V'(b) in R' are isomorphic to the images under j of the corresponding
objects of R.
(2) We have that jL(b) = jA(b) = jA(b) = jV(b) = jV(b) =0 if b¢ B,
(3) Exth (V, W) = Extl: (jV, W) for Ve R,W € V&(R") and all n > 0.
(4) js« sends short exact sequences of objects in V.(R') to short exact sequences,
G« VT(b) = V(b), j+VT(b) = V(b) and jI'(b) = I(b) forbe B'.
(5) Extl (7 V, W) = Extg: (V,jW) for Ve A»(R"), W € R and all n > 0.

(6) ji sends short exact sequences of objects in A (R'") to short exact sequences,

HAT(b) = A(b), HAT(b) = A(b) and jiP'(b) = P(b) for be B'.
Proof. If AT is finite, this is proved in just the same way as Theorem 3.18. Assume
instead that A" is infinite. Then the same arguments prove (1) and (2), but the proofs
of the remaining parts need some slight modifications. It suffices to prove (3) and (4),
since (5) and (6) are the same results for ROP.

For (3), the argument from the proof of Lemma 3.49(3) reduces to checking that j
sends projectives to objects that are acyclic for Homy (?, W). To see this, it suffices to
show that Exti: (jP(b), W) = 0 for n > 1 and b € B, which follows from Lemma 3.36(1).

Finally, for (4), the argument from the proof of Theorem 3.18(4) cannot be used since
it depends on R' being essentially finite Abelian. So we provide an alternate argument.
Take a short exact sequence 0 - U — V — W — 0 in V.(R"). Applying j., we get
0 - j:U — j.V — j.W, and just need to show that the final morphism here is an
epimorphism. This follows because, by (3) and Theorem 3.39, .U, 7,V and j,W all
have V. -flags such that (j,V : V(b)) = (j«U : V(b)) + (juW : V(b)) forallbe B. O

The reader should have no difficulty in transporting Lemma 3.20 and Corollary 3.21
to the upper finite setting. Also, Lemma 3.23 remains valid when “finite e-stratified
category” is replaced by “upper finite e-stratified category”. To see this, we just note
that the argument by downwards induction on the partial order explained in the proof
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works just as well when A is upper finite rather than finite. The following is the upper
finite analog of Corollary 3.24.

Lemma 3.43. If R is an upper finite +-stratified (resp., —-stratified) category then all
VeA(R) (resp., V€ V(R)) are of finite projective (resp., injective) dimension.

Proof. This follows from the upper finite analog of Lemma 3.23. d

3.4. Shared lemmas for §§3.2—3.3. In this subsection, we prove a series of lemmas
needed in both §3.2 and in §3.3. Let R be an Abelian category equipped with a stratifi-
cation (B, L, p, A, <) which is either essentially finite (§3.2) or upper finite (§3.3). Also
let € : A — {£} be a sign function. We assume throughout the subsection that the
property (IGZE) from §3.2 holds.

Lemma 3.44. We have that Exty (AL (b), Ac(c)) = 0 for b,c € B such that p(b) € p(c).

Proof. Using the projective objects P, given by the assumed property (I/DZE)7 we can
construct the first terms of a projective resolution of A.(b) in the form
Q— P PO s Py — A(b) — 0 (3.11)

aeB
p(a)=p(b)

for some n, > 0. Now apply Homz(?,A.(c)) to get that Extk(A.(b), A.(c)) is the
homology of the complex

HomR(Pb,AE(c))—>H0mR( D Pg@"a,AE(c)) - Homg (Q, Ad(c)).
PEEAG

The middle term of this already vanishes as [A:(c) : L(a)] # 0 = p(a) < p(c). O

Lemma 3.45. Let A' be a lower set in A and B := p~1(A'). Leti: RY — R be the
corresponding Serre subcategory of R equipped with the induced stratification.

(1) The standard, proper standard and indecomposable projective objects of R* are
the objects A(b), A(b) and i* P(b) for be B*.

(2) The object i* P, is zero unless b € B*, in which case it is a projective object
admitting a Ac-flag with top section A (b) and other sections of the form Ac(c)
for c € BY with p(c) = p(b). In particular, this shows that (1555) holds in R*.

(3) (L,i*)V =0 for VeA,(R) andn > 1.

(4) Exty(V,iW) =~ Exty, (i*V,W) for Ve A (R), W e R* andn > 0.

Proof. (1) For projectives, this follows from the usual adjunction properties. This also
shows that i*P, is projective, as needed for (2). For standard and proper standard
objects, just note that the standardization functors for R* are some of the ones for R.

(2) Consider a A.-flag of P,. Using Lemma 3.44, we can rearrange this filtration if
necessary so that all of the sections A.(c) with ¢ € B* appear above the sections A.(d)
with d € B\B'. So there exists a short exact sequence 0 - K — P, > Q@ — 0 in
which @ has a finite filtration with sections A.(c) for ¢ € B with p(c) = p(b), and K
has a finite filtration with sections A.(c) for ¢ € B\B*. It follows easily that i*P, is
isomorphic to @, so it has the appropriate filtration.

(3) It suffices to show that (L,i*)A.(b) = 0 for all b€ B and n > 0. Take a short exact
sequence 0 > K — P, —> A.(b) — 0 such that K has a A.-flag with sections A.(c) for
¢ with p(c) = p(b). Applying i*, we obtain the long exact sequence
0 —> (L1i*)AL(b) —> i* K — * Py —> i* Ao (b) —> 0

and isomorphisms (L, 4+17%)A(b) = (L,3*) K for n > 0. We claim that (L1i*)A(b) = 0.
We use Lemma 3.44 to order the A.-flag of K so that it yields a short exact sequence
0> L—> K — @ — 0in which Q has a A.-flag with sections A.(c) for ¢ € B}, and
L has a A.-flag with sections A.(c) for ¢ € B\B'. It follows that i* K = Q and there
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is a short exact sequence 0 — *K — i*P, — A_(b) — 0. Comparing with the long
exact sequence, we deduce that (L1i*)A.(b) = 0. Finally some degree shifting using the
isomorphisms (L, 17*)A-(b) = (L,i*)K gives that (L,i*)A.(b) = 0 for n > 1 too.

(4) By the adjunction, we have that Homg (?,iW) =~ Homp. (?, W) o i*, i.e., the result
holds when n = 0. Also i* sends projectives to projectives as it is left adjoint to an
exact functor. Now the result for n > 0 follows by a standard Grothendieck spectral
sequence argument; the spectral sequence degenerates due to (3). g

Lemma 3.46. Suppose that \ € A is mazimal and b € Byx. Then P(b) =~ A(b) and
I(b) = V(b).

Proof. Lemma 3.1 shows that A(b) = i*, P(b) and V(b) = i’ I(b).

To complete the proof for P(b), it remains to observe that P(b) belongs to R«y, so
i¥,P(b) = P(b). This follows from PA.: the object P, belongs to R<y due to the
maximality of A and P(b) is a summand of it.

The proof for I(b) needs a different approach. From V(b) = i, I(b), we deduce that
there is a short exact sequence 0 — V(b) — I(b) — Q — 0 with iL,@ = 0, and we must
show that @ = 0. Take a € B and apply Homg (A (a),?) to this short exact sequence
to get an exact sequence

Homg (Ac(a), (b)) — Homp (A.(a),Q) — 0 (3.12)

and isomorphisms

Extiy™ (A (a), V(b)) = Ext’: (A(a), Q) (3.13)
for n > 1. If p(a) = A then Homg (A< (a),Q) = 0 because iL,Q = 0. If p(a) # A, then
in fact we have that p(a) A by the assumed maximality of A, so [Az(a) : L(b)] = 0.
Hence, Homg (Ac(a), I(b)) = 0, implying in view of (3.12) that Homg (A.(a),@) = 0
again. Thus, we have shown that Homg(A.(a),Q) = 0 for all « € B. This implies
that soc Q@ = 0. In the essentially finite Abelian case, this is all that is needed to
deduce that Q = 0, completing the proof. In the Schurian case, we need to argue
a little further because () need not be finitely cogenerated, so can have zero socle
even when it is itself non-zero. We have for any a € B that Extk(A:(a), V(b)) = 0
for n > 0. This follows using Lemma 3.45(4): it shows that Ext%(A.(a),V(b)) =
Ext%_, (i£,Ac(a), V(b)) which is zero as V(b) is injective in R<y. Combining this
with (3.13), we get that Extk(A.(a),Q) = 0. Now we observe that the properties
Hompg (A.(a), Q) = 0 = Exty (A.(a),Q) for all a € B do imply that Q is zero. Indeed,
we have that Homg (P, Q) = Ext%z(P, Q) = 0 for any P € R with a A_-flag. This fol-
lows using induction on the length of the flag plus the long exact sequence. Since P,
has a A.-flag by the hypothesis (]/JZE) and P(b) is a summand of it, we deduce that
Hompg (P(b),Q) = 0 for all b € B, which certainly implies that @ = 0. O

Lemma 3.47. Assume that A € A is mazimal and £(\) = +. For any V € Ry and
be B, we have that Exty (AL (b),j2V) = 0.

Proof. It b € By then A.(b) is projective in Ry by Lemma 3.46, so we get the Ext!-
vanishing in this case. For the remainder of the proof, suppose that b ¢ B),. Let I be an
injective hull of V in Ry. Applying j2 to a short exact sequence 0 — V — I — Q — 0,
we get an exact sequence 0 — ji‘V — ji‘I — ji‘Q. By properties of adjunctions,
j2Q is finitely cogenerated and all constituents of its socle are of the form L(c) for
c € By. The same is true for j2I/j2V since it embeds into j3Q. We deduce that
Homg (A (b), j21/52V) = 0.
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Now take an extension 0 — j2V — E — A_(b) — 0. Since j31 is injective, we can
find morphisms f and g making the following diagram with exact rows commute:

0 jav —= E A(b) —— 0
| 1| Js
0 RV —— I RV 0.

The previous paragraph implies that g = 0. Hence, im f < im¢. Thus, f = ¢o f for
some f: E — j;\V. We deduce that f os = id, i.e., the top short exact sequence splits,
proving that Exty (A.(b), j2V) = 0. O

Lemma 3.48. For b,c € B and n > 0, we have that dim Extk (A:(b), V:(¢)) = b.c0n0-

Proof. The case n = 0 follows from (3.5), so assume that n > 0. Suppose that b € B
and c € B,. By Lemma 3.45(4), we have that

Extg (A (0), Ve(c)) = Exty_, (12,A:(b), Ve(c)).

If A & p then i% A (b) = 0 and we get the desired vanishing. Now assume that A < y,
when we may identify i%,A.(b) = A-(b). If e(u) = — then V.(c) = V(c), and the
result follows since V(c) is injective in R, by Lemma 3.1(2). So we may assume also
that e(u) = +. If A = p then A(b) is projective in R, by the same lemma, so again
we are done. Finally, we are reduced to A < p and () = +, and need to show that
Extr_, (Ac(b),V(c)) = 0 for n > 0. If n = 1, we get the desired conclusion from
Lemma 3.47 applied in the subcategory R, (allowed due to Lemma 3.45(2)). Then
for n > 2 we use a degree shifting argument: let P := iiﬂPb. By Lemma 3.45(2), P is
projective in R, and there is a short exact sequence 0 - K — P — A.(b) — 0 such
that K has a A.-flag with sections A.(a) for a € B<,. Applying Homz_, (7, V(c)) we
obtain Exty_ (A-(b), V(e)) = Ext%;i (K, V(c)), which is zero by induction. O

Lemma 3.49. Let A" be an upper set in A and B" := p~1(A"). Let j : R — R be the
corresponding Serre quotient category of R equipped with the induced stratification.
(1) For b € B', the objects P'(b), I'(b), AT(b), AT(b), V'(b) and V'(b) in R'
are the images under j of the corresponding objects of R. Moreover, we have
that AT (B) = A(b), H#AT(b) = A(b), H#PT(b) = P(b) and j:V'(b) = V(b),
JaVT ) = V), juT () = (D).
(2) For any b € B, the object jP, has a A.-flag with top section AL(b) and other
sections of the form Al(c) for c € BT with p(c) = p(b). In particular, this show
that (PA.) holds in R'.
(3) Extlh (V,jW) = Exth: (jV, W) for VeR, WeV.(R") andn = 0.

Proof. (1) By Lemma 2.27, P"(b) = jP(b) for each b e B'. Now take b € B, for A € A'.
Let j* : R<x — R be the quotient functor as usual, and denote the analogous functor
for RT by k* : R;A — R; The universal property of quotient category gives us an
exact functor 7: Ry — ’RI\ making the diagram

commute. In fact, 7 is an equivalence of categories because it sends the indecomposable
projective j*P(b) in R to the indecomposable projective k*P'(b) in R} for each b €
B). We deduce that there is an isomorphism of functors ji o k* o 7 ~ j}. Applying
this to Py(b) and to Ly(b) gives that jiAT(b) = A(b) and jA'(b) = A(b). Also by

adjunction properties we have that 5 PT(b) >~ P(b). Similarly, applying the isomorphism
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js ok} o7 =2 to I\(b) and Ly(b) gives that j.V'(b) = V(b) and 5, V' (b) = V(b). Also
by adjunction properties we have that j.IT(b) = I(b). It just remains to apply j to the
isomorphisms constructed thus far and use j o j, = Idgt = j o ji.

(2) This follows from (1) and the exactness of j, using also that jA.(b) = 0 if b ¢ BT.

(3) The adjunction gives an isomorphism Homg (7, jW) = Homp: (?, W)oj. This proves
the result when n = 0. For n > 0, the functor j is exact. In order to invoke the usual
degenerate Grothendieck spectral sequence argument, all that remains is to check that j
sends projectives to objects that are acyclic for Homg+ (7, W). By (2), the functor j sends
projectives in R to objects with a A.-flag. It remains to note that Extp (X, W) = 0
for X € A.(R"),W € V.(R") and n > 0. This follows from the analog of Lemma 3.48
for R", which is valid due to (2). O

3.5. Lower finite e-stratified categories. In this subsection, R is a locally finite
Abelian category equipped a lower finite stratification (B, L,p, A, <) and € : A — {£}
denotes a sign function. For b € B, we use the notation I(b) to denote an injective hull
of L(b) in Ind(R).

Definition 3.50. Let (B, L, p, A, <) be a lower finite stratification of the locally finite
Abelian category R. For a finite lower set A' in A, let B := p~1(A!) and R' be
corresponding Serre subcategory of R. We say that R is a lower finite e-stratified
category (resp., lower finite fully stratified category, resp., lower finite e-highest weight
category, resp., lower finite fibered highest weight category, resp., lower finite highest
weight category) if RY with its naturally induced stratification is a finite e-stratified
category (resp., finite fully stratified category, resp., finite e-highest weight category,
resp., finite fibered highest weight category, resp., finite highest weight category) for
every finite lower set At C A.

Remark 3.51. For a simple example, let @@ be any quiver. The category R of finite
length nilpotent representations of () can be realized naturally as the category of finite-
dimensional comodules over the path coalgebra of @ as in [Sim, (8.3)]. In order for
this to be a lower finite highest weight category, one must assume that there are only
finitely many different paths between any two vertices. In that case, the path algebra k@
is locally finite-dimensional, and we have that R ~ k@-modgq with irreducible objects
labelled by the set A of vertices of @ in the usual way. We claim now that R is a
lower finite highest weight category with weight poset (A, <) for any lower finite partial
ordering < on A. To see this, the Serre subcategory R' corresponding to a finite lower
set A' = A is kQ'-mod¢q where Q' is the full subquiver Q' of @) generated by A'. It is
well known that this is a hereditary category, hence, it is a finite highest weight category
(e.g., see [Mad, Th. 4.1]).

Let R be a lower finite e-stratified category. Since R« is a finite Abelian category, the
admissibility axiom (A) from §3.1 holds, so we can introduce the objects A(b), A(b), V(b)
and V(b) as explained there, also adopting the shorthands A.(b) and V.(b). These
objects are of finite length. Note also that Theorem 3.9, Lemma 3.20 and Corollary 3.21
carry over immediately to the lower finite setting.

Now we are going to consider another sort of infinite good filtration in objects of
Ind(R). Usually (e.g., if A is countable), it is sufficient to restrict attention to filtrations
given by an ascending chain of subobjects 0 = V) < Vi < V5 < --- such that V =
Dnen Vo and Vi, /Vi 1 = V. (by,) for some by, € B. Here is the general definition which
avoids this restriction.

Definition 3.52. An ascending V.-flag in an object V € Ind(R) is the data of a direct
system (V,)weq of subobjects of V' such that the following properties hold:

(AV1) V=2 eq Vs
(AV2) each V,, has a V.-flag with V.(b) appearing with multiplicity (V, : V(b)) € N;



SEMI-INFINITE HIGHEST WEIGHT CATEGORIES 43

(AV3) (V : V(b)) :=sup((V., V(b)) |w e Q} < o for each b € B.
Let V25¢(R) be the full subcategory of R consisting of all objects V' that possess an

ascending V.-flag. In the special case ¢ = + (resp., € = —), we call it an ascending
V-flag (resp., V-flag), denoting the category V.(R) by V(R) (resp., V(R)).

The multiplicities (V, : V(b)) and (V' : V(b)) appearing in this definition depend a
priori on the choice of flag. In fact, they do not, so that the notation is unambiguous:

Lemma 3.53. Assume R is a lower finite e-stratified category. For V e V2°(R), the
multiplicity (V : V(b)) of V.(b) in the ascending V.-flag appearing in Definition 3.52
is equal to dimHompg (A, (b), V). Hence, it is well-defined independent of the particular
choice for this flag.

Proof. By Theorem 3.14 applied in the Serre subcategory R} associated to a finite lower
set A' of A chosen so that V,, € R*, we have that (V,, : V(b)) = dim Homg (A (b), V).
Also Homg (A (b), V) = Homg (A (b), lim V,,) = lim Homg (A (), V,,). We deduce that

dim Homg (A (b), V) = max{(V, : A:(b)) |w € Q},
which is the definition of the multiplicity (V' : V(b)) from Definition 3.52. O

Lemma 3.54. Assume that R is a lower finite e-stratified category. For V e V2°(R)
and b e B, we have that Exty (AL (b),V) = 0.

Proof. If V is of finite length then it belongs to the finite Abelian category R' associated
to some finite lower set A' of A, and the lemma follows from Theorem 3.11. Now suppose
that V' is not of finite length. Let (V,,)ueq be an ascending V.-flag in V. Take an
extension V < E — A_(b). We can find a subobject E; of F of finite length such that
V + E; =V + E; this follows easily by induction on the length of A.(b) as explained
at the start of the proof of [CPS1, Lem. 3.8(a)]. Since V n Ej is of finite length, there
exists w € Q with V. n E; € V,. Then we have that V n E; =V, n E; and

(Vw +E1)/Vw = El/Vw N E1 = El/V N E1 = (V+E1)/V = (V+E)/V = As(b)

Thus, there is a short exact sequence 0 — V,, — V,, + E; — A.(b) — 0. The first
sentence of the proof implies that Extl (A.(b),V,,) = 0, hence, this splits. Thus, we
can find a subobject Fy =~ A.(b) of V,, + Ey such that V,, + 1 = V,, ® E5. Then
V+E=V+E =V4+V,+E1=V+V,+FE,=V+ FEy; =V ® Es, and our original
short exact sequence splits too. O

Corollary 3.55. Leti: RY — R be the inclusion of the Serre subcategory of R associ-
ated to a finite lower set A* of A and i' be its right adjoint. For V € V*°(R), we have
that 'V € V.(RY).

Proof. Take a short exact sequence 0 — i'V — V — Q — 0. Note that
Homp (AL (b),i'V) = Homg (A (b), V)

is finite-dimensional for each b € B'. Since R' is finite Abelian, it follows that 'V € R*
(rather than Ind(R*')). Moreover, Homg (Ac(b),Q) = 0 for b € B*. So, on applying
Hompg (A (b),?) and considering the long exact sequence using Lemma 3.54, we get that
Extr, (A-(b),i'V) = Extk (A.(b),i'V) = 0 for all b € B'. Thus, by Theorem 3.11, we
have that i'V € V_(R'). O

The following homological criterion for ascending V.-flags generalizes Theorem 3.11.

Theorem 3.56 (Homological criterion for ascending V.-flags). Assume that R is a
lower finite e-stratified category. For V € Ind(R), the following are equivalent:

(1) Ve VE(R);

(ii) Exth(A.(b), V) =

nd dim Homg (A (b),V) < © for all be B;
(iii) Extg (A (D), V) = b),V

0a
0 and dim Homg (A (b),V) < oo for allbe B and n > 1.
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Assuming these properties, we have that V € V.(R) if and only if V € R.

Proof. (ii)=>(i): Let Q be the directed set consisting of all finite lower sets in A. Take
w € Q. It is a finite lower set A' = A, so we have associated the corresponding finite
e-stratified subcategory R'. Letting i : R* — R be the inclusion, we set V,, := i'V. By
Corollary 3.55, we have that V,, € V.(R). So the subobject V' :=> _,V,, of V has an
ascending V.-flag.

Now we complete the proof by showing that V' = V’. Applying Homg (AL (b),?) to
the short exact sequence 0 — V' — V — V/V’ — 0 using Lemma 3.54, we get a short
exact sequence

0 — Homg (AL (b), V') — Homg (AL (b), V) — Homg (A (b),V/V') — 0
for every b € B. But any homomorphism A.(b) — V has image contained in V,, for
sufficiently large w, hence, also in V’. Thus, the first morphism in this short exact
sequence is an isomorphism, and Homg (A(b), V/V') = 0 for all b € B. This implies that
V/V’ =0 as required.
(i)=>(ii): This follows by Lemmas 3.53 and 3.54.
(ifi)=(ii): Trivial.
(i)=(iii): This follows from Lemma 3.53 and Theorem 3.59(4). Since this is a forward

reference, we should note that the proof of Theorem 3.59 only depends on (i)<>(ii) from
the present theorem. O

we2

Corollary 3.57. In a lower finite e-stratified category, each indecomposable injective
object I(b) belongs to V2*¢(R) and (I(b) : V(c)) = [Ac(c) : L(b)] for each b,c € B.

Proof. The first part follows from the implication (ii)=>(i) in the theorem. For the second
part, we get from Lemma 3.53 that (I(b) : V(c)) = dimHomg (A (c) : L(D)). O

Corollary 3.58. Let 0 > U -V — W — 0 be a short exact sequence in a lower finite
e-stratified category. If U,V € V2(R) then W € V2¢(R) too. Moreover

(V1 Ve(d) = (U :Ve(b) + (W : V(D).
The following is the lower finite counterpart of Theorem 3.17.

Theorem 3.59 (Truncation to lower sets). Suppose R is a lower finite e-stratified
category. Let AY be a lower set, BY := p~Y(A'), and i : R* — R be the corresponding
Serre subcategory of R with the induced stratification. Then R*Y is a finite or lower finite
e-stratified category according to whether At is finite or infinite. Moreover:
(1) The distinguished objects of R* are L*(b) = L(b), I*(b) = i'I(b), A (b) = A(b),
AY(b) = A(b), VH(b) = V(b) and V'(b) = V(b) for be B*.
(2) (R"i"V =0 for n > 1 assuming either that V € V3°(R) or that V € R*.
(3) i* takes short evact sequences of objects in V°(R) to short exact sequences of
objects in V&C(RY), with i*'V(b) = V(b) and i*'V(b) = V(b) for b € B and
i'V(b) =i'V(b) = 0 for b¢ Bt.
(4) Extlh (iV,W) = Ext, (V,i'W) for Ve R*, W € V¥(R) and all n > 0.
(5) Exty (iV,iW) = Exty, (V,W) for V,W € R* and all n = 0.

Proof. The fact that R' is itself a lower finite e-stratified follows immediately from
Definition 3.50. It is finite if and only if B* is finite. The identification of objects as in
(1) is straightforward. In particular, the objects V. (b) in R} are just the same as the
ones in R indexed by b € B!, while the indecomposable injectives in Ind(R*') are the
objects i'I(b) for b e B*.

To prove (2), assume first that V' € V25°(R). Let I be an injective hull of soc V in
Ind(R). Note that I is of the form @, g I(a)®" for

0 < ny < dimHomg (AL (a),V) = (V:Vc(a)) < .



SEMI-INFINITE HIGHEST WEIGHT CATEGORIES 45

Hence, for b € B¢y, we have that

dim Homg (Ac(b),1) = Y. na[A(b) : L(a)] < o0
aeB<

too. We deduce that I € V2°(R) using the implication (ii)=(i) of Theorem 3.56. Now
consider the short exact sequence 0 - V — I — @ — 0. By Corollary 3.58, we have
that Q € V2°(R) too. Applying the left exact functor i* and considering the long exact
sequence, we see that to prove that (R'')V = 0 it suffices to show that the canonical
map i'] — 7'Q is an epimorphism. Once that has been proved we can use degree shifting
to establish the desired vanishing for all higher n; it is important for the induction step
that we have already established that @ € V2%°(R) just like V.

To prove the surjectivity, look at 0 — 4'1/i'V — i'Q — C — 0. Both i'I and 'V have
V.-flags by Lemma 3.55. Hence, so does i'I/i'V, and on applying Homg: (A.(b),?) for
be B, we get a short exact sequence

0 — Hompg. (A.(b),i'I/i'V) — Homg. (AL(b),i'Q) — Homgp. (A (b),C) —> 0.
The first space here has dimension

(1 : V(b)) = ((V : V(b)) = (1: V(b)) = (V: Ve(b) = (Q: V(b)) = (i'Q : Ve(b)),
which is the dimension of the second space. This shows that the first morphism is an
isomorphism. Hence, Homp (A (b),C) = 0. This implies that C' = 0 as required.

Finally let V € R*. Then V is of finite length, so it suffices just to consider the case
that V' = L(b) for b € B*. Then we consider the short exact sequence 0 — L(b) —
V.(b) — @ — 0. Applying i' and using the vanishing established so far gives 0 —
i'L(b) — i'V.(b) — i'Q — (R'')L(b) — 0 and isomorphisms (R"i')Q = (R"*+1i')L(b)
for n > 1. But 4' is the identity on L(b),V.(b) and @, so this immediately yields
(R L(b) = 0, and then (R"i')L(b) = 0 for higher n by degree shifting.

Having proved (2), property (3) follows easily. Finally (4)—(5) follow by the usual
Grothendieck spectral sequence argument starting from the adjunction isomorphism
Homp. (iV,?) = Homg (V,?) o i'. One just needs (2) and the observation that i' sends
injectives to injectives. U

Our next result gives an alternative characterization of lower finite e-stratified cate-
gories. Note for this that if R is a lower finite e-stratified category then the hypotheses
of the theorem are automatically satisfied taking I3 := I(b); cf. Corollary 3.57.

Theorem 3.60 (Global characterization of lower finite e-stratified categories). Let R be
a locally finite Abelian category equipped with a lower finite stratification (B, L, p, A, <)
and € : A — {£} be a sign function. Assume for each b € B that L(b) has an injective
hull in R,y so that we can introduce the objects V.(b) in the usual way®. Suppose
that the following property holds:

(ﬁ zsc) For every b € B, there exists an injective object I, € Ind(R) with an ascending
Veflag (V,,)weq in the sense of Definition 3.52 such that for each w € Q the
given V.-flag of V,, has V.(b) at the bottom and all other sections are of the
form V.(c) for ¢ € B with p(c) = p(b).

Then R is a lower finite e-stratified category.

Proof. We must verify the condition from Definition 3.50. Let A' be a finite lower set,
B! := p71(A'), and R* be the corresponding Serre subcategory of R. This is a locally
finite Abelian category with irreducible objects labelled by the finite set B*. We need
to show it is a finite e-stratified category with respect to the induced stratification.

Step 1: Extk(V.(a),V.(b)) = 0 for p(a) * p(b). Let (V,,)ueq be the given ascending
V.-flag of I,. We have that V. (b) < I, and I;,/V.(b) = >} cq(Vi/V<(D)). The socle of

3We do not insist that L(b) has a projective cover in R<p(p) and do not need the objects Ac(b).
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the latter object only involves constituents L(c) with p(c) = p(b). We deduce that there
is an injective resolution 0 — V.(b) —» I, > J — -+ in Ind(R) in which J is a direct
sum of I, with p(c) = p(b). The Ext'-vanishing now follows on applying Homz (V. (a),?)
to this resolution and taking homology.

Step 2: Forb e BY, the object I} :=i'I}, € Ind(R") has a V.-flag with V.(b) at the bottom
and other sections of the form V.(c) for c € B* with p(c) = p(b). In particular, I} is of
finite length. Take b € B and let (V,),eq be the given ascending V. -flag in I;,. Since B*
is finite, we can choose some sufficiently large w € Q so that (V : V.(¢)) = (V,, : V(¢))
for all c € BY; these multiplicities are the given ones from Definition 3.52. Then we see
that 'V, = i'V}, for all larger v, hence, i'V = i'V,,. In view of Step 1, we can rearrange
the V.-flag of V, so that the sections V.(c) with ¢ € B* appear below the other sections,
with bottom section V(). So there is a short exact sequence 0 — U, — V,, —» W, — 0
such that U, € V.(R') and i'W,, = 0. Then we get that i'V = i'V,, = U, which has
the desired V.-flag.

Step 3: R' is a finite e-stratified category with respect to the induced stratification. By
adjunction properties, the object Ilf € R from Step 2 is injective and it has L(b) in
its socle. This shows that the locally finite Abelian category R* has enough injectives,
hence, it is a finite Abelian category by Lemma 2.21. Moreover, the objects Ibl (b e BY)
satisfy the condition (ﬁ ¢) from §3.2, so R* is a finite e-stratified category according to
Definition 3.7. g

Corollary 3.61. Let R be a locally finite Abelian category, (A, <) be a lower finite poset,
and L : A — R be a function labelling a complete set of pairwise inequivalent irreducible
objects. Assume for all X € A that L(\) has an injective hull V(N\) € Ry such that
[V(N) : L(A)] = 1. Suppose that the following property holds:

~— ascC

(IV ) For every A € A there exists an injective object Iy € Ind(R) with an ascending
V-flag (V,,)weq such that for each w € Q the given V-flag of V, has V() at the
bottom and all other sections are of the form V(u) for pe A with u > A

Then R is a lower finite highest weight category.

Proof. Apply the theorem taking B = A and p to be the identity function, using also
Lemma 3.4. O

Remark 3.62. Using Corollary 3.61, it follows that R is a lower finite highest weight
category with all intervals (A, c0] in the weight poset being countable if and only if
Ind(R) is a highest weight category in the original sense of [CPS1, Def. 3.1] with a
weight poset that is lower finite. This is also mentioned in [Cou3].

The following theorem gives a related characterization for lower finite fully stratified
categories. The proof is based on the well-known proof of the homological criterion for
good filtrations in the context of reductive algebra groups from [Janl, Prop. I1.4.16].
The Ext?-vanishing property needed for this is used as one of the defining properties in
[RW, Def. 2.1]; see also [Cou3, Def. 3.1.2(1)]. We know already that lower finite fully
stratified categories automatically satisfy the conditions of this theorem.

Theorem 3.63 (Homological characterization of lower finite fully stratfied categories).
Suppose that R is a locally finite Abelian category equipped with a lower finite stratifi-
cation (B, L, p, A, <). Suppose that every L(b) has a projective cover and an injective
hull in R< ) so that we can introduce standard and costandard objects. Consider the
following properties:

(1) Exty(A(b),V(c)) = Exty (A(b), V(c)) = 0 for all b,c € B.

(2) Exty (A(D), V(c)) = Extk (A(b),V(c)) = 0 for al b,c e B.
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If (1) holds then R is a lower finite —-stratified category, and if (2) holds then R is a
lower finite +-stratified category. Hence, if both (1) and (2) hold then R is a lower finite
fully stratified category.

Proof. We will prove that (1) implies that R is a lower finite —-stratified category.
The fact that (2) implies that R is +-stratified then follows from this assertion with R
replaced by R°P. Hence, if both hold then R is fully stratified thanks to Lemma 3.20(iii).

So now we just assume (1). Define ascending V-flags and the corresponding full
subcategory V2¢(R) by repeating the ¢ = — case of Definition 3.52. We first establish
two claims.

Claim 1: ForV e V®°(R), we have that Exty (A(b),V) = 0 for all b e B. Moreover, the
multiplicity (V : V(b)) defined from a specific choice of ascending V-flag in'V is equal to

dim Homg (A(b), V). For any ¢ € B, we have as always that dim Homg (A(b), V(c)) =
Sp.c, and moreover Exty (A(b),V(c)) = 0 by property (1). Hence, Claim 1 holds when
the V-flag is of finite length. Then it follows for arbitrary V € V#¢(R) by the same
arguments as used to prove Lemmas 3.53 and 3.54 above, using the special case just
established in place of the references to Theorems 3.11 and 3.14 made in those proofs.

Claim 2: If V e Ind(R) satisfies dim Homg (A(b), V) < o0 and Extg (A(b), V) = 0 for
all b € B then V has an ascending V-flag (V,,)weq. Let Q be the poset of finite lower
sets in A ordered by containment. For w = A' € , define V,, to be the subobject
i'V where i : R' — R is the inclusion of the Serre subcategory of R associated to
B! := p~!(A'). This defines a direct system (V,,)weqn of subobjects of V. We prove the
claim by establishing the following:
(a) Each V,, (w € ) has a finite V-flag.
(b) V= ZwEQ V"-"

To check (a), take w = A € Q setting B := p~!(A') once again. We show that V,
has a finite V-flag by induction on n(V) := ¥, 5, dimHomg (A(b),V). If n(V) = 0
then V,, = 0 and there is nothing to do. If n(V) > 0, let A be minimal such that
dim Homg (A(b), V) # 0 for some b € By. Then Homg(L(c),V) = 0 for ¢ € B_y
and Homg (L(b),V) # 0. By applying Homg (?,V) to the short exact sequence 0 —
K — A(c) — L(c) — 0, it follows that Exty(L(c),V) = 0 for all ¢ € B<y. Then
by applying Homg (?,V) to the short exact sequence 0 — L(b) — V(b) — Q — 0, it
follows that the natural map Homg (V(b),V) — Homg (L(b), V) is surjective. Since the
right hand space is non-zero and soc V(b) = L(b), it follows that there is an injective
homomorphism f : V(b) - V. Let U := im f and W := V/U. Thus, U = V(b) and
there is a short exact sequence 0 — U — V — W — 0. Applying Homg (A(a),?) and
using the hypotheses Extz, (A(a),U) = Exty (A(a), V) = Ext% (A(a),U) = 0, we deduce
that n(W) < n(V) and Extx (A(a), W) = 0 for all @ € B. Thus we can apply induction
to prove that W, has a finite V-flag. Since V, = W,,/U it follows that V, does too, and
(a) is proved. To check (b), we let V' := 3’ _V,, and show that V' = V' by repeating
the argument from the proof of (ii)=(i) in Theorem 3.56 with A.(b) replaced by A(b),
using Claim 1 to get that Ext (A(b), V') = 0. Thus, we have proved Claim 2.

Now we complete the proof of the theorem. For b € B, let I}, := I(b). Like in the proof
of Corollary 3.57, Claims 1 and 2 imply that I, has an ascending V-flag (V,)weq with
(I, : V(c)) = [A(e) : L(b)]. By passing to a subset of  if necessary, we may assume
that all V,, are non-zero. It follows that the condition (ﬁ isc) from Theorem 3.60 is
satisfied, and R is a lower finite —-stratified category. O

Corollary 3.64. Suppose that R is a locally finite Abelian category, (A, <) is a lower
finite poset, and L : A — R is a function labelling a complete set of pairwise inequivalent
irreducible objects. Assume L(X) has both an injective hull V(X) and a projective cover
A(N) in Rex. Suppose that the following properties hold for all A\, € A:
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(i) Homg (A(X), V(X)) is one-dimensional;
(i) Extr(A(N), V(1) = Extx (A(N), V(i) = 0.
Then R is a lower finite highest weight category.

Proof. Property (i) implies that all strata are simple; cf. Lemma 3.4. Now apply the
theorem. d

Corollary 3.64 applies in particular to the category R = Rep(G) for a reductive alge-
braic group G; see §6.4. The Ext-vanishing properties in the corollary are consequences
of Kempf’s vanishing theorem; see [Janl, Prop. 11.4.13].

3.6. Refining stratifications in fully stratified categories. We end the section by
formulating a basic lemma about refinement of stratifications in fully stratified categories
in any of the settings (finite, essentially finite, upper finite or lower finite).

Definition 3.65. Let (B, L,p, A, <) be a stratification of an Abelian category R. A
refinement of it means a stratification (B, L,0,T, <) of R with the same underlying
labelling function together with a surjective function ¢ : I' = A such that the following
properties hold:

(R1) TnA=go.

(R2) p=gqoo.

(R3) For 3,7 € T, we have that 8 < 7 = q(8) < q(v) and q(8) < g(7) = B < 7.

In the setup of Definition 3.65, if one of the stratifications is admissible of one of our
four types then the other one is automatically admissible of the same type. Assuming
this is the case, take v € T' and set A := ¢(7). We have the stratum R := R<y/R<x
with quotient functor j* coming from the original stratification, and the stratum Ry =
R<~/R«~ with quotient functor j7 coming from the refined stratification®. There is also
an induced finite stratification (px,Bx,T', <, L)) on R defined by setting py := p|B,
and Ly(b) := j L(b) for each b € By. We denote the stratum of this labelled by ~
by R, with quotient functor (jx)” : Ry <y — Ra. In fact, Ry, may naturally be
identified with R, so that 57 = (jx)? o j*|z_,. Now one can denote the standard and
proper objects of R for the original stratification by

{pA(b) == jPPA(b) | A e A,be By}, {pA(b) == LA(b) | A€ A,be By},
and the standard and proper standard objects of R for the refined stratification by
{oA(b) := 5] Py (b) | yel,beB,}, {oA(b):=j]L(b) | yel,beB,}.
The standard and proper standard objects of R for its induced stratification are
{Ax(b) = (Jr)] Py(b) |be Usea—10n) B}, {Ax(0b) = (n)] L) |be Useq—1 ) B, },

and for such b we have that o A(b) = j} Ay (D), cA(b) = jPA() since 5] = 4 o (jx)].
We deduce for all b € B that

pA(b) = o A(D), aA(b) — pA(b), (3.14)
Similar notation can be introduced for the costandard objects, and one sees that
pV(b) — aV(b), oV (b) — pV(b) (3.15)

since ji = j3 o (Ja)3-

Lemma 3.66. Let R be an Abelian category equipped with an admissible stratification

(B,L,p,A,<). Let (B,L,0,T, <) be a refinement of it in the sense of Definition 3.65.
(1) If R is fully stratified with respect to the original stratification, and the strata

R are fully stratified with respect to their induced stratifications for all A € A,
then R is fully stratified with respect to the refined stratification.

4The axiom (R1) is needed so that this notation is unambiguous.
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(2) If R is fully stratified with respect to the refined stratification, and the functors
g, da : Ry — Rex are exact for all X € A, then R is fully stratified with respect
to the original stratification.

Proof. Due to the local nature of the definition of “fully stratified” in the lower finite
case, the proof reduces just to the finite, essentially finite and upper finite cases. We
assume we are in one of these three situations for the remainder of the argument.

(1) Note that the functors j' and jj are exact since they are compositions of exact
functors. In view of Lemma 3.20(iv), it remains to show that P(b) has a o A-flag with
oA(b) at the top and other sections of the form oA(c) for ¢ € B with o(c) > o(b). To
see this, let A := p(b). As R is fully stratified with respect to the original stratification,
P(b) has a pA-flag with pA(b) at the top and other sections of the form pA(c) for c € B
with p(c) > p(b). Moreover each pA(b) has a o A-flag with o A(b) at the top and other
sections of the form oA(c) for ¢ € By with o(c) > o(b); this follows by applying the
exact functor j{ to a Ay-flag in Py (b).

(2) To show that R is fully stratified with respect to the original stratification, both j
and j;k\ are exact by assumption, so it suffices to show that each P(b) has a pA-flag. This
follows because P(b) has a cA-flag and each cA(b) has a pA(b)-flag; to see the latter
assertion apply the exact functor jﬁ to a composition series of Ay (b). O

Corollary 3.67. Let R be fully stratified category with stratification (B, L,p, A, <).
Assume that each stratum Ry (A € A) is a highest weight category with weight poset
(Tx, <) and labelling function Ly. Let T' := | |,.,Tx, 0 : B = T be the bijection
such that j2L(b) = Ly(c(b)) for b € By, and < be the partial order on T defined by
o(b) < o(c) if and only if either p(b) < p(c), or X := p(b) = p(c) and o(b) <) o(c).
Then (B, L,0,T', <) is a refinement of the original stratification which makes R into a
highest weight category.

Remark 3.68. It is also interesting to consider changing the underlying partial order
on the set A. For a fully stratified category R with stratification (B, L, p, A, <), one
can always replace the given order < by the minimal order <, that is, the partial order
generated by the relation that A\ < p if [V(b) : L(c)] + [A[b] : L(c)] # 0 for some b €
B,,ce B,. Then R is also fully stratified with respect to (B, L, p, A, <) with all the same
strata, standard objects, etc.. For highest weight categories, Coulembier [Cou2], [Cou3]
has made the following elegant observation: if R is a finite Abelian, locally finite Abelian
or Schurian category, {L(\) | A € A} is a full set of pairwise inequivalent irreducible
objects, and R possesses a contravariant autoequivalence preserving isomorphism classes
of irreducible objects, then all partial orders on A making R into a highest weight
category give rise to the same minimal order. There are examples showing that this
statement is false for essentially finite highest weight categories.

4. TILTING MODULES AND SEMI-INFINITE RINGEL DUALITY

We now develop the theory of tilting objects and Ringel duality. Even in the finite
case, we are not aware of a complete exposition of these results in the existing literature
in the general e-stratified setting.

4.1. Tilting objects in the finite and lower finite cases. In this subsection, R
is a finite or locally finite Abelian category with a finite or lower finite stratification
(B,L,p,A,<), and € : A — {£} is a fixed sign function with respect to which R is a
finite or lower finite e-stratified category, respectively; see Definitions 3.7 and 3.50. By
an e-tilting object, we mean an object of the following full subcategory of R:

Tilt-(R) := A(R) n V(R). (4.1)
The following shows that the additive subcategory Tilt.(R) of R is Karoubian.
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Lemma 4.1. Direct summands of e-tilting objects are e-tilting objects.

Proof. This follows easily from the homological criteria from Theorems 3.11 and 3.14. In
the lower finite case, one needs to pass first to a finite e-stratified subcategory containing
the object in question using Theorem 3.59. d

The next goal is to construct and classify e-tilting objects. Our exposition of this
is based roughly on [Don4, Appendix|, which in turn goes back to the work of Ringel
[Rin]. There are some additional complications in the e-stratified setting.

Theorem 4.2 (Classification of e-tilting objects). Assume that R is a finite or lower
finite e-stratified category. Forb € By there is an indecomposable object T.(b) € Tilt.(R)
satisfying the following properties:
(i) T-(b) has a Ac-flag with bottom section isomorphic to A.(b);
(i) T.(b) has a V-flag with top section isomorphic to V.(b);
A _ | Pa(b) ife(N) =+
(11i) T.(b) € Rex and jT.(b) = { o) ifed) = — -
These properties determine T.(b) uniquely up to isomorphism: if U is any indecompos-
able object of Tilt-(R) satisfying any one of the properties (i)—(ii) then U =~ T_.(b);
hence, it satisfies the other two properties as well.

Proof. By replacing R by the Serre subcategory associated to a sufficiently large but
finite lower set A' in A, chosen so as to contain A and (for the uniqueness statement)
all p(b) for b such that [T : L(b)] # 0, one reduces to the case that R is a finite
e-stratified category. This reduction depends only on Theorem 3.59. Thus, we may
assume henceforth that A is finite.

Existence: The main step is to construct an indecomposable object T.(b) € Tilt.(R)
such that (iii) holds. The argument for this proceeds by induction on |A|. If A € A is
minimal, we set T.(b) := A(b) if e(\) = + or V(b) if e(A) = —. Since A(b) = L(b) = V(b)
by the minimality of A, this has both a A.- and a V.-flag. It is indecomposable, and we
get (iii) from Lemma 2.27.

For the induction step, suppose that A is not minimal and pick x4 < A that is minimal.
Let AT := A\{u},B" := p71(A"), and j : R — R" be the corresponding Serre quotient.
By induction, there is an indecomposable object T/ (b) € Tilt.(R") satisfying the analog
of (iii). Now there are two cases according to whether e(u) = + or —.

Case e(p) = +: Forany Ve R, let d (V) := ZceBM dim Ext% (A(c), V). We recursively
construct n = 0 and Ty, T1, . .., Ty, so that dy (Tp) > dy(T1) > -+ > d4(T,) = 0 and the
following properties hold for all m:

(1) T € A(R).

(2) jATm = Pa(b) if e(\) = + or I\(b) if e(A) = —.

(3) Extyr(A-(a),T;,) = 0 for all a € B\B,,.
To start with, set Ty := 571 (b). This satisfies all of the above properties: (1) follows
from Theorem 3.18(6); (2) follows because j* factors through j and we know that 77 (b)
satisfies the analogous property; (3) follows by Theorem 3.18(5). For the recursive step,
assume that we are given T,, satisfying (1), (2) and (3) and d(T},) > 0. We can find
c € B, and a non-split extension

0— Ty, — Trny1 — Ac) — 0. (4.2)

This constructs Ty, +1. We claim that dy (Tm+1) < dy(Thn) and that T, satisfies (1),
(2) and (3) too. Part (1) is clear from the definition. For (2), we just apply the exact
functor j* to the exact sequence (4.2), noting that j*A(c) = 0. For (3), take a € B\B,,
and apply the functor Homg (Ac(a),?) to the short exact sequence (4.2) to get

Exth (Ac(a), T)n) — Exth (AL (a), Tni1) — BExty (Ac(a), Ac)).
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The first and last term are zero by hypothesis and (3.10), implying Ext} (T), 41, Ve(a))
0. It remains to show dy (Tiny1) < dy(Ty). For a € B, we have Exty (A(a), A(c)) =
by (3.10), so again we have an exact sequence

Homz (A(a), A(c)) -1 Exth (A(a), Th) — Extk (A(a), Tni1) — 0.

This shows that dim Exty (A(a), Trni1) < dimExtgy(A(a), Trn), and we just need to
observe that the inequality is actually a strict one in the case a = c¢. To see this, note
that the first morphism f is non-zero in the case a = ¢ as f(ida(e)) # 0 due to the fact
that the original short exact sequence was not split. This completes the proof of the
claim. We have now defined an object T, € A.(R) such that jAT;, = Py\(b) if e(\) = +
or I (b) if e(\) = —, and moreover Ext} (A.(a),T,,) = 0 for all a € B. By Theorem 3.11,
we deduce that T,, € V.(R<)) too, hence, it is an e-tilting object. Decompose T}, into
indecomposables T;, = T, 1 @ --- @ T, . Then each T, ; is also an e-tilting object by
Lemma 4.1. Since j T}, is indecomposable, we must have that j*T), = jATm for some
unique ¢. Then we set T, (b) := T, ; for this 4. This gives us the desired indecomposable
e-tilting object.

Case e(u) = —: Let d_(V) := ZCeB“ dim Ext% (V, V(c)). This time, one recursively
constructs Ty := j, T2 (b), T4, ..., T, so that d_(Tp) > -+ > d_(T,,) = 0 and

(1) Ty € V(R).

(2') AT, = Py(b) if e(N) = + or I, (b) if e(A) = —.

(3") Exty (Tin, Ve(a)) = 0 for all a € B\B,.

Since this is this is just the dual construction to the case e(u) = + already treated, i.e.,
it is the same construction in the opposite category, we omit the details. Then, at the
end, one decomposes T}, into indecomposables T, =T, 1 ®--- DT, . By Theorem 3.14
each T, ; is an e-tilting object. Since 7}, is indecomposable, we must have that j*T;, =
j*T,.i for some unique i, and set T-(b) := Ty, ; for this .

This completes the construction of T.(b) in general. We have shown it satisfies (iii).
Let us show that it also satisfies (i) and (ii). For (i), we know by (iii) that T.(b)
belongs to R<y, and it has a A.-flag. By (3.10), we may order this flag so that the
sections A.(c) for ¢ € By appear at the bottom. Thus, there is a short exact sequence
0 - K — T.(b) > Q — 0 such that K has a A.-flag with sections A.(c) for ¢ € Bj
and j2Q = 0. Then j*K = j*T.(b). If e(\) = +, this is Py\(b). Since j* is exact and
7*A(c) = Py(c) for each c € By, we must have that K =~ A(b), and (1) follows. Instead,
if £(\) = —, the bottom section of the V-flag of K must be V(b) since jAK = I, (b) has
irreducible socle Ly (b), giving (i) in this case too. The proof of (ii) is similar.

Uniqueness: Let T := T.(b) and U be some other indecomposable object of Tilt.(R)
satisfying one of the properties (i)—(iii). We must prove that T =~ U. By the argument
from the previous paragaph, we may assume actually that U satisfies either (i) or (ii). We
just explain how to see this in the case that U satisfies (i); the dual argument treats the

0

case that U satisfies (ii). So there are short exact sequences 0 — A (b) Lu- Q1 —0
and 0 — A.(b) %> T — Q, — 0 such that Q;, Qs have A.-flags. Applying Homp (?,T)
to the first and using Extk (Qq,T) = 0, we get that Homg (U, T) — Homg (A.(b),T).
Hence, g extends to a homomorphism g : U — T. Similarly, f extends to f : T — U. We
have constructed morphisms making the triangles in the following diagram commute:

Since fogo f = f, we deduce that f o g is not nilpotent. Since U is indecomposable,
Fitting’s Lemma implies fog is an isomorphism. Similarly, so is gof. Hence, U = T. [
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Remark 4.3. Let b € By. When e(\) = +, Theorem 4.2 implies that (7. (b) : A:(b)) =1
and (T-(b) : Ac(c)) = 0 for all other ¢ € By. Similarly, when £(\) = —, we have that
(To(b) : V(b)) = 1 and (T-(b) : V.(c)) = 0 for all other c € Bj.

The following corollaries show that e-tilting objects behave well with respect to pas-
sage to lower and upper sets, extending Theorems 3.17, 3.59 and 3.18. This follows
easily from those theorems plus the characterization of tilting objects in Theorem 4.2;
the situation is just like [Don4, Lem. A4.5].

Corollary 4.4. Let R be a finite or lower finite e-stratified category and R* be the finite
e-stratified subcategory associated to a finite lower set A* of A. For be BY := p~1(A}),
the corresponding indecomposable e-tilting object of R* is T.(b) (the same as in R).

Corollary 4.5. Assume R is a finite e-stratified category and let AT be an upper set
in A with associated quotient j : R — R'. Let b e B! := p~Y(A"). The corresponding
indecomposable e-tilting object T (b) of R" satisfies T (b) =~ jT.(b). Also jT:(b) = 0 if
b¢ B,

The next result is concerned with tilting resolutions.

Definition 4.6. Assume that R is a finite or lower finite e-stratified category. An
e-tilting resolution d : Ty — V of V € R is the data of an exact sequence

RN T R VRN
such that
(TR1) T, € Tilt.(R) for each m =0,1,...;
(TR2) imd,, € V<(R) for m » 0.
Similarly, an e-tilting coresolution d : V' — T*® of V € R is the data of an exact sequence

0 1 2
0— V-7t L,

such that

(TC1) T™ e Tilt.(R) for m =0,1,...;

(TC2) coimd™ € A (R) for m » 0.

We say it is a finite resolution (resp., coresolution) if there is some n such that T,, = 0

(resp., T™ = 0) for m > n. Note in the finite case that axioms (TR2) and (TC2) are
redundant since the zero object belongs to both V.(R) and A.(R).

Lemma 4.7. Assume that R is a finite or lower finite e-stratified category.
(1) If d : Te — V is an e-tilting resolution of V € R then imd,, € V.(R) for all
m = 0. In particular, V € V.(R).
(2) If d : V. — T* is an e-tilting coresolution of V € R then coimd™ € A.(R) for
all m = 0. In particular, V € A (R).

Proof. (1) It suffices to show for any exact sequence A 4, B % C in a finite or lower
finite e-stratified category that B € V.(R) and im f € V. (R) implies img € V.(R).
Since im f = ker g, there is a short exact sequence 0 — im f — B — img — 0. Now
apply Corollary 3.13 (or Corollary 3.58).

(2) An e-tilting coresolution of V' in R is the same thing as a (—¢)-tilting resolution of
V in R°P. Hence, this follows as it is the dual statement to (1). O

Theorem 4.8 (Tilting resolutions and coresolutions). Let R be a finite or lower finite
e-stratified category and take V € R.

(1) V has an e-tilting resolution if and only if V € V.(R).

(2) V has an e-tilting coresolution if and only if V € A.(R).
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Proof. We just prove (1), since (2) is the equivalent dual statement. If V has an e-tilting
resolution, then we must have that V' € V_.(R) thanks to Lemma 4.7(1). For the converse,
we claim for V € V.(R) that there is a short exact sequence 0 — Sy — Ty — V — 0
with Sy € V.(R) and Ty € Tilt.(R). Given the claim, one can construct an e-tilting
resolution of V' by “Splicing” (e.g., see [Wei, Fig. 2.1]), to complete the proof.

To prove the claim, we argue by induction on the length >}, 5 (V : V(b)) of a V.-
flag of V. If this number is one, then V' =~ V_.(b) for some b € B, and there is a
short exact sequence 0 — Sy — Ty — V. — 0 with Sy € V.(b) and Ty := T.(b)
due to Theorem 4.2(ii). If it is greater than one, then there is a short exact sequence
0—-U —V — W — 0such that U and W have strictly shorter V.-flags. By induction,
there are short exact sequences 0 - Sy - Ty > U - 0and 0 - Sy > Tw - W — 0
with Sy, Sw € V.(R) and Ty, Tw € Tilt:(R). It remains to show that these short
exact sequences can be assembled to produce the desired short exact sequence for V.
The argument is like in the proof of the Horseshoe Lemma in [Wei, Lem. 2.2.8].

0 0 0
| I

0 Sy Ty —> U 0
| b

0 Sy Ty ——V 0 (4.3)
L 127

0 Sw Tw —F s W 0
| |
0 0 0

Since Ext%z(TW, U) =0, we can lift k: Ty — W to k: Tw — V so that k = go k. Let
Ty :=Ty®Tw and j : Ty — V be diag(fi, I%) This gives us a split short exact sequence
in the middle column in (4.3), such that the right hand squares commute. Then we let
Sy := kerj, and see that there are induced maps making the left hand column and
middle row into short exact sequences such that the left hand squares commute too. [

4.2. Finite Ringel duality. In this subsection, we review the theory of Ringel duality
for finite e-stratified categories. Our exposition is based in part on [Don4, Appendix],
which gives a self-contained treatment in the highest weight setting, and [AHLU], where
the +-highest weight case is considered assuming A = {1 < --- < n}; the survey in [Rei,
Ch. 3] is also helpful. Throughout, we assume that R is a finite e-stratified category
with the usual stratification (B, L, p, A, <).

Definition 4.9. Let R be a finite e-stratified category. By an e-tilting generator T for
R, we mean an object T € Tilt.(R) such that T has a summand isomorphic to T;(b)
for each b € B. Given such an object, we define the Ringel dual of R relative to T to be
the finite Abelian category R’ := B-modsq where B := Endg (T)°P. We also define the
two (covariant) Ringel duality functors

F := Homg(T,?): R - R/, (4.4)
G := Cohomg (T,?) = Homz (?,7)* : R — R'. (4.5)

Note for the second of these that Homg (V,T) is naturally a finite-dimensional right
B-module for V € R, hence, its dual is a left B-module.

Theorem 4.10 (Finite Ringel duality). In the setup of Definition 4.9, the Ringel dual
R’ of R relative to T is a finite (—e)-stratified category with stratification (B, L', p, A, =)
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and distinguished objects
P'(b) = FT.(b), I'(b) = GT-(b), L'(b) = hd P'(b) =~ soc I'(b),
A" _(b) = FV.(b), V(b)) = GA(b), T’ .(b) = FI(b) = GP(b).

The restrictions F': V.(R) - A_.(R’) and G : A.(R) — V_.(R’) are equivalences; in
fact, they induce isomorphisms

Exty (V1, Vo) = Exty, (FV1, FV2),  Extik (Wi, Wa) = Exty, (GW1, GW3), (4.6)
for all V; e V.(R), Wi e A(R) and n > 0.

Before the proof, we give some applications.

Corollary 4.11 (Double centralizer property). Suppose that the finite e-stratified cat-
egory R in Theorem /.10 is the category A-modgy for a finite-dimensional algebra A,
so that T is an (A, B)-bimodule. Let T' := T* be the dual (B, A)-bimodule. Then the
following holds.
(1) T' is a (—¢)-tilting generator for R' = B-mod¢q and there is an algebra isomor-
phism
2 A 5 EHdR/ (T/)Op (47)
sending x € A to u(x) : T" — T',v — vz. So the Ringel dual of R’ relative to
T’ is equivalent to the original category R.
(2) Denote the Ringel duality functors for R’ relative to T’ now by

Gy := Homg/(T',?7) : R — R, (4.8)
F* := Cohomg/(T",?) = Homg/(?,T")* : R’ — R. (4.9)

We have that F* = TQp? and G = T'®4?, hence, (F*, F) and (G,Gy) are
adjoint pairs.

Proof. (1) Note that GA is a (—¢)-tilting generator since GP(b) = T _(b) for b € B.
Actually, GA = Homa(A,T)* =~ T* = T'. Thus, T’ is a (—e)-tilting generator for
R’. Its opposite endomorphism algebra is isomorphic to A as stated since G defines an
algebra isomorphism

A = End4(A)°® 5 Endp(GA)® = Endp(T")P

(2) As F* is right exact and commutes with direct sums, a standard argument using
the Five Lemma shows that it is isomorphic to (F*B)®p? ~ T®pg?. Thus, F* is left
adjoint to F. Similarly, G =~ T'® 47 is left adjoint to G. O

The next corollary describes the strata R’ of the Ringel dual category; see also
Lemma 4.41 below. For A € A, denote the quotient functor RL, — R} by (j/)*, and
denote its left and right adjoints by (j/){ : Ry — RL, and (5/) : R} — RL,. We also
have the inclusion (i')>x : RS, — R’ with left and right adjoints (i')%, and (')} ,.

Corollary 4.12. For A € A, the strata Ry and R are equivalent. More precisely:
(1) If €(A) = + the functor Fy := (j')* o ()L 0 Foicx0j3 : Ry — R} is an
equivalence of categories taking Ly(b) = j)‘L( ) to L\ (b) = ( NAL/(b).
(2) If e(\) = — the functor Gy := (j')* o ('), 0 G oicx 0 j) : Ry — R} is an
equivalence of categories taking Ly (b) = jAL(b) to L4 (b) = (5')*L'(b).

Proof. We just prove (1), since (2) is similar. So assume that £(A) = +. We first note
that F) is exact. Indeed, j; is exact by Theorem 3.5, so it sends objects of R to objects
of R<) which have filtrations with sections V. (b) for b € By. Then we apply the exact
functor i<y followed by F', which takes short exact sequences in V.(R) to short exact
sequences in A.(R), to obtain an object of A_.(R% ). The functor (')}, is the identity
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on this subcategory, and finally (j)* is exact. Adopting the setup of Corollary 4.11, we
can also define

F .= j* oi¥yoF*o (i")sx 0 ()7 : Ry — Ra.

A similar argument to before gives that this is exact too. We complete the proof by
showing that F) and F} are quasi-inverse equivalences. Note that FY is left adjoint to
Fy. The counit of adjunction gives us a natural transformation F} o F) — Idg,. We
claim this is an isomorphism. Since both functors are exact, it suffices to prove this on
irreducible objects: we have F}(F\Lx (b)) = F¥L\(b) = Lx(b). Similar argument shows
that the unit of adjunction is an isomorphism in the other direction. O

Corollary 4.13. Let R be a finite e-stratified category.
(1) AllV € V.(R) have finite e-tilting resolutions if and only if all positive strata
are of finite global dimension.
(2) AllV € A (R) have finite e-tilting coresolutions if and only if all negative strata
are of finite global dimension.

Proof. We just explain the proof of (1). By Theorem 4.10, all V € V.(R) have finite
e-tilting resolutions if and only if all V' € A__(R’) have finite projective resolutions. By
Lemma 3.23(1), this is equivalent to all negative strata of the (—e)-stratified category
R’ are of finite global dimension. Equivalently, by Corollary 4.12, all positive strata of
the e-stratified category R are of finite global dimension. O

Corollary 4.14. If R is a finite +-stratified (resp., —-stratified) category then all
Ve A(R) (resp., V € V(R)) have finite +-tilting coresolutions (resp., finite —-tilting
resolutions).

The next theorem is a consequence of Happel’s tilting theory for finite-dimensional
algebras. To prepare for this, we explain the connection between e-tilting objects in our
setting and the general notions of tilting and cotilting modules from that theory; e.g.,
see [Hap], [Rei]. Suppose that R = A-modgq is a finite e-stratified algebra for a finite-
dimensional algebra A, and let T be an e-tilting generator for R. If all negative strata
are of finite global dimension (this assumption being vacuous in the case € = +) then T'
is a tilting module in the sense of tilting theory; if all positive strata are of finite global
dimension (this assumption being vacuous in the case e = —) then T is a cotilting module.
These assertions follow using Theorem 3.11 to see that Ext%a(T, T) = 0, Lemma 3.23
to see that pdT < oo or idT < o0, and Corollary 4.13. Without assumptions on the
global dimensions of strata, T' need not be tilting or cotilting, but Theorem 4.8 implies
that it is still an example of a Wakamatsu tilting module® as defined in [BR, Ch. 3J;
see also [Rei, §4.1]. The WT-conjecture formulated in [BR, Ch. 3] is the assertion that
any Wakamatsu tilting module of finite projective (resp., injective) dimension is tilting
(resp., cotilting). This motivates the following conjecture in our special situation; we
will prove this assuming a mild additional hypothesis on strata in Lemma 4.38 below.

Conjecture 4.15 (¢T-conjecture). Suppose that R is a finite fully stratified category
and ¢ is a given sign function. For b € B, the e-tilting module T;(b) is of finite projective
(resp., injective) dimension if and only if T (b) belongs to Tilt(R) (resp., Tilt_(R)).
Let RF and LG be the total derived functors of the Ringel duality functors. These
are triangulated functors between the bounded derived categories D*(R) and D*(R’).

Theorem 4.16 (Derived equivalences). Let R’ be the Ringel dual of a finite e-stratified
category R. Assume that all negative strata (resp., all positive strata) of R are of finite
global dimension. Then RF : D*(R) — D®(R’') (resp., LG : D*(R) — D®(R’)) is an

5With this in mind, the fact that the map (4.7) is an isomorphism could also be deduced from [Wak,
Cor. 2].
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equivalence of triangulated categories. Moreover, if R is of finite global dimension, then
sois R'.

Proof. Assuming R has finite global dimension, this all follows by [Hap, Lem. 2.9,
Th. 2.10]; the hypotheses there hold thanks to Corollary 4.13. To get the derived
equivalence without assuming R has finite global dimension, we cite instead Keller’s ex-
position of Happel’s result in [Kel, Th. 4.1], since it assumes slightly less; the hypotheses
(a) and (c) there hold due to Corollary 4.13(2) and Lemma 3.23(1). O

Corollary 4.17. If R is +-highest weight (resp., —-highest weight) and R’ is the Ringel
dual relative to a +-tilting generator (resp., —tilting generator), then RF : D¥(R) —
DY(R') (resp., LG : D*(R) — D®(R’)) is an equivalence.

Proof of Theorem 4.10. This follows the same steps as in [Don4, pp.158-160]. Assume
without loss of generality that R = A-modgq for a finite-dimensional algebra A. For
each b € B, let f,, € B = Endg(T)°? be an idempotent such that Tf, =~ T.(b). Then
P'(b) := Bfy is an indecomposable projective B-module and the modules

{L'(b) := hd P'(b) |be B}

give a full set of pairwise inequivalent irreducible left B-modules. Since R’ is a finite
Abelian category, it is immediate that (B, L', p, A, >) is a stratification of it. Let A’ _(b)
and V' _(b) be the (—¢)-standard and (—¢)-costandard objects of R’ defined from this
stratification. Set V(b) := FV.(b).

Step 1: For b € B we have that P'(b) =~ FT.(b). This follows immediately from the
equality Hom (7, T) f, = Hom (T, T f3).

Step 2: The functor F sends short exact sequences of objects in V.(R) to short exact
sequences in R'. This follows because Exth (T,V) = 0 for V € V.(R) by the usual
Ext!-vanishing between A.- and V. -filtered objects.

Step 3: For a,b € B, we have that [V(b) : L'(a)] = (T-(a) : A.(b)). The left hand side
is dim f,V(b) = dim f, Homu (T, V(b)) =~ dim Hom(T:(a), V<(b)), which equals the
right hand side.

Step 4: V(b) is a non-zero quotient of P’ (b), thus, hd V(b) = L'(b). By Theorem 4.2(i),
there is a short exact sequence 0 —> K — T.(b) — V.(b) — 0 with K € V.(R). Hence,
Step 2 implies that V' (b) is quotient of P’(b). It is non-zero by Step 3.

Step 5: We have that V(b) = A”__(b). Let A := p(b). We treat the cases ¢(A) = + and
g(A\) = — separately. If e(A) = + we must show that V' (b) is the largest quotient of P’(b)
with the property that [V(b) : L'(a)] # 0 = p(a) = p(b). We have already observed
in Step 4 that V(b) is a quotient of P’'(b). Also (T-(a) : A (b)) # 0 = p(b) < p(a) by
Theorem 4.2(iii). Using Step 3, this imples that V'(b) has the property [V (b) : L'(a)] #
0 = p(a) = p(b). It remains to show that any strictly larger quotient of P’(b) fails this
condition. To see this, since £(\) = +, a V.-flag in T, (b) has V.(b) at the top and other
sections V. (c) for ¢ with p(c) < p(b). In view of Step 4, any strictly larger quotient of
P’(b) than V' (b) therefore has an additional composition factor L'(c) arising from the
head of V(¢) for some ¢ with p(c) < p(b).

Instead, if e(\) = —, we use the characterization of A’ _(b) from Lemma 3.1(1): we
must show that V(b) is the largest quotient of P’(b) with the property that [rad V(b) :
L'(a)] # 0 = p(a) > p(b). Since e(A) = —, we have that (T.(b) : V(b)) = 1 and

(T-(b) : Ve(a)) # 0 = p(a) < p(b) for a # b. Hence, using Step 3 again, the quotient
V(b) of P'(b) has the required properties. A V.-flag in T.(b) has V.(b) at the top and
other sections V.(c) for ¢ with p(c) < p(b). So any strictly larger quotient of P’(b) than
V' (b) has a composition factor L'(c) arising from the head of V' (¢) for ¢ with p(c) < p(b).
In case ¢ = b, this violates the requirement that the quotient has L’(b) appearing with
multiplicity one; otherwise, it violates the requirement that all other composition factors
of the quotient are of the form L’(a) with p(a) > p(b).
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Step 6: R’ is a finite (—e)-stratified category. In view of Step 5, it suffices to show that
P’(b) has a filtration with sectons V' (¢) for ¢ with p(c) < p(b). Since T (b) has a V.-flag
with sections V.(c) for ¢ with p(c) < p(b), this follows using Steps 1 and 2.

Step 7: For any U € Tilt-(R) and V € R, the map f : Hom(U,V) — Homp(FU, FV)
induced by F is an isomorphism. It suffices to prove this when U = T, so that the right
hand space is Homp (B, FV) and FV = Hom (T, V). This special case follows because
f is the inverse of the isomorphism Hompg (B, FV) — FV,0 — 0(1).

Step 8: For any V,W € V.(R) and n = 0, the functor F induces a linear isomorphism
Exty (V,W) = Exth, (FV, FW). Take an e-tilting resolution d : Ty — V in the sense of
Definition 4.6, which exists thanks to Theorem 4.8. The functor F takes this resolution
to a complex
-—> FTy — F1y — FV — 0.

In fact, this complex is exact. To see this, take m > 0 and consider the short exact
sequence 0 — kerd,, — T,, — imd,, — 0. All of kerd,,, T,, and imd,, have V_-flags
due to Lemma 4.7(1). Hence, thanks to Step 2, we get a short exact sequence

0 —> F(kerdy,) —> FT,, -2 F(imd,,) — 0

on applying F. Since F is left exact, the canonical map F(imd,,) — FT,,—1 is a
monomorphism. Its image is all § : T — T,,,_; with image contained in imd,,. As p is
an epimorphism, any such 6 can be written as d,, o ¢ for ¢ : T — T,,, i.e., 0 € im(Fd,,).
Thus, F(imd,,) = im(Fd,,), and 0 — ker(Fd,,) — FT,, — im(Fd,,) — 0 is exact, as
required. In view of Step 1, we have constructed a projective resolution of F'V in R’:

-—> FTy — F1y — FV — 0.

Next, we use the projective resolution just constructed to compute Ext%, (FV, FI)
for any injective I € R. We have a commutative diagram

0 — Homg(V,I) —— Homg(Ty,I) —— Homg (Ty,I) —— - --

lf lfo lfl
0—— HOHIR/(F‘/,FI) E— HOIIIR/(FT()7FI) E— HOHIR/(FTl,FI) —_

with vertical maps induced by F. The maps fq, f1,... are isomorphisms due to Step 7.
Also the top row is exact as [ is injective. We deduce that the bottom row is exact at
the positions Homg/ (FT,,, FI) for all m > 1. Tt is exact at positions Homg/ (FV, FI)
and Homg/(FTy, FI) as Homg/ (7, FI) is left exact. Thus, the bottom row is exact
everywhere. So the map f is an isomorphism too and Ext%, (FV, FI) = 0 for n > 0.

Finally, take a short exact sequence 0 - W — [ — @ — 0 in R with I injective.
We have that @ € V.(R) by Corollary 3.13. Hence, using Step 2 and the previous
paragraph, there is a commutative diagram

Homg (V, W) «———— Homg (V, I) ———— Homg (V, Q) —— Exty (V, W)
Js J» J» I
Homg/ (FV, FW) —— Homg/(FV, FI) —— Homg/ (FV, FQ) — Exty,(FV, FW)
with exact rows. As f is an isomorphism, we get that f; is injective. Since this is
proved for all W, this means that fs is injective too. Then a diagram chase gives that

f1 is surjective, hence, f3 is surjective and f4 is an isomorphism. Degree shifting now
gives the isomorphisms Ext% (V, W) = Extf, (FV, FW) for n > 2 as well.

Step 9: We have that T” _(b) =~ FI(b). By Steps 5 and 8, we get that
Extr, (A _(a), FI(b)) = Exty (V.(a),I(b)) =0
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for all a € B. Hence, by the homological criterion for V_.-flags in the (—¢)-stratified
category R', the A-module FI(b) has a V_.-flag. Tt also has a A_.-flag with bottom
section isomorphism to A’ _(b) due to Steps 2 and 5. So FI(b) € Tilt_.(R'). It is
indecomposable as Endg/(FI(b)) = Endg(I(b)) by Step 8, which is local. Therefore
FI(b) =T’ _(b) due to Theorem 4.2(i).

Step 10: The restriction F : V.(R) — A_.(R’) is an equivalence of categories. It is full
and faithful by Step 8. It remains to show that it is dense, i.e., for any V' € A_.(R’)
there exists V € V. (R) with FV =~ V’. The proof of this goes by induction on the length
of a A_.-flag of V’. If this length is one, we are done by Step 5. For the induction step,
consider V' fitting into a short exact sequence 0 — U’ — V' — W’ — 0 for shorter
U, W' e A_.(R’). By induction there are U,W € V.(R) such that FU =~ U’ and
FW =~ W’. Then we use the isomorphism Extl, (FW, FU) = Exty (W,U) from Step 8
to see that there is an extension V of U and W in R such that FV >~ V.

Step 11: The dual right A-module T* to T is a (—¢)-tilting generator for R°P = mod-A
such that End s (T*)°P = B°P. Moreover, letting F°P := Homa(T*,?7) : modg-4 —
mod-B be the corresponding Ringel duality functor, we have that G =7* o F°Po7*,
The first statement is clear from Theorem 3.9, observing that End 4 (T*)°P =~ End4(T)
since * : A-modgg — mod¢g-A is a contravariant equivalence. It remains to observe that
%0 F°P o x =~ Homu (T, 7%)* >~ Homu (7, 7)* = G.

Step 12: The restriction G : A (R) — V_.(R') is an equivalence of categories inducing
isomorphisms as in (4.6), such that GT.(b) = I'(b), GA.(b) = V' _(b) and GP(b) =
T’ _(b). This follows using Step 11 and the analogs for F°P of the statements about F'
establishd thus far. g

4.3. Tilting objects in the upper finite and essentially finite cases. Throughout
the subsection, R will be either be an upper finite or an essentially finite e-stratified
category with the usual stratification (B, L, p, A, <). It is still possible to make sense of &-
tilting objects but now the iterative procedure used to construct the indecomposable ones
in the proof of Theorem 4.2 does not terminate after finitely many steps. Consequently,
we must allow for tilting objects which have infinite A.- and V.-flags; see (6.6) below
for a baby example of this phenomenon.

Suppose to start with that R is an upper finite e-stratified category. Using the notions
of ascending A.-flags and descending V.-flags introdued in Definition 3.35, we set

Tilt-(R) := A®(R) n VI¢(R). (4.10)

We emphasize that objects of Tilt.(R) are in particular objects of R, so all of their com-
position multiplicities are finite. Like in Lemma 4.1, Tilt.(R) is an additive Karoubian
subcategory of R.

Theorem 4.18 (Classification of tilting objects in the upper finite case). Assume that
R is an upper finite e-stratified category. For b € By, there is an indecomposable object
T.(b) € Tilt-(R) satisfying the following properties:
(i) T-(b) has an ascending A.-flag with bottom section® isomorphic to A.(b);

(ii) Te(b) has a descending V.-flag with top section” isomorphic to V.(b);

(iii) T.(b) € Rex and j To(b) = { f((:; gzgig -t
These properties determine T (b) uniquely up to isomorphism: if T is any indecomposable
object of Tilt-(R) satisfying any one of the properties (i)—(iii) then T =~ T.(b); hence,
it satisfies the other two properties as well.

6We mean that there is an ascending Ac-flag (Vi,)weq in which Q has a smallest non-zero element 1
such that Vi = A.(b).
"Similarly, we mean that V/Vi = V<(b).
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Proof. Existence: Replacing R by R« if necessary and using Theorem 3.41, we reduce
to the special case that A is the largest element of the poset A. Assuming this, the first
step in the construction of T.(b) is to define a direct system (V,,),eq of objects of R.
This is indexed by the directed set €2 of all finite upper sets in A. Let Vz := 0. Then take
@ # w € Q and denote it instead by AT. Letting j : R — R' be the corresponding finite
e-stratified quotient of R, we set V,, := jiTJ (b). By Theorem 3.42(6), this has a A.-flag.
Given also w < v € £, i.e., another upper set A" containing A", let k : R — R" be
the corresponding quotient. Then j factors as j = jo k for an induced quotient functor
7:R"™ — R". Since 77" (b) = TJ (b) by Corollary 4.5, we deduce from Corollary 3.19(2)
that there is a short exact sequence
0 — JTI(B) — TI (D) — Q@ — 0

such that @ has a A -flag with sections A" (c) for ¢ with p(c) € AT\A". Applying ki and
using the exactness from Theorem 3.42(6) again, we deduce that there is an embedding
fr:V, — V,, with coker Y € A.(R). Thus, we have a direct system (V,,),eq. Now let
T.(b) := lim V,, € Ind(R.). Using the induced embeddings f, : Vi, < T.(b), we identify
each V,, with a subobject of T.(b). We have shown for w < v that V,,/V,, € A.(R) and,
moreover, jV, = jV,, where j : R — R is the quotient associated to w.

In this paragraph, we show that T.(b) actually lies in R rather than Ind(R.), i.e., all
of the composition multiplicities [T%(b) : L(c)] are finite. To see this, take ¢ € B. Let
w = AT € Q be some fixed finite upper set such that p(c) € AT, and j : R — R be the
quotient functor as usual. Then for any v > w we have that

[V : L(c)] = [jVo : L(e)] = [1Vio : LT(0)] = [Veo : L(<)]-
Hence, [T:(b) : L(c)] = [V., : L(c)] < o0.

So now we have defined T¢(b) € R together with an ascending A -flag (V,)weq. The
smallest non-empty element of  is w := {A}, and V,, = j}Py(b) = A.(b) if e(N) = +,
or j]IL(b) if e(A) = —. Since jAT.(b) = j*V,,, we deduce that (iii) holds. Also by
construction T, (b) has an ascending A.-flag. To see that it has a descending V.-flag,
take any a € B. Let w = AT € Q be such that p(a) € AT. Then A (a) = 51Al(a) and
JjT:(b) = jV,, = T (b), so by Theorem 3.42(5) we get that

Extr (Ac(a), T (D)) = Exty (Al(a), T1 (b)) = 0.

By Theorem 3.39, this shows that T.(b) € VI¢(R).

Note finally that T (b) is indecomposable. This follows because j7.(b) is indecompos-
able for every j : R — R' (adopting the usual notation). Indeed, by the construction we
have that j7.(b) =~ T/ (b) This completes the construction of the indecomposable object
T.(b) € Tilt:(R). We have shown that it satisfies (iii), and it follows easily that it also
satisfies (i) and (ii).

Uniqueness: Since (iii) implies (i) and (ii), it suffices to show that any indecomposable
U € Tilt.(R) satisfying either (i) or (ii) is isomorphic to the object T := T.(b) just
constructed. We explain this just in the case of (i), since the argument for (ii) is similar.
We take a short exact sequence 0 — A, (b) > T — Q — 0 with Q € A2*°(R). Using the
Ext-vanishing from Lemma 3.36, we deduce like in the proof of Theorem 4.2 that the
inclusion f : A.(b) < T extends to f : U — T. In fact, f is an isomorphism. To see
this, take a finite upper set AT containing A and consider the quotient j : R — R as
usual. Both jU and jT are isomorphic to T] (b) by the uniqueness in Theorem 4.2. The
proof there implies that any homomorphism j7T' — jU which restricts to an isomorphism
on the subobject Al(b) is an isomorphism. We deduce that j f is an isomorphism. Since
holds for all choices of AT, it follows that f itself is an isomorphism. O

Corollary 4.19. Any object of Tilt-(R) is isomorphic to @, g T= ()" for unique
multiplicities ny € N. Conversely, any such direct sum belongs to Tilt.(R).
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Proof. Let us first show that any direct sum U := @, g T (b)®"* belongs to Tzlt (R).
The only issue is to see that U actually belongs to R rather than Ind(R.), i.e., it has
finite composition multiplicities. But for a given ¢ € B, the multiplicity [T (b ) L(c)]
is zero unless p(c) < p(b). There are only finitely many such b € B, so [U : L(¢)] =
e Ml T=(b) : L(c)] < oo

Now take any U € Tilt.(R). Let Q be the directed set of all finite upper sets in A.
Take w = AT € Q. Let j : R — R' be the quotient functor as usual. Then we have that
jU € Tilt-(R"), so it decomposes as a finite direct sum as jU =~ @, g: T2 ()& «)
for ny(w) € N. There is a corresponding direct summand 7., = @, g+ T=(b)®™«) of
U. Then T = limT,,. Moreover, for b € B’, the multiplicities ny(w) are stable in the
sense that ny(v) = ny(w) for all v > w. We deduce that U =~ P, g T-(b)®"* where
nyp := np(w) for any sufficiently large w. O

It remains to discuss tilting objects in the essentially finite case. So now we assume
that R is an essentially finite e-stratified category with stratification (B, L, p, A, <).
Since A is interval finite, finite unions of lower sets of the form (—o0,\] are upper
finite. If R' is the Serre subcategory of R associated to such an upper finite lower set
then its Schurian envelope Env(R') in the sense of Lemma 2.22 is a Cartan-bounded
upper finite e-stratified category which is naturally embedded into Env(R). This follows
from Theorem 3.17. For b € B, we define the corresponding e-tilting object T.(b) €
Env(R) as follows: pick any upper finite lower set A' such that p(b) € A', let R*
be the corresponding Serre subcategory of R, then let T.(b) be the e-tilting object in
Env(R*) from Theorem 4.18. This is well-defined independent of the choice of A* by the
uniqueness part of Theorem 4.18. Thus, we have defined the indecomposable e-tilting
objects {T.(b) |b € B} in the essentially finite case too, although these may be of infinite
length, i.e., in general they belong to Env(R) rather than to R itself.

Definition 4.20. Suppose that R is a lower finite, upper finite or essentially finite e-
stratified category with the usual stratification. We say that it is tilting-bounded if the
matrix

(dim Homg (1% (a), T (b)) , yen (4.11)

has finitely many non-zero entries in each row and each column.

The matrix (4.11) is analogous to the Cartan matrix (2.23) with projectives/injectives
replaced by e-tilting objects. In the lower finite case, all entries of this matrix are
obviously < oo, but in the upper finite or essentially finite cases it is possible that some
of these dimensions are c0. However they are all finite in the tilting-bounded case:

Lemma 4.21. If R is tilting-bounded then the spaces Homg (T.(a),T-(b)) are finite-
dimensional for all a,b e B.

Proof. In the lower finite case, the indecomposable tilting objects are of finite length,
so these spaces are finite-dimensional even without the assumption that R is tilting-
bounded. In the remaining upper finite or essentially finite cases, we have that

dim Homg (7% (a), T (b)) = Z (T-(a) : Ve (c))(T:(b) : Ac(c)) € N U {oo}. (4.12)

ceB

All of the multiplicities (T:(a) : Ve(¢)) and (T.(b) : A.(c)) are finite. Moreover, if
(T:(a) : Ac(c)) # 0 then Homg (T:(a), Te(c¢)) # 0. Hence, assuming the tilting-bounded
hypothesis, only finitely many of the terms in the sum on the right hand side are non-
Z€ro. 0

Assuming R is an essentially finite e-stratified category once again, assume that R is
also tilting-bounded. Then the e-tilting objects T.(b) actually belong to

Tilte(R) i= Ac(R) A V(R), (4.13)
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i.e., they belong to R rather than to Env(R) of R. Thus, we are in a similar situation to
(4.1). Theorem 4.2 carries over easily, to show that {7.(b) | b € B} gives a full set of the
indecomposable objects in the additive Karoubian category Tilt.(R). The construction
of Theorem 4.8 also carries over unchanged. So all objects of V. (R) have e-tilting
resolutions and all objects of A.(R) have e-cotilting resolutions.

Remark 4.22. Most of the interesting examples of essentially finite highest weight cat-
egories which arise “in nature” seem to satisfy the tilting-bounded hypothesis, although
there is no reason for this to be the case from the recursive construction of Theorem 4.18.
We refer the reader to Remark 6.2 for an example which is not tilting-bounded.

Remark 4.23. The tilting-bounded hypothesis is also interesting in the lower finite
case; see Corollary 4.28 below. Using (4.12), it is easy to see in the lower finite case that
R is tilting-bounded if and only if for each b € B the multiplicities (T:(a) : Az (b)) and
(T(a) : V(b)) are zero for all but finitely many a € B. Natural examples of lower finite
highest weight categories which are definitely not tilting-bounded include the categories
Rep(G) for reductive groups G (unless this is actually a semisimple category), as follows
from the results in [Coul, §5]. In situations involving quantum groups at roots of
unity, tilting-boundedness can be checked combinatorially by considering properties of
Kazhdan-Lusztig polynomials; e.g., see [Soe], [Str].

4.4. Semi-infinite Ringel duality. Now we extend Ringel duality to lower finite and
upper finite e-stratified categories. The situation is not as symmetric as in the finite
case and demands different constructions when going from lower finite to upper finite
or from upper finite to lower finite. If we start with a lower finite e-stratified category,
the Ringel dual is an upper finite (—¢)-stratified category:

Definition 4.24. Let R be a lower finite e-stratified category with the usual stratifica-
tion (B, L, p, A, <). An e-tilting generator for R is an object T' = @,.; T; € Ind(R) with
a given decomposition as a direct sum of objects T; € Tilt.(R) such that each T.(b) is
isomorphic to a summand of T. Define the Ringel dual of R relative to T = P._,; T; to
be the Schurian category R’ := A-modtq where

A= ((—D HOIHR(TZ‘,T]‘)> .

i,5€l

el

Identifying Ind(R.) with A-mod as explained in (2.3), we have the Ringel duality functor
F := @ Homg(T;,?) : Ind(R) — Ind(RY). (4.14)
iel

This functor takes objects of R to objects of R’.

Theorem 4.25 (Lower to upper semi-infinite Ringel duality). In the setup of Defini-
tion 4.24, R’ is an upper finite (—e)-stratified category with stratification (B, L', p, A, >)
and distinguished objects
P'(b) = FT.(b), L'(b) = hd P'(b),
A'_(b) = FV.(b), T _(b) = FI(b).
The restriction F : V¥¢(R) — A*S(R’) is an equivalence of categories.

The proof will be explained later in the subsection.
In the other direction, if we start from an upper finite e-stratified category, the Ringel
dual is a lower finite (—¢)-stratified category:

Definition 4.26. Let R be an upper finite e-stratified category with the usual strat-
ification (B, L, p,A,<). An e-tilting generator is an object T € Tilt.(R) such that
T.(b) is isomorphic to a summand of T for every b € B. Let C := Coendg(T) be
the coalgebra that is the continuous dual of the pseudo-compact topological algebra
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B := Endg (T)°P; see Lemma 2.10. Then the Ringel dual of R relative to T is the cat-
egory R’ := comodg-C' = B-modgy. Recalling Lemma 2.11, the Ringel duality functor
is

G := Cohomp (T,?) = Homg (?,T)* : Ind(R.) — Ind(R’), (4.15)
which sends finitely generated objects of R to objects of R’.

Theorem 4.27 (Upper to lower semi-infinite Ringel duality). In the setup of Defini-
tion 4.26, R’ is a lower finite (—¢)-stratified category with stratification (B, L, p, A, >)
and distinguished objects

I'(b) = GT.(b), L' (b) = soc I'(b),
V_.(b) = GAL(b), T' _(b) = GP(b).
The restriction G : A2°(R) — V*¢(R') is an equivalence of categories.

Again the proof will be explained later.

We proceed to formulate several consequences of Theorems 4.25 and 4.27. The first is
concerned with a special case. Recall the definition of Cartan-bounded from just before
Lemma 2.22; and the definition of tilting-bounded from Definition 4.20.

Corollary 4.28. The Ringel dual of a tilting-bounded lower finite e-stratified category
is a Cartan-bounded upper finite (—e)-stratified category. Conversely, the Ringel dual
of a Cartan-bounded upper finite e-stratified category is a tilting-bounded lower finite
(—e)-stratified category.

Proof. From either Theorem 4.25 or Theorem 4.27, it follows that the Cartan matrix
(2.23) for the upper finite category is equal to the matrix (4.11) for the lower finite
category. O

The next two corollaries give the analogs of the double centralizer property from
Corollary 4.11 in the semi-infinite setting.

Corollary 4.29 (Lower to upper double centralizer property). Let notation be as in
Definition 4.24. Assume in addition that R = comodg-C' for a coalgebra C. Let B :=
C* be the dual algebra, so that T is a (B, A)-bimodule. Let T' := T® be the dual
(A, B)-bimodule.

(1) T is a (—e)-tilting generator for R’ and there is an algebra isomorphism

J2n B = EndR/ (T/)Op (416)
sending y € B to u(y) : T — T',v — vy. Equivalently, there is a coalgebra
isomorphism

p* : Coendg/ (1) = C, s &) (4.17)

where cgfl is the element of Coendg/(T") corresponding to vgi) ® u,(ni) e, QTF

according to (2.13) for dual bases vgi), e ,v((;()i) for T; and ugi), . ,ufli()i) for T,
and 67(2 € C is defined so that the structure map of the right C-comodule T;
sends vgl) — Zgg vf«l) ®é7(~12 So the Ringel dual of R’ relative to T’ in the sense
of Definition 4.26 is equivalent to the original category R.
(2) Denote the Ringel duality functor for R’ relative to T" now by
F* := Cohomg/(T",?) = Homg/(?,7")* : Ind(R.) — Ind(R). (4.18)
We have that F* =~ T®a?, hence, (F*, F) is an adjoint pair; cf. Lemma 2.11.

Proof. By Lemma 2.2, we have natural isomorphisms Hom¢ (T}, C) = T;* as right B-
modules, hence, FC =~ T" as an (A, B)-bimodule. Since every I(b) appears as a summand
of the regular comodule, and FI(b) = T” _(b) by Theorem 4.25, we deduce that 7" is a
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(—e)-tilting generator for R’. To see that B = End 4(7")°P, we use the fact that F is an
equivalence on V-filtered objects to deduce that

End 4 (7")°P =~ End4(FC)° =~ End¢(C) ~ B,

using Lemma 2.2 again for the final algebra isomorphism. This produces the isomor-
phism p. To deduce (4.17), we need to show that p* (cgll) and E,(nfs take the same value
on y € B. The left hand side gives c%(,u(y)) = ) (ugi)b). For the right hand side,
we have that yvgi) = Zf(:l)l Es«fg(y)v,(f), SO c%(y) = (yvgi))uﬁi). These are equal. This
establishes (1). Then (2) follows from Lemma 2.11. O

Corollary 4.30 (Upper to lower double centralizer property). Let notation be as in Def-
inition 4.26, and assume in addition that R = A-modjsq for a locally finite-dimensional
locally unital algebra A = @, ;cre;Aej. Let Ty = &1 and T := T}, so that T :=
@, I =T®. This is a (B, A)-bimodule.
(1) T' = @,;c; T} is a (—e)-tilting generator for R' and there is an algebra isomor-
phism
op
p:A>S (@ HomR/(Ti’,Tj{)> (4.19)
i,5€l
sending a € e;Ae; to p(a) : T — Tj,v — va. So the Ringel dual of R’ relative
to T in the sense of Definition 4.2/ is equivalent to the original category R.
(2) Denote the Ringel duality functor for R’ relative to T" now by
Gy = @HomRI(Ti’, ?) : Ind(R’) — Ind(R.). (4.20)
iel
We have that G =~ T'®4?, hence, (G,Gy) is an adjoint pair.
Proof. Note that G(Ae;) = Homa(Ae;, T)* = (e;T)* = T;. So Theorem 4.27 implies

that T' = @,,; T; is a (—¢)-tilting generator for R'. Moreover,
Homg,/ (T;,T;) = Homg/ (G (Ae;), G(Ae;)) = Homp (Ae;, Ae;) = e;Ae;.
This proves (1) and then (2) follows from Lemma 2.11. O

Remark 4.31. Combining Corollary 4.28 with the double centralizer properties just
explained, one obtains a restricted version of semi-infinite Ringel duality giving a corre-
spondence

Tilting-bounded lower finite Ringel duality Cartan-bounded upper finite
highest weight categories highest weight categories ’

In the upper finite to lower finite direction, this appeared already in the work of Marko
and Zubkov [MZ]. In more detail, if R is the category of finite-dimensional modules over
a descending quasi-hereditary pseudo-compact algebra in the sense of [MZ, Def. 3.19]
and the indecomposable projectives in R are of finite length as assumed in [MZ, §4],
then R is an essentially finite highest weight category with upper finite weight poset,
hence, Env(R) is a Cartan-bounded upper finite highest weight category. In this case,
the indecomposable tilting modules T'(A) € Env(R) were constructed already in [MZ,
84], and the appropriate (lower finite) Ringel dual category appears in [MZ, §6]. Also
[MZ, Lem. 6.5] establishes a double centralizer property which is equivalent to Corol-
lary 4.30(1) for such categories.

In the setup of Definition 4.24, one can also define a functor
G := Cohomp (T,?) = Homg (?,T)® : A.(R) - V_.(R'). (4.21)

Theorem 4.25 plus an argument with duality like in Steps 11-12 of the proof of Theo-
rem 4.10 shows that G is an equivalence of categories such that GA.(b) = V' _(b) and
GT.(b) = I'(b) for all b € B. Likewise, in the setup of Definition 4.26, one can also define

F := Homg (T,7?) : Ac(R) — V_.(R). (4.22)
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Theorem 4.27 plus an argument involving duality shows that F' is an equivalence of
categories such that FI(b) = T’ _(b) and FV.(b) = A’ _(b) for all b € B. These func-
tors are needed to formulate the following, which is the semi-infinite counterpart of
Corollary 4.12. The proof is similar to the finite case; see also Lemma 4.41 below.

Corollary 4.32. If R is a lower finite or an upper finite -stratified category and R’ is
the Ringel dual category relative to some e-tilting generator as above, the strata Ry and
R are equivalent for all X\ € A. More precisely:
1) If e(\) = + the functor F\ := (j')* o (i')L, 0 Foi<y0j) : Rx — R, is an
(1) j A <\ 0Tk A
equivalence of categories taking Ly(b) = jAL(b) to L) (b) = () L' (b).
(2) If e(N) = — the functor Gy := (j')* o (i')%, 0 Goicx 0 j) : Ra — R} is an
equivalence of categories taking Ly (b) = jAL(b) to L) (b) = (5')*L'(b).

In view of Corollary 4.4, Corollary 4.13 can be applied also in any lower finite e-
stratified category (without any need to appeal to semi-infinite Ringel duality). In par-
ticular, if R is a lower finite +-stratified (resp., —-stratified) category then all V e V(R)
(resp., V € A(R)) have finite —-tilting resolutions (resp., finite +-tilting coresolutions).
Using Theorem 4.25, one sees that this assertion is equivalent to Lemma 3.43.

We have not investigated derived equivalences or any analog of Theorem 4.16 in the
semi-infinite setting.

Proof of Theorem 4.25. We may assume that R = comodg-C' for a coalgebra C. Let
B := C* be the dual algebra, so that R is identified also with B-mod¢;. We can
replace the e-tilting generator T' = @, ; T; with any other. This just has the effect of
transforming A into a Morita equivalent locally unital algebra. Consequently, without
loss of generality, we may assume that I = B and T' = @), _g T=(b). Then

op
A= ( &) HomR(TE(a),TE(b)>
a,beB

is a pointed locally finite-dimensional locally unital algebra with (primitive) distin-
guished idempotents {e, | b € B}. Let P'(b) := Aep and L'(b) := hd P'(b). Then
R’ = A-modjsq is a Schurian category, the A-modules {L'(b) | b € B} give a full set
of pairwise inequivalent irreducible objects, and P’(b) is a projective cover of L’(b)
in Ind(R,) = A-mod. It is immediate that (B,L’,p,A,>) is a stratification of R'.
Let A’ _(b) and V' _(b) be its (—¢)-standard and (—e)-costandard objects. Also let
V(b) := FV.(b). Now one checks that Steps 1-6 from the proof of Theorem 4.10 carry
over to the present situation with very minor modifications. We will not rewrite these
steps here, but cite them freely below. In particular, Step 6 establishes that R’ is an
upper finite (—¢)-stratified category. Also, F'V.(b) = A’ _(b) by Step 5. It just remains
to show:

e F restricts to an equivalence of categories between V25¢(R) and A*¢(R’).

e FI(b) =T’ _(b), the indecomposable (—¢)-tilting object of R’ labelled by b € B.
This requires some different arguments compared to the ones from Steps 7-10 in the
proof of Theorem 4.10.

Let © be the directed poset consisting of all finite lower sets in A. Take w = A' € Q.
Let V. (R,w) be the full subcategory of V.(R) consisting of the V.-filtered objects with
sections V. (b) for b € B := p~1(A'). Similarly, we define the subcategory A_.(R’,w)
of A_.(R’). By Steps 2 and 5, F restricts to a well-defined functor

F:V.(R,w) > A_(R,w). (4.23)

We claim that this is an equivalence of categories. To prove it, let i : R* — R be the
finite e-stratified subcategory of R associated to A*. Let e := >, 5. ey € A. Then T :=
Ppep: T-(b) is an e-tilting generator for R*. As Endg.(T*)°P = eAe, the Ringel dual
(RY) of R* relative to T is identified with the quotient category (R')* := e Ae-modgq of
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R'. Let F' := Homg (T*,?) : R* — (R’)* be the corresponding Ringel duality functor.
We also know from Theorem 3.42 that (R’)* is the finite (—¢)-stratified quotient of R’
associated to A' (which is a finite upper set in (A,>)). Let j/ : R — (R’)* be the
quotient functor, i.e., the functor defined by multiplication by the idempotent e. For a
right C-comodule V', we have that
FHi'V) = @ Homg(T.(b),i'V) = e P Homg (T:(b), V) = j/(FV).
beB! beB

This shows that

Ftoi'~joF, (4.24)
so in particular following diagram commutes up to a natural isomorphism:

R—L R

L b

R Ly (RYY = (R

By Theorem 4.10, F* restricts to an equivalence V.(R‘) — A_.((R')*). Also the
restrictions i' : Vo (R,w) — V. (RY) and j' : A_(R',w) — A_((R')') are equivalences.
This is clear for i*. To see it for j/, one shows using Theorem 3.42 that the left adjoint
(j")1 gives a quasi-inverse equivalence. Putting these things together, we deduce that
(4.23) is an equivalence as claimed.

Now we can show that F defines an equivalence F' : V2¢(R) — A»¢(R'). Take
V e V2°(R). Then V has a distinguished ascending V_.-flag (V,,)weq indexed by the
set Q of finite lower sets in A. This is defined by setting V., := i'V in the notation
of the previous paragraph; see the proof of Theorem 3.56. As each comodule T.(b) is
finite-dimensional, hence, compact, the functor F' commutes with direct limits. Hence,
FV >~ li_r)n(FVw). In fact, (F'V,)weq is the data of an ascending A_.-flag in FV € R’.
To see this, we have that F'V, € A_.(R') by the previous paragraph. For w < v the
quotient V,,/V,, has a V.-flag thanks to Corollary 3.58, so F'V,,/FV,, ~ F(V,/V,,) has a
A_.-flag. We still need to show that F'V is locally finite-dimensional. For this, we prove
that dim Hom (FV,I'(b)) < o for each b € B. Since I'(b) has a finite V__.-flag, this
reduces to checking that dim Hom 4 (F'V, V’__(b)) < oo for each b. To see this, pick a finite
lower set w containing p(b). Then for v > w, F'V,,/FV,, has a V_.-flag with all sections
different from V’__(b), so Homa(FV,,/FV,,,V" (b)) = Ext4(FV,/FV,,V'__(b)) = 0. Tt
follows that Hom (FV,, V' _(b)) = Hom(FV,,V'__(b)) and

Hom 4 (FV, V(b)) = Homa (lim(FV,), V'_.(b)) = Homa (FV,,, V'__(b)),

which is finite-dimensional.
At this point, we have proved that F' induces a well-defined functor

F:V¥(R) > A®™(R).
We prove that this is an equivalence by showing that the left adjoint F'* := T®4? to F
gives a quasi-inverse. The left mate of (4.24) gives an isomorphism

io(FY)* =~ F*o (5'). (4.25)

Combining this with Corollary 4.11, we deduce that F'* restricts to a quasi-inverse of the
equivalence (4.23) for each w € . Also, F* commutes with direct limits, and again any
V' e A*¢(R’) has a distinguished ascending A_.-flag (V),eq as we saw in the proof
of Theorem 3.37. These facts are enough to show that F* restricts to a well-defined
functor F* : A»¢(R’) — V25°(R) which is quasi-inverse to F.

Finally, we check that FI(b) = T’ _(b). Let V := I(b) and (V,)eq be its distinguished
ascending V.-flag indexed by the set € of finite lower sets in A as above. Using the
same notation as above, for w = A' € Q such that p(b) € A*, we know that V, is
an injective hull of L(b) in R*. Hence, by Theorem 4.10, F*V,, is the indecomposable
(—¢)-tilting object of R* labelled by b. From this, we see that the ascending A_.-flag
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(FV,)weq in FI(b) coincides with the distinguished ascending A_.-flag in 7" _(b) from
the construction from the proof of Theorem 4.18. O

Proof of Theorem 4.27. We may assume that R = A-modj¢q for a pointed locally finite-
dimensional locally unital algebra A = @, ,cg €adep, so that T is a locally finite-
dimensional left A-module. Let C := T®®, T viewed as a coalgebra according to (2.14).
By Lemma 2.10 this coalgebra is the continuous dual of B = End4(7)°P, and we may
identify R with the locally finite Abelian category comod¢-C. Applying Lemma 2.11,
the Ringel duality functor G becomes the functor T®®4? : A-mod — comod-C, with
the comodule structure map of GV := T® ®4 V being defined as in (2.17). Let

I'(b) := GT.(b), L'(b) := soc I'(b), V. (b) := GA(b). (4.26)

Each I'(b) is an indecomposable injective right C-comodule, and {L'(b) | b € B} is a full
set of pairwise inequivalent irreducible C-comodules. To show that R’ is a lower finite
(—e)-stratified category, we must show for each finite upper set A’ in A that the Serre
subcategory (R')" of R’ generated by {L/(b)|b € B' := p~1(A")} is a finite (—e)-stratified
category for the induced stratification (BT, L/, p, A, ).

The functor G sends short exact sequences of objects in A2°(R) to short exact
sequences in Ind(R’). This follows because Homg (?,T') has this property thanks to the
Ext'-vanishing from Lemma 3.36. Since A.(b) <> T.(b), we deduce that that V' _(b) <
I'(b). Thus, we have that L'(b) = soc V'__(b).

Now let R" be the Serre quotient of R associated to some finite upper set AT < A
and let j : R — R be the quotient functor. This is a finite e-stratified category thanks
to Theorem 3.42. In fact, R" = A'-modi where A" := ede for e := Y}, _p; ey; the
quotient functor j is the idempotent truncation functor defined by multiplying by e. By
the upper finite analog of Corollary 4.5, T := €T is an e-tilting generator for R'. Let
B := End 4 (T")°P be its (finite-dimensional) endomorphism algebra. Then (R')" :=
B'-modgq is the Ringel dual of R relative to T". By the finite Ringel duality from
Theorem 4.10, (R")’ is a finite (—¢)-stratified category. Let G' := Cohomg (T",?) =
Homg (7, 71)* : RT — (R")" be its Ringel duality functor. The functor j defines an
algebra homomorphism 7 : B — B', hence, we get a functor 7* : (R")’ — R’. We claim
that this gives an isomorphism identifying (R")’ with the subcategory (R’)" of R’. This
will be proved in the next paragraph. Moreover, making this identification, we have that

i'oG' =~ Goj., (4.27)

i.e., the following diagram commutes up to natural isomorphism:

R —CLs (R = (R)

al )

R———M R

e

This follows because the northeast composition is the functor T®e®,.? while the south-
west composition is T® @4 Ae®eac?, and T®e =~ T® @4 Ae as bimodules. Since we
already know that (R') is a finite (—¢)-category, it follows that (R’)" one too, with
costandard objects
7(GTA (b)) = G(HiAL(D) = GAL(b) = V(D)

thanks again to Theorem 4.10 plus Theorem 3.42(6).

To prove the claim, let CT := (B")* be the (finite-dimensional) dual coalgebra so
that (R")" = comods-C". Consider the short exact sequence

0— Ae@epe €l — T — Q —0

which comes from the upper finite counterpart of Lemma 3.19(2); thus, Q € A2%°(R)
and all of its sections are of the form A.(b) for b ¢ BT, while Ae ®cac €T € A (R) has
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sections of the form A.(b) for b€ B'. Applying G and using the exactness noted in the
second paragraph of the proof, we get a short exact sequence

0— C"— C - GQ — 0.

The first map C' — C here is dual to the algebra homomorphism 7 : B — B', so
it is a coalgebra homomorphism. It identifies (R")" with the the Abelian subcate-
gory comodgg-CT of R’ = comodgg-C. Note also that the irreducible objects of R’ are
{L'(b) | b € B’}. To complete the proof of the claim, it suffices using Lemma 2.25 to
show that the socle of GQ only has constituents of the for L'(b) for b ¢ BT. Fix an
ascending A -flag (V,)weq in Q. As G commutes with direct limits, we deduce that
GQ = H_r)n(GVw). The sections in a A.-flag in V,, are A.(b) for b ¢ BT, hence, GV, has
a V_.-flag with sections V’__(b) for b ¢ B'. It follows that soc (GV,,) is of the desired
form for each w, hence, the socle of GQ is too.

We can now complete the proof of the theorem. We have shown already that R’ is
a lower finite (—¢)-stratified category. Theorem 4.10 plus Corollary 4.4 shows for A’
chosen to contain p(b) that

T'.(b) = G'(jP(b)) = G(j1(jP(b))) = GP(b).
Also, for a,b € BT, we have that
Homg/ (T” . (a), T" (b)) = Hom g1 (T (a), T' (b)) = Hom 1 (A'eq, A'ey) = e Aey.

These things are true for all choices of AT, so we see that the Ringel dual of R’ relative
to @y 1. (b) is the original category R = A-modiq. This puts us in the situation
of Corollary 4.29, and finally we invoke that corollary (whose proof did not depend on
Theorem 4.27) to establish that G : A2°(R) — V2¢(R') is an equivalence. O

4.5. Essentially finite Ringel duality. To complete our account of infinite versions
of Ringel duality, it remains to discuss the essentially finite case. For this, we impose
the tilting-bounded assumption from Definition 4.20.

Definition 4.33. Assume R is an essentially finite e-stratified category with stratifica-
tion (B, L, p, A, <). Assume in addition that R is tilting-bounded. An e-tilting generator
for R means an object T' = ;. ; T; € Env(R) with a given decomposition as a direct
sum of objects T € Tilt.(R) such that each T.(b) appears as an indecomposable sum-
mand of 7" with multiplicity that is non-zero and finite. Then we define the Ringel dual
of R relative to T to be the category R’ := B-modgy where

B:= ((—B HomR(TZ—,Tj)> .

i,j€J
We denote the system of distinguished idempotents of B arising from the identity endo-
morphisms of each T} by {f; | j € J}. Also define the two Ringel duality functors
F:= P Homg(T};,?): R > R/, (4.28)
jeJ
G := Cohomg (T,?) = Homg (?,7)* : R — R'. (4.29)
Theorem 4.34 (Essentially finite Ringel duality). In the setup of Definition 4.33, the
Ringel dual category R’ is a tilting-bounded essentially finite (—e)-stratified category with
stratification (B, L', p, A, =) and distinguished objects
P'(b) = FT.(b), I'(b) = GT.(b), L'(b) = hd P'(b) = soc I'(b),
A" _(b) = FV(b), V_.(b) = GA:(b), T'_(b) = FI(b) =~ GP(b).
The restrictions F : V.(R) > A_.(R') and G : A.(R) = V_.(R') are equivalences.
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Proof. We may assume that R = A-modq for an essentially finite-dimensional pointed
locally unital algebra A = @), ;;e;Ae;. Replacing the e-tilting generator T = @), ; Tj
by any other changes B to a Morita equivalent algebra, so we may as well assume simply
that J = B and T = @;cg T:(b). Then the algebra B = @, ;.5 foB/fy is a pointed
locally unital algebra. The assumption that R is tilting-bounded implies that

> dim Homg (T.(a), T-(b)) < o0, ». dim Homg (T.(a), T. (b)) < o

acB beB
for each a,b € B. Thus, B is essentially finite-dimensional, i.e., R’ is essentially finite
Abelian. The module P’(b) := Afj, is an indecomposable projective A-module, and

{L’(b) :=hd P’'(b) | be B}
is a full set of pairwise inequivalent irreducibles. Now (B, L, p, A, >) defines a stratifi-
cation of R’. One checks that Steps 1-12 from the proof of Theorem 4.10 all go through
essentially unchanged in the present setting. This completes the proof except for one
point: we must observe finally that R’ is tilting-bounded. This follows because the
relevant matrix from Definition 4.20 (with each T.(b) now being replaced by T _(b)) is
the Cartan matrix
(dimHomA(P(a),P(b)))a,beB

of A. Its rows and columns have only finitely many non-zero entries as A is essentially
finite-dimensional. g

Corollary 4.35 (Essentially finite double centralizer property). Continuing in the
general setup of Definition 4.33, suppose that the e-stratified category R is A-modgq
for an essentially finite-dimensional locally unital algebra A = @i,je] e;Ae;, so that
T = ®jeJ T; is an (A, B)-bimodule. For i € I, let T} := (e;T)* € B-modsq, so that
T := @, T} is a (B, A)-bimodule.
(1) The module T" = @,.; T is a (—¢)-tilting generator for R' = B-mods and
there is an algebra isomorphism

op
p:A>S (@ HomR,(T;,T;)> (4.30)
i,5€l
sending a € e;Aej to p(a) : T) — T},t — ta. So the Ringel dual of R’ relative
toT" = @, T} is equivalent to the original category R.
(2) Denote the Ringel duality functors from R’ to R by
Gy = @ Homg/(T},?) : R' > R, (4.31)
iel
F* := Cohomg (7",7) = Homg (?,7)* : R' — R. (4.32)
respectively. We have that F* ~ TQ®p? and G =~ T'®a?, hence, (F*, F) and
(G,Gy) are adjoint pairs.

Proof. For (1), note that @,_; G(Ae;) is a (—e)-tilting generator for R’ since GP(b) =
T _(b) for b € B. Actually, G(Ae;) = Homy(Ae;, T)* = (e;T)* = T/. Thus, T' =
@ic; T is a (—e)-tilting generator for R’. To obtain the isomorphism between A
and the locally finite endomorphism algebra of T ;, apply the functor G to the canon-

D
ical isomorphism A =~ (®i71’€1 HomA(Aei,Aej)) . To prove (2), we note first that
F*(Bf;) = T ®p Bf;. It then follows that F*(V) =~ T ®p V on any finite-dimensional
B-module V' by taking a resolution P, — P — V — 0 in which Pj, P, are direct

sums of modules of the form Bf;, then using the Five Lemma. The argument for G is
similar. d

We leave it to the reader to adapt Corollary 4.12 to the essentially finite setting.
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4.6. Tilting-rigidity. We begin by recalling some well-known definitions:

(QF) A finite Abelian category R is quasi-Frobenius if all projective objects are in-
jective. In that case, there is a unique bijection v : B — B, the Nakayama
permutation, such that

P() = 1(v(b)
for each b € B, where P(b) and I(b) are projective covers and injective hulls of
of the irreducible objects {L(b) | b € B}.

(WS) A finite Abelian category R is weakly symmetric if it is quasi-Frobenius with
Nakayama permutation being the identity function. Equivalently, P(b) =~ I(b)
for all b € B.

(S) A finite Abelian category R is symmetric if there is a natural isomorphism of
vector spaces
Hompg (P, V) =~ Homg (V, P)* (4.33)
for all P,V € R with P projective.

These are equivalent to saying that every algebra realization A of R is quasi-Frobenius,
Frobenius, or symmetric, respectively; see [GHK, §4.4] and [Ric, Th. 3.1]. Of course,
(QF) = (WS) = (S). We are going to investigate some properties of fully stratified
categories which involve the properties (QF), (WS) and (S) at the level of strata.

We assume from now on that R is a fully stratified category, by which we mean a
fully stratified category of any one of the four types, finite, essentially finite, upper finite
or lower finite. We use the usual notation (B, L, p, A, <) for its stratification.

Definition 4.36. Let R be a fully stratified category. We say that R is tilting-rigid if
Tilty (R) = Tilt_(R).
For this to make sense in the essentially finite case, it is necessary to assume implicitly

that R is tilting-bounded in the sense of Definition 4.20 for some choice (equivalently,
all choices) of sign function e.

Highest weight categories are automatically tilting-rigid for trivial reasons, so that
Definition 4.36 is not needed when working just with highest weight categories. The im-
portance of tilting-rigidity first became apparent in the context of fibered highest weight
categories in [MO], [FM], where it is formulated as the property “tilting = cotilting”.
The following lemma shows in a tilting-rigid category that the subcategories Tilt.(R)
coincide for all choices of €, so that we can denote them all simply by Tilt(R).

Theorem 4.37 (Tilting-rigid categories have quasi-Frobenius strata). Let R be a tilting-
rigid fully stratified category. There is a unique bijection v : B — B such that

Ty (b) = T (v(b)).

For A € A, this function leaves By € B invariant, and the stratum Ry is quasi-Frobenius

with Nakayama permutation v|g,. Moreover, for any sign function € : A — {t}, we
have that o) fe)

T (b ife(N) =+

T.(b) = e : ’

() { T (b)) if (A) = —

Proof. There is obviously a unique function v : B — B such that T (b) =~ T_(v(b)).
This function is injective and leaves each of the finite subsets B, invariant, hence, it
is actually a bijection. To see that R is quasi-Frobenius with v|g, as its Nakayama
permutation, we must show that Py(b) = I (v(b)) for each b € By. This follows using
T, (b) = T_(v(b)) together with Theorem 4.2(3) or Theorem 4.18(3) (which one depends
on the particular setting we are in). Finally, take b € By and a sign function . Then
T, (b) = T_(v(b)) has both a A-flag and a V-flag, hence, it has a A -flag and a V.-flag.
It follows that it is isomorphic to T.(b') for a unique b’ € By. Applying j* and using
Theorems 4.2 or 4.18 again gives that ' = b if e(\) = 4+ or ' = v(b) if ¢(\) = —, and
the formula (4.34) follows. O

(4.34)
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The argument used to prove the next lemma is based on the proof of [CM, Th. 2.2].
Note this proves Conjecture 4.15 assuming an additional hypothesis on the strata.

Lemma 4.38. Suppose that R is a finite fully stratified category and € : A — {t} is
some given sign function.

(1) Assume that Ly(a) is isomorphic to a subobject of a projective object in Ry for
all a € By and X € A with e(\) = +. Then for b€ B, T.(b) has finite injective
dimension if and only if T.(b) € Tilt_(R).

(2) Assume that Ly(a) is isomorphic to a quotient of an injective object in Ry for
all a € By and A € A with e(\) = —. Then for b€ B, T.(b) has finite projective
dimension if and only if T-(b) € Tilt+(R).

Proof. We just prove (1), (2) being the equivalent dual statement. If T, (b) € Tilt_(R)
then T.(b) has a V-flag, so it has finite injective dimension thanks to Corollary 3.24.
Conversely, suppose that T.(b) has finite injective dimension. Since T.(b) € Tilt.(b), it
has both a A.-flag and a V.-flag. Hence, as R is fully stratified, it has both a A-flag
and a V-flag. To show that T.(b) € Tilt_(R), it remains to show that 7.(b) has a
V-flag. This follows from the homological criterion (Theorem 3.11) if we can show that
Exty (A(c), To(b)) = 0 for all ¢ € B. By assumption, 7. (b) has finite injective dimension,
so there is a greatest d such that Ext% (A(a), T.(b)) # 0 for some a € B. Now the goal
is to show that d = 0.

Suppose for a contradiction that d # 0. Since Ext% (A.(a), T+ (b)) = 0, we must have
that a € By for A with e(\) = +. By the assumption on strata, there exists a’ € B
such that Ly(a) — Pi(a’). Let 0 = Vi < --- < V,, = A(d’) be the A-flag for A(a’)
obtained by applying the exact functor j{ to a composition series for Py(a’) chosen so
that its bottom section is isomorphic to Ly(a). For each r = 1,...,n we have that
V,./Vi_1 = A(a,) for some a, € By with a; = a. Applying Homg(?,7.(b)) to the short
exact sequence 0 — V,_; — V, — A(a,) — 0 and using Ext% ™ (A(a,), T-(b)) = 0 gives
a surjection Ext% (V,, To(b)) — Exth (V,_y,T.(b)). Since Ext% (Vi,To(b)) # 0 by the
choice of a, we deduce that Ext% (V;,, To(b)) # 0 for all 7 = 1,...,n. Taking r = n gives
Ext% (A(a’), Te(b)) # 0. This is a contradiction since T.(b) has a V-flag. O

The following extends [CM, Th. 2.2] from fibered highest weight categories to fully
stratified categories; cf. Remark 3.30.

Theorem 4.39 (Homological criterion for tilting-rigidity). For a finite fully stratified
category R, the following properties are equivalent:
(i) R is tilting-rigid;
(ii) R is Gorenstein® and all of its strata are quasi-Frobenius;
(iii) R is Gorenstein and for each A € A and b € By the irreducible object Ly(b)
appears in the socle of some projective in Ry ;
(@) R is Gorenstein and for each A € A and b € By the irreducible object Ly (b)
appears in the head of some injective in Ry .

Proof. We may assume that R = A-modgq for a finite-dimensional algebra A.

(1)=(ii). All strata are quasi-Frobenius by Theorem 4.37. The injective left A-module A*
has a finite —-tilting resolution 0 — 75, — .-+ — T7 — Ty — A* — 0 by Corollary 4.14.
As R is tilting-rigid, this is also a finite +-tilting-resolution, so each 7T; has a A-flag.
Using Corollary 3.24, it follows that each T; has finite projective dimension. We deduce
that A* has finite projective dimension by arguing as in the proof of [Wei, Th. 4.3.1];
cf. the proof of (2)=(1) from [CM, Th. 2.2]. The dual argument gives that A has finite
injective dimension. Hence, A is Gorenstein.

8All projectives have finite injective dimension and all injectives have finite projective dimension.
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(ii)=>(iii), (iii"). This follows immediately since Py(b) = I\(v(b)) for all b € By, where v
is the Nakayama permutation.

(iii)=(i). It suffices to show that each T (b) belongs to Tilt_(R). As @,cg T4 (D) is tilt-
ing in the general sense of tilting theory (cf. the discussion before Conjecture 4.15), the
assumption that A is Gorenstein together with [HU, Lem. 1.3] implies that @,.g T+ (b)
is cotilting. Hence, it has finite injective dimension, so each T (b) has finite injective
dimension. Then we apply Lemma 4.38(1) with € = +.

(iil’)=>(i). This follows by the dual argument to the proof of (iii)=>(i). O

Corollary 4.40. If R is a finite fibered highest weight category, it is tilting-rigid if and
only if it is Gorenstein.

Proof. In a fibered highest weight category each stratum has a unique irreducible object
(up to isomorphism). Therefore the second parts of (iii) and (iii’) in Theorem 4.39 hold
automatically. O

Now we are going to consider the Ringel dual R’ of a tilting-rigid fully stratified
category R as in Definitions 4.9, 4.24, 4.26 or 4.33 (depending on the setting). These
definitions all involve the choice of a sign function € and the choice of an e-tilting
generator T'. By (4.34), an e-tilting generator for some choice of ¢ is an e-tilting generator
for all £, so it makes sense to drop the prefix e, referring to T simply as a tilting generator.
Fixing such a choice, let R’ be the corresponding Ringel dual category, and let F' and
G be the Ringel duality functors from those definitions together with (4.21) and (4.22)
in the lower finite and upper finite cases, respectively. Note these functors only depend
on the choice of tilting generator, not on the choice of sign function ¢, i.e., they are the
same functors for all . For each A € A, there are now two equivalences of categories

Fy= (") o(i')syoFoicyojp: Ry — R, (4.35)
Gr= (") o ()i 0Goichojl 1 Ry — Ry (4.36)

between strata; see Corollary 4.12 (which also holds in the essentially finite case) and
Corollary 4.32. The following lemma gives a more explicit description of these functors.

Lemma 4.41. Let R be a finite, tilting-bounded essentially finite, upper finite or lower
finite e-stratified category with the usual stratification (L, B, p, A, <). Suppose that R’ is
the Ringel dual of R with respect to some given tilting generator T = @,_; T; such that
the index set I contains B and Ty (b € B) is a direct sum of T.(b) and copies of T.(c)
for c € B with p(c) < p(b). For A€ A, let T := @yep, Tv € R<x- There is an algebra
isomorphism
QZS)\ : A)\ = EIldRA (j)\T)\)Op
between the natural algebra realization Ay for the stratum R’ and the endomorphism
algebra of AT\ € Rx. Moreover:
(1) Ife(\) = + then Fy =~ Homg, (7T, ?) : Ry — Ax-modsy with the action of Ay
defined via ¢y .
(2) If e(A) = — then G\ = Homnk(?,jATA)* : Ry — Ax-modgq with the action of
A, defined via ¢).

Proof. We just explain the argument in detail if R is a finite e-stratified category; the
other cases are similar but there are minor notational differences. We have that R’ =
A-modyq for A := Endg (T)°P. The functors F' and G are Homg (7', ?) and Homg (7, 7)*,
respectively. Let e, € A be the projection of T onto T.(b) and set ey := ZbeBA ep. Let
As ) be the quotient of A by the two-sided ideal generated by the idempotents {e,, | n €
A with 4 2 A}. This is the natural realization of the Serre subcategory R%, of R'.
Then the stratum R/, is realized by the basic finite-dimensional algebra Ay := €yAxéx,
where we write T for the canonical image of x € A under the quotient map A — Asy.
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The idempotents {&, | b € B} are representatives for the conjugacy classes of primitive
idempotents in Aj.

By Theorem 4.2(3), j*T) is a minimal projective generator for R if e(\) = + or
a minimal injective cogenerator for Ry if e(A\) = —. In either case, Endg, (j2T))°P
is the basic algebra realizing the stratum R). Since Ry and R/ are equivalent, it
follows that Ay =~ Endg, (j*7»)°?. However, the argument so far does not produce
the desired explicit isomorphism ¢, between these algebras. To obtain this, since we
have already seen that the dimensions agree, it suffices to construct a surjective algebra
homomorphism ¢y : Ay — Endg, (j2T))°P.

Let R» be the Serre quotient of R associated to the upper set (A, o0], so that Rxx
has irreducible objects labelled by B . Denote the quotient functor by j2* : R — Rx.
The functor j2* defines an algebra homomorphism

A = Endg(T)°® — Endg_, (j7T)°P. (4.37)

This homomorphism is surjective. To see this, Corollary 3.19(2) gives a short exact
sequence 0 — j?)‘j>)‘T — T — @ — 0 in which @ has a A_-flag. Applying Homg (?,7T)
to this gives surjectivity of the first map below:

Homg (T, T) - Homp (j*57 T, T) = Homg_, (j>*T, j>*T).

The second map comes from the adjunction. The composite is the map (4.37), so indeed
it is surjective. Now we note that this map sends each e, for p * X to zero, so it
factors through the quotient A — A-) to give a surjective homomorphism Asy —
Endg_, (72 T)°P. Then we restrict to €y A>\€y to obtain the homomorphism ¢y.

It just remains to prove (1) and (2). The universal property of Serre quotients pro-
duces a unique fully faithful functor ¢y making the following diagram of functors com-

mute:
=

R Ry

o]

Rg)\ 4/\> R)\.
J

Thus, j* oicy = iy o j*. Composing on the left with jf’\ and on the right with jJ,
using that j* 0j2 = Id and jZ* 0 j>* = Id on objects in the image of i<y 053, we deduce
that
J2r oy 2icy 04, (4.38)
Using this, we have that
Fy = ()M((#)5 ) Homg (T, j7*(ix?))) = €x Homg_, (22T,,?) = Homg, (j T3, ?),

proving (1). The proof of (2) is similar, using the isomorphism j!>>‘ 0iy =iy 0 i in
place of (4.38). O

Returning to the setup before the lemma, so R is a tilting-rigid fully stratified category
and R’ is its Ringel dual relative to some tilting generator T', we next discuss the labelling
of irreducible objects in R’. In the general tilting-rigid setting, this depends on a choice
of sign function ¢, since one needs to fix a specific labelling {T.(b) | b € B} of the
isomorphism classes of indecomposable summands of 7. Put another way, the labelling
of irreducible objects in R’ depends on a labelling {L}(\) |b € By} of irreducible objects
in each of the strata R/, which we do given a choice of ¢ by declaring that

I/ (b) o F)\L)\(b) if €(>\) =+,
A ’ G)\L)\(b) if E()\) = —.
In the next theorem, we see for the first time the advantage of assuming that all of

the strata of R are symmetric, or at least weakly symmetric, since then the labelling of
irreducibles in R’ does not depend on the choice of € here.

(4.39)
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Theorem 4.42 (Ringel duality for tilting-rigid fully stratified categories). Let R be a
tilting-rigid fully stratified category. The Ringel dual R’ of R with respect to some tilting
generator is again tilting-rigid. Moreover, the following hold for A € A:

(1) Ry is weakly symmetric if and only if FxLx(b) = GALx(b) for all be By.

(2) Ry is symmetric if and only if Fy =~ G.

Proof. Taking € = + in the appropriate Ringel duality theorem (one of Theorems 4.10,
4.25, 4.27 or 4.34) gives that R’ is —-stratified with indecomposable —-tilting objects
{FI(b)|b e B} in the finite, lower finite or essentially finite cases and {GP(b) | b € B}
in the finite, upper finite or essentially finite cases. Taking ¢ = — gives that R’ is +-
stratified with indecomposable +-tilting objects {F'I(b)|b € B} in the finite, lower finite
or essentially finite cases and {GP(b) | b € B} in the finite, upper finite or essentially
finite cases. It follows R’ is fully stratified and its indecomposable —-tilting objects and
+-tilting objects are the same, i.e., Tilt, (R') = Tilt_(R') and R’ is tilting-rigid.

To prove (1) and (2), let € be any sign function. We may assume that the tilting
generator is 7' = @cp T:(b). Let T\ := @yep, T=(b) and A\ = Endg, (MT2)°P be as
in Lemma 4.41. Using the explicit descriptions of Fy and G from Lemma 4.41(1)—(2),
we deduce that F)\Ly(b) = G5 Ly (b) if and only if

Homg, (j*Th, LA (b)) = Homg, (Lx(b), j*Tx)*

as left Ay-modules (notation as in Lemma 4.41). The left hand side is the irreducible
Ax-module associated to the primitive idempotent that is the projection of 2T\ onto
the summand isomorphic to Py (b), and the right hand side is the irreducible Ay-module
associated to the primitive idempotent that is the projection of j*Ty onto the summand
isomorphic to I,(b). Thus, these modules are isomorphic for all b € B if and only if
Py (b) =~ I,(b) for all b € By, i.e., the Nakayama permutation of R is the identity, and
R is weakly symmetric. This proves (1).

To prove (2), using Lemma 4.41 again, we have that F\ = G, if and only if there is
a natural isomorphism of left Aj-modules

Homg, (1T, V) = Homg, (V, 5 Ty)*

for Ve Ry. Since j Ty is a projective generator for Ry and Ay = Endg, (j}7T5)°P,
there is such an Aj-module isomorphism if and only if there is a natural vector space
isomorphism as in (4.33) for all P,V € R, with P projective, i.e., Ry is symmetric
according to the definition we gave earlier. O

In the sequel, we will only consider tilting-rigid fully stratified categories with the
additional property that all strata are weakly symmetric. By Theorem 4.37, a tilting-
rigid fully stratified category has this property if and only if v = id. Thus, a fully
stratified category is tilting-rigid with weakly symmetric strata if and only if

T.(b) =~T_(b) (4.40)
for all b € B. In that case, T (b) =~ T.(b) for all sign functions &, so that one can simply
write T'(b) in place of T, (b). Moreover, if R’ is the Ringel dual category to R with respect

to some tilting generator, the irreducible objects of R’ are labelled unambiguously by
the set B; the induced labelling of irreducible objects of the stratum R’ satisfies

Lg\(b) = FAL)\(Z)) = GAL)\(I)) (441)
for all A e A and b € B,.
4.7. Bases for morphism spaces between A- and V-filtered objects. In this
subsection, we explain how to extend the construction of [AST, Th. 3.1] first to e-

stratified and then to fully stratified categories. These results will be used in the next
section to construct triangular bases for endomorphism algebras of tilting generators.



74 J. BRUNDAN AND C. STROPPEL

Theorem 4.43. Let R be a finite, lower finite or tilting-bounded essentially finite e-
stratified category with stratification (B, L, p, A, <). Suppose for each b € B that we are
given Ty, € Tilt.(R) such that Ty, is a direct sum of T.(b) and copies of T.(c) for ¢ with
plc) < p(b). Take M € A(R) and N € V.(R). For each b € B, choose an embedding
tp : A (b) — Ty, a projection m, : Ty — V.(b), and subsets

Y, € Homg (M, T}), Xp € Homg (Ty, N)

so that {§:=m,oy|yeY,} is a basis for Homg (M, V(b)) and {Z =z 0w |z € X,}
is a basis for Hompg (A (b), N), as illustrated by the diagram:

A (b)
M\“ T, w\ N . (4.42)
Vs(b)

Then the morphisms x oy for all (y,x) € yeg Yo X Xp give a basis for Homg (M, N).

Proof. We proceed by induction on €A5 (M) + by _(N) where ba (M) = > .g(M

A (b)) and by _(N) := > cg(IN : Vo(b)). The base case is this number is zero, hence,
M = N = 0 too, which is trivial. For the induction step, we can replace R by the Serre
subcategory of R associated to the lower set of A generated by all {\|(M : A.(b))+ N :
V(b)) # 0 for some b € By} to assume that there is some maximal element A € A such
that such that (M : A.(b)) + (N : V(b)) # 0 for some b € By. Then we let A* := A\{\},
B! := p71(AY), and i : R* — R be the natural inclusion of the corresponding Serre
subcategory of R. Let j : R — R be the quotient functor.

In this paragraph, we treat the special case N € R'. Let M*' := i* M. Note by the
choice of A that fa_ (M) +4y_ (N)| < la.(M)+£4g_(N). By (3.10) and Theorem 3.17(2),
we have that MY € A_(R*'), and there is a short exact sequence 0 - K — M — M** — 0
where K has a A.-flag with sections of the form A.(b) for b € By. It follows that the
natural inclusion Homg (M*, N) — Homg (M, N) is an isomorphism. For b € B*, all of
the morphisms {y : M — T} | y € Y} factor through M* too. Hence, We can apply the
induction hypothesis to deduce that the morphisms x oy for all (y,z) € Jyeg: Yo X Xb
give a basis for Homg (M*, N) = Homg (M, N). Since X, = @ for be BA, we have that
Ubes Yo X Xy = Uper: Yo x X3, so this is just what is needed.

Now suppose that N ¢ R* and let N* :='N € R*. We again have that o_(M*') +
by (N)| < €a (M) + ¢y_(N). By (3.10) and Theorem 3.17(4), we have that N* €
V.(R*Y), and there is a short exact sequence 0 — N+ — N 55 @ — 0 where Q has a
V.-flag with sections of the form V.(b) for b € By. Applying Homg (M, ?) to this and
using Theorem 3.14 gives a short exact sequence

0 — Homg (M, N') — Homg (M, N) — Homg (M, Q) — 0.

For b € BY, the morphisms {z : T, — N |z € X}} have image contained in N*' and
are lifts of a basis for Homy. (A.(b), N*). By induction, we get that Homg (M, N*) has
basis given by the compositions x oy for all (y,z) € (Jyeg: Yo X Xp. In view of this
and the above short exact sequence, we are therefore reduced to showing that the mor-
phisms 7oz oy for (y,z) € Jyep, Yo x Xp give a basis for Homg (M, Q). We have that
Q@ = j.jQ by Corollary 3 19(1), hence, the exact quotient functor j defines isomorphisms
Homg (M, Q) = Hompg, (M, jQ). Similarly, Homg (M, V(b)) = Homg, (M, jV-(b))
and Homg (A.(b), N) = Homg, (jA:(b),jN) for b € By. Moreover, jr : jN — jQ
is an isomorphism. Thus, we are reduced to showing that the morphisms jz o jy give
a basis for Homp, (jM,jN) for all (y,z) € Uep, Yo X Xp. The sets of morphisms
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Y, = {jy : iM — jTy |y € Y3} and X, = {jx : jT, — jN |z € Xp} appear-
ing here are characterized equivalently as lifts of bases for Homg, (M, V(b)) and
Homg, (jA:(b),jN), respectively. Let M := jM and N := jN.

To complete the proof, we consider the two cases e(\) = + and £(\) = — separately.
The arguments are similar, so we just explain the former. In this case, for b € Bj,
we have that jV.(b) = Lx(b) and jA.(b) =~ Py(b) = jT, by Theorem 4.2(3). The
module M is projective in Ry. We are trying to show that the morphisms Z o ¢ for all
(7,2) € Upes, Yo x Xo give a basis for Homg, (M, N) where:

e Y, © Homg, (M, P\(b)) is a set lifting a basis of Homg, (M, Ly (b));

e X, is a basis of Homg, (Py(b), N).
Since M is projective, the proof reduces to the case that M = Py (b), when the assertion
is clear. 0

The following restatement in the special case of a highest weight categories recovers
[AST, Th. 3.1].

Corollary 4.44. Let R be a finite, lower finite or tilting-bounded essentially finite high-
est weight category with poset (A, <) and labelling function L. Suppose for each A € A
that we are given Ty € Tilt(R) such that Ty is a direct sum of T(X) and copies of T'(11)
for w < X. Take M € A(R) and N € V(R). For each X\ € A, choose an embedding
tx : A(N) = T, a projection wy : Tx — V(A), and subsets

Y\ € Homg (M, T)), X\ € Homg(Ty, N)

so that {gj =m0y | Yy € YA} is a basis for Homg (M, V(X)) and {53 =200 | T € Xb}
is a basis for Homg (A(X), N). Then the morphisms x oy for all (y,x) € |Jycp Yo X X
give a basis for Homp (M, N).

For tilting-rigid fully stratified categories, there is a more refined version of Theo-
rem 4.43.

Theorem 4.45. Let R be a finite, lower finite or essentially finite fully stratified category
with stratification (B, L, p, A, <) such that R is tilting-rigid with weakly symmetric strata.
Suppose for each b € B that we are given Ty € Tilt(R) such that T, is a direct sum of
T(b) and copies of T(c) for ¢ with p(c) < p(b). Take M € A(R) and N € V(R). For
a,b € B, choose embeddings 1, : Ala) — T, iy : A(b) — Ty, projections ©o : T, —»

V(a),mp : Ty — V(b), and subsets
Y, € Homgz (M, T,), H(a,b) € Homg (T, Ty), X, € Homg (Ty, N)

so that {§ := Taoy|y € Ya} is a basis for Homg (M, V(a)), {h := myohoi,|h € H(a,b)}
is a basis for Homg (A(a), V(b)), and {Z := xoly|x € X,,} is a basis for Homg (A(b), N),
as illustrated by the diagram:

Aa) —s v (b)
M\y T,———T, “/‘ N . (4.43)
V(a) A(b)

Then the morphisms x o hoy for all (y, h,z) € UmbeB Y, x H(a,b) x X}, give a basis for
Homg (M, N).

Proof. This follows by the same strategy as was used in the proof of Theorem 4.43. The
only substantial difference is in the final paragraph of the proof. By that point, we have
reduced to showing for projective and injective objects M, N € R, respectively, that
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the morphisms Z o h o g for all (g, h,Z) € U, e, Ya ¥ H(a,b) x X, give a basis for
Hompg, (M, N) where:

e Y, © Hompg, (M, Px(a)) is a set lifting a basis of Homg, (M, Lx(a));

e H(a,b) is a basis for Homg, (Px(a), Ix(D)); B

e X}, c Homg, (I5(b), N) is a set lifting a basis of Homg, (Lx(b), N).
Using that M is projective and N is injective, the proof of this reduces to the case that
M = Py(a) and N = I,(b), when the assertion is clear. O

4.8. Chevalley dualities. Finally, in this section we discuss some further aspects of
Ringel duality. These results will be used in the next section to construct symmet-
ric triangular bases for endomorphism algebras of tilting generators. Like in §4.6, the
phrase “fully stratified category” means a fully stratified category R that is either finite,
essentially finite, upper finite or lower finite.

Given a finite-dimensional algebra A and an algebra anti-automorphism o : A — A,
there is a contravariant autoequivalence

7@ . A—modfd - A—modfd (444)

taking V' to its linear dual V* viewed as a left module by restricting the natural right
action along o. If R is a finite Abelian category and 7v : R — R is a contravariant
autoequivalence, we call a pair (A, o) consisting of a finite-dimensional algebra A and
an anti-automorphism o a realization of (R,?") if there is an equivalence of categories
F : R - A-modgq such that Fo?¥ ~7@ o F. The following lemma shows that any
contravariant autoequivalence of R admits a realization in this sense. In fact, we will
only ever consider contravariant autoequivalences that preserve isomorphism classes of
irreducible objects, in which case we can say a little more about ¢ as explained at the
end of the lemma.

Lemma 4.46. Let A be a finite-dimensional algebra. Suppose that 7 is a contravariant
autoequivalence of A-modsgq. Then there exists an algebra anti-automorphism o : A — A
such that 7V =7®. Moreover, if 7V preserves isomorphism classes of irreducible A-
modules, then o can be chosen so that it fixes each of a given set {e; |i € I} of mutually
orthogonal idempotents in A.

Proof. Consider the functor F' :=7*07v : A-modig — A°P-modgq. Since this is right
exact and preserves direct sums, we have that F =~ FA®4? where FA is the (A°P, A)-
bimodule obtained by applying F to the regular (A, A)-bimodule A. Note that the right
action of x € A on F'A here is defined by applying F' to the left A-module homomorphism
re: A— A a— azx.

Viewing A as a left A°P-module with action z -y := yx, we claim that FA ~ A as
left A°P-modules. To see this, let {L(b) | b € B} be a full set of pairwise inequivalent
irreducible left A-modules. Then A =~ @, g P(b)@4mL®) a5 left A-modules, where
P(b) is the projective cover of L(b). Let B — B,b — b’ be the bijection defined from
L(b)Y =~ L(V/). Then P(b)V =~ I(¥), the injective hull of L(b'). Hence FP(b) =~ I(V')*
as left A°P-modules. Here, I(b)* is the projective cover of the left A°P-module L(b)*.
Using that dim L(b) = dim L(b')*, we deduce that

FA~ @(I(b/)*)®dimL(b) ~ @(I(b)*)@dimL(l))* ~ A
beB beB

as left A°P-modules. This proves the claim. Similarly, under the additional hypothesis
that 7V preserves isomorphism classes of irreducible objects and we are given mutually
orthogonal idempotents {e; | i € I}, we get that F(Ae;) = e;A as left A°P-modules for
each i e I.

Now we let ¢ : FA = A be some choice of a left A°P-module isomorphism. When
the additional hypothesis holds, we may pick this so that it restricts to isomorphisms
F(Ae;) = e;A for each i € I. Transporting the right A-module structure on F'A through
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¢, we make the left A°P-module A into an (A°P, A)-bimodule, which we will denote by
A,-1. Explicitly, left action of x € A°®? on y € A,-1 is given by x -y := yx as in the
previous paragraph, while the new right action of z € Ais by y -z := (¢ o ((ry)¥)* o
¢ 1)(y). Since End 400 (A) = A, this right action of z can be written as left multiplication
by a unique element 2’ € A. The resulting map A — A,z — 2z’ is an algebra anti-
automorphism. Let 0 : A — A be the inverse anti-automorphism. Note then that the
right action of x € A ony € A,-1 is by y - = 0~ (x)y, explaining our earlier choice of
notation. When the additional hypothesis holds, the choice of ¢ ensures that (e;)" = e;
for i € I, hence, o(e;) = ¢; for each i € I.

For a left A-module V, let ,V be V viewed instead as a left A°°-module by restricting
along 0. Then ,A is an (A°P, A)-bimodule which is isomorphic via ¢ : A,-1 — ;A to
the (A°P, A)-bimodule A,-1 =~ F A from the previous paragraph. Thus, we have shown
that FF = A;-1®a7 = ;A®A? = »7 : A-modgg — A°P-modsy. Applying 7* gives finally
that 7V 7@, O

Remark 4.47. In the setup of Lemma 4.46, assume that 7V preserves isomorphism
classes of irreducible A-modules. Then we can take the set of mutually orthogonal
idempotents at the end of the lemma to be a mutually orthognal set {ej, | b € B} of
representatives for the conjugacy classes of primitive idempotents in A. Then the lemma
shows that we can choose the anti-automorphism o so that o(e;) = e, for all b € B.
Conversely, if 0 : A — A is an anti-automorphism fixing such a set of reprentatives for
the conjugacy classes of primitive idempotents on A, it is obvious that the contravariant
autoequivalence 7@ preserves isomorphism classes of irreducible A-modules.

To adapt the above from finite Abelian categories to essentially finite Abelian cat-
egories, Schurian categories or locally finite Abelian categories, we need the following
definitions:

o If A= @i, jel e;Ae; is an essentially or locally finite-dimensional locally unital
algebra, a locally unital algebra anti-automorphism o : A — A gives rise to a
contravariant autoequivalence 7@ of the categories A-modgg or A-modigq, respec-
tively. This is defined by first applying the usual duality from left modules to
right modules, either 7* : A-modsy — mods-A or ?® : A-modjq — modg-A
depending on the case, and then converting right modules back to left modules
by restricting along o.

e If A is a pseudo-compact topological algebra, that is, A =~ C* for a coalgebra
C, an algebra anti-automorphism o : A — A gives rise to a contravariant autoe-
quivalence 7@ of A-modgq =~ comodg-C. Note in this case that o is necessarily
continuous so that it is the dual of a coalgebra anti-automorphism o* : C' — C;
the definition of the duality 7@ could also be formulated in terms of comodules
using o*.

Then given an essentially finite Abelian category, a Schurian category, or a locally finite
Abelian category R with a contravariant autoequivalence ?V, a realization of (R,?")
means a pair (A, o) consisting of an algebra A and an anti-automorphism o : A — A
of the appropriate type such that 7® o F' =~ Fo?¥ for some equivalence F' from R
to A-modgq, A-modyq or A-modgq, respectively. The following lemmas are analogs of
Lemma 4.46 in each of these new settings.

Lemma 4.48. Suppose that A = (—BME] ejAej is either an essentially or a locally finite-
dimensional locally unital algebra. Let 7V be a contravariant autoequivalence of A-modgq
or A-modysq, respectively, which preserves isomorphism classes of irreducible objects.
There exists a locally unital algebra anti-automorphism o : A — A such that 7V 7@,

Proof. In the locally finite-dimensional case, let F :=7®0?" : A-modjsq — A°P-modgy.
Viewing @, ; F'(Ae;) as an (A°P, A)-bimodule in the natural way, we have tat F =

iel



78 J. BRUNDAN AND C. STROPPEL

(@,c; F(Ae;))®4?. Then we observe for each i € I that F(Ae;) =~ e;A as left A°P-
modules as 7Y preserves isomorphism classes of irreducibles. Now argue as in proof of
Lemma 4.46. The essentially finite-dimensional case is similar. 0

Lemma 4.49. Suppose that A is a pseudo-compact topological algebra. Let 7V be a
contravariant autoequivalence of A-modsq which preserves isomorphism classes of irre-
ducible objects. Then there exists an algebra anti-automorphism o : A — A such that
v x?@. Moreover, given a family {e; |i € I} of mutually orthogonal idempotents in A,
o can be chosen so that o(e;) = e; for allieI.

Proof. The functor ?¥ : A-modyg — A-modsq extends to 7V : A-mod,. — A-modgs
with (lim V,,) := lim(V,y), taking limits over finite-dimensional submodules V,, < V.
Composing with 7* gives an equivalence F' :=7%07Y : A-mod,; — A°P-mody.. Moreover,
for each i € I we have that F(Ae;) = e;A as a (A°P, A)-bimodule as 7V preserves
isomorphism classes of irreducibles. Then we argue as in Lemma 4.46 to obtain an
algebra anti-automorphism ¢ : A — A with o(e;) = e; for each ¢ € I such that F is
isomorphic to the functor A-modp. — A°P-mod;. defined by restriction along o. The
lemma follows on composing with 7* then restricting to A-modgq. O

With these preliminaries in place, we can now prove a result which explains how to
transfer a contravariant autoequivalence on a fully stratified category to its Ringel dual.

Theorem 4.50 (Dualities commute with Ringel duality). Suppose that R is a fully strat-
ified category with stratification (B, L, p, A, <) such that R is tilting-rigid with weakly
symmetric strata, i.e., (4.40) holds. Assume also that R possesses a contravariant au-
toequivalence 7V which preserves isomorphism classes of irreducible objects. Then we
have that T'(b)Y = T(b) for all b € B. Moreover, letting R’ be the Ringel dual category
with respect to some choice of tilting generator and F, G be the usual Ringel duality func-
tors, there is an induced contravariant autoequivalence 7~ on R’ preserving isomorphism
classes of irreducible objects such that

Fo?V =7" oG, Go?Y =7 o F (4.45)

whenever these functors make sense (e.g., these isomorphisms always hold on A.(R)
and on V<(R), respectively, for any choice of €).

Proof. We just explain the proof in the case that R is a finite fully stratified category,
leaving the minor modifications needed in the other three cases to the reader. By
Lemma 4.46, we may assume that R = A-modg for a finite-dimensional algebra A and
that 7V : R — R is the functor 7@ taking a left A-module V' to the dual right A-module
viewed as a left module by restricting the natural right action along some given anti-
automorphism o : A > A. (In the other three cases, one needs to use Lemmas 4.48-4.49
here in place of Lemma 4.46.)

Since Ty (b) has a A-flag with A(b) at the bottom, and also a V-flag, we see using
Lemma 3.3 that Ty (b)¥ has a V-flag with V(b) at the top, and also a A-flag. So it is
isomorphic to T_(b). As R is tilting-rigid, T'(b) := T4 (b) = T_(b), so we have shown
that T'(b)Y =~ T'(b) for all b e B.

We are given some full tilting module T defining the Ringel dual category R/, i.e.,
R’ = B-modgq for B = End4(T")°P. From the previous paragraph, we get that T >~ T'V.
Let ¢ : T = TV be an isomorphism of left A-modules. Equivalently, ¢ is the data of
a non-degenerate pairing (-, : T x T — k with (v,w) := ¢(v)(w), and we have that
(v, wy = v, o(x)w) for v,w e T, x € A. Let 7 : B — B be the anti-automorphism of
B defined so that {vy, w) = (v, wt(y)) for v,w € T, y € B. It follows that ¢ is also an
isomorphism of right B-modules for the right B-module structure on TV obtained by
restricting its natural left action on T along 7. Now we can define the contravariant
autoequivalence 7" : B-modgg — B-mod¢q to be 7.
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In this paragraph, we check (4.45). We just prove the first of these isomorphisms; the
latter follows from former (with the roles of A and B reversed) on taking adjoints. Take
V € R. Then we have natural left B-module isomorphisms

(GV)" @ Homu(V,T) = Homu (TV, V") = Homu (T, V") = F(VY),

as required. (On the space Hom 4 (V,T) here, the left B-module structure is defined by
restricting the natural right action along 7.)

It remains to check that 7" preserves isomorphism classes of irreducible objects in
R’. Since the strata are weakly symmetric, we have that

V' (b)" =~ (GA(b))" =~ F(A(b)Y) = FV(b) =~ A'(b).
This implies that L'(b)" =~ L'(b). O

In examples coming from Lie theory, highest weight categories usually come equipped
with dualities arising from anti-involutions which restrict to the identity on the Cartan
part. The material in the rest of the subsection is an attempt to axiomatize the essential
features of such dualities in the more general setting of fully stratified categories. We
start with a definition which will be relevant at the level of strata.

Definition 4.51. Let A be a finite-dimensional algebra and o : A — A be an anti-
involution. We say that A is o-symmetric if the following hold:
(0S1) There is a set {e, |b € B} of representatives for the conjugacy classes of primitive
idempotents in A such that o(ep) = e, for all b e B.
(0S2) There is a non-degenerate associative symmetric bilinear form (-,-) : A x A —» k
such that (z,y) = (o(x),0(y)) for all z,y € A.

If A is o-symmetric in the sense of Definition 4.51 then it is a symmetric algebra in
the usual sense. Moreover, every finitely generated projective left A-module P possesses
a non-degenerate symmetric bilinear form {-, -) such that (xv, w) = (v, o(z)w) for v,w €
P, x € A; in particular, P =~ P®. To see this, we may assume without loss of generality
that P is indecomposable and that P = Ae for a o-invariant primitive idempotent e.
Then the form {-,-): P x P — k defined in terms of the given o-symmetric form (-,-) on
A by (v,w) := (o(v),w) for v,w € P has these properties; it is non-degenerate because
by associativity

A=cle®[eA(l—e)+ (1 —e)Ae] D (1 —e)A(l —¢) (4.46)

is an orthogonal decomposition of A with respect to (-,-) and the subspaces eA(1 — e)
and (1 — e)Ae are isotropic.

The following lemma shows that o-symmetry is preserved by Morita equivalence.
The basic point underlying this is that if A is o-symmetric and e € A is a o-invariant
idempotent, then o restricts to an anti-involution of eAe. Moreover a o-symmetric
form (-,-) on A restricts to such a form on eAe so that eAe is also o-symmetric; the
non-degeneracy of this restriction follows from the orthogonal decomposition (4.46).

Lemma 4.52. Let A be a finite-dimensional algebra which is o-symmetric for some
anti-involution o. Let B be another finite-dimensional algebra that is Morita equivalent
to A, so that there is an equivalence of categories F' : B-modgg — A-modyq. Then B
possesses an anti-involution T : B — B such that 7®o F = Fo?®, and B is T-symmetric
for any such anti-involution 7. Moreover, T can be chosen in such a way that it fizes
each of some given set {f; |i € I} of mutually orthogonal idempotents in B.

Proof. Let {ep |b € B} be a set of mutually orthogonal representatives for the conjugacy
classes of primitive idempotents in A with o(e;) = e;, for all b. Let e := >}, g ;. Then
eAe is the basic algebra that is Morita equivalent to A, and it is o-symmetric too. The
functors 7@ on A-modsgq and eAe-mod¢g obviously commute with the idempotent trunca-
tion functor giving an equivalence A-modsg — eAe-modgq. All of this means that we can
replace A with eAe if necessary to assume that A itself is basic with 1 = )}, g €, being



80 J. BRUNDAN AND C. STROPPEL

a decomposition of its identity element into mutually orthogonal o-invariant primitive
idempotents.

Now suppose that B is Morita equivalent to A via some given F' : B-modyg —
A-modgy. Let P := FB be the (A, B)-bimodule obtained by applying F' to the reg-
ular (B, B)-bimodule. Note that P = @,_; Pf; where {f; |i € I} is the given set of
mutually orthogonal idempotents in B; we are assuming here that >}, _; f; = 1p which
we can clearly do by adding one more idempotent to this set if necessary. As an A-
module, we have for each i € I that Pf; =~ @, Ae?di(b) for integers d;(b) > 0; the
numbers d(b) = >, ; d;(b) are the dimensions of the irreducible B-modules. Moreover,
e;Be; =~ End4(Pe;, Pe;)°P. Fixing such isomorphisms, we may assume simply that
P =@, Pf; with Pf; = @,.p AeP"") | B = End(P)° with f; being the projection
of P onto the i-th summand Pf;, and F' = PQp?.

Next we observe that B = End 4 (P)°P is isomorphic to an algebra of block matrices,
with blocks indexed by the set I x B, and the block in the row indexed by (i,a) and
column indexed by (j,b) being a d;(a) x d;(b) matrix with entries in e, Aey. The mul-
tiplication is just matrix multiplication combined with multiplication in A. From this
description, it is clear that B possesses an anti-involution 7 defined by taking the trans-
pose of a matrix and applying o to all of the entries of the result. For i € I,b e B and
1 <r <d;(b), let fip,r € B be the matrix with all entries equal to zero except for the r-th
entry in its (¢, b)-th diagonal block, which is equal to e;,. This is a primitive idempotent in
B, and it is fixed by 7. This verifies the axiom (oS1) for this particular anti-involution 7
of B. Next we check that the axiom (0S2) is satisfied. Let tr : A — k,x — (14, ) be the
trace function associated to a o-symmetric form on A. Define tr' : B — k by mapping
a matrix in B to the sum of the scalars obtained by applying tr to each of its diagonal
entries. Then let (-,-)" : B x B — k be the bilinear form defined from (z,y)" := tr'(zy).
This is a non-degenerate symmetric bilinear form on B with (7(z),7(y))" = (z,y)".

It is clear that Fo?® ~?7@ o F since F' is isomorphic to the idempotent truncation
functor defined by f := 3] fi 1 summing over all ¢ € I,b € B such that d;(b) # 0. We

also have that f; = >, g Zf’:al)) fibir, s0 T(fi) = fi for each i € I. So we have now proved
the existence of an anti-involution 7 with all of the desired properties. It remains to note
given another other anti-involution w : B — B with Fo?7® ~7® o F that 790?® ~ Id,
hence, we have that w o7 = 7 for some inner automorphism v : B — B,z — uzu™!;
equivalently, w = yo 7. If that is the case, then B is also w-symmetric since the bilinear

form (-, )" constructed in the previous paragraph also satisfies

(w(@),w(y)) = (ur(@)u  ur(y)u™) = (1(2),7(y)) = (z,y)’
for x,y € A. O

Definition 4.53. Let R be a fully stratified category with stratification (B, L, p, A, <).
We say that a contravariant autoequivalence 7V of R is a Chevalley duality if there is
a realization (4,0) of (R,?Y) in which o is a Chevalley anti-involution, meaning that
0% = id and the following two properties hold:

(Chl) There exists a set {e, | @ € B} of mutually orthogonal o-invariant idempotents
in A such that dim e, L(b) = 04 for all b € B with p(b) > p(a); here, L(b) is the
irreducible A-module labelled by b € B.

(Ch2) Let Ay be the quotient of A by the two-sided ideal generated by the idempo-
tents {e,|a € B with p(a) £ A} and Ay := @, jep, €aA<r€p. Foreach A € A, we
require that Ay possesses a non-degenerate associative symmetric bilinear form
(-, ) such that (ox(2),0x(y))r = (x,y)a for all z,y € Ay, where o) : Ay — Ay
is the anti-involution induced by o.

In view of the following lemma, axiom (Ch2) is vacuous in the case that R is a highest
weight category, since then we have that Ay =k and o) = id.
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Lemma 4.54. Suppose that (A, o) is a realization of (R,?Y) in which o is a Chevalley
involution as in Definition 4.53. The algebra Ay from (Ch2) is the basic algebra realizing
the stratum Ry, and it is ox-symmetric in the sense of Definition 4.51. We also have
that L(b)Y =~ L(b) for all b € B, i.e., Chevalley dualities preserve isomorphism classes
of irreducible objects.

Proof. Let I be the two-sided ideal of A generated by {e, | a € B with p(a) £ A}. We
claim that R« is the full subcategory of R consisting of all objects V' such that IV = 0.
To see this, if IV = 0 then e,V = 0 for all a € B with p(a) € A then [V : L(a)] = 0 for
all such a thanks to axiom (Chl). So we have that V' € R¢y. Conversely, if V € Ry
and p(a) € A then the idempotent e, is zero on every irreducible subquotient of V' by
(Chl), hence, e,V = 0. This implies that IV = 0.

By the claim, the algebra A<y = A/I gives a realization of R<). Let &, denote the
image of e, in A<y. For b € By, we have that &,L(c) = 0y, for all ¢ € B. This shows
that the mutually orthogonal idempotents {¢, | b € B,} are primitive in A<). Hence,
Ay = (—meeBA €, A<\€p is the basic algebra realizing the stratum R,. It is immediate
from the axioms (Chl)—(Ch2) and the definition that Ay is o)-symmetric.

Finally to show that L(b)® = L(b) for all b € B, suppose that b € By. We have
that e, L(b)® =~ (e L(b))* = 0 for all a with p(a) € A, so L(b)® € R¢x. Moreover,
epL(b)® =~ (e, L(b))* is one-dimensional. Since &, is primitive in A<y this implies that
L(b)® =~ L(b). O

Theorem 4.55 (Chevalley dualities commute with Ringel duality). Let R be a fully
stratified category with stratification (B, L, p, A, <). Assume that R possesses a Cheval-
ley duality 7V . Fiz also a realization (A, o) of (R,?Y) in which o is a Chevalley involu-
tion, and let T'(b) denote the left A-module corresponding to T, (b) € R.

(1) If R is tilting-rigid and chark # 2 then for each b € B there exists a non-
degenerate symmetric bilinear form (-,-) : T(b) x T'(b) — k satisfying the follow-
ing o-adjunction property:

{xv,wy = v, o(x)w) (4.47)
for v,w e T(b) and x € A.

(2) Suppose that we are given objects of R corresponding to A-modules {T}, | b € B}
such that each Ty is a direct sum of T(b) and copies of T(c) for ¢ € B with
p(c) < p(b). Assume moreover that each Ty is equipped with a non-degenerate
symmetric bilinear form {-,-) satisfying the o-adjunction property. Then, R is
tilting-rigid with symmetric strata, and there is an induced Chevalley duality 7"
on the Ringel dual R’ of R satisfying (4.45).

Proof. (1) Suppose that b € B for some A € A. For the purpose of proving (1) for T'(b),
we can replace R by R« and the algebra A realizing R by the corresponding quotient
algebra to assume without loss of generality that R = R<y. So now R is either finite or
upper finite, and the chosen algebra A is either a finite-dimensional algebra or a locally
finite-dimensional locally unital algebra, respectively. Let {e, | a € B} be the mutually
orthogonal o-invariant idempotents given by the axiom (Chl). Let ey := >} g, € and
Ay := eyAey. By Lemma 4.54, this is the basic finite-dimensional algebra realizing the
top stratum Ry, and {e; | b € B} is a set of representatives for the conjugacy classes of
primitive idempotents in Ay. The anti-involution o of A restricts to an anti-involution
oy of Ay. Also e T'(b) is isomorphic to the indecomposable projective Ay-module Ayep.
Claim 1: Let ¢ : T(b) — T(b) be an A-module homomorphism and 1 : exT(b) — exT(b)
be its restriction, which is an Ax-module homomorphism. Then i is an isomorphism if
and only if 1 is an isomorphism. The forward implication is clear. For the converse,
let E := Enda(T(b))°? and Ey := Enda, (exT'())°P. As e T'(b) is an indecomposable
Ajx-module, the algebra E) is a finite-dimensional local algebra, so its Jacobson radical
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is of codimension one and any non-unit is nilpotent. The algebra E is also a finite-
dimensional local algebra in the finite case, while in the upper finite case it is a pseudo-
compact topological algebra with Jacobson radical J(E) having codimension one. In
either case, any element of E is either a unit or it belongs to J(E). Let E be the image
of F under the homomorphism E — FE) defined by restriction. The Jacobson radical of
E is the image of J(E), so it is again of codimension one’ in E. We are given 1 € E
such that 1) is a unit in Ey. This means that 1) is not nilpotent, hence, it is also a unit
in E. It follows that ¢ ¢ J(E) so ¥ ¢ J(E). This shows that ¢ is a unit in E, i.e., it is
an isomorphism as required.

Claim 2: Let {-,-) be a bilinear form on T (b) with the o-adjunction property. Then {-,-)
is non-degenerate if and only if its restriction {-,-yx to exT(b) is non-degenerate. To
see this, observe that the form (:,-) induces an A-module homomorphism 6 : T'(b) —
T(b)® with 6(v)(w) = (v, w), and the form is non-degenerate if and only if this induced
homomorphism is an isomorphism. Similarly, the restriction (-, -)» induces an A-module
homomorphism @ : exT'(b) — (exT'(b))@, and the restricted form is non-degenerate if and
only if  is an isomorphism. If we identify (exT'(b))® with e, (T(b)®) in the natural way,
we see that 6 is the restriction of . We are given that R is tilting-rigid, and its strata are
o-symmetric which implies that they are weakly symmetric, so there is an A-module
isomorphism ¢ : T(b)® = T(b) according to Theorem 4.50. This restricts to an A,-
module isomorphism ¢ : ex(T'(b)®) — e\T'(b). Now Claim 2 is reduced to showing that
the A-module homomorphism ¢ o 6§ : T'(b) — T'(b) is an isomorphism if and only if its
restriction ¢ o 0 : exT(b) — exT'(b) is an isomorphism. This follows from Claim 1.

Claim 3: The socle of Axep is irreducible, and any non-zero vector z, € soc(Axep)
satisfies ox(zp) = zp. By (Ch2), there is a non-degenerate associative symmetric bilinear
form (-,-)x on Ay with (ox(x),07(y))a = (z,y)x for all x,y € Ay. By the discussion
before Lemma 4.52, Ajep is self-dual, so it has irreducible socle isomorphic to its head.
Moreover, (-,-) restricts to a non-degenerate associative symmetric bilinear form on
epAxep. This is a local symmetric algebra, so its Jacobson radical J is a two-sided ideal
of codimension one and J+ is a two-sided ideal of dimension one. Let z, be a non-zero
vector in Jt. We must have that (e, 2;)x # 0 by the non-degeneracy of the form.
Moreover, z;, also spans the socle of Ayep. It remains to show that o)(zp) = 2. Since
oy leaves J* invariant we certainly have that oy(2,) = cz, for ¢ € k. Now we use the
ox-symmetry of the form:

(e, 20)x = (oa(en), oa(28))x = (€p, C2p)A-
Since (ep, 2p)x # 0, this implies that ¢ = 1.

Claim 4: Suppose that {-,-)x is a bilinear form on Axep with the ox-adjunction property,
i.e., the analog of (4.47) with o replaced by oy holds for all x € Ay. This form is
non-degenerate if and only if {ep,zpyrn # 0 for zp as in Claim 3. Suppose first that
(e, zbyx # 0. Take any 0 # = € Ayep. Since the socle of Aye; is one-dimensional, there
exists y € Ay such that yx = 2. Then (e, yx)x # 00 (o(y)ep, x)x # 0. This shows that
the function Aye, — (Axep)™, x — (?,x), is injective, hence, the form is non-degenerate.
Conversely, suppose that (ep, z5y» = 0. Then the Ax-submodule {z € Aye,|{z,2zp)x = 0}
contains ey, hence, it is all of Aye,. So the form is degenerate.

Now we can complete the proof of (1). As noted in the proof of Claim 2, T'(b) = T'(b)®.
Let [+, -] be the bilinear form on T'(b) corresponding to such an isomorphism. This form
is non-degenerate and has the o-adjunction property. However, it is not necessarily
symmetric, so we symmetrize by letting (-, -) be the form on T'(b) defined from

(v, w) = [v,w] + [w,v].

9n fact, one can show that E = E) but we do not need to use this here.



SEMI-INFINITE HIGHEST WEIGHT CATEGORIES 83

Using that o is an involution, it is easy to check that this new form still has the o-
adjunction property, and now it is symmetric, but we do not yet know that it is non-
degenerate. To see this, let ¢ : Aye, — e T'(b) be an Ay-module isomorphism. Let
[-,-]x and {:,->x be the bilinear forms on Aye, defined from [z,y]x := [¢(z),c(y)] and
x,ypa = {e(z), t(y)). Applying Claim 2, we see that the form [-, ] is non-degenerate,
and the goal is to show that (-, - is non-degenerate. Applying Claim 4, we have that
[, zp]x # 0 and we need to show that {ep, 25y # 0. This follows since

ey, zppx = [€n, 20]x + [26, €v]x = [en, zp]x + [en; on(2p)]x = 2[ep, 2p]n # 0,
using that o (zp) = 2, by Claim 3 together with the hypothesis that chark # 2.

(2) We are given non-degenerate symmetric bilinear forms {-,-) on each T} satisfying
the o-adjunction property. It follows that T, =~ T,?. Since T (b)Y = T_(b) for each
b € B, this is enough to deduce that R is tilting-rigid. Also the assumption that 7V
is a Chevalley duality implies that the basic algebra Ay realizing R, is o)-symmetric,
hence, R, is symmetric.

Now the argument proceeds in a similar way to the proof of Theorem 4.50. We just
explain the details in the finite case; the other three cases are similar but there are
slight notational differences. We may assume that the tilting generator used to define
the Ringel dual category is T' = @, Tp- Then R’ = B-modgq for B := Enda(T)°P.
The given forms on each T, give us a non-degenerate symmetric bilinear form {-,-)
on T satisfying (4.47), with the summands T}, being mutually orthogonal. Define an
anti-automorphism 7 of B from the equation {vy,w) = {(v,wt(y)) for v,w € T and
y € B. This gives us a contravariant autoequivalence 7V :=7® on R', and we get the
isomorphisms (4.45) like in the proof of Theorem 4.50.

As (-,-) is symmetric and T is a faithful B-module, the following calculation implies
that 72 = id:

vy, wy = (v, wr(y)) = (W (y),v) = {w,vr?(y)) = Wr°(y), w).

For each b € B, let f, € B be the idempotent projecting T" onto the summand 73. Using
that the restriction of the form (-, -) to this summand is non-degenerate, it follows that
7(fp) = fo- So {fp|b € B} is a set of mutually orthogonal 7-invariant idempotents in B.
The idempotent f3 is equal to the primitive idempotent projecting Tj onto its summand
T(b) plus other orthogonal primitive idempotents which project onto summands T'(a)
for a € B_ ;). Bearing in mind we are using the opposite ordering on A on the Ringel
dual side, this is just what we need for the property (Chl).

Finally, to see that property (Ch2) holds, let By be the algebra obtained from B ac-
cording to the construction of (Ch2) and 7y : By — B, be the anti-involution induced by
7. The pair (By, T») is a realization of (R}, ?"), where 7" here is the contravariant autoe-
quivalence of R induced by the one on R'. We also have the pair (A, o) realizing R
with its contravariant autoequivalence induced by 7. We know already by Lemma 4.54
that Ay is oy-symmetric, and (Ch2) follows if we can show that B) is T)-symmetric.
This follows from Lemma 4.52 since the functor F) : Ax-modyg — Bj-modg is an
equivalence satisfying Fyo?Y ~?" o F. Indeed, Theorem 4.42(2) gives that F =~ G,
while (4.45) and the definitions (4.35)—(4.36) give that the dualities 7V : Ry — R and
70 1Ry — R satisfy Gyo?¥ =7" o F}. O

5. GENERALIZATIONS OF QUASI-HEREDITARY ALGEBRAS

Now we give some applications of semi-infinite Ringel duality. First, we use it to show
that any upper finite highest weight category can be realized as A-modgq for an upper fi-
nite based quasi-hereditary algebra A. The latter notion, which is Definition 5.1, already
exists in the literature in some equivalent forms. When A is finite-dimensional, it gives
an alternative algebraic characterization of the usual notion of quasi-hereditary alge-
bra. Then, in §5.2, we introduce further notions of based e-stratified algebras and based
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e-quasi-hereditary algebras, which correspond to e-stratified categories and e-highest
weight categories, respectively. In §5.3, we introduce based stratified algebras and based
properly stratified algebras corresponding to fully stratified and fibered highest weight
categories, respectively. Finally, in §§5.4-5.5, we discuss the related notions of triangular
bases and a triangular decompositions.

5.1. Based quasi-hereditary algebras. The following definition is a simplified version
of [ELau, Def. 2.1] translated from the framework of k-linear categories to that of locally
unital algebras. Also, for finite-dimensional algebras, it is equivalent to [KM, Def. 2.4].
These assertions will be explained in more detail in Remarks 5.7-5.8 below.

Definition 5.1. By a finite (resp., upper finite, resp., essentially finite) based quasi-
hereditary algebra, we mean a finite-dimensional (resp., locally finite-dimensional, resp.,
essentially finite-dimensional) locally unital algebra A = @ e;Ae; with the following
additional data:
(QH1) A subset A < I indexing special idempotents {ex | A € A}.
(QH2) A partial order < making the set A into a poset which is upper finite in the
upper finite case and interval finite in the essentially finite case.

(QH3) Sets Y (i,\) < e;Aey, ()\,j) cexAej for Xe Ayi,jel.
Let Y(A) := U,y Y (4, A) and X(X) := Uje[ X( ,j). We impose the following axioms:

)

)

i,5€l

(QH4) The products yx for (y,z) € Jycp Y(A) X X(A) are a basis for A.
(QH5) For A\, € A, the sets Y([L, A) and X()\ ) are empty unless p < A.
(QH6) We have that Y (A, ) = X (A, \) = {e)} for each X € A.

We say that A is symmetrically based if there is also some given algebra anti-involution
0:A— Awith o(e;) =e; and Y (i, A) = o(X (A, i) for all i e I, A € A.

We refer to the given basis for A from (QH4) as the triangular basis; it is certainly not
unique since one can replace any Y (i, A) or X (A, j) by another basis that spans the same
subspace up to “higher terms”. If A is symmetrically based rather than merely based,
this basis is a cellular basis in the general sense of [GL], [Wes]. However, Definition 5.1
is considerably more restrictive than the general notions of cellular algebra or category
introduced in loc. cit.. In fact, for finite-dimensional algebras, Definition 5.1 is equivalent
to the usual notion of quasi-hereditary algebra, as we will explain more fully below.

Remark 5.2. It is clear from (QH4) that A = >}, _, AexA. Hence, A is Morita equiva-
lent to the idempotent truncation @ A e € aAe,. This means that if one is prepared to
pass to a Morita equivalent algebra then one can assume without loss of generality that
the sets A and I in Definition 5.1 are actually equal, i.e., all distinguished idempotents
are special. However, in naturally-occurring examples, one often encounters situations
in which the set [ is strictly larger than A.

Remark 5.3. A classical example of a finite symmetrically based quasi-hereditary al-
gebra is the Schur algebra S(n,r) with its basis of codeterminants &§; yx)€e(n),; as con-
structed by Green in [Gre]; one definitely needs I 2 A in this example.

Remark 5.4. For a well-known infinite-dimensional example, consider the path algebra
A of the Temperley-Lieb category T L(d) for any value of its parameter 0 € k. The natural
diagram basis gives a triangular basis making A into an upper finite symmetrically based
quasi-hereditary algebra. For this, one takes I = A = N ordered by the opposite of the
natural ordering. The set Y (A) (resp., X (X)) consists of all cap-free Temperley-Lieb
diagrams with A\ strings at the bottom (resp., all cup-free Temperley-Lieb diagrams
with A strings at the top). The anti-automorphism o is defined by reflecting diagrams
in a horizontal axis.

Lemma 5.5. Let A be a finite, essentially finite or upper finite based quasi-hereditary
algebra. For A € A, any element f of the two-sided ideal AeyA can be written as a linear
combination of elements of the form yx for y e Y (), v € X(u) and u = A.
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Proof. We first consider the upper finite case. By considering the triangular basis, we
may assume that f = yyz1ysxs for y1 € Y(u1),x1 € X(p1,A), y2 € Y (A, p2), 22 € X (u2)
and py,pe = A If gy = po = A then 1 = ey = y2 and f = yjx9, as required. This
finished the proof for A maximal. If g, > A for some r € {1,2}, then we have that
f € Ae,, A for this r, and are done by downward induction on the partial order on A.
The finite and essentially finite cases are similar. Now, assuming that f € e;Ae; for
i,7 € I, there are only finitely many u € A such that e;Ae, # 0 or e, Ae; # 0. Letting
A’ be the finite set of all such u, we can then again proceed by downward induction on
the partial order on A’. O

Corollary 5.6. Let AT be an upper set in A. The two-sided ideal Jo+ of A generated
by {ex | A€ A} has basis {yz | (y,2) € Uyenr Y(A) x X(A)}.

Proof. Let J be the subspace of A with basis given by the products yx for y € Y(\),x €
X (A) and A € AT. For any such element yx € J, we have that yx = yeyx, hence, yx € Jy1.
This shows that J < Jj+. Conversely, any element of Jy: is a linear combination of
elements of AeyA for A € AT. In turn, Lemma 5.5 shows that any element of AeyA for
A€ A" is a linear combination of elements yx for y € Y (), z € X(p) and p = A, All of
these elements yx belong to J because A" is an upper set; thus Jy: < J. O

Remark 5.7. We have formulated Definition 5.1 only for algebras over our usual ground
field k, but the definition makes sense with k replaced by some more general commutative
ground ring R (“finite-dimensional” being interpreted as “free of finite rank”). Then,
in the symmetrically based upper finite case, Definition 5.1 is equivalent to the notion
of an object-adapted cellular category from [ELau, Def. 2.1]. This can be seen from
Corollary 5.6 and [ELau, Lemmas 2.6-2.8]. Elias and Lauda also note in loc. cit. that
the diagrammatic Hecke category Hps(W,S) of [EW] associated to a Coxeter system
(W, S) is an example of an object-adapted cellular category. In our language, the path
algebra H of Hpg(W, S) is an upper finite symmetrically based quasi-hereditary algebra
defined over the ground ring R = Q[b], that is, the ring of regular functions arising from
a realization b of (W, S). A cellular basis is given by the double light leaves basis. (One
needs some assumptions on the realization as in [EW] for this basis to be defined.)

Remark 5.8. In the finite case, Definition 5.1 is equivalent to the notion of based quasi-
hereditary algebra from [KM, Def. 2.4]. To see this, one takes the set A indexing the
special idempotents in our setup to be the set I from loc. cit. (which indexes mutually
orthogonal idempotents e; € A according to [KM, Lem. 2.8]). Then we take our set
I to be the set A L {0}, i.e., we add one more element indexing one more idempotent
eo:i=14—>, sen €x- Kleshchev and Muth established the equivalence of their notion of
based quasi-hereditary algebra with the original notion of quasi-hereditary algebra from
[CPS1] (providing the partial order on A is actually a total order); for ground fields, we
will reprove this equivalence in a different way below. See also [DuR] which established
a similar result using a related notion of standardly based algebra.

Let A be a based quasi-hereditary algebra as in Definition 5.1. For A € A, let A<
be the quotient of A by the two-sided ideal generated by the idempotents e, for p £ .
For z € A, we often write simply Z for the image of z in A¢). Corollary 5.6 implies that

Ag)\ = @ éiAg)\éj (51)
i,5€l
is based quasi-hereditary in its own right, with special idempotents indexed by elements
of the lower set (—oo, A] and basis given by the products §& for y € Y (i), z € X (u) and
u € (—oo, A]. Define the standard and costandard modules associated to A € A by

A(/\) = As)\é)\ V(/\) = (é,\AS)\)GE. (52)

These are left A-modules which are projective and injective as A¢y-modules, respec-
tively. In the finite or essentially finite case, €\ A<, is finite-dimensional and one could
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just take the full linear dual in (5.2), but in general in the upper finite case A(\) and
V()\) are only locally finite-dimensional. The modules A(A) may also be called cell
modules and the modules V() dual cell modules. The vectors {yéx |y € Y (\)} give the
standard basis for A(X). Similarly, the vectors {éxz | x € X (\)} are a basis for the right
A-module €y A4; the dual basis to this is the costandard basis for V().

Theorem 5.9 (Highest weight categories from based quasi-hereditary algebras). Let A
be a finite (resp., upper finite, resp., essentially finite) based quasi-hereditary algebra.
The modules
{L(A) :=hd A(N\) =@soc V(N\) | Ae A}

give a complete set of pairwise inequivalent irreducible left A-modules. Moreover, the
category R := A-modgq (resp., R := A-modyq, resp., R := A-modys ) is a finite (resp.,
upper finite, resp., essentially finite) highest weight category with the given weight poset
(A, <). Its standard and costandard objects A(X) and V(A) are as defined by (5.2). If
A is symmetrically based with anti-involution o then 79 : R — R is Chevalley duality
of R in the sense of Definition 4.53.

Proof. For X\ € A, let Py be the left ideal Aey. We start by establishing the claim that
Py has a A-flag with A()) at the top and other sections of the form A(u) for p > A. To
prove this, fix some A and set P := P, for short. This module has basis {ym ’ (y,z) €
Uza Y () x X (g, A}, Let {p1,..., 10} be the finite set {u € [\, 0) | X(u,A) # @}
ordered so that p, < pus = r < s; in particular, y3 = A. For 1 < r < n let P. be
the subspace of P spanned by {ym ’ (y,x) € UZ:TH Yi(us) x X (us, )\)} They define a
filtration P =: Py > P, > --- > P,, = 0, since each P, is a A-submodule of P. Moreover,
there is, for each 0 < r < n an A-module isomorphism

b.: P A(u) > Pra/Pr (5.3)

2€X (fr,\)

which in case 7 > 1 sends the basis vector ye,, (y € Y (i,)) in the ath copy of A(u,) to
yx + P. € P,_1/P,. This defines clearly a linear isomorphism, so we just need to check
that it is an A-module homomorphism. For this take y € Y (4, 1) and u € e; Aej. Expand
uy in terms of the triangular basis as Y, cpyp + 35, cqyqxy for scalars ¢, ¢j, yp € Y (4, i),
Yq € Y(i,vq), vq € X(vg,pr) and vg > pir. Then we have that uye,, = > cpypeé,, and
uyx + P = 3 cpypr + Pr, since the “higher terms” ygzj act as zero on both e, and
x + P.. This shows that 6, intertwines the actions of u and so the claim follows, since
Py/P; =~ A()\) by construction.

Now we can classify the irreducible A-modules. The first step for this is to show that
A(X) has a unique irreducible quotient. To see this, note that the “weight space” exA(X)
is one-dimensional with basis €y, due to the fact that Y (A, A) = {e)}. This is a cyclic
vector, so any proper submodule of A(\) must intersect exA(N) trivially. It follows that
the sum of all proper submodules is proper, so A(\) has a unique irreducible quotient
L(\). Since eyL(A) is one-dimensional and all other p with e, L(X) # 0 satisfy p < A,
the modules {L(\) | A € A} are pairwise inequivalent. To see that they give a full set of
irreducible A-modules, let L be any irreducible A-module. In view of Remark 5.2, there
exists A € A such that exL # 0. Then L is a quotient of Py = Ae). By the claim we
proved already, it follows that L is a quotient of A(u) for some p = A, i.e., L = L(u).

Thus, we have shown that the modules {L(\) | A € A} give a full set of pairwise
inequivalent irreducible left A-modules. Now consider the stratification of R arising from
the given partial order on the index set A. In the recollement situation of (3.4), the Serre
subcategory R« (resp., R<x) may be identified with A¢y-modieg (resp., A<y-modsq),
and the Serre quotient Ry = R<n/R<x is Ax-modgg where Ay := éyA<réx. The
algebra A, has basis €, i.e., it is a copy of the ground field k. This shows that all
strata are simple in the sense of Lemma 3.4. Moreover, the standard and costandard
objects in the general sense of (1.1) are obtained by applying the standardization functor
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gt i= A< € ®a4, ? and the costandardization functor jj := @, Homy, (exA<ré€;,7?) to
the irreducible Ay-module Ay = ke,. Clearly, thg\resulting modules are isomorphic to
A(N) and V() as defined by (5.2). The axiom (PA) follows from the claim.

For the final statement about Chevalley duality, the observations made earlier in the
proof establish property (Chl) from Definition 4.53, and (Ch2) is vacuous as we are in
the highest weight setting. Hence, o is a Chevalley anti-involution. O

Finally in this subsection we are going to prove a converse to Theorem 5.9. This will
be deduced from the next theorem together with an application of Ringel duality. In
fact, the next theorem is a reformulation of the main result of [AST].

Theorem 5.10 (Based quasi-hereditary algebras from highest weight categories). Let
R be a finite (resp., lower finite, resp., tilting-bounded essentially finite) highest weight
category with weight poset (A, <) and labelling function L. Suppose we are given A = T
and a tilting generator T = @,.; T; for R such that each Tx (A € A) is a direct sum of
T(N\) and other T'(u) for p < A. Let

A= (@ HOI’HR(TZ,T])> .

i,5€l
(1) Fori,je I and XA € A, pick morphisms
Y(ia /\) < HomR(TivTA)? X()‘vj) < HomR(TAa,‘rj)

lifting bases for Homg (T;, V(A)) and Homg (A(X), T;) as in Corollary 4.44, such
that Y (A, A) = X(A\,\) = {idp,}. Then {yz | (y,z) € Ui jer Unea Y (8, A) x
X()\,j)} is a triangular basis making A into a finite (resp., upper finite, resp.,
essentially finite) based quasi-hereditary algebra with respect to the opposite poset
(A, >).

(2) If in addition R has a Chevalley duality 7V and, in a suitable realization, the
modules corresponding to each T; possess non-degenerate symmetric bilinear
forms satisfying the adjunction property as in (4.47), then the triangular ba-
sis in (1) can be chosen so that A is symmetrically based.

Proof. (1) We have all of the necessary data in place to have a based quasi-hereditary
algebra, taking e; := idg, in the obvious way. To check the axioms, Corollary 4.44 checks
(QH4), and we have chosen the lifts so that Y/(A, A) = {ex} = X(\, \) as in (QH6). For
(QH5), note that Y (u, A) and X (A, ) are empty unless p > X because Homg (T),, V(N))
and Homg (A(X),T,) are zero unless A < p.

(2) Suppose that we are working in a particular algebra realization (B, 7) of (R,?Y) in
which 7 is a Chevalley anti-involution and each T; admits a non-degenerate symmetric
bilinear form with the 7-adjunction property. Let T := @,.; T; and (-,-) : T x T — k
be the orthogonal sum of the given forms. Then we obtain an algebra anti-involution
o : A — A such that (vx,w) = {c,wo(z)) for all v,w € T, x € A; cf. the proof of
Theorem 4.55(2). This fixes each of the idempotents e; € A. The bilinear form on 7;
induces a B-module isomorphism ¢; : T; = T/®. Also let 7y : T — V() be some choice
of epimorphism for each A € A as needed for Corollary 4.44. Then define the embeddings
tx : A(X) — T there so that there are induced isomorphisms A(\) = V(A\)® making
the following diagrams commute for all A € A:

A(N) — V()@

\[LA \[7{';’5
T, —2 T2,

Now we pick the sets X (A, ¢) lifting bases for Homp(A(X), T}) as in Corollary 4.44. Then
define Y (i,\) := {¢y ' ox* o ¢; | w € X(\,4)}. This set lifts a basis for Homp (T, V()))



88 J. BRUNDAN AND C. STROPPEL

as stipulated in Corollary 4.44. Using these choices, the construction from the previous
paragraph makes A into a based quasi-hereditary algebra. Moreover, we now have that
Y (i, A) = o(X (A, 1)) for all i, A, so A is symmetrically based with the underlying anti-
involution o. O

Corollary 5.11 (Quasi-hereditary algebras are based quasi-hereditary). Let
A= @ eiAej
ijel
be an algebra realization of a finite (resp., upper finite, resp., tilting-bounded essentially
finite) highest weight category R, with weight poset (A, <) and labelling function L.

(1) There is an idempotent expansion A = @, ;.;€iAé; of A with A < I, and
subsets
Y(i,\) c é;Aé,, X (A, J) C éxAé;
for all X € A and 1,j € I making A into a finite (resp., upper finite, resp.,
essentially finite) based quasi-hereditary algebra with respect to the given ordering
on A.
(2) If chark # 2 and R has a Chevalley duality 7V then the choices in (1) can be

made so that A is symmetrically based with anti-involution o realizing 7" .

Proof. (1) Let A = (—DZ jei é;Aé; be an idempotent expansion indexed by a set I chosen
so that A < I and hd(A4éy) =~ L(\) for each A € A. We are going to apply the
Ringel duality from Definition 4.9 (resp., Definition 4.26, resp., Definition 4.33). In
the finite or upper finite cases, we fix a choice of tilting generator T for R and let

B := Endg(7)°P. In the essentially finite case, we fix a tilting generator 7' = @, ; T}
for R then let B := ((—BMGJ HomR(Ti’Tj)) p. Then in all cases the category R’ :=
B-modgy is the Ringel dual of the original category. It is a finite (resp., lower finite,
resp., tilting-bounded essentially finite) highest weight category with irreducible objects
denoted {L'(N\)|A € A} and weight poset (A, =). Let T} := (¢;T)* € R'. By Corollary 4.11
(resp., Corollary 4.30, resp., Corollary 4.35), T" = @, ; T} is a tilting generator for R’

such that the original algebra A = (—BL jei é;Aé; is isomorphic as a locally unital algebra
op
to (®z‘,je 7 Homp/ (T}, T;)) . Moreover, T} is the indecomposable tilting module 7”(\)

for each A € A. To make A into a based quasi-hereditary algebra, it remains to apply
Theorem 5.10(1) with R, (A, <) and T; replaced by R’, (A,>) and T} in the present
setup.

(2) Assume that R has a Chevalley duality 7. Then the category R’ admits a Chevalley
duality ?” such that the Ringel duality functors intertwine 7 and ?” as in (4.45). This
follows by Theorem 4.55, using the assumption that chark # 2 and part (1) of the
theorem to establish the existence of suitable bilinear forms as in part (2). Hence, R’
has a realization (B,7) with 7 being a Chevalley involution realizing ?”. Then we can
appeal to Theorem 5.10(2), again using Theorem 4.55(1) to obtain suitable bilinear forms
on each T7, to deduce that the triangular basis can be chosen so that A is symmetrically
based. In particular, this gives an anti-involution ¢ : A — A fixing each é;. It remains
to note that 7@ realizes 7. It suffices to check this on finitely generated projectives
when it follows from (4.45) (applied twice since we have used Ringel duality twice). O

In the finite case, Corollary 5.11 recovers [KM, Prop. 3.5] (but note that the result
in loc. cit. is also valid over more general ground rings).

5.2. Based e-stratified and e-quasi-hereditary algebras. In this subsection, we
upgrade the results of §5.1 (excluding any that involve Chevalley duality) to e-stratified
and e-highest weight categories. The main new definition is as follows.
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Definition 5.12. By a finite (resp., upper finite, resp., essentially finite) based e-
stratified algebra, we mean a finite-dimensional (resp., locally finite-dimensional, resp.,
essentially finite-dimensional) locally unital algebra A = &P e;Ae; with the following
additional data:

(eS1) A subset B € I indexing the special idempotents {e; | b € B}.

(eS2) A poset (A, <) which is upper finite in the upper finite case and interval finite

in the essentially finite case, such that An I = &

(€S3) A sign function € : A — {%}.

(eS4) A function p: B — A with finite fibers B := p~1(})).

(eS5) Sets Y (i,b) < e;Aep and X (b, j) < epAej for allbe B and i, j € 1.
Let Y(b) := ;s Y (i,b) and X (b) := {J;c; X (b, j). There are then four axioms, the first
three of which are as follows:

(€S6) The products yx for (y,z) € g Y (b) x X (b) are a basis for A.

(eS7) For a,b € B, the sets Y (b,a) and X (a,b) are empty unless p(b) < p(a).

(eS8) The following hold for all A € A and a,b € Bj:

— if e(\) = — then Y(a,a) = {e,} and Y (a,b) = & for a # b;
— if e(A) = + then X (a,a) = {e,} and X (a,b) = & for a # b.

To formulate the fourth axiom, let ey := ZbeBA ey for short'” let A<y be the quotient
of A by the two-sided ideal generated by {e, | 1 € A}, and set Ay := éxAcréy (where
Z € A<y denotes the image of z € A as usual). Then:

i5el

(€S9) For each X € A, the finite-dimensional algebra Ay is basic and ey = >}, g €
is a decomposition of its identity element into mutually orthogonal primitive
idempotents.

Definition 5.12 in the special case that the stratification function p is a bijection
deserves its own name:

Definition 5.13. A finite (resp., upper finite, resp., essentially finite) based e-quasi-

hereditary algebra is a finite-dimensional (resp., locally finite-dimensional, resp., essen-

tially finite-dimensional) locally unital algebra A = @ e;Ae; with the following

additional data:

(eQH1) A subset A < I indexing the special idempotents {ex | A € A}.

(eQH2) A partial order < making the set A into a poset which is interval finite in the
essentially finite case and upper finite in the upper finite case.

i,5€l

eQH3) A sign function ¢ : A — {£}.

(eQH4) Sets Y(i,\)  e; Aey, ()\ J) € exAej for i,j €I and X e A.

Let Y(A) := ;e Y (4, A) and X(A) := UJeI X( )\ ,7). The axioms are as follows:
(eQH5) The products yz for (y,x U/\eA x X () are a basis for A.

(eQH6) For A, i € A, the sets Y(p, A) and X()\ 1) are empty unless p < .

(eQHT) If (A ) = — then Y (A, A) = {ex}, and if ¢(A) = + then X (A, \) = {ex}.

(eQHS8) For each A € A, the finite-dimensional algebra Ay as defined in Definition 5.12

is basic and local.

From now on, we just formulate the results for based e-stratified algebras, since
based e-quasi-hereditary algebras are a special case. The development below parallels
the treatment in the previous subsection, but there are some additional subtleties.

Remark 5.2 remains true: one can always pass to a Morita equivalent algebra in which
all of the distinguished idempotents are special. The analog of Lemma 5.5 is as follows.

Lemma 5.14. Let A be a finite, essentially finite or upper finite based e-stratified al-
gebra. For A € A, any element [ of the two-sided ideal Aey A can be written as a linear
combination of elements of the form yx for y € Y(a),x € X(a) and a € Bxy.

10T his notation is unambiguous due to the assumption A n I = &
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Proof. This is similar to the proof of Lemma 5.5. We just explain in the upper finite
case. We may assume that f = yyx1yaxs for y; € Y(ay), 21 € X(a1,b), y2 € Y(b,a3), 25 €
X(az2), b e By and a1,as € B>y. If a1 € Boy or as € B., we are done by induction.
If a1,as € By, there are two cases according to whether e(\) = + or ¢(A\) = —. The
arguments for these are similar, so we just go through the former case when £(\) = +.
Then we have that a; = b and x7 = €. Hence f = y1y2x2. Then we use the basis again
to expand y1y2 as a linear combination of terms yszs for y3 € Y (a3), 23 € X(as, az) and
az € Bsy. If ag € By then we get that as = as and z3 = e,,, SO Ysx3r2 = Y32 as
required. If az € B. ), we can then rewrite y3z3xo in the desired form by induction. [

Corollary 5.15. Let A" be an upper set in A and B' := p=1(A"). The two-sided ideal
Jar of A generated by {ex | A € A"} has basis {yz | (y,2) € Upeg: Y (b) x X(b)}.

Let A be a based e-stratified algebra as in Definition 5.12. For A € A, Corollary 5.15
implies that A<, has basis {yfi ’ yeY(b),zre X(b) and be Bg)\}. Hence, the basic
algebra Ay = €)A<)é) has basis

{y]ye Ua.pen, Y (a, b} ife(A) =+, {z|ze Ua.teB, X(a,b)} ife(X) =—.

Let j* : Acy-modyyq — Ax-modgg, V — &,V be the quotient functor V + &,V then
define the standardization and costandardization functors

it = Acer®a,?, Ja = @ Hom, (exA<xei, ?), (5.4)

iel
which are left and right adjoints of j*, respectively.
Lemma 5.16. If A € A has £(\) = — then the standardization functor j{* is ezact.

Proof. There is an isomorphism of right Aj-modules (—BaeBA (‘Dyey(a) B, Ay = Acrey
sending the vector é, in the yth copy of €,Ax to § € A<xéx. To see this, note as

e(A) = — that the projective Ax-module &,Ay has basis {Z | z € |J,eg, X(a,b)}, and
A<xéy has basis {7z | (y,2) € Uapen, Y(a) x X(a,b)}. Hence, A<yé, is a projective
right Ay-module, and the exactness follows. O

Continuing with A being a based e-stratified algebra, we let
P)\<b) = Axéyp, I)\(b) = (ébA)\>®, L)\<b) :=hd P)\(b) =~ socC I)\(b) (55)

for b € By. These give full sets of indecomposable projective, indecomposable injective,
and irreducible Ajy-modules, respectively. Then we define standard, proper standard,
costandard and proper costandard modules

A(b) == A<xey = jiPa(b), A(b) = jLa(b), (5.6)
V() == (e A<x)® = jR1A(b), V(b) := jRLa(b), (5.7)
cf. (1.1). Adopt the shorthands A, (b) and V. (b) from (1.2) too. The module A, (b) has
a standard basis indexed by the set Y'(b). In the case that £(A) = +, when A_(b) = A(b),
this basis is {yé; |y € Y(b)}. In the case that e(\) = —, when A.(b) = A(b), let &, be the
canonical image of &, under the natural quotient map A(b) — A(b). Then the basis is

{yép |y € Y(b)}. (One can also construct a costandard basis for V.(b) indexed by X (b)
by taking a certain dual basis, but we will not need this here.)

Theorem 5.17 (e-Highest weight categories from based e-stratified algebras). Let A be
a finite (resp., upper finite, resp., essentially finite) based e-stratified algebra as above.
The modules

{L(b) :=hd A.(b) =soc V.(b)|be B}
give a complete set of pairwise inequivalent irreducible left A-modules. Moreover, R :=
A-modgy (resp., R := A-modjzq, resp., R := A-modsq) is a finite (resp., upper finite,
resp., essentially finite) e-stratified category with stratification (B, L, p, A, <). Its strata
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may be identified with the categories Ry := Ax-modsq with standardardization and co-
standardization functors as in (5.4).

Proof. For b € B, let P, be the left ideal Ae,. We claim that P, has a A.-flag with
A.(b) at the top and other sections of the form A.(a) for a € B with p(a) = p(b).
To prove this, suppose that b € By and set P := P, for short. Note P has basis
{yz | (y,x) € Usen., Y(a) x X(a, b)}. Let {u1,..., s} be the finite set

{'u € [/\’ OO) | UaeBu X(a7b) # @}
ordered so that u, < pus = r < s; in particular, g1 = A. Let P, be the subspace of
P spanned by {yz | (y,z) € U,_, ; UaeBM Y(a) x X(a,b)}. This defines a filtration
P=Py>P > > P, =0 in which the section P,_;/P, has basis {yx + P, | (y,z) €
UaeB“T Y(a) x X(a,b)}. Now we show that each P,_1/P, has a A.-flag with sections
of the form A.(a) for a € B, . There are two cases:

Case 1: e(pr) = +. In this case, there is an A-module isomorphism

0: @ P Ala) > P_y1/P,
a€B,,,. zeX (a,b)
sending the basis vector ye, (y € Y(a)) in the zth copy of A(a) to yz + P, € P._1/P,.
This follows from properties of the basis and is similar to the proof of (5.3).

Case 2: e(u,) = —. Note that P._;/P, is naturally an A¢, -module. Let @, :=
€u,(Pr—1/P-). This is an A, -module with basis {x + P, | z € X(a,b),a € B, }. We
claim that the natural multiplication map

ASHTEALT ®AH7‘ Qr - T—l/P'I"7 yé/m ® (1‘ + PT) = yT + P,

is an isomorphism. This follows because the module on the left hand side is spanned by
the vectors {yé,, @ (x + P.) | (y,x) € Usen,, Y(a) x X(a,b)}, and the images of these
vectors under multiplication are a basis for the module on the right. Hence, P,._1/P, =~
Ji'" Q.. We deduce that it has a A.-flag with sections of the form A(a) (a € B,,.) on
applying the standardization functor to a composition series for @Q),., using the exactness
from Lemma 5.16.

We can now complete the proof of the claim. The only thing left is to check that the
top section of the A.-flag we have constructed so far is isomorphic to A.(b). This
follows from the constructions just explained: in the case e(\) = + we showed that
Py/P1 = A(b) = A-(b), while if () = — then the top section is j L (b) = A (b).
Using the claim just established, we can now classify the irreducible A-modules. For
b € B, the proper standard module A.(b) has irreducible head denoted L(b). This fol-
lows by the usual properties of adjunctions and the quotient functor j* : Acy-modjq —
Ax-mod¢q, V' — €,V. Moreover, L(b) is the unique (up to isomorphism) irreducible
Acy-module such that j*L(b) = Ly(b), hence, the modules {L(b) | b € B} are pairwise
inequivalent. To see that they give a full set of irreducible A-modules, let L be any irre-
ducible A-module. By the analog of Remark 5.2, there exists b € B such that e, L # 0.
Then L is a quotient of P, = Ae,. Finally, using the claim, we deduce that L is a
quotient of A.(a) for some a € B with p(a) = p(b) and thus L is isomorphic to L(a).
Having classified the irreducible A-modules {L(b) |b € B}, (B, L,p, A, <) defines a
stratification of R. We are in the recollement situation of (3.4), with R, identified
with Ajy-mods. Since (5.6)—(5.7) agrees with (1.1), the standard, proper standard,
costandard and proper costandard modules are the correct objects. Moreover, the claim
established at the start of the proof verifies the property (]SZE) O

The goal in the remainder of the subsection is to prove a converse to Theorem 5.17.

Theorem 5.18 (Based e-stratified algebras from e-highest weight categories). Let R be
a finite (resp., lower finite, resp., tilting-bounded essentially finite) e-stratified category
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with stratification (B, L, p, A, <). Suppose we are given B < I disjoint from A and an
e-tilting generator T = @,.; T; such that each Ty, (b € B) is a direct sum of T.(b) and
other Tc(c) for ¢ with p(c) < p(b). Let

A= (@ HomR(Ti,Tj)>

ijel
Fori,j el and be B, pick morphisms
Y(iv b) < HomR(Tiv Tb)v X(ba]) < HomR(Tbv Tj)

lifting bases for Homg (T;, V(b)) and Homp (AL (b),T;) as in Theorem 4.43 such that
Y (b,b) = {idp,} when €(b) = + and X (b,b) = {idr,} when £(b) = —. These choices
make A into a finite (resp., upper finite, resp., essentially finite) based (—e)-stratified
algebra with respect to the poset (A, =) (the opposite ordering on A compared to R ).

Proof. We need to check the axioms (¢S6)—(£S9). Theorem 4.43 checks the first one.
The axioms (eS7)—(eS8) also hold. For example, if e(A\) = + and b € B, we have
that Y'(b,b) = {ep} by the choice of lifts, and Homg (T3, V.(a)) is zero unless a = b or
pla) < p(b) (remembering we are checking these axioms for —e not ¢). It remains to
check the final axiom (£S9). The algebra A, in the statement of the axiom (remembering
that we are working now with the opposite ordering) is the same as the algebra A, in
Lemma 4.41. By that lemma, there is an algebra isomorphism

bx : Ay = Endg, (j2T2)°P, (5.8)

where Ty := @y, Tb- If €(A) = + then 4 T is a minimal projective generator for R
thanks to Theorem 4.2(3), so the algebra on the right hand side of (5.8) is basic and
ey = ZbeBA €y is a decomposition of its identity element as a sum of mutually orthogonal
primitive idempotents. If ¢(\) = —, we have instead that j27T is a minimal injective
cogenerator for Ry and the conclusion follows similarly. O

Corollary 5.19. Let R be a finite (resp., upper finite, resp., tilting-bounded essen-
tially finite) e-stratified category with the usual stratification (B, L,p,A,<). Let A =
(—Bw-e] e;Ae; be an algebra realization of R. There is an idempotent expansion A =

@i,jef é;Ae; with B < I, and finite sets Y (i,b) c é;Aéy, X (b,7) < éyAé; for alli,jel
and b € B, making A into a finite (resp., upper finite, resp., essentially finite) based

e-stratified algebra with p as its stratification function.

Proof. This follows from Theorem 5.18 in the same way as Corollary 5.11 was deduced
from Theorem 5.10. O

5.3. Based stratified and properly stratified algebras. In this subsection, we con-
sider modified versions of Definitions 5.12 and 5.13 which involve bases which do not
depend on the sign function €. These definitions, which were inspired in part by [ELau,
Def. 2.17], are relevant when studying fully stratified rather than merely e-stratified
categories.

Definition 5.20. A finite (resp., upper finite, resp., essentially finite) based stratified

algebra is a finite-dimensional (resp., locally finite-dimensional, resp., essentially finite-

dimensional) locally unital algebra A = P, ;. €;Ae; with the following additional data:

(S1) A subset B < I indexing special idempotents {ep | b € B}.

(S2) A poset (A, <) which is upper finite in the upper finite case and interval finite

in the essentially finite case, such that A n [ = &.

A function p: B — A with finite fibers By := p=(\).

Sets Y (i,a) € e;Aeq, H(a,b) < e, Aey, X(b,j) < epAe; for i,j e I and a,b e B.
= Uier Y (i,a) and X(b) := J;c; X (b, ). The axioms are as follows:

)
The products yhx for (y, h,x) € |, ep Y (a) x H(a,b) x X (b) are a basis for A.

(S3)
(S4)
Let Y(a
(S5)



SEMI-INFINITE HIGHEST WEIGHT CATEGORIES 93

(S6) For a,b € B with a # b, the set H(a,b) is empty unless p(a) = p(b), the sets

Y (b,a) and X (a,b) are empty unless p(b) < p(a), and Y(a,a) = X(a,a) = {e,}.

(S7) The finite-dimensional algebra Ay defined as in Definition 5.12 is basic and

ey = ZbeBk ey is a decomposition of its identity element as a sum of mutually
orthogonal primitive idempotents.

We say that A is symmetrically based if there is also some given algebra anti-involution

o:A— Awith o(e;) = e; and Y (i,b) = 0(X(b,1)) for all i € I,b € B, such that each of

the algebras Ay (A € A) is ox-symmetric in the sense of Definition 4.51, where o here
is the anti-involution of Ay induced by o.

Here is the same definition rewritten in the special case that the stratification function
p is a bijection.

Definition 5.21. A finite (vesp., upper finite, resp., essentially finite) based properly
stratified algebra is a finite-dimensional (resp., locally finite-dimensional, resp., essen-
tially finite-dimensional) locally unital algebra A = (—Dl jel e;Ae; with the following
additional data:

(PS1) A subset A € I indexing special idempotents {ex | A € A}.

(PS2) A poset (A, <) upper finite in the upper finite case and interval finite in the

essentially finite case.

(PS3) Sets Y(i,\) < e;Aey, H(A) < exAey, X (N, i) c eyAe; for A\e A, i€ l.
Let Y(A) := U;es Y (4, ) and X(A) := [J,o; X (A, 7). The axioms are as follows.

(PS4) The products yha for (y,h,z) € [J,cp Y(A) x H(X) x X(A) are a basis for A.

(PS5) For A, p € A, the sets Y (i, A) and X (A, ) are empty unless p < A, and V(A \) =

X(AN) = feak

(PS6) The ﬁnite—dimensional algebra Ay defined as in Definition 5.13 is basic and local.
We say that A is symmetrically based if there is also some given algebra anti-involution
o:A— Awith o(e;) = e; and Y (i, \) = (X (\,4)) for all i € I, X € A, such that each
of the algebras Ay (A € A) is oy-symmetric, where o here is the anti-involution of A
induced by o.

In the remainder of the subsection, we just explain the results for based stratified
algebras, since based properly stratified algebras are a special case. For the next lemma,
we adopt the shorthands

YH(i,b) := {yh ‘ (W, h) € Upes Y (i, a) x H(a,b)}, (5.9)
HX(b,j) = {ha | (h,z) € U,cg H(b,a) x X(a,j)}. (5.10)
Also set YH(b) 1= U,e; YH(i,0) and HX(b) := {J,;e; HX (D, 7).

Lemma 5.22. Suppose that A is a based stratified algebra as in Definition 5.20. Also
let e : A — {x} be any choice of sign function. Then A is a based e-stratified algebra
in the sense of Definition 5.12 with the required sets Y (i,b) and X (b,j) for that being
the sets Y H(i,b) and X (b, j) in the present setup if e(p(b)) = +, or the sets Y (i,b) and
HX(b,j) in the present setup if e(p(b)) = —.

Proof. This follows on comparing Definitions 5.12 and 5.20. O

This means that the results from the previous subsection apply to based stratified
algebras too. In particular, we define the standard, proper standard, costandard and
proper costandard modules as in (5.6)—(5.7). The modules A(b) and A(b) have standard
bases {ye, |y € YH(b)} and {yé | y € Y'(b)}, respectively. Similarly, one can introduce
costandard bases for V(b) and V(b) indexed by the sets HX (b) and X (b), respectively.
Note also that the basic algebra

A= @ eAre
a,beB
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has basis {h | h € Ua.ten, H(a; b)}.

Theorem 5.23 (Fully stratified categories from based stratified algebras). Let A be a
finite (resp., upper finite, resp., essentially finite) based stratified algebra as above. The
modules
{L(b) := hd A(b) = hd A(b) = soc V(b) = soc V(b) | b e B}

giwe a full set of pairwise inequivalent irreducible left A-modules. Moreover, R :=
A-modsq (resp., R := A-modjq, resp., R := A-mods) is a finite (resp., upper fi-
nite, resp., essentially finite) fully stratified category with stratification (B, L,p, A, <)
with strata Ry := Ax-modeq. If A is symmetrically based with anti-involution o then
7@ : R — R is a Chevalley duality of R in the sense of Definition 4.53.

Proof. Using Lemma 5.22, the first part follows from Theorem 5.17 applied twice, once
with € = + and once with ¢ = —. For the final part about Chevalley duality, axiom
(Chl) from Definition 4.53 is established in the course of the proof of Theorem 5.17,
and (Ch2) follows from the definition of symmetrically based stratified algebra. O

For the converse recall the definition of tilting-rigid from Definition 4.36.

Theorem 5.24 (Based stratified algebras from fully stratified categories). Let R be
a finite (resp., lower finite, resp., essentially finite) fully stratified category with strat-
ification (B, L,p, A, <). Assume that R is tilting-rigid with weakly symmetric strata.
Suppose we are given B < I disjoint from A and a tilting generator T = @,; T; such
that each Ty, (b€ B) is a direct sum of T'(b) and other T'(c) for ¢ with p(c) < p(b). Let

A= ((—B HomR(TZ—,Tj)>

i,5€l
(1) Fori,jel and a,be B, pick morphisms
Y(iva) c HomR(TivTa)v H((L,b) < HomR(Tava)a X(bvj) < HOIHR(Tvaj)

lifting bases for Homg (T}, V(a), Homg (A(a), V(b)) and Homg (A(b),T}) as in
Theorem 4.45 such that Y (b,b) = X(b,b) = {idp,}. These choices give a tri-
angular basis making into a finite (resp., upper finite, resp., essentially finite)
based stratified algebra with respect to the poset (A, =) (the opposite ordering on
A compared to R).

(2) If in addition R has a Chevalley duality 7V and, in a suitable realization, the
modules corresponding to each T; possess non-degenerate symmetric bilinear
forms satisfying the adjunction property as in (4.47), then the triangular ba-
sis in (1) can be chosen so that A is symmetrically based.

Proof. Part (1) is similar to the proof of Theorem 5.18, using Theorem 4.45 in place of
Theorem 4.43. Part (2) follows in the same way as in the proof of Theorem 5.11(2). O

Corollary 5.25. Let R be a finite (resp., upper finite, resp., essentially finite) fully
stratified category with stratification (B, L,p,A,<). Let A= P eiAe; be an algebra
realization of R.

ijel

(1) Assume that R is tilting-rigid with weakly symmetric strata. Then there is an
idempotent expansion A = P, jei é;Aé; with B € I, and finite sets

Y (i,a) © é;Aé,, H(a,b) < é,Aé,, X(b,j) < é,A¢;

for all i,j € I and a,b € B, making A into an upper finite (resp., essentially
finite) based stratified algebra.

(2) Assume that R is tilting-rigid with a Chevalley duality 7V and that chark # 2.
Then the choices in (1) can be made so that A is symmetrically based with anti-
involution o realizing 7V .
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Proof. This follows from Theorem 5.24 in the same way as Corollary 5.11 was deduced
from Theorem 5.10. One also needs to use the fact that the Ringel dual R’ of R is
tilting-rigid by Theorem 4.42. 0

5.4. Algebras with a triangular basis. The final axiom (S7) of Definition 5.20,
namely, that the algebra A, is basic, is quite restrictive. However, this assumption
is not essential, as we will explain in this subsection. The following simply repeats Def-
inition 5.20 with the final axiom dropped, but at the same time we switch to using the
notation ¢ : S — A where we had p : B — A before.

Definition 5.26. Let A = (D, ;; e;Ae; be a finite-dimensional (resp., locally finite-

dimensional, resp., essentially finite-dimensional) locally unital algebra. We say that A

has a triangular basis if we are given the following additional data:

(TB1) A subset S < I indexing special idempotents {es | s € S}.

(TB2) A poset (A, <) which is upper finite in the locally finite-dimensional case and
interval finite in the essentially finite-dimensional case, such that A n I = &

(TB3) A function @ : S — A with finite fibers Sy := 071(\).

(TB4) Sets Y (i, ) < e;Aes, (s t) C esAey, X(t,j) c etAej for i,j eI and s,t € S.

Let Y (s) := U;e; Y (4,8) and X (¢) := (J;c; X (¢, ). The axioms are as follows:

)

)

(TB5) The products yha for (y, h, z) € U, 1es Y (8) x H(s,t) x X(t) are a basis for A.
(TB6) For s,t € S with s # t, the set H(s,t) is empty unless d(s) = 0(t), the sets
Y (t,s) and X(s,t) are empty unless d(t) < d(s), and Y (s,s) = X(s,s) = {es}.

Suppose that A has a triangular basis as in Definition 5.26. We define algebras
Ay = eyAcyeéy for each A € A like at the end of Definition 5.12. Thus, we let ey :=
ZseSA es, then set Ay := €y Acyéx where A¢) is the quotient of A by the two-sided ideal
generated by {e, | n £ A\}. Corollary 5.15 carries over to show that A<, has basis yhz
for all y € Y(s),h € H(s,t),z € X(t) and s,t € S with d(s),d(t) < A. Hence, Ay has
basis {h | h e Us.tes, H(s, 1)} Let j* : Acy-mod — Ay-mod, V +— &)V be the quotient
functor and define j and j3 analogously to (5.4).

Lemma 5.27. The functors j!)‘ and j,,); are exact.

Proof. By the argument from the proof of Lemma 5.16, there is an isomorphism of right
Ax-modules @ g, @yey(s) esAy = Ac,éx sending the vector €, in the yth copy of
esAy to g € Acyén. So the right Ay-module A¢yéy is projective, which implies the
exactness of j. Similarly, the left Aj-module €yA<y is projective, which implies the
exactness of jJ. O

The following theorem is essentially [GRS, Th. 3.5], although we give a self-contained
proof since our notation is different enough. See Remark 5.30 for further historical
discussion.

Theorem 5.28 (Fully stratified categories from triangular bases). Let A be a finite-
dimensional (resp., locally finite-dimensional, resp. essentially finite-dimensional al-
gebra with a triangular basis as above. Let p : B — A be a function whose fibers
By := p~ () label a full set {Lx(b) |b € By} of pairwise inequivalent irreducible left
Ax-modules. Let A(b) := j}Lx(b) and V() := jaLx(b) for be By. Then the modules
{L(b) :== hd A(b) =~ soc V(b) | b€ B}

giwe a full set of pairwise inequivalent irreducible left A-modules. Moreover, R :=
A-modsq (resp., R := A-modjsq, resp., R := A-modsq) is a finite (resp., upper finite,
resp., essentially finite) fully stratified category with stratification (B,L,p,A,<). Its

strata are the categories Ry := Ax-modgq, with standardization and costandardization
functors as in (5.4).
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Proof. Take u € Sy and any b € By such that euL(b) # 0. We claim that Ae, has a
A-flag with A(b) at the top and other sections of the form A(c) for ¢ with p(¢) = X. To
see this, let P := Ae, for short. Note P has basis

{yhx } (y,h,z) € U;»z/\ Us,teSM Y (s) x H(s,t) x X(t,u)}.

Let {p1,...,pn} be the finite set {x € [A, 00) | UtesM X(t,u) # @} enumerated in some
order refining <. There is a filtration P = Py > P; > --- > P, = 0 in which the section
P,_1/P; has basis {yhz + P, | (y,h,z) € Uwesw Y(s) x H(s,t) x X(t,u)}. Moreover,
P,_1/P, = j{'"" Q, where Q, := €, (P,—1/P;). This follows by a similar argument to the
Case 2 in the proof of Theorem 5.17. Since j{" is exact by Lemma 5.27, it follows that
P._1/P, has a A-flag with sections A(c) for ¢ € B,,.. So we have proved that P has a
A-flag with sections A(c) for ¢ € B with p(c) = A. Moreover, Py/P; = j}(Axé,). Since
AxE, has Ly(b) in its head, it follows that the A-flag can be chosen so that it has A(b)
at its top.

Now we can classify the irreducible left A-modules. As in the penultimate paragraph
of the proof of Theorem 5.17, the modules {L(b) := hd A(b) | b € B} are pairwise
inequivalent irreducible A-modules. It remains to show that any irreducible left A-
module L is isomorphic to some such module. There exists u € S such that e, L # 0.
Hence, L is a quotient of Ae,. By considering the filtration of Ae, from the previous
paragraph we deduce that L is a quotient of A(c) for some c € B, i.e., L =~ L(c).

At this point, we have in hand the data of a stratification of R with strata Ry :=
Ax-mod¢q and standardization and costandardization functors as in (5.4). For each
b € By, choose u € Sy such that &,L,(b) # 0 then set P, := Ae,. The claim estab-
lis/h\ed in the first paragraph of the proof checks that these modules satisfy the property
(PA_), hence, R is an upper finite (resp., essentially finite) —-stratified category. Fi-
nally we deduce that it is fully stratified using the criterion from Lemma 3.20(iv) plus
Lemma 5.27. d

Corollary 5.29. Let A be as above. If each of the finite-dimensional algebras Ay is
quasi-hereditary (e.g., they could all be semisimple), then the stratification can be refined
to make the category R from Theorem 5.28 into a highest weight category.

Proof. Combine Theorem 5.28 and Corollary 3.67. d

Remark 5.30. We did not fully appeciate the utility of Definition 5.26 before seeing
[GRS], in which Gao, Rui and Song introduce a notion of an algebra with a weak
triangular decomposition and give a (slightly different) proof of Theorem 5.28 for such
algebras. They justify their definition by constructing several interesting families of
examples, namely, cyclotomic quotients of the affine oriented Brauer and HOMFLY-
PT skein categories and of the affine Brauer and Kauffman skein categories. In the
special case that I = S, i.e., all distinguished idempotents are special, our notion of an
algebra with a triangular basis is exactly equivalent to the notion of an algebra with
a weak triangular decomposition. More precisely, a weak triangular decomposition is
the data of subspaces A~ = @), jc;eid7e;, A% = @, je; €A%, AT =D, joreidTe; for
1,7 € I subject to certain axioms. Picking homogeneous bases Y (4, 5), H (i, j) and X (i, 5)
for e;A"ej,e; A%, and e;ATe;, respectively, produces a triangular basis in the sense
of Definition 5.26. Conversely given a triangular basis one obtains a weak triangular
decomposition by replacing the bases by the subspaces that they span.

5.5. Algebras with a triangular decomposition. Let A be an algebra with a tri-
angular basis as in Definition 5.26 and assume in addition that I = S, i.e., all of the
distinguished idempotents are special. Let A’ and A! be the subspaces spanned by

{yh| (y,h) e Umel Y (i) x H(i,j)} and {hx | (h,z) € UMGI H(i,j5) % X(j)}, respectively.
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If it happens that these subspaces are locally unital subalgebras'! of A then A has a
triangular decomposition in the following sense.
Definition 5.31. Let A = @, ;¢;

dimensional, resp., essentially finite-dimensional) locally unital algebra. A triangular
decomposition of A is the following additional data:

e;Ae; be a finite-dimensional (resp., locally finite-

(TD1) A poset (A, <) which is upper finite in the locally finite-dimensional case or
interval finite in the essentially finite-dimensional case.

(TD2) A function 0 : I — A with finite fibers I, := 071(\).

(TD3) Locally unital subalgebras A” and A*.

We call A” and A" the negative and positive Borel subalgebras. Let A° := A® A A%, This
is also a locally unital subalgebra called the Cartan subalgebra. The following axioms
are required to hold:

(TD4) AP is a projective right A°-module and A* is a projective left A°-module.

(TD5) The natural multiplication map A’ ®0 A* — A is a linear isomorphism.

(TD6) For i,j € I, ejA’¢; and e;Afe; are zero unless 9(j) < (i), and e;A’e; = e; Afe;
when 0(i) = 4(j).

Remark 5.32. Our formulation of Definition 5.31 has been influenced by the defini-
tion of a triangular category from a recent preprint of Sam and Snowden [SS]; these are
finite-dimensional categories satisfying equivalent axioms to algebras with an upper finite
triangular decomposition in the above sense in which the Cartan subalgebra is semisim-
ple. In an earlier draft, we had formulated a slightly more restrictive notion which we
now refer to a split triangular decomposition, as follows. Let A = @i,je] e;Aej be a
finite-dimensional (resp., locally finite-dimensional, resp., essentially finite-dimensional)
locally unital algebra. We say that A has a split triangular decomposition if we have the
additional data:
(STD1) A poset (A, <) which is upper finite in the locally finite-dimensional case and
interval finite in the essentially finite-dimensional case.
(STD2) A function 0 : I — A with finite fibers I := 0=1(\).
(STD3) Locally unital subalgebras A=, A° and A*.
Letting K := @, ke;, the axioms are:
(STD4) The subspaces A” := A~ A% and A* := A°A* are subalgebras.
(STD5) The natural multiplication map A~ Qg A° ®k AT — A is a linear isomorphism.
(STD6) For i,j € I with ¢ # j, e;A%; is zero unless 0(i) = d(j), e;A"e; and e;ATe; are
zero unless 9(j) < 0(i), and e;A"e; = e;Ate; = ke; for all i € I.
The axiom (STD5) implies that A" >~ A~ g A° and A? ~ A° @k AY. Hence, by
associativity of tensor product we have that
A @0 A > A” @k A° Qa0 A° Q@ AT = A~ @k A° @k At =~ A,
proving (TD5). Moreover, the isomorphisms A’ ~ A~ ®x A° and Af >~ A° ®y A? show
that A’ and A? are I-free in the sense of Definition 2.17 as right and left A°-modules,
respectively, which implies (TD4). Axiom (TD6) is also easily deduced from (STDG).
When they hold, the axioms (STD4)—(STDG6) are easier to check than (TD4)—(TD6),
so this gives a practical way to obtain triangular decompsitions. In fact, most of the
examples of triangular decompositions arising from diagrammatic monoidal categories

considered in [SS] and elsewhere are split triangular decompositions, so the split formu-
lation is useful.

Remark 5.33. In [HN], Holmes and Nakano introduced a notion of a Z-graded algebra
with a triangular decomposition. To explain the connection to our setup, suppose we

11Locally unital subalgebra means subspace closed under multiplication and containing all of the dis-
tinguished idempotents.
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are given a unital Z-graded algebra A= Pz Ajy. There is an associated locally unital
algebra A = @)\,uez exAe, with eyAe, 1= fb\,u and multiplication induced by multi-
plication in A in the natural way. Moreover, any Z-graded left A-module V = @Drez Va
can be viewed as a left A-module with e,V := V); this defines an isomorphism from
the usual category A-grmod of Z-graded A-modules and degree-preserving morphisms
to the category A-mod of locally unital A-modules. If we start with A that is a finite-
dimensional Z-graded algebra with a triangular decomposition (A, A°, A*) as in [HN]
(see also [BT, Def. 3.1]) then the essentially finite-dimensional locally unital algebra A
and the subalgebras A°, A~ and A" obtained via this construction has a split triangular
decomposition, with I = A = Z ordered in the natural way.

To make the connection with Definition 5.26, suppose that A has a triangular de-
composition. For A € A, let 1, := Zie[x e;. The axioms imply that e;A°¢; = 0 unless
0(i) = 0(j), s0 1y A°1, = 0 for A # p. It follows that {1)|\ € A} are mutually orthogonal
central idempotents in A°, and the Cartan subalgebra has the “block” decomposition

A° = P A3 where AS = 1,A° = A°1,. (5.11)
AEA
Lemma 5.34. Let A be as in Definition 5.1 with A n [ = &. Suppose we are given
S < I such that all e;A° and Aﬁej are S-free as right and left A°-modules, respectively.
Fori,jel,s,t €S, one can choose subsets Y (i,s) C e;A’ey, X (t,7) etAﬁej so that

(i) e A’ = @D,s Dyey (i,5) YA with yA°® = e;A° for y e Y (i, s);

(i) Afej = Do Direx ) A°r with A’z = A%, for x € X(¢,j);

(iii) Y (t,t) = X(t,t) = {e;} for allt € S.
Also let H(s,t) be a basis for esA%e;. This makes A = @i,jei e;Ae; into an algebra with
a triangular basis in the sense of Definition 5.26 with ¢ : S — A being the restriction
of the given function 0 : I — A. For X\ € A and ey := ZSEsA es, the subquotient
Ay = exAgney defined after Definition 5.20 is isomorphic to the subalgebra ey ASey of
AS. Moreover, we have that AS = ASexAS so Ay is Morita equivalent to AS.

Proof. By the definition of S-free, there are subsets Y(i,s) c e;A’e, as in (i). Since
e;A’eq is zero unless (i) < 0(s), we have that Y (i,s) = @ unless d(i) < (s). Suppose
that t € Sy := S n I. By (TD6), we have that
e, A1y, = etAS = @ @ yAsS,

seSy yeY (t,s)
i.e., the sets Y'(¢,s) for s € Sy come from an S-free decomposition of e, AS. This means
we can choose them so that Y (¢t,t) = {e;} as in (iii), in which case Y (t,s) = @ for
s € Sy with s # t. Hence, for s,t € S with s # ¢, we have that Y (¢,s) = @ unless
d(t) < d(s). Similarly, we choose subsets X(¢,;) < e;A%e; according to (ii) and (iii),
and then for s,t € S with s # ¢ we have that X (s,¢) = @ unless d(t) < d(s). Note also
that H(s,t) = @ unless d(s) = d(t) due to (5.11). Thus we have the required data from
(TB1)-(TB4), and the conditions of (TB6) are satisfied.

In this paragraph, we check (TB5). Let Y (s) = ;e Y (i, s) and X () = ;e X (%, 7).
We have seen already that 4> = @, g Dyey (s) YA° and AP = @®,es Dex(p A°w. Ten-
soring these together, we deduce that

ARpA =P @ yA Qs A2
8,t€S yeY (s),xzeX (t)
Each summand yA° ® 4o A°zx here is isomorphic to e, A° ® 40 A%e; =~ e, A%e;. We deduce
that A’ ®40 A* has basis {yh® = = y ® hx | (y, h,z) € Ustes Y(s) x H(s,t) x X(t)}.
Then we use (TD5) to see that the axiom (TB5) is satisfied.
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Finally we must identify the algebra A). The quotient map A — A« restricts to a
homomorphism ¢ : A° — A<y which further restricts to

QS)\ : 6)\A§\6)\ = A)\. (512)
The subalgebra A3 has basis {yhz | (y, h, ) € U, jer, stes, Y (6:8) x H(s,t) x X(t,7)},
hence, A5 = AjexA3. The subalgebra Ay of ey ASey has basis |, ;.g, H(s,t). It follows
that ¢, sends a basis to a basis, so it is an isomorphism. O

The freeness assumption in Lemma 5.34 may seem restrictive, but one can always
pass to an idempotent expansion so that this is the case. In fact, we can do this in such
a way that the algebras Ay are basic, thereby giving A the structure of a based stratified
algebra rather than merely an algebra with a triangular basis:

Theorem 5.35 (Based stratified algebras from triangular decompositions). Suppose
that A has a triangular decomposition as in Definition 5.31. Let A° = C—Bi,jef €;A%¢; be
an idempotent expansion of A° = P e;A°e; such that
(i) InA=a;
(ii) I contains a subset B indexing a full set {é, | b € B} of pairwise non-conjugate
primitive idempotents in A°;
(iii) there is a function q: I — I with |¢~1(i)| < 0 and e; =Y,

ijel

jeq—1(i) é; foriel.
Then A = (—Bwef ¢;Aé; has a triangular decomposition with the given Borel subalgebras,
taking the function from (TD2) now to be p := doq : I — A. Moreover, é;A° and Aﬁéj are
B-free as right and left A°-modules, respectively. Hence, we can apply the construction
of Lemma 5.3 to A = (—Bmd é;Aé; to make A into a based stratified algebra in the
sense of Definition 5.26 with p: B — A defined by restriction.

Proof. The fact that we have in hand a triangular decomposition of A = @ ijel é;Ae; is
immediately clear from the nature of Definition 5.31. Since 1 >\Aﬁéj is a finite-dimensional
projective left A3, Lemma 2.18 implies that it is B-free as a left Ay-module. Hence
Afe; = @Piea 1yA%¢; is B-free as a left module. Similarly, we get that é;A° is B-free
as a right module. So now Lemma 5.34 can be applied and we obtain a triangular
basis such that Ay = éyA5éy for é) := ZbeBA ép. By the choice of the idempotents
{év | b € B}, éxASé, is the basic algebra that is Morita equivalent to A$, checking the
remaining axiom (S7) needed in order to have a based stratified algebra. O

Corollary 5.36. If A has a triangular decomposition in which the Cartan subalgebra
A° is semisimple, then there is an idempotent refinement A = ®i,j6f e;Ae; of A with
the structure of a based quasi-hereditary algebra in the sense of Definition 5.1.

Proof. The construction in the theorem produces an idempotent refinement of A that
is a based stratified algebra with stratification function p : B — A. Let I' := B with
partial order < on I' defined by a < b if and only if @ = b or p(a) < p(b). Since Ay
is basic and semisimple, we have for a,b € By that H(a,b) is empty unless a = b and
H(a,a) may be chosen to be {é,}. It follows that A is actually a based quasi-hereditary
algebra with weight poset (I', <) and the basis which we have constructed. O

Remark 5.37. The construction used to prove Theorem 5.35 suggests yet another vari-

ation on all of these definitions, which is weaker than having a triangular decomposition

but stronger than having a triangular basis. For A like in Definition 5.31 we say that it

has a Cartan decomposition if there is the following additional data:

(CD1) A poset (A, <) which is upper finite in the locally finite-dimensional case and
interval finite in the essentially finite-dimensional case.

(CD2) A function 0 : I — A with finite fibers Iy := 07(\).

(CD3) A locally unital subalgebra A° and (A°, A°)-subbimodules A* and A* of A.

The axioms are:



100 J. BRUNDAN AND C. STROPPEL

(CD4) AP is a projective right A°-module and A* is a projective left A°-module.

(CD5) The natural multiplication map A’ ® 4o A% — A is a linear isomorphism.

(CD6) For i,j € I, e;A%; is zero unless d(i) = d(j), e;A’e; and e; Ae; are zero unless
(i) < 0(4), and e;A’e; = ;A% = e; Afe; when (i) = 0(j).

The proof of Theorem 5.35 carry over to such algebras essentially unchanged. However

we do not know of any compelling examples, whereas as we noted in Remarks 5.30, 5.33

and 5.32 there are plenty of important examples of algebras with triangular bases and

with triangular decompositions, justifying both of those definitions.

If A is a finite-dimensional (resp., locally finite-dimensional, resp. essentially finite-
dimensional) algebra with a triangular decomposition, then we can apply Theorems 5.35
and 5.23 to deduce that A-modgg (resp., A-modjq, resp., A-modgq) is a finite (resp.,
upper finite, resp., essentially finite) fully stratified category. We end the section by
making this structure more explicit. We first define some global standardization and
costandardization functors.

e The axioms imply that A is a projective right A*-module and that there is a
locally unital projection homomorphism A% — A°. Let

j1: A°-modgg — A-mod (5.13)

be the exact functor defined by first inflating along this projection homorphism
A" — A° and then applying the exact induction functor A®4:? : Af-mod —
A-mod. The fact that it takes finite-dimensional modules to finite-dimensional or
locally finite-dimensional modules (as appropriate for the case) follows because
as functors to A’-mod we have that AR 417 > A’® 407 due to (TD5).

e The axioms imply that A is a projective left A’-module and that there is a
locally unital projection homomorphism A° — A°. Let

jx : A°-modgg — A-mod (5.14)

be the exact functor defined by first inflating along the projection A° — A°
then applying the exact coinduction functor @,_; Hom 4» (Ae;, —) : A’-mod —
A-mod. Tt takes finite-dimensional modules to finite-dimensional or locally
finite-dimensional modules (as appropriate for the case) follows because as a
functor to Af-mod it is isomorphic to @,y Hom 4o (Aﬁei, ?).
The following theorem can be proved by mimicking standard arguments from Lie theory;
see [CouZ] noting that (A, A°) and (A°, A*) are Borelic pairs in the sense defined there.
We will deduce it instead from the work already done in Theorems 5.35 and 5.23.

Theorem 5.38 (Fully stratified categories from algebras with a triangular decomposi-
tion). Suppose that A has a triangular decomposition of one of the three types as above.
Let {L°(b) | b€ B} be a full set of pairwise inequivalent irreducible left A°-modules. Let
p : B — A be the function sending b € B to the unique A € A such that L°(b) is an
irreducible A -module. Let A(b) := 5 L°(b) and V(b) := jL°(b); cf. (5.13)-(5.14).
Then
{L(b) := hd A(b) = soc V(b) | b€ B}

is a complete set of pairwise inequivalent irreducible left A-modules. Moreover, the
category R := A-modsq (resp., A-modyzq, resp., A-modsq) is a finite (resp., upper finite,
resp., essentially finite) fully stratified category with stratification (B, L,p, A, <). Its
strata may be identified with the categories A3-modsg (A € A) with standardization and
costandardization functors defined by the restrictions of ji and j, respectively.

Proof. As explained by Theorem 5.35, we can pass to an idempotent refinement if nec-
essary to assume without loss of generality that the set I indexing the distinguished
idempotents is disjoint from A and contains B as a subset in such a way that L°(b) =~
hd (A°ep) for each b € B. The function p : B — A is then the restriction of ¢ : I — A.
Now Theorem 5.35 gives bases making A into a based stratified algebra. We we deduce
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that R is a finite (resp., upper finite, resp., essentially finite) fully stratified category
with stratification (B, L, p, A, <) by applying Theorem 5.23. However for this the strata
and the labelling function L are produced in a different way to the formulation here,
so we need to argue a little further to see that the standardization and costandardiza-
tion functors here and the ones from earlier may be identified. Using the isomorphism
(5.12), the quotient functor j* : A<y-mod — Ax-mod in the setup of (5.4) may be
identified with the functor j : A<y-mod — ey ASex-mod obtained by restriction to A°
then multiplication by the idempotent ey. Since AS and eyASey are Morita equivalent,
we can instead use the algebra AS to realize the stratum, and then this quotient functor
gets replaced by the functor obtained by restriction to A° then multiplication by 1. It
remains to observe that the restrictions of j; and jy to AS-mod are left and right adjoint
to this functor, respectively. O

Corollary 5.39. Suppose that A has a triangular decomposition of one of the three
types and that its Cartan subalgebra A° is semisimple. Let {L°(7) |~ € '} be a full set of
pairwise inequivalent irreducible left A°-modules. Let p : T' — A be the function sending
v to the unique A such that L°(v) is an irreducible AS-module. Then R := A-modgqg
(resp., A-modygq, resp. A-modsq) is a finite (resp., upper finite, resp., essentially finite)
highest weight category with weight poset (T, <) for < defined by 8 < ~ if either 8 = ~
or p(B) < p(v). Its standard and costandard modules are A(y) := jiL°(y) and V(7v) :=
JxL°(y) foryel.

Proof. This follows from the theorem and Corollary 5.36. O

Remark 5.40. We end by mentioning one last variation on the definitions in this
subsection. We say that a triangular decomposition of A as in Definition 5.31 is a
symmetric triangular decomposition if in addition there is given a locally unital algebra
anti-involution ¢ : A — A which leaves A° invariant and interchanges A? and A°,
such that for each A € A the subalgebras eyAtey are oy-symmetric in the sense of
Definition 4.51, where o) denotes the restriction of ¢. Then there is an enhanced
version of Theorem 5.35 making A into a symmetrically based stratified algebra, and
an enhanced version of Theorem 5.38 making R into a fully stratified category with a
Chevalley duality ?@. We omit the details.

6. EXAMPLES

In this section, we explain several examples. For the ones in §§6.5-6.7 we give very
few details but have tried to indicate the relevant ingredients from the existing literature.

6.1. A finite-dimensional example via quiver and relations. Let A and B be the
basic finite-dimensional algebras defined by the following quivers:

A(1>2): sC1i>23t with relations s? = 0,t2 = 0,ty = 0,

~ —
v

B(1<2): = C 17 72 with relations 22 = 0, uv = 0, vuzv = 0.

The algebra A has basis eq, s; €2, t;y, ys and B has basis ey, z, vu, vuz, zvu, 2vuz; €s, UZV;
v, 205 U, uz, uzvu, uzvuz. The irreducible A- and B-modules are indexed by the set {1, 2}.
We are going to consider A-modsq and B-modgq with the stratifications defined by the
orders 1 > 2 and 1 < 2, respectively.

We first look at A-modgg. As usual, we denote its irreducibles by L(7), indecompos-
able projectives by P(i), standards by A(i), etc.. The indecomposable projectives and
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injectives look as follows (where we abbreviate the irreducible module L(4) just by 4):
1
/s/ \y\ 2
P1) =1
) 2 N4
2

It follows easily that A-modgq is a fibered highest weight category in the sense of Defi-
nition 3.7 with the structure of the standards and costandards as follows:

1
A()=P1), A1) =}, A@Q)=P2), A@2)=L(2),
2
— 2 —
V) =1(1), v(1)=L@), V@)= {, V(2)=L(2)
2

This can also be seen from Theorem 5.23 on noting that A is a based properly stratified
algebra in the sense of Definition 5.21 with Y(2,1) = {y},X(1,2) = @ and H(1) =
{e1,s}, H(2) = {e2,t}. The basic local algebras realizing the strata are k[s]/(s?) and
k[t]/(t?). Next we look at the tilting modules in A-modgq. If one takes the sign function
€ = (e1,€2) to be either (+, +) or (—, +) then one finds that the indecomposable e-tilting
modules are:

A1) v(1) V(2)
r.)=r)= | = 7 N , T:2)=P2)=A42)= | .
A(1) V(2) V(2) V(2)

These cases are not very interesting since the Ringel dual category is just A-modgg
again. Assume henceforth that e = (—, —) or (+, —). Then the indecomposable e-tilting
modules are:

1 _
N s AR (2) v(1)
1

A
2 2= N. = XU , T-(2)=P2).
) 2) \

N Al V( (2)

To see this, one just has to check that these modules are indecomposable with the
appropriate A.- and V.-flags. This analysis reveals that A-modgq is not tilting-rigid.
The minimal projective resolution of T (1) takes the form

. —> P(2)®P(2) — P(2)®P(2) — P(1)@® P(2)® P(2) — T_(1) —> 0.

In particular, it is not of finite projective dimension, as follows also from Lemma 4.38
since T_(1) 2 T (1). Observe also that there is a non-split short exact sequence 0 —
X ->T_(1) > X — 0 where

Now let T := T_(1) ® T_(2). We claim that End4(7)° is the algebra B defined
above. To prove this, one takes z : T_(1) — T_(1) to be an endomorphism whose image
and kernel is the submodule X of T_(1), u : T_(2) — T_(1) to be a homomorphism
which includes T (2) as a submodule of X € T_(1), and v : T_(1) — T-(2) to be a
homomorphism with kernel containing X and image L(2) < T_(2). Hence, B-modgq is
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the Ringel dual of A-modgq relative to T. Note also that the algebra B is based (+, +)-
and (—, +)-quasi-hereditary but it is not based (+,—)- or (—, —)-quasi-hereditary (cf.
Definition 5.13).

One can also analyze B-modgy directly. Its projective modules have the following
structure:

1

AN

P'(1) =

MO B e e DD
—
o
S~—
Il
[ NG SN S O

DO —8— = e = —e— KD &

Continuing with ¢ = (—,—) or € = (+, —), it is easy to check directly from this that
B-modgy is (—¢)-highest weight, as we knew already due to Theorem 4.10. However, it
is not e-highest weight for either of these choices of ¢, so it is not fibered highest weight.

We leave it to the reader to compute explicitly the indecomposable (—¢)-tilting mod-
ules 77 (1) and T% (2) in B-mod¢q. Their structure reflects the structure of the injectives
I(1) and I(2) in A-modgq. Let 77 := T% (1) @ T.(2) = T*. By the double centralizer
property from Corollary 4.11, we have that A = Endg(T")°P, as may also be checked
directly. By Theorem 4.16, the functor R Homp(7",?) : D*(B-modsq) — Db(A-modgq)
is an equivalence. Note though that RHoma(7,?) : D*(A-modgq) — D®(B-modyq) is
not one; this follows using [Kel, Th. 4.1] since T_(1) does not have finite projective
dimension.

6.2. An explicit semi-infinite example. In this subsection, we give a baby example
involving a lower finite highest weight category. Let C be the coalgebra with basis

(9 )i, 4. 0e 2,0 <i,j <t}
counit defined by e(cgo) := 0;,00;.¢, and comultiplication § : C — C ® C defined by

i— —|— Z cf ®c,(€kj), cgf)»—> Z ¢ —|— Z c(k) ,(jz,
#5(2

k=1

1(2) z‘#—j(?) k=3(2)
J ) —
ch) = cig ®cq) + Z @)+ Z Wedl+ 3 e+ 3 dded!
k=0 =9
i#102) ) i#e(2) Ket(2)

for 4,7 = 0 and £ > max(i,j). We will show that R := comod-C is a lower finite
highest weight category with weight poset A := N ordered in the natural way. Then
we will determine the costandard, standard and indecomposable injective and tilting
objects explicitly, and describe the Ringel dual category R’. To do this, we mimic some
arguments for reductive groups which we learnt from [Janl].

We will need comodule induction functors, which we review briefly. For any coalgebra
C with comultiplication 4, a right C-comodule V' with structure map ng : V -V & C,
and a left C-comodule W with structure map ny : W — C ® W, the cotensor product
V' Oc¢ W is the subspace of the vector space V ® W that is the equalizer of the diagram

nr®id
Vew :’, VRCRW.
id®nL
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In particular, ng : V — V ® C is an isomorphism from V to the subspace V O¢ C,
and similarly n;, : W 5 C O¢ W. Now suppose that 7 : C — C’ is a coalgebra
homomorphism and V is a right C’-comodule. Viewing C as a left C’-comodule with
structure map ¢y, ;= (7 ®id) o d : C — C' ® C, we define the induced comodule to be

ind$, V:= V Oe C.
This is a subcomodule of the right C-comodule V ® C (with structure map id®d). In
fact, indg, : comod-C’ — comod-C' defines a functor which is right adjoint to the exact
restriction functor res%,, so it is left exact and sends injectives to injectives.

Now let C be the coalgebra defined above, and consider the natural quotient maps
w : C — C" and 7f : C — C*, where C” and C* are the quotients of C' by the
coideals spanned by {cz(ij) ‘ £>j } or {CE? ‘ { > i}, respectively. These coalgebras have
bases denoted {c;; := wb(cijj)) |0 < i< j}and {c;j := Wﬁ(cflj)) |i>j > 0}, and
comultiplications 6" and 6 satisfying

J %
5b(C¢_’j) =¢i®c¢ i+ Z Cikk @ Crj, 5’1(61,1‘) =¢;j ®cj 5+ Z Cik Q Cr 5, (61)
k=i+1 k=j+1
k=j(2) k=i(2)
respectively. Also let C° = @,
and comultiplication 6° : ¢; — ¢ @ ¢;. Note C° is a quotient of both C* and C* via
the obvious maps sending c¢; ; — 0; jc;; hence, it is also a quotient of C'. It may also be
identified with a subcoalgebra of both C” and C* via the maps sending ¢; — Cii-

Let L°(7) be the one-dimensional irreducible right C°-comodule spanned by ¢; ;. Since
C° is semisimple with these as its irreducible comodules, any irreducible right C°-
comodule V' decomposes as V = @,_; V; with the “weight spaces” V; being a direct
sum of copies of L°(i). Similarly, any left C°-comodule V' decomposes as V' = @,; V.
This applies in particular to left and right C”,C* or C-comodules, since these may be
viewed as C°-comoodules by restriction.

Since C° is a subcoalgebra of C, the irreducible comodule L° (i) may also be viewed as
an irreducible right C’-comodule. We denote this instead by L”(i); it is the subcomodule
of C* spanned by the vector ¢; ;. For i = 0, let I(i) := ;C = indS. L°(i), let V(i) be
the subcomodule of I(i) spanned by the vectors {cyj) |0 < j < i}, and let L(i) be the
(4)

.- Now we

k be the semisimple coalgebra with basis {¢; | i > 0}

one-dimensional irreducible subcomodule of V(i) spanned by the vector ¢
proceed in several steps.

Claim 1: Viewed as a functor to vector spaces, the induction functor indgb 1s isomorphic
to the functor V — V Oce C* =~ @i>0 V; ® ;C*. Hence, this functor is exact. To prove
this, let dpr = (7rb®7rﬁ) 0§ : C — C"O¢co CE. As 5LR(CZ(.?) = ¢iy ® ce; and these
vectors for all ¢ > max(i, j) give a basis for C” Oco C¥, this map is a linear isomorphism.
Moreover, the following diagram commutes:

c LI N CP®C

5Lnl lid®5LR

C" Oce C* C’"®C’ Oce CH.

s ®id
The vertical maps are isomorphisms. Using the definition of indgb, it follows for any right
C’-comodule V with structure map 7 that the induced module indgb V' is isomorphic as
a vector space (indeed, as a right C¥-comodule) to the equalizer of the diagram
n®id ®id
VRCOeCf = VeC’®C’ Oc. CF
id ®6°®id
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Since indgt V =~ V, this is naturally isomorphic to V Oce C*. As C¥ ~ @i>0i0ﬁ7 we
get finally that V Oge C*f =~ (—Di>0 V; ®,;CH.

Claim 2: Fori > 0, the right C”-comodule ;C” = indgz L°(i) has an exhaustive ascending
filtration 0 < Vo < Vi < -+ such that Vo = L°(i) and V,./V,_y = L*(i+2r—1)@L°(i+2r)
for v = 1. Also, the modules {L°(i) | i = 0} give a full set of pairwise inequivalent
irreducible right C?-comodules. The first statement follows from (6.1), defining V; to
be the subspace spanned by c; ;, and V; is spanned by ¢; j42,—1, ¢ i+2-. To prove the
second statement, take any irreducible C”-comodule L. Take a non-zero homomorphism
rengL — L°(4) for some i. Then use adjointness of resgz and indgz to obtain an
embedding L — ;C”. Hence, L =~ L(i) as a C”-comodule.

Claim 3: We have that V(i) =~ indgb L(i) and it is uniserial with composition factors
L(Z)a L(Z - Q)v L(Z - 4)a s 7L((1),L(b), e L(Z - 3)7L(Z - 1) (fO?” (CL, b) € {(07 1)7 (la O)}
depending on parity of i) in order from bottom to top:

1—1
|
i1—3
V(i) = (6.2)
i—2

The restriction of §7, : C' — C*® C to V(i) gives an embedding of V() into ind&, L’ (i).
This embedding is an isomorphism since we know indgb L’(4) has the same dimension
(i + 1) as V(i) thanks to Claim 1. The determinaton of the subcomodule structure is

straightforward using the definition of 6(052])) for 0 < j <i.

Claim 4: The injective C'-comodule I(i) has an exhaustive filtration 0 < Iy < I; < ---
such that In = V(i) and I,/I,_1 = V(i +2r —1)® V(i + 2r) forr > 1:

V(i ‘+ 3) V(i ‘+ 4)
1) = V(i + 1) V(i +2) (6.3)
. 7
V(i)

This follows from Claims 1, 2 and 3.

Claim 5: The C-comodules {L(i) | i = 0} give a full set of pairwise inequivalent irre-
ducibles. Moreover, 1(i) is the injective hull of L(i). By Claim 3, the last part of Claim
2, and an adjunction argument, any irreducible C-comodule embeds into V(i) for some
i, hence, it is isomorphic to L(#). The module I(4) is injective, and it has irreducible
socle L(¢) by another adjunction argument. Hence, it is the injective hull of L(7).

Claim 6: The category R := comodey-C' is a lower finite highest weight category with
costandard objects V(i) (i = 0). It also possesses a Chevalley duality. We use the
criterion from Corollary 3.61. From Claim 4, it follows that the largest submodule of
I(i) that belongs to R; is V(i), which is finite-dimensional. This shows that R«; has
enough injectives with the injective hull of L(i) being V(7). We also know already that

[V(@) : L(#)] = 1, and the property (ﬁasc) follows from Claim 4. Hence, R is a lower

finite highest weight category. Finally, the Chevalley duality is defined using the evident
© O]
— C:

coalgebra antiautomorphism of €' which maps ¢; ; i
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Claim 7: The indecomposable tilting comodule T(i) is equal to L(i) = A(i) = V(i) if
i =0, and there are non-split short exact sequences

0— A(i) > T(i) — A(i — 1) — 0, 0—V(i—1)—T@) — V(i) >0
fori>0.

This is immediate in the case ¢ = 0. Now for ¢ > 0, let T'(i) be the non-split exten-
sion of V(i — 1) by V(i) that is the subcomodule of I(i — 1) spanned by the vectors
{cgi_l};,cgi_)l’k |0 < j <i—1,0 <k <i}. Then one checks that this submodule is
self-dual. Since it has a V-flag it therefore also has a A-flag, so it must be the desired
tilting object by Theorem 4.2.
Claim 8: The Ringel dual category R’ is the category A-modygq of locally finite-dimensional
left modules over the locally unital algebra A defined by the following quiver:

Yo Y1

A:07 71 - 2 . with relations y;+1y; = T;Ti+1 = x;y; = 0.

We need to find an isomorphism of algebras
~ . . op
45 (@ Home(T(), 7))
4,520

For this, we consider T'(¢) (¢ = 0,1,2,3,...) with the V-flags:

2

|

1 0

| |

0 0 1

v TR R S
0 1 2 3 (6.4)

0 0 1

| |

1 0

|

.2.

We will describe the images, also called e;, x;, y;, of the generators of A. We send e; to the
identity endomorphism of T'(¢), x; to the morphism T'(i) — T'(i+ 1) sending the quotient
V(i) of T'(4) to the subcomodule V(i) of T'(i+1) and y; to the morphism T'(i+1) — T'(7)
sending the quotient A(7) of T'(¢ + 1) to the submodule A(4) of T'(i). The relations are
easy to check (remembering the op, e.g., one must verify that ys o xo = 0 # 2 0 ys).
Since the algebra A is very easy to understand, one also sees that this homomorphism
is injective, then it is an isomorphism by dimension considerations.

Remark 6.1. The above analysis of comod-C' relies ultimately on the observation that
the coalgebra C has a triangular decomposition in a precise sense which is the analog for
coalgebras of Definition 5.31. There are also coalgebra analogs of the other definitions
from the previous section, which we intend to develop in more detail in a sequel to this
article. The coalgebra analog of Definition 5.1 is the notion of a based quasi-hereditary
coalgebra. The dual of such a coalgebra whose weight poset is finitely generated and
good in the sense of [MZ, Def. 3.9] is an ascending quasi-hereditary pseudo-compact
algebra as defined in [MZ, Def. 3.11].

One can argue in the opposite direction too, starting from the algebra A just de-
fined and computing its Ringel dual to recover the coalgebra C (in fact, this is how
we discovered the coalgebra C' in the first place). Note for this that A is an upper
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finite based quasi-hereditary algebra with the given basis. In fact, it has an upper fi-
nite split triangular decomposition in the sense of Remark 5.32 with A° = @, ke;,
AT = @, n(ke; Dky;) and A™ = P,y (ke; @ ka;). Hence, A-modysq is an upper finite
highest weight category. Its standard and costandard modules have the structure

7 i+ 1
NG V)= 4 . (6.5)
i+ 1 )

Using the characterization from Theorem 4.18(i), it follows that the indecomposable
tilting modules for A have a similar structure to 77(0), which is as follows (to get T"(7)
in general one just has to add ¢ to all of the labels):

5 3 1
AW
T'(0) = 6 4 2 6 - (6.6)

2 4
NN N
1 3 5

This diagram demonstrates that 7”(0) has both an infinite ascending A-flag with A’(0) at
the bottom and subquotients as indicated by the straight lines, and an infinite descending
V-flag with V’(0) at the top and subquotients indicated by the wiggly lines; cf. Claim 4
above. Given the indecomposable tilting modules T”(i) for A, one can now compute
the coalgebra C' arising from the tilting generator 7" := ,,7"(i) according to the
general recipe from Definition 4.26. We leave this to the reader, but display below the
homomorphisms fi(? : T'(i) — T'(j) in the endomorphism algebra B := End4(7")°P
which are dual to the basis elements CE? of the coalgebra C' = B* as above.

The map fz-(fi) : T'(i) — T'(7) is the identity endomorphism, and fi(,l;') 2T (1) — T'(j)
for £ > max(i,j) has irreducible image and coimage isomorphic to L'({), i.e., it sends
the (unique) irreducible copy of L’(¢) in the head of T’(i) to the irreducible L'(¢) in
the socle of T"(j). The remaining maps fl-(fj)7 fi(fj) :T'(i) — T'(j) for i # j are depicted
below:

Z+]. ...j+1
,_ N >
X S e - N g
i#5(2) \ NS
i+l j+1
i+1
v /
£ i+ 2

iEj(.Q) Do \
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...j_|_1

o it
i#§(2)

R @)

1=5(2)

i+1 - j+1 .-

Remark 6.2. The above example can be changed slightly to obtain an essentially finite
example with weight poset A := Z ordered by the opposite of the natural ordering. To
do this, let D be the essentially finite-dimensional locally unital algebra defined by the
following quiver:

Y-1 Yo Y1

— . .
D:...—1 %0 C 12 72 with relations y;11y; = ;241 = x3y; = 0.
Tr_1 xo T

Like for A, this algebra has a triangular decomposition, so D-mod¢q is an essentially
finite highest weight category. Recalling that the construction of tilting modules in the
essentially finite case explained in §4.5 is by passing to an upper finite truncation, the
indecomposable tilting module T(0) for D has the same structure as for A; see (6.6).
This module is infinite-dimensional; thus D-modgq is not tilting-bounded. Note also that
this algebra D can be obtained from the general construction from Remark 5.33, starting
from the obvious triangular decomposition of the Z-graded algebra A = k{z,y | 22 =
y? = 0,2y = 0) with z in degree 1 and y in degree —1; cf. [BT, Ex. 5.12].

6.3. Category O for affine Lie algebras. Perhaps the first naturally-occurring ex-
amples of finite highest weight categories came from the blocks of the BGG category
O for a semisimple Lie algebra. This context also provides natural examples of finite
fibered highest weight categories; see [Mazl] for a survey. To get examples of semi-
infinite highest weight categories, one can consider instead blocks of the category O for
an affine Kac-Moody Lie algebra. We briefly recall the setup referring to [Kac], [Car]
for more details.
Let g be a finite-dimensional semisimple Lie algebra over C and

g:=0 ®cC[t,t '] ®Ccd Cd

be the corresponding affine Kac-Moody algebra. Fix also a Cartan subalgebra f; con-

tained in a Borel subalgebra b of 8. There are corresponding subalgebras h and b of g,
namely,

h:=h @Cc®Cd,  b:= (8 ®cC[t]+ § ®ct(C[t]) @ Ce® Cd.

Let {a; |i € I} < b* and {h;|i € I} < b be the simple roots and coroots of g and (-|-) be
the normalized invariant form on h*, all as in [Kac, Ch. 7-8]. The basic imaginary root
0 € h* is the positive root corresponding to the canonical central element ¢ € h under
(+|-)- The linear automorphisms of h* defined by s; : A — A — A(h;); generate the Weyl
group W of g. Let p € h* be the element satisfying p(h;) = 1 for all i € I and p(d) = 0.
Then define the shifted action of W on h* by w- A = w(A + p) — p for w e W, X € h*.
We define the level of A € h* to be (A + p)(c) € C. Tt is critical if it equals the level of
X = —p, i.e., it is zero'2. We usually restrict our attention to integral weights X, that is,

12Many authors define the level to be A(c), in which case the critical level is —h, where A is the dual
Coxeter number.
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weights A € b* such that A(h;) € Z for all i € I. The level of an integral weight is either
positive, negative or critical (= zero). For any A € h*, we define

A==\ —2p. (6.7)

Since w-(—A—2p) = —w-A—2p, weights A and p are in the same orbit under the shifted
action of W if and only if so are A’ and p/. Note also that the level of A is positive (resp.,
critical) if and only if the level of X' is negative (resp., critical). A crucial fact is that
the orbit W - X\ of an integral weight A\ of positive level contains a unique weight Ay ax
such that Apax + p is dominant; e.g., see [Kum, Ex. 13.1.E8a, Prop. 1.4.2]. By [Kum,
Cor. 1.3.22], this weight is maximal in its orbit with respect to the usual dominance
ordering < on weights, i.e., p < A if A — pe @,.; Ney. If X is integral of negative level,
we deduce from this discussion that its orbit contains a unique minimal weight Apip.

For A € h*, let A()\) be the Verma module with highest weight A\ and L()) be its
unique irreducible quotient. Although Verma modules need not be of finite length, the
composition multiplicities [A(N) : L(u)] are always finite. There is also the dual Verma
module V(\) which is the restricted dual A(X\)# of A()), i.e., the sum of the duals of the
weight spaces of A(\) with the g-action twisted by the Chevalley antiautomorphism. All
of the modules just introduced are objects in the category O consisting of all g-modules
M which are semisimple over h with finite-dimensional weight spaces and such that the
set of weights of M is contained in the lower set generated by a finite subset of h*; see
[Kum, §2.1]. There is also a larger category 0 consisting of the g-modules M which are
semisimple over h and locally finite-dimensional over b.

Let ~ be the equivalence relation on h* generated by A ~ p if there exists a positive
root v and n € Z such that 2(A+p|y) = n(v|y) and A—p = n~y. For a ~-equivalence class
A, let Op (resp., @A) be the full subcategory of O (resp., (5) consisting of all M € O
(resp., M € O) such that [M : L(A)] # 0 = X € A. In view of the linkage principle from
[KK, Th. 2], these subcategories may be called the blocks of @ and of (5, respectively.
In particular, by [DGK, Th. 4.2], any M € O decomposes uniquely as a direct sum
M = @Aeh*/~ My with My € Op. Note though that O is not the coproduct of its
blocks in the strict sense since it is possible to find M € O such that M, is non-zero for
infinitely many different A. The situation is more satisfactory for O: O is the product
of its blocks since by [Soe, Th. 6.1] the functor

1_[ Op — O, (MA)Aeh*/~ — @ My (6.8)
A€h* /~ Aeh* [~
is an equivalence of categories. Note also that [A(A) : L(u)] # 0 implies that the level
of A equals that of u, since the scalars by which ¢ acts on L(A) and L(p) must agree.
Consequently, we can talk simply about the level of a block.

A general combinatorial description of the ~-equivalence classses A can be found for
instance in [Fie3, Lem. 3.9]. For simplicity, we restrict ourselves from now on to integral
blocks. In non-critical levels, one gets exactly the W-orbits W - X of the integral weights
of non-critical level. In critical level, one needs to incorporate also the translates by Z.
From this description, it follows that the poset (A, <) underlying an integral block Oy
is upper finite with unique maximal element Ay .y if Oy is of positive level, and lower
finite with unique minimal element Ay, if Oy is of negative level. In case of the critical
level, the poset is neither upper finite nor lower finite, but it is always interval finite.

Example 6.3. Here we give some explicit examples of posets which can occur for
g= 5:[2, the Kac-Moody algebra for the Cartan matrix (_22 _22) The labelling set for
the principal block is W -0 = {A, ux | k = 0} where Ay := —3k(k + 1)ag — $k(k — 1)y
and puy, := —3k(k — 1)ag — 3k(k + 1)oy. This is a block of positive level with maximal
element Ao = p1o = 0. Applying the map (6.7), we deduce that W - (=2p) = {\}, 1}, |
k = 0}. This is the labelling set for a block of negative level with minimal element
Ay = iy = —2p. Finally, we have that W - (ag — p) u W - (a1 — p) = {Ap, fir | k € Z}
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where \j, := (k + 1)ag + kay — p and i, := kag + (k + 1)a; — p. This is the labelling
set for a block of critical level, and it is neither upper nor lower finite.

0 o iz 3 A3

/ /
S1 So S0
5 s
/ \ 7\81>< J 51 \/ \/so
p1 A1 At P 2 o
80‘ S1 6‘Z?>< ‘6 50‘ ‘81
A2 Ha o, Ag Fo ; M1 A
0
. [ sl e o\ S
3 A3 Al fi —2p
Positive level Critical level Negative level

Recall the definitions of upper finite and lower finite highest weight categories from
Definitions 3.34 and 3.50, respectively.

Theorem 6.4. Let O be an integral block of O of non-critical level. Then it is an upper
finite or lower finite highest weight category according to whether the level is positive or
negative, respectively. In both cases, the standard and costandard objects are the Verma
modules A(X) and the dual Verma modules V() respectively, for A € A. The partial
order < on A is the dominance order.

Proof. First, we prove the result for an integral block Oy of positive level. As explained
above, the poset A is upper finite in this case. Let Apnax be its unique maximal weight.

Claim 1: In the positive level case, Op is the full subcategory of Ox consisting of all
modules M such that [M : L(\)] < oo for all A € A. To prove this, given M € Oy, it is
obvious that all of its composition multiplicities are finite since M has finite-dimensional
weight spaces. Conversely, suppose that all of the composition multiplicities of M € @A
are finite. All weights of M lie in the lower set generated by Apax. Moreover, for
A < Amax, the dimension of the A\-weight space of M is
dim My = > [M : L(p)] dim L(p).
HEA

Since the poset is upper finite, there are only finitely many x4 € A such that the A-weight
space L(u)y is non-zero, and these weight spaces are finite-dimensional, so we deduce
that dim M) < co. This proves the claim.

Now we observe that the Verma module M (Aax) with maximal possible highest weight
is projective in Ox. From this and a standard argument involving translation functors
through walls (see e.g. [Nei]) and the combinatorics from [Fiel, §4] (see also the intro-
duction of [Fie2]), it follows that there are projective modules Py € Oy with (finite)
A-flags as in the axiom (ZSZ) Since each A(X) belongs to Oy, we actually have that
Py € Op. All that is left to complete the proof of the theorem in the positive level case
is to show that Oy is a Schurian category. Let A := (C‘B/\,ue/\ Homg(PMPM))Op. Since
the multiplicities [P, : L(\)] are finite, A is a locally finite-dimensional locally unital
algebra. Using Lemma 2.4, we deduce that @A is equivalent to the category A-mod
of all left A-modules. As explained in the discussion after (2.22), A-modig is the full
subcategory of A-mod consisting of all modules with finite composition multiplicities.
Combining this with Claim 1, we deduce that the equivalence between @A and A-mod
restricts to an equivalence between Op and A-modjeq. Hence, Oy is a Schurian category.
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We turn our attention to an integral block Oy of negative level. In this case, we know
already that the poset A is lower finite with a unique minimal element Ay .

Claim 2: In the negative level case, the category Oy is the full subcategory of @A con-
sisting of all modules of finite length. For this, it is obvious that any module in @A of
finite length belongs to Op. Conversely, any object in Oy is of finite length thanks to
the formula [Kum, 2.1.11(1)], taking A therein to be Apin.

From Claim 2 and Lemma 2.1, it follows that R := O, is a locally finite Abelian category.
By [Fiel, Th. 2.7] the Serre subcategory R* of R associated to A’ is a finite highest
weight category for each finite lower set At of A. We deduce that R is a lower finite
highest weight category according to Definition 3.50. g

Let Op be an integral block of non-critical level. The following assertions about
projective and injective modules follow from Theorem 6.4 and the general theory from
§§2.1-2.3; see also [Soe, Rem. 6.5].

e In the positive level case, when O, is a Schurian category, @A has enough projec-
tives and injectives. Moreover, the projective covers of the irreducible modules
are the modules {P()\) | A € A} constructed in the proof of Theorem 6.4, and
these belong to 0. Their restricted duals I()\) := P(\)# are the indecompos-
able injective modules in @A, and also belong to Oy.

e The situation is completely different in the negative level case, as we need to
pass to (5,\, which is the ind-completion of the finite Abelian category Oj,
before we can talk about injective modules. In @A, the irreducible module
L()\) (A € A) has an injective hull I(\) in O, which possesses a (possibly
infinite) ascending V-flag in the sense of Definition 3.52. However, @A usually
does not have any projectives at all (although one could construct such modules
in the pro-completion of O as done e.g. in [Fie2]).

The following results about tilting modules are consequences of the general theory de-
veloped in §4.1 and §4.3. They already appeared in an equivalent form in [Soe].

e In the negative level case, tilting modules are objects in Oy admitting both a
(finite) A-flag and a (finite) V-flag. The isomorphism classes of indecomposable
tilting modules in O, are parametrized by their highest weights. They may also
be constructed by applying translation functors to the Verma module A(Apin)-

e In the positive level case, tilting modules are objects in Oj which admit both a
(possibly infinite) ascending A-flag and a (possibly infinite) descending V-flag in
the sense of Definition 3.35. Again, the isomorphism classes of indecomposable
tilting modules are parametrized by their highest weights.

In both cases, our characterization of the indecomposable tilting module T'(X) of highest
weight A is slightly different from the one given in [Soe, Def. 6.3]. From our definition,
one sees immediately that T(\)# = T(\).

Remark 6.5. Elsewhere in the literature dealing with positive level, it is common to
pass to a different category of modules, e.g., to the Whittaker category in [BY] or to
truncated versions of O in [SVV, §3], before contemplating tilting modules.

Our next result is concerned with the Ringel duality between integral blocks of positive
and negative level. This depends crucially on a special case of the Arkhipov-Soergel
equivalence from [Ark], [Soe]. Let S be Arkhipov’s semi-regular bimodule, which is the
bimodule S, of [Soe] with 7 := 2p as in [Soe, Lem. 7.1]. For X € h*, let T(\) be the
indecomposable tilting module from [Soe, Def. 6.3] (which is the same as in the previous
paragraph for integral A\ of positive or negative level). Also let P(\) be a projective

cover of L(A) in O whenever such an object exists; cf. [Soe, Rem. 6.5(2)].



112 J. BRUNDAN AND C. STROPPEL

Theorem 6.6 (Arkhipov-Soergel equivalence). Tensoring with the semi-regular bimod-
ule defines an equivalence SQug)? : A(O) — V(O) between the exact subcategories of
O consisting of objects with (finite) A- and V-flags, respectively. Moreover:

(1) S®U(g) A()\) = V(/\/)

(2) S®u(g) P(N) =T(N) (assuming P(X) ewists).

Corollary 6.7. Assume that O is an integral block of negative level. Let O be the
Ringel dual of Oy relative to some choice of T = @,; T; as in Definition 4.24, and let
F be the Ringel duality functor from (4.14). Also let A’ := {X | X € A}. Then there is
an equivalence of categories E : O) — Ons such that Eo F : V(Op) — A(On/) is a
quasi-inverse to the Arkhipov-Soergel equivalence S®y(g)? : A(Opr) — V(O4).

Proof. Note to start with that Oy is an integral block of positive level. Moreover, the
map (A, =) - (A, <), A — X is an order isomorphism.
Choose a quasi-inverse D to S®u(g)? : A(Oar) — V(O4), and set P; := DT;. By
Theorem 6.6(2), (P;)ier is a projective generating family for Op.. Moreover, recalling
op
that O, is the category A-modjsq where A := ((—B Home, (T3, Tj)) , the functor D
op

i,5€l

induces an isomorphism via which we can identify A with ((—BZ jer Homo , (P, Pj))

As explained in the proof of Theorem 6.4, the functor
H = @HOIDOA, (H, ?) . OA/ — A—HlOd]fd
iel

is an equivalence of categories. Moreover, we have that

HoD = @HomoA, (P;, D?) = @HomoA(S ®u(g) Pi,?) = @HomoA(Ti,?) = F.

i€l i€l el

Letting E be a quasi-inverse equivalence to H, it follows that F o F' =~ D. O
Remark 6.8. In the setup of Corollary 6.7, the Arkhipov-Soergel equivalence extends
to an equivalence S®y(g)? : A*(Onr) — V*¢(O4), which is a quasi-inverse to F o F :
Vase(Op) — A?¢(Oy/). These functors interchange the indecomposable injectives in
Op with the indecomposable tiltings in Oy .

Finally we discuss the situation for an integral critical block Oy. As we have already
explained, in this case the poset A is neither upper nor lower finite. In fact, these blocks
do not fit into the framework of this article at all, since the Verma modules have infinite
length and there are no projectives. One sees this already for the Verma module A(—p)
for g = ;[2, which has composition factors L(—p — md) for m > 0, each appearing with
multiplicity equal to the number of partitions of m; see e.g. [AF1, Th. 4.9(1)]. However,
there is an autoequivalence Y:=L0)®?: @A — @A, which makes it possible to pass to
the restricted category (9]“3b which we define next.

Let A,, be the vector space of natural transformations ™ — Id. This gives rise to a
graded algebra A := @),,.; An. Then the restricted category (’)rCS is the full subcategory
of On consisting of all modules which are annihilated by the induced action of A,, for
n # 0; cf. [AF1, §4.3]. The irreducible modules in the restricted category are the same
as in @A itself. There are also the restricted Verma modules

AN = A / D1 im (nagy  ZPAN) — A(N) (6.9)
neEAxo
from [AF1, §4.4]. In other words, A(X)*® is the largest quotient of A(X) that belongs
to the restricted category. Similarly, the restricted dual Verma module V(A)™® is the
largest submodule of V() that belongs to the restricted category.
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The restricted category @ffs is no longer indecomposable: by [AF2, Th. 5.1] it de-
composes further as
O = [] o (6.10)
AeAN/W

where A/W denotes the orbits of W under the dot action. For instance, the poset A
for the critical level displayed in Example 6.3 splits into two orbits W - (ag — p) and
W - (a1 — p) (i-e., one removes the edges labelled by §). In the most singular case, @rf;

is a product of simple blocks; in particular, A™(—p) = L(—p) = V**(—p).

Conjecture 6.9 (Critical block conjecture). Let @%s be a regular integral critical block

in the sense of [AF2]. Let (’)%S := Fin ((’A)rxeg) be the full subcategory consisting of all
modules of finite length. Then OYKQS is an essentially finite highest weight category

with standard and costandard objects A(A)™ and V()™ for A € A. Moreover, the
indecomposable projective modules in O are also its indecomposable tilting modules,
and therefore Of\fs is tilting-bounded and Ringel self-dual.

This conjecture is true for the basic example of a critical block from Example 6.3
thanks to [Fie3, Th. 6.6]; the same category arises as the principal block of category O
for gly};(C) discussed in §6.7 below. The conjecture is also consistent with the so-called
Feigin-Frenkel conjecture [AF1, Conj. 4.7], which says that composition multiplicities of
restricted Verma modules are related to the periodic Kazhdan-Lusztig polynomials from
[Lus] (and Jantzen’s generic decomposition patterns from [Jan2]). These polynomials
depend on the relative position of the given pair of weights and, when not too close to
walls, they vanish for weights that are far apart. This is consistent with the conjectured
existence of indecomposable projectives of finite length in regular blocks of the restricted
category.

Remark 6.10. It seems to us that the Feigin-Frenkel conjecture might have an explana-
tion in terms of a sequence of equivalences of categories similar to [FG, (7)]. Ultimately
this should connect (’)rKeS with representations of the quantum group analog of Jantzen’s
thickened Frobenius kernel G1T. Assuming that ¢ (the order of the root of unity) is odd
and bigger than or equal to the Coxeter number, the latter are known by [AJS, §17] to be
essentially finite highest weight categories controlled by the periodic Kazhdan-Lusztig
polynomials. Also, in these categories, tilting modules are projective, hence, the Ringel
self-duality would be an obvious consequence.

6.4. Rational representations. As we noted in Remark 3.62, the definition of lower
finite highest weight category originated in the work of Cline, Parshall and Scott [CPS1].
As well as the BGG category O already mentioned, their work was motivated by the
representation theory of a reductive algebraic group G in positive characteristic, as
developed for example in [Janl]: the symmetric tensor!® category Rep(G) of finite-
dimensional rational representations of G is a lower finite highest weight category. Tilting
modules for G were studied in [Don3], although our formulation of semi-infinite Ringel
duality from §4.4 is not mentioned explicitly there: Donkin instead took the approach
pioneered in [Don2] of truncating to a finite lower set before taking Ringel duals. In
fact, now, there is monoidal structure in play and the story is even richer.

To give more details, we fix a maximal torus T contained in an opposite pair of
Borel subgroups BT and B~ of G. Then the weight poset A is the set X+ (T) of dom-
inant characters of T with respect to BT. We denote the natural duality on Rep(G)
by V ~— V* (with action defined via g — ¢g~!). The costandard objects are the in-
duced modules H°()\) := H°(G/B~, L)) and the standard objects are the Weyl mod-
ules V(\) := H°(G/B™, £¥)*. For the partial order <, one can use the usual dominance
ordering on X (T), or the more refined Bruhat order of [Janl, §I1.6.4]. This makes

13Locally finite Abelian, monoidal, rigid, End(1) = k.
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Rep(G) into a lower finite highest weight category by [Janl, Prop. I1.4.18] and [Janl,
Prop. I1.6.13]. In fact, in the case of Rep(G), all of the general results about ascend-
ing V-flags found in §3.5 were known already before the time of [CPS1], e.g., they are
discussed in Donkin’s book [Donl] (and called there good filtrations).

Let Tilt(G) be the full subcategory of Rep(G) consisting of all tilting modules. A
key theorem in this setting is that tensor products of tilting modules are tilting; this is
the Donkin-Mathieu-Wang theorem [Donl], [Mat], [Wan]. Thus, 74lt(G) is a symmetric
pseudo-tensor'# category. Let (T})ie; be a monoidal generator for Tilt(G), i.e., each T;
is a tilting module and every indecomposable tilting module is isomorphic to a summand
of a tensor product T; :=T;, ® -- - ®T; for some n > 0 and ¢ = (i1,...,4,) € [”. Then
define A to be the category with objects I := | | ., I" and morphisms defined from
Hom 4(j, ) := Homeg (T}, Tj), composition being induced by the opposite of composition
in Rep(G). The category A is naturally a strict symmetric monoidal category, with the
tensor product of objects being by concatenation of sequences. The evident monoidal
functor A — Tilt(G)°P extends to the Karoubi envelope of A, and the resulting functor
Kar(A) — Tilt(G)°P is a symmetric monoidal equivalence.

Forgetting the monoidal structure, one can think instead in terms of the locally finite-
dimensional locally unital algebra A = @ e;Aej that is the path algebra of A in the
T;and T® = @, TF

igel
sense of Remark 2.3. It becomes convenientJ to identify T = P
with the tensor algebras

T=T(V), T®=T(V*)  where V:=@PT,. (6.11)

i€l

Note that T is naturally a right A-module and 7T® is a left A-module. Since 7T is a
tilting generator for Rep(G) in the sense of Definition 4.24, A-mody¢q is the Ringel dual
of Rep(G) with respect to T. Theorem 4.25 implies that A-modytq is an upper finite
highest weight category with poset (X*+(T),>=). Moreover, by Corollary 4.29, T® is a
tilting generator for A-modysq with Coend 4 (T®) =~ k[G] as coalgebras.

At this point, the monoidal structure on the category A comes back into the picture
since the A-module T' comes from a faithful symmetric monoidal functor (“fiber functor”)
T : A — (Veciq)°P. Consequently, by classical arguments of Tannaka duality (e.g., see
[DM, §2] and [EGNO, §5.4]), Coend(T®) can be endowed with the structure of a
commutative Hopf algebra which reconstructs the coordinate algebra of G. To explain
this in more detail, we use the setup of (2.13), so now we are identifying the coalgebra
Coend 4 (T®) with

el

C:=TRaT®=T(V)®4T(V*¥). (6.12)
Then the algebra structure on C' is induced by the natural multiplication on the tensor
product of algebras T'(V) @ T'(V*), that is,

(W®u) - (vVRU):=(v®V)® (u®u') (6.13)
for v,v’ € T(V) and u,u € T(V*). If we pick a basis vgi)7 R U¢(ii()i) for each T; and let
ugi), . ,ufib()z) be the dual basis for T;*, then the elements

{c) =0 @ul |iel,1 <rs<d(i)} (6.14)

generate C' as an algebra. The coalgebra structure satisfies
5(e) = D e @i, e(ef)) = Or,s. (6.15)
t=1
Now the reconstruction theorem can be formulated as follows.

14 A dditive Karoubian, monoidal, rigid, End(1) = k.
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Theorem 6.11 (Tannakian reconstruction). The above construction makes the coal-
gebra C = Coend 4 (T®) into a commutative Hopf algebra which is isomorphic to the

coordinate algebra k[G] via the unique algebra homomorphism sending c&z)g e C to the
matriz coefficient function é,@s € k[G] defined by gvgz) = Zf(:z)l E% (g)vﬁl) for ge G.

Proof. For i = (i1,...,i,) € I" and v = (rq,...,7r4),8 = (S1,...,8n) € Z" with 1 <
Ty Sk < d(ig) for each k, let cgf)s = (07(«?) Q- ®v7(ni")) ® (ugff) Q- ®u$§f)) € C. These
are the elements in the formula (4.17), and they span C. The coalgebra isomorphism
C S Kk[G] from Corollary 4.29(i) sends cs‘l)s e C to ngllll "'57("17?% € k[G]. So to be
an algebra isomorphism, we must have that cﬁfl = cﬁlll e cﬁf;:)sn, which is exactly the
definition of multiplication given above. O

Theorem 6.11 recovers a classical result: it is a special case of [DM, Th. 2.11], which
implies that k[G] is isomorphic to Coend(F') where F : Rep(G) — Vecsq is the forgetful
functor. To deduce Theorem 6.11 from this statement, one also needs to observe that
Coend(F') = Coend 4(T); this holds because the algebraic group G is isomorphic to its

image in its representation on V' = @, ; T; by weight considerations.

Remark 6.12. To get a full set of relations between the generators (6.14) of C, one
just needs to take the equations vz @ u = v ® xu for = : ¢ — j running over a system of
monoidal generators for A and all v e T;,u € TJ?".

Remark 6.13. Theorem 5.10 can often be applied in this context to give A (or some
idempotent expansion of A) the structure of an upper finite (perhaps symmetrically)
based quasi-hereditary algebra.

The first example comes from G = SLy. For this, we may take [ := {[} and 7] to
be the natural two-dimensional representation V of G with its standard basis vy, v9; we
also use u1, us to denote the dual basis of V*. The module V' is a monoidal generator for
Tilt(G) by weight considerations. Note also that V' possesses an invariant symplectic
form such that (vi,v2) = 1, hence, V =~ V*. The object set I = {|®" |n € N} in
the above setup may be identified with N. Hence, T' = @, T» is the tensor algebra
T(V)=@,=0T"(V) and T® is T(V*). As is well known, the monoidal category A in
this case is the Temperley-Lieb category T L(—2); see e.g. [GW]. It is easy to verify that

C = T(V) ®A T(V*) = k[Cl’l, C1,2,C21, 62,2]/(det —1)

where ¢, s = vs @ u, as above and det = ¢1 12,2 — ¢2,1¢1,2. Of course this is k[SLs].

This example becomes more interesting if we replace the Temperley-Lieb category
T L(—2) with its g-analog TL(—q — ¢~ ') for ¢ € k*. Recall that this is generated as a
strictly pivotal monoidal category by one object | and two morphisms \_J : 0 — 2 and
M :2 — 0 subject to () = —¢ — ¢! Assuming g has a square root ¢'/? € k, it is
braided with braiding defined by

As mentioned in Remark 5.4, the natural diagram basis makes the path algebra A of
A = TL(—q — ¢~!) into an upper finite based quasi-hereditary algebra with weight
poset (N, >). Hence, A-modj¢q is an upper finite highest weight category.

Next let V' be a two-dimensional vector space with basis v1,v2 and (+,-) : V x V = k
be the bilinear form with (vi,v2) = 1, (ve,v1) = —¢~ ! and (vy,v1) = (ve,v9) = 0. A
relation check shows that there is a monoidal functor T : A — (Vecgq)°P such that
T(]) =V and

T(\J): VeV -k, v; @uj — (vi,v;), (6.17)
T(MN):k—->V®V, 1 v ®v1 — qui Q@ va. (6.18)

(6.16)
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Equivalently, the tensor algebra T' = T'(V') is a right A-module, and its dual T® = T'(V*)
is a left A-module. Then we define C as in (6.12). The coend construction makes C' into
a cobraided Hopf algebra, hence, comod¢y-C' is a braided tensor category. Now one can
check directly using the homological criterion for V-flags from Theorem 3.39 that T®
is a tilting generator for A-modyy. Hence, comodg-C' is the Ringel dual of the upper
finite highest weight category A-modjq, so it is a lower finite highest weight category
thanks to Theorem 4.27.

Let us compute C explicitly. Let uy,us be the basis for V* dual to vy,ve. Then C
is generated by {c; s := vs @ u, | 7,8 = 1,2}, and the comultiplication and counit are
defined by d(cys) = cr1 ®c1s + Cra®cas, €(Crs) = drs. By Remark 6.12, the following
equations give a full set of relations for the algebra C":

(vi®v)®(\J1) = (ti®@v;\U)®1,
M) @ (i ®uy) =1 (M i @uy).
To expand these, note that the left A-module T® = T(V*) comes from the monoidal
functor T® : A — Vecgq defined by T®(|) = V* and
T® (M) :V*V* -k, u; @uj — (vj,v;) 7", (6.19)
®(\J) k> V*@V*, 1w @uz — ¢ ‘ug @ uy. (6.20)

Using this, the relations become ¢1 ;jco; — ¢ teaic1,j = (vi,v) and ¢;2¢51 — qciicje =
(vj,v;)71, hence, we get

C2.2 —(qC1,2 €11 C1,2 _ 11 C12 €22 —qcCi1,2 — I
-1 = -1 = .
—q "C21 C1,1 C2,1 €22 C21 C22 —q "C21 C1,1

So C' is generated by ¢ 1,¢1,2,¢2,1,¢2,2 subject to the relations needed to ensure that

-1
( CRERCE > _ ( 22 —q1z > (6.21)
C21 C22 —q "C21 C1,1
Equivalently, C' is generated by ¢ 1,c¢1,2, 2,1, 2,2 subject to the relations
C;2Ci1 = 4Ci1C; 2, C2,5C1,5 = (4C1,5C2 4,
C1,2€2,1 = C2,1C1,2, 22011 = c1,1¢22 + (¢ — ¢~ Veracan,

and detq :=cq,1¢22 —q*101720271 = 1. Thus, we have recovered the well-known quantized
coordinate algebra k,[SLs], and comody-C is the category of rational representations
of quantum SLs.

When at a root of unity over the ground field is C, the indecomposable projectives
and injectives in the category of rational representations of quantum SLo (or indeed
the quantum group corresponding to a reductive group) are all finite-dimensional, i.e.,
the category is essentially finite Abelian. Tiltings are also finite-dimensional, indeed,
the category is tilting-bounded in the sense of Definition 4.20. The structure of the
principal block can be worked out explicitly (e.g., see [AT, Th. 3.12, Def. 3.3]): it is
Morita equivalent to the locally unital algebra that is the path algebra of the quiver

o 1 T2
N —— . .
0 “ 1 «w 20 "3 with relations x;11%; = Y¥ir1 = ¥ — Y1241 = O.
Yo Y1 Y2

The appropriate partial order on the weight poset N is the natural order 0 < 1 < ---
The indecomposable projectives have the following structure:

J\ﬂ\ z/\r\ g/y\

0
P(0) = 5{ P(1) = , P(2) = , P(3) =
y
0

\I\J \I\M x,\g/
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The tilting objects are T'(0) := L(0) and T'(n) := P(n — 1) for n > 1. From this, it
is easy to see that the Ringel dual is described by the same quiver with one additional
relation, namely, that yoxg = 0 (and of course the partial order is reversed).

6.5. Tensor product categorifications. Until quite recently, most of the naturally-
occurring examples were highest weight categories (like the ones described in the previous
two subsections). But the work of Webster [Web1], [Web2] and Losev and Webster [LW]
has brought to prominence a very general source of examples that are fully stratified
but seldom highest weight.

Fundamental amongst these new examples are the categorifications of tensor products
of irreducible highest weight modules of symmetrizable Kac-Moody Lie algebras. Rather
than attempting to repeat the definition of these here, we refer the reader to [LW]. All
of these examples are finite fully stratified categories possessing a Chevalley duality.
They are also tilting-rigid; the proof of this depends on an argument involving transla-
tion/projective functors. Consequently, the Ringel dual is again a finite fully stratified
category that is tilting-rigid. In fact, the Ringel dual category is always another ten-
sor product categorification'® (reverse the order of the tensor product). In the earlier
article [Web2], Webster also wrote down explicit finite-dimensional algebras which give
realization of these categories. In view of Theorem 5.25, all of Webster’s algebras admit
bases making them into symmetrically based stratified algebras, although these bases
are usually hard to construct explicitly.

In [Webl], Webster also introduced some more general tensor product categorifica-
tions, including ones which categorify the tensor product of an integrable lowest weight
module tensored with an integrable highest weight module. The latter are particularly
important since they may be realized as generalized cyclotomic quotients of the Kac-
Moody 2-category. They are upper finite fully stratified categories. In type A, they
can also be realized as generalized cyclotomic quotients of the (degenerate or quantum)
Heisenberg category; see [BSW, Th. BJ. In the latter realization, they should possess
explicit triangular bases, generalizing the ones for the cyclotomic quotients of central
charge zero discussed in [GRS].

6.6. Deligne categories. Another source of upper finite highest weight categories
comes from various Deligne categories. The definition of these categories is diagrammatic
in nature. For example, in characteristic zero, the Deligne category Rep(GLs) is the
Karoubi envelope of the oriented Brauer category OB(4). This case was studied in the
PhD thesis of Reynolds [Rey] based on the observation that it admits a symmetric split
triangular decomposition; see also [Bru] which treats the HOMFLY-PT skein category at
the same time. Rui and Song [RS] have analysed the Brauer category and the Kauffman
skein category by similar techniques. Similar ideas have been developed independently
by Sam and Snowden [SS], who also consider other types of Deligne category.

The category of locally finite-dimensional representations of the Deligne category
Rep(GLs) can also be interpreted as a special case of the lowest weight tensored highest
weight tensor product categorifications discussed in the previous subsection; see the
introduction of [Bru]. The Ringel dual in this example is equivalent to the Abelian
envelope Rep®® (G Ls) of Deligne’s category constructed by Entova, Hinich and Serganova
[EHS], which is a monoidal lower finite highest weight category. In [Ent], it is shown that
Rep®(GLs) categorifies a highest weight tensored lowest weight representation, which
is the dual result to the one from [Bru]. This example will be discussed further in the
sequel to this article, where we give an explicit description of the blocks of Rep® (G Ls)
via Khovanov’s arc coalgebra (an interesting explicit example of a based quasi-hereditary
coalgebra), thereby proving a conjecture formulated in the introduction of [BS2].

15This was noted in Remark 3.10 of the arxiv version of [LW] but the authors removed this remark in
the published version.
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These and the other classical families of Deligne categories Rep(Ojs), Rep(P) and
Rep(Q) are being investigated actively along similar lines by several groups of authors
and there has been considerable recent progress; e.g., see [Coud], [SS]. There are also
many interesting connections here with rational representations of the corresponding
families of classical supergroups.

6.7. Representations of Lie superalgebras. Finally, we mention briefly an interest-
ing source of essentially finite highest weight categories: the analogs of the BGG category
O for classical Lie superalgebras. A detailed account in the case of the Lie superalgebra
9l (C) can be found in [BLW]. Its category O gives an essentially finite highest weight
category which is neither lower finite nor upper finite. Moreover, it is tilting-bounded
as in Definition 4.20, so that the Ringel dual category is also an essentially finite highest
weight category.

There is one very easy special case: the principal block of category O for g[m((C)
is equivalent to the category of finite-dimensional modules over the essentially finite-
dimensional locally unital algebra which is the path algebra of the following quiver:

T—1 xo T
o — . .
=1 2 0. 212 72 with relations z;112; = ¥iYi+1 = Ti¥i—Yi+1Zi+1 = 0,
Y-1 Yo Y1

see e.g. [BSI, p. 380]. This is very similar to the Uy(slz)-example from §6.4, but now
the poset Z (ordered naturally) is neither lower nor upper finite. From the category O
perspective, this example is rather misleading since its projective, injective and tilting
objects coincide, hence, it is Ringel self-dual.

One gets similar examples from o0sp,,5,(C), as discussed for example in [BW] and
[ES]. The simplest non-trivial case of o0spy,(C) produces the path algebra of a Dy,
quiver (replacing than the Ay, quiver above); see [ES, §II]. The “strange” families p,,(C)
and ¢, (C) also exhibit similar structures. The former has not yet been investigated
systematically (although basic aspects of the finite-dimensional finite-dimensional rep-
resentations and category O were recently studied in [B+9] and [CC], respectively). It is
an interesting example of a naturally-occurring highest weight category which does not
admit a Chevalley duality. For g, (C), we refer to [BD2] and the references therein. In
fact, the integral blocks for g, (C) are fibered highest weight categories; this observation
is due to Frisk [Fri2].
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