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Accurate and reliable precipitation predictions made by dynamical forecast models could provide crucial in-
formation for human socioeconomic activities by enabling hydrologic forecasts at the Subseasonal-to-Seasonal
(S2S) timescale. To utilize available S2S precipitation predictions for hydrologic forecasts, post-processing
techniques have been applied to adapt the raw S2S precipitation to local watersheds. However, conventional

Keywords: statistical-based post-processing techniques are more focused on correcting the forecast bias, but rather limited in
Subseasonal-to-Seasonal . . L. . . e s . .

P improving the predictive skill of available S2S precipitation forecasts. In this study, we combine the Random
Precipitation Forest classifiers (RF) with the Bias Correction and Spatial Disaggregation (BCSD) to adapt the 10-member

ensemble precipitation forecast from the NASA Goddard Earth Observing System model version 5 (GEOS5) at
4 watersheds located in the NCEI South climate region of the United States. The adapted S2S precipitation is
further applied for streamflow forecast by forcing a classical lumped hydrologic model. The performance of S2S
precipitation as well as the corresponding streamflow predictions are benchmarked with the randomly resampled
precipitation and the corresponding Ensemble Streamflow Prediction (ESP) framework-generated streamflow
predictions. Evaluation statistics of Kling-Gupta Efficiency (KGE), Continuous Ranked Probability Skill Score
(CRPSS), Reliability, Resolution, and Sharpness are employed to evaluate the predictive skill of precipitation and
streamflow both deterministically and probabilistically. Our results indicate that dynamical S2S precipitation
after forecast adaptation leads to consistently higher deterministic skill over ESP at all forecast lead times and
across study watersheds. However, at longer forecast lead times beyond 10-15 days, S2S precipitation with a
limited ensemble size does not present higher probabilistic skill than ESP. Our results shows that the joint
application of RF and BCSD improves the predictive skill of the raw S2S precipitation at study watersheds in
contrast to BCSD. Further, the added predictive skill of S2S precipitation brought by RF propagates into
streamflow predictions, predominantly at longer forecast lead times exceeding 10 days. Overall, our results
highlight the potential success of future work to apply other data-driven approaches to adapt the raw precipi-
tation to local watersheds for more accurate and reliable streamflow forecasts at the S2S timescale.

Forecast adaptation
Streamflow forecasting
Ensemble Streamflow Prediction

1. Introduction

Accurate and reliable streamflow predictions at a Subseasonal-to-
Seasonal (S2S) timescale, which spans from 10 to 30 days into the
future (Vitart et al., 2017), could provide crucial information benefiting
human socio-economic activities of various kinds (Chiew et al., 2003;
White et al., 2017; Yang et al., 2021). The Ensemble Streamflow Pre-
diction (ESP) framework is commonly adopted for streamflow fore-
casting at the S2S timescale (Day, 1985; Schaake and Larson, 1998).

There are mainly two key steps to apply ESP for hydrologic forecasts at
the S2S timescale. First, a calibrated hydrologic model is forced with
measured hydrometeorological information up to the “current” time
step to estimate the initial hydrologic conditions (IHCs). Then, with the
estimated IHCs, the calibrated hydrologic model is further forced with
multiple randomly resampled historical precipitation measurements to
predict streamflow volumes probabilistically over the forecast horizon
of interest. While exploiting our current understanding of hydrology
through the application of a chosen hydrologic model, the ESP considers
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the predictability of streamflow from both the IHCs (i.e., initial soil
moisture and/or snow conditions) and future hydrometeorological
conditions. By incorporating an ensemble of resampled historical pre-
cipitation measurements, probabilistic predictions on future extreme
events (i.e., floods) can be achieved (Delaney et al., 2020; Harrigan
et al., 2018; Troin et al., 2021).

However, one common challenge persists when predicting stream-
flow at the S2S timescale under the ESP framework. That is when the
forecast lead time is long enough (typically beyond 5-10 days), the
predictability of streamflow coming from the IHCs would be lost, leaving
the volumetric prediction of streamflow dominated by inaccurate
resampled precipitation forecasts. As a result, the corresponding
streamflow predictions normally present little deterministic predictive
skill (Cao et al., 2021; Shukla et al., 2013; Wood and Lettenmaier, 2008).

Advancements in weather/climate predictions have provided an
opportunity to advance ensemble streamflow forecasting at the S2S
timescale. Many dynamical S2S precipitation forecast products have
been made available by different mission agencies and/or through in-
ternational collaborations over the globe in the recent decade (Kirtman
et al., 2014; Pegion et al., 2019; Richter et al., 2022; Vitart et al., 2017).
These dynamical S2S precipitation forecast products are generated by
General Circulation Models (GCMs) coupled with dynamical land sur-
face and oceanic components with a consideration of the “real-time”
state of the Earth System. Therefore, available S2S precipitation forecast
should be more reliable and accurate compared to the randomly
resampled precipitation and could be used to force a hydrological model
and enable climate-model-based hydrological forecasting for more ac-
curate streamflow predictions (Liu et al., 2022; Ma and Yuan, 2023;
Yuan, 2016; Yuan et al., 2013).

However, according to several previous evaluation studies, available
S2S precipitation forecasts are commonly associated with a substantial
amount of forecast bias and only present a marginal level of predictive
skill when forecast lead time exceeds 2 weeks (de Andrade et al., 2021;
Tian et al., 2017; Zhang et al., 2021). Combining the fact that the raw
S2S precipitation forecasts often come with a spatial resolution coarser
than ~ 32 km that exceeds the conventional hydrologic scale, post-
processing techniques need to be applied to adapt the raw S2S precipi-
tation to a typical watershed scale before any potential hydrologic
applications.

To enhance the utilization of available S2S precipitation for hydro-
logical predictions, various statistical-based forecast adaptation tech-
niques are frequently applied (Wood et al., 2004). However, these
available statistical-based techniques often prioritize the removal of
forecast bias, potentially resulting in either unchanged or diminished
overall predictive skill of S2S precipitation (Cao et al., 2021; Su et al.,
2023; Wood and Lettenmaier, 2008). As a result, there remains a
continuous demand for novel forecast adaptation techniques for S2S
precipitation forecasts and the corresponding hydrological applications.

Machine Learning (ML)-based techniques are promising alternatives
to conventional post-processing techniques such as BCSD to further
improve the quality of available S2S forecasts through post-processing.
Many recent studies have demonstrated the effectiveness of ML in the
field of hydrometeorology for various forecast-related applications (Kim
et al., 2021; Li et al., 2022; Liu et al., 2022; Zhu et al., 2023). Most
recently, Zhang et al. (2023b) applied the Random Forest classifiers (RF)
to combine additional forecast variables to improve the predictive skill
of the S2S precipitation forecasts from NASA Goddard Earth Observing
System Model Version 5 (i.e., GEOS5, one contributing model to the
NMME-2 project) over the CONUS. According to Zhang et al. (2023b),
the proposed RF improved the capability of the S2S forecasts from
GEOSS in forecasting weekly extreme precipitation over the CONUS.
This highlights the potential success of various data-driven ML appli-
cations for more skillful S2S precipitation forecasts, which could enable
more accurate and reliable streamflow forecasts at the S2S timescale.

However, the RF framework proposed by Zhang et al. (2023b) is due
for a verification of its effectiveness at watersheds for climate-model-
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based hydrological forecasting approach for primarily two reasons.
Firstly, Zhang et al. (2023b) carried out over the entire CONUS, which
exceeds the conventional hydrologic scale. Further, in Zhang et al.
(2023b), only categorical information was provided with the application
of RF but without any volumetric information (which is critically needed
for hydrologic forecasting). It is thus unclear whether the proposed RF
can be applied at local watersheds for climate-model-based S2S
streamflow predictions.

In this study, we aim to test and verify the effectiveness of ML in
adapting raw S2S precipitation for daily streamflow predictions for the
climate-model-based streamflow forecasting approach. We reckon that
the successful application of ML-adapted S2S precipitation at the
smallest water resource management unit could better demonstrate the
potential effectiveness of available S2S precipitation in streamflow
forecasting. Therefore, we carried out a series of streamflow hindcast
experiments at several USGS HUCS8 level watersheds, which are often
considered to be the smallest spatial units of water resources manage-
ment in the United States (Jones et al., 2022) via addressing research
questions as follows: 1) Can an ML-based forecast adaptation technique
improve the predictive skill of daily S2S precipitation forecasts at the
HUC-8 scale? 2) Can the ML-adapted S2S precipitation lead to overall
more skillful streamflow prediction than a baseline post-processing
technique? And 3) If ML indeed shows improved predictive skills, how
does the added skill of the S2S precipitation forecast propagate into
streamflow predictions based on the climate-model-based streamflow
forecasting approach at various forecast lead times?

To answer the above-mentioned research questions and extend the
previous works by Zhang et al. (2023b), we apply RF at watersheds for
climate-model-based streamflow forecasting. To be more specific, the RF
framework proposed by Zhang et al. (2023b) is jointly employed with
BCSD to adapt the raw S28 precipitation from GEOS5 to 4 watersheds in
the NCEI South climate region where S2S precipitation appears to
perform consistently worse than it is in other climate regions (Zhang
et al., 2021). The underlying logic of selecting these 4 study watersheds
in the NCEI South climate region is that if the proposed approach is
proven to be effective at the selected watersheds, then it should be more
likely to show at least the same level of effectiveness when transferred to
other watersheds where S2S precipitation predictions are more accurate.
The adapted S2S precipitation is further input to a lumped hydrologic
model for streamflow forecasting experiments at the selected study
watersheds to verify its hydrologic performances. In this study, the
classical ESP enabled by the randomly resampled precipitation as well as
BCSD-adapted S2S precipitation are treated as two baseline approaches
to benchmark the performance of the proposed RF in S2S precipitation
forecast adaptation and the corresponding streamflow forecasting. In
addition, the “elasticities” between the added skill of precipitation and
the corresponding added skill of streamflow forecasts brought by RF are
computed for quantification and interpretation. This study covers a
period from 1982 to 2011 (30 years).

In this study, multiple RFs are trained for categorical predictions on
the occurrence of high-percentile extreme precipitation. The BCSD is
applied to further correct the volumetric information of the S2S pre-
cipitation after RF-based corrections. There are primarily two reasons
for such a design. The first reason is that previous works show ML
techniques tend to underestimate high percentile rare values (Akbari
Asanjan et al., 2018; Kim et al., 2022). Another perhaps more important
reason is that we do not have a sufficient number of input-measurement
pairs but only a rather limited number of hindcast experiments. We
believe that, under this circumstance, the application of RF could be
prone to overfitting if directly targeted on numerical values during the
training of RF (Caruana et al., 2000; Karras et al., 2020). Therefore, we
train RF for categorical predictions on the occurrence of high-percentile
extreme precipitation first and further correct the volumetric informa-
tion of precipitation with BCSD.

The remainder of this paper contains the following contents: Section
2 introduces datasets and study watersheds. Section 3 describes the
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general experiment design, methodology, and evaluation statistics of
this study. The results are presented in Section 4. Section 5 and Section 6
present and summarize the discussions and main conclusions,
respectively.

2. Datasets and study regions
2.1. Datasets

Three measurement/reanalysis hydrometeorological datasets and
one S2S forecast product used in this study including 1) the AN81d
precipitation from the Parameter-elevation Regressions on the Inde-
pendent Slopes Model (PRISM), 2) Daily potential evapotranspiration
(PET) reanalysis dataset from the North American Regional Reanalysis
(NARR), 3) Daily streamflow measurements from the National Water
Information System at the United States Geological Survey (USGS), and
4) Multiple S2S hindcast variables from the NASA Goddard Earth
Observing System Model version 5 (GEOS5), as one model member in
the NMME-2 data archive. All datasets used in this study cover a com-
mon, 30-year period from 01/01/1982 to 12/31/2011.

Multiple S2S hindcast variables of precipitation, temperature, and
500-hPa and 850-hPa geopotential height from GEOS5 are used in this
study as well. The GEOS5 produces ensemble forecasts/hindcasts con-
taining 10 members by perturbing initial conditions (Borovikov et al.,
2019). The collected S2S hindcasts have a monthly frequency that was
initialized on the first day of the month throughout the entire study
period. Although the collected S2S hindcasts span up to 274 days over
the forecast horizon, we focus on the first 28 days of each collected
hindcast as this study is specifically targeted at the S2S timescale. More
details about the datasets used in this study are presented in Table 1.

2.2. Target watersheds

In this study, the same 4 watersheds in the South climate region of
the United States (per NCEI definition) studied by Zhang et al., (2023a)
are selected as the study watersheds. Fig. 1 shows the general infor-
mation of the study watershed including locations, elevation, river
networks, and streamflow gauge locations. The selected watersheds are
considered less affected by human activities, which makes them suitable
study watersheds in the region (Newman et al., 2015).

The selected study watersheds are dry. According to the collected
PRSIM dataset, the 30-year averaged daily precipitation ranges from 3.2
mm/day to 4.2 mm/day across the study watersheds without strong
seasonal patterns. In brief, precipitation in the summer seasons of June,
July, and August accounts for less annual rainfall than that in other
seasons at the BC, SC, and CR watersheds. Whereas precipitation at the
BP watershed shows slightly higher values in the Winter and Spring
seasons from December through May. The observed precipitation is
distributed quite uniformly over the 4 study watersheds without sig-
nificant spatial clustering (More detailed information in terms of the
spatial and seasonal patterns of the climatology of precipitation at the 4
study watersheds is presented in the Supplementary material). Other

Table 1
Hydrometeorological datasets used in this study.
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relevant information about the study watersheds is presented in Table 2.
3. Experiment design, methodology, and evaluation statistics
3.1. General experiment design

Two forecast adaptation schemes are tested to adapt the raw S2S
precipitation forecasts at the 4 selected watersheds and evaluated
against the randomly resampled precipitation under the classical ESP.
The first post-processing scheme (i.e., the baseline scheme) is the BCSD
post-processing. To apply BCSD, the raw precipitation forecasts are
bilinearly interpolated into 0.07-degree pixels first (i.e., the spatial
resolution of PRISM). Then, bias corrections are conducted at each
interpolated pixel using Multi-Segmented Quantile Mapping (i.e.,
MSQM, originally introduced by Grillakis et al. (2013)). The second
post-processing scheme is a combination of BCSD and RF (hereafter
referred to as “RF-BCSD”). Under the second post-processing scheme,
the raw precipitation forecasts are also bilinearly interpolated into 0.07-
degree pixels first. Only this time the RF is applied to correct the
interpolated precipitation forecasts at each interpolated pixel first
before the application of MSQM to remove forecast bias. Precipitation
adapted under both schemes is eventually transformed into mean areal
values over the study watersheds for evaluation as well as next-step
experiments. More details about the two post-processing schemes of
BCSD and RF-BCSD are introduced in the following section 3.2.

The adapted S2S precipitation is then applied for streamflow hind-
cast experiments following the classical ESP framework. The perfor-
mance of streamflow predictions associated with the adapted S2S
precipitation is benchmarked with the randomly resampled
precipitation-enabled ESP streamflow predictions. The inclusion of the
streamflow hindcasts generated by ESP could enable more informative
comparisons between S2S precipitation-forced and conventional ESP-
generated streamflow forecasting. To keep this study focused, more
detailed information about the technical steps of executing S2S precip-
itation forced streamflow forecasts and ESP is included in the Supple-
mentary material for interesting readers.

The streamflow hindcasts resulted from ESP and the adapted S2S
precipitation are evaluated against the proxies of streamflow measure-
ments (i.e., streamflow simulations generated by forcing the calibrated
hydrologic model with precipitation and PET measurements). The usage
of such streamflow proxies instead of measured streamflow during the
evaluation is for later quantification of the propagation of the added skill
from precipitation to streamflow, without mixing the effects coming
from other sources, e.g., the imperfect structure of the hydrologic model,
uncertainty arises from parameters of the hydrologic model, etc. The
overall experiment design is depicted in Fig. 2.

In this study, we choose the Sacramental Soil Moisture Accounting
(Sac-SMA) as the hydrologic model for streamflow hindcast experi-
ments. The Sac-SMA is calibrated at each study watershed using the SC-
SAHEL algorithm developed by Naeini et al. (2018). Since there are
three groups of precipitation inputs (S2S precipitation from two post-
processing scenarios, as well as the resampled precipitation) to be

Name Temporal resolution Spatial resolution Data sources
Measurements Precipitation Daily ~0.07° https://prism.oregonstate.edu/
/Reanalysis (PRISM)
PET ~0.3° https://www.emc.ncep.noaa.gov/mmb/rreanl/
(NARR)
Streamflow N/A https://waterdata.usgs.gov/nwis
(USGS)
GEOS5 Precipitation 1° https://www.cpc.ncep.noaa.gov/products/NMME/data.html
$2S hindcasts Temperature 1°

500 hPa Geopotential
850 hPa Geopotential

1°
1°
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A. Black Cypress Bayou (BC)
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Fig. 1. Map of the 4 study watersheds (BC is in Texas; SC is in Arkansas; CR is in Louisiana; BP is in Missouri).

Table 2

Topography and hydrometeorology information of the study watersheds.
Watershed Drainage Area Mean Elevation Aridity Snow USGS
Names (Square Kilometers) (Meters) (PET/P) Fraction Gauge ID
Black Cypress Bayou (BC) 960 105.07 0.88 0.017 7,346,045
Smackover Creek (SC) 996 79.29 0.80 0.018 7,362,100
Calcasieu River (CR) 1295 81.79 0.75 0.003 8,013,000
Bayou Pierre (BP) 1689 102.05 0.82 0.004 7,290,650

applied for S2S streamflow forecasting, a total number of 1080
streamflow hindcast experiments, i.e., 3 groups of precipitation x 12
months x 30 years, are conducted at each of the study watersheds.
Subject to the frequency of the collected S2S precipitation forecasts, the
resulting streamflow hindcasts also have a monthly frequency and are
initialized on the 1st day of the months during the entire study period.

The evaluation of precipitation in this study is carried out with Kling-
Gupta Efficiency (KGE) and the Continuous Ranked Probability Skill
Score (CRPSS) at different forecast lead times and across different study
watersheds. In addition, the reliability, resolution, and sharpness of the
adapted S2S precipitation were computed to gain a better understanding
of the corrected ensemble forecasting system. The evaluation of the
resulting streamflow forecasts in this study is carried out with the Kling-
Gupta Efficiency (KGE) and the Continuous Ranked Probability Skill
(CRPS). Since it is expected that the proposed RF-BCSD should bring
overall more skillful precipitation as well as streamflow forecasts than
BCSD, the “elasticity” values between the added skill of precipitation
and corresponding streamflow prediction at different forecast lead times
are computed. More details about the aforementioned evaluation sta-
tistics are described in section 3.3.

3.2. S2S forecast adaptation schemes

In this study, we employ two S2S forecast adaptation schemes. For
both forecast adaptation schemes, we adopted the same cross-correction

strategy to correct the entire record of the collected S2S precipitation. To
do that, all collected datasets are equally divided into three 10-year
groups (i.e., 1982-1991, 1992-2001, and 2002-2011). Each 10-year
period is treated as the correction period in rotation, while the corre-
sponding remaining 20-year period is treated as a reference period to
train correction models under different forecast adaptation schemes (i.
e., RF-BCSD or BCSD). During the post-processing/correction under both
schemes, seasonality and different forecast lead times are considered as
well. Specifically, the S2S data and PRISM from a certain reference
period are divided into different groups based on 4 weeks of forecast
lead times (i.e., 1 to 7 days, 8 to 14 days, 15 to 21 days, and 22 to 28
days) and 4 different seasons (i.e., December, January, February; March,
April, May; June July August; and September, October, November) to
train different correction models. The obtained correction model is then
applied to correct the raw S2S precipitation from the correction period
for a certain forecast lead time and within a certain season. The post-
processed S2S precipitation under both schemes is eventually trans-
formed into mean areal values for evaluation and the subsequent
streamflow hindcast experiments.

Under the first forecast adaptation scheme, the slightly modified Bias
Correction and Spatial Disaggregation (BCSD) was applied. There are
generally two steps when applying BCSD to post-process precipitation
forecasts. Firstly, the raw S2S precipitation is first bilinearly interpolated
into 0.07° pixels (i.e., the spatial resolution of PRISM). Then, bias cor-
rections are conducted at each interpolated 0.07° pixel using the Multi-
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Fig. 2. A schematic diagram of the experiment design.

Segmented Quantile Mapping (MSQM). Given the popularity of the
MSQM technique, more detailed technical steps of the MSQM bias
correction are described in the Supplementary material to keep the
paper concise.

In the second forecast adaptation scheme, a combination of RF and
BCSD (i.e., RF-BCSD) was jointly employed. To be more specific, the raw
S2S precipitation forecast is also bilinearly interpolated into 0.07-degree
pixels first. However, before the MSQM bias correction, the RF is
employed to correct the raw S2S precipitation for better categorical
predictions on the high-percentile extreme events. The RF employed
under the second forecast adaptation scheme is for the improvement of
the predictive performance of S2S precipitation in forecasting the
occurrence of daily extreme values. To be more specific, the RF is trained
to make categorical predictions of either (1) no extreme precipitation,
(2) extreme precipitation from 97 % to 98.5 %, (3) extreme precipitation
from 98.5 to 99.5 %, (4) extreme precipitation from 99.5 % to 99.9 %, or
(5) extreme precipitation above 99.9 %. The training/correction of RF
was executed while considering different forecast lead times and with
the same cross-validation strategy as explained in the previous section.
When training the RF classifier, all collected S2S variables (i.e., pre-
cipitation, temperature, geopotential height at 500 hPa, and geo-
potential height at 850 hPa) are used as inputs. The application of RF in
this study is realized through the Python-based open-source package of
“scikit-learn”. The hyperparameters of RF are set to values recom-
mended by Zhang et al. (2023b), where the “max_depth”, the “max -
features”, and the “n_estimations” are set to be 7, 0.6, and 200,
respectively.

After the RF-based correction, the positive predictions on extreme
precipitation are restored to numerical values based on the statistics of
the raw S2S precipitation forecasts. For example, if the RF made a
positive prediction on extreme precipitation within the percentile
segment of 99.5 % to 99.9 % on date X, the median value of the quantile
segments from 99.5 % to 99.9 % of the raw S2S precipitation will be
placed on date X to replace the original forecast values. Finally, the RF-
corrected S2S precipitation forecast with all numerical values is further
corrected using the MSQM technique to thoroughly remove the forecast
bias.

3.3. Evaluation statistics

In this study, evaluation is carried out from two perspectives to
comprehensively quantify the predictive skill of the adapted S2S pre-
cipitation forecast both deterministically and probabilistic. Kling-Gupta
Efficiency (KGE) and Correlation Coefficient (CC) are employed to

evaluate the adapted S2S precipitation forecast as well as the randomly
resampled precipitation deterministically. The Continuous Ranked
Probability Skill Score (CRPSS) is employed to evaluate the adapted S2S
precipitation from a probabilistic perspective. The reliability, resolution,
and sharpness were further computed to specifically evaluate the per-
formance of the adapted S2S precipitation on extreme precipitation
events above 97 % subject to our RF-based corrections. For the resulting
streamflow predictions associated with ESP and the adapted S2S pre-
cipitation, we applied KGE and CPRS for evaluation. More details about
the methodology of employed evaluation statistics are described in the
following sections 3.3.1, 3.3.2, and 3.3.3.

3.3.1. Kling-Gupta Efficiency (KGE) and correlation coefficient (CC)

The Kling-Gupta Efficiency (KGE) was originally introduced by
Gupta et al. (2009) and has become a widely applied performance
evaluation statistic in the field of hydrology ever since. The KGE is
computed based on three distinct statistics of correlation coefficient
(CC), Bias Ratio (BR) following equation (2): and relative variability
(RV). The values of CC, BR, and RV can be computed with the following
equations (2), (3), and (4):

cC = Zzlj[ ((QSim.i - @Sim) : (QObs,i - @()bs) ) (2)
V2 @0 = 050)* & (Qons — Do)
Qsim
BR == 3
Qon @
y (QS[m,i - @Sim)z/éé‘im
RV = 4

(Qobs.i — Qom)z/@om

i

In equations (2), (3), and (4), n represents the total number of data
points, Qsin; and Qops; are the model simulated/predicted data and
observed data, and Qs;, and Qs are the means of the model simulated/
predicted and observed data series, respectively. With the computed
values of CC, BR, and RV, KGE can be computed with the following
equation (5):

KGE =1-1/(CC— 1 + (BR— 1)" + (RV — 1) )

The values of KGE have no unit and range from —oo to 1. The ideal
value of KGE would be 1, indicating that model simulated/predicted
values are perfectly aligned with measurements. KGE values below
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—0.41 would indicate the simulated/predicted values are not skillful
compared to climatology (Knoben et al., 2019).

3.3.2. Continuous Ranked Probability skill Score (CRPSS)

The Continuous Ranked Probability Skill Score (CRPSS) is a widely
applied measure of how well the forecast probability of a prediction
system matches with the observed outcomes. CRPSS is computed with
the following equation (6):

CRPSS = 1— CRPSy,./ CRPS iy (6)

In equation (6), CRPSg. is the Continuous Ranked Probability Score
(CRPS) of a prediction system to be evaluated and the CRPS;, is the
CRPS of the climatology. In this study, we compute CRPS,;;,, based on the
randomly resampled precipitation in ESP. The computed CRPS, is then
employed to compute CRPSS of the adapted S2S precipitation forecasts.
CRPSS ranges from zero to one, with one indicating the forecast has
perfect predictive skill in comparison to climatology.

The CRPS is calculated based on the empirical probability density
function (PDF) of the ensemble forecast system X and the corresponding
measurement Y following equation (7):

CRPS = > [0~ )P @

In equation (7), n represents a certain forecast case, F,(x) is the
empirical probability density function (PDF) of the ensemble forecast
system, F,(y) is the empirical PDF given a measured value. The unit of
CRPS is subject to the variable to be evaluated.

3.3.3. Reliability, resolution, and sharpness of the adapted ensemble S2S
precipitation forecast

It is well known that once forecast lead time exceeded the weather
timescale, the dynamical S2S precipitation forecast would show very
limited predictive skills. Therefore, it is important to quantify the use-
fulness of available ensemble predictions, especially for extreme pre-
cipitation events. In this study, we follow Yuan and Wood (2013) and
Wilks (2011) to compute the reliability, resolution, and sharpness of the
adapted ensemble S2S precipitation forecast. The calculation of the
aforementioned statistics is specifically targeted at extreme precipita-
tion events above 97 % subject to our previous RF-based forecast cor-
rections. The reliability, resolution, and sharpness of the adapted S2S
ensemble precipitation forecast are computed following equations (8),
(9), and (10):

1 E
Reliability =~ % _ Ni(f; = 5)° ®
i=1

1 £ 2
Resolution = — E N:(vi - y)° 9
esoiution - (y y) ( )

Sharpness = (10)

In equations (8) (9) and (10), f; is the overall forecast probability of
the extreme event of the ensemble member i from an ensemble forecast
system consisting of E ensemble members. y; is the conditional proba-
bility of the extreme event that was observed given the forecast proba-
bility of ensemble member i. N; is the number of cases where the
ensemble member i has given a positive prediction on the extreme event.
n is the total number of forecast instances. ¥ is defined as 1/ny"r | N¥;.
Smaller reliability values and larger resolution values would indicate
better probabilistic forecast. The sharpness values do not quantify the
performance of the ensemble forecast system directly, but they are
jointly considered with reliability and resolution values for a more
comprehensive evaluation of the adapted S2S precipitation forecast.
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3.3.4. The “elasticities” of the added skills between precipitation and
streamflow

The “elasticities” are computed at different forecast lead times to
quantity the propagation of the added skill from precipitation to
streamflow hindcasts brought by RF-BCSD in contrast to BCSD. The
computation of elasticity is defined as the following equation (11):

E = Akge(Precipitation) | Agge (Streamflow) an

The skill elasticities are defined as the unit change of streamflow
hindcasts skill in correspondence to the unit change of precipitation
hindcast skill. Note that when computing skill elasticities, only KGE was
used.

4. Results
4.1. Calibration of Sac-SMA

Fig. 3 presents the streamflow simulations at 4 study watersheds
after the calibrations of Sac-SMA. The red lines indicate streamflow
measurements, and the blue lines indicate the simulated streamflow.
The vertical dashed lines separate the entire study period into the cali-
bration and validation periods. The KGE values within calibration and
validation periods at each study watershed are labeled on the figure as
well.

From Fig. 3, it can be observed that after the calibration of Sac-SMA,
the high-volume streamflow events seem to be consistently under-
estimated at all watersheds. But in general, KGE ranges from 0.84 to
0.69 at all watersheds during the calibration period. Although the per-
formances of hydrologic simulations drop during the validation periods,
the values of KGE remain above 0.6 at all study watersheds.

4.2. Predictive performance of precipitation

To examine the quality of the S2S precipitation resulting from the 2
forecast adaptation schemes, both forecast bias and predictive skill are
examined. The forecast bias is examined with Quantile-Quantile plots
(QQ-plots) and the predictive skill is quantified through the employment
of KGE and CRPSS.

4.2.1. Forecast bias

In Fig. 4, the mean areal S2S precipitation hindcasts of all ensemble
members from GEOS5 over the 4 study watersheds are plotted as scatter
points against the reference values from the PRISM dataset at the same
ranking/percentile (Quantile-to-Quantile plots). The 4 columns of Fig. 4
correspond to the 4 study watersheds. The 3 rows of Fig. 4 correspond to
the raw GEOS5 S2S precipitation hindcasts (grey-colored dots), the
BCSD-adapted S2S precipitation (black-colored dots), and the RF-BCSD
adapted S2S precipitation (blue-colored dots), respectively. The ideal
S2S precipitation hindcast values would lie perfectly on the red-colored
45-degree lines, which indicates that there’s no bias of S2S precipitation
at all magnitudes.

From Fig. 4, differences can be observed in terms of the climatology
of precipitation. The maximum precipitation ranges from around 120
mm (BC) to 200 mm (CR) across the 4 study watersheds. The raw S2S
hindcasts from GEOS5 underestimate precipitation across all study
watersheds, as all the grey-colored scatter points lie above the 45-degree
reference lines. The application of BCSD removed the forecast bias
effectively at all magnitudes and across all study watersheds, as most of
the black-colored scatter points aligned with the 45-degree reference
line much better if compared to the grey-colored scatter points. On the
other hand, the joint application of RF and BCSD also removes forecast
bias effectively. No major differences can be told if comparing second
and third-row panels, which indicates that the application of RF does not
affect the removal of forecast bias.
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To further quantify the predictive skill of S2S precipitation resulting

from BCSD and RF-BCSD adaptations, two evaluation statistics of the
KGE and the CRPSS are computed. Fig. 5 presents the deterministic KGE

4.2.2. Predictive skill
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Fig. 5. KGE skill of the mean areal raw S2S precipitation, BCSD-adapted S2S precipitation, RF-BCSD-adapted S2S precipitation, and randomly-resampled precipi-

tation at 4 study watersheds and over the 28-day forecast horizon.

raw S2S precipitation and the S2S precipitation adapted by BCSD and
RF-BCSD respectively. The KGE skills of the randomly resampled pre-
cipitation are plotted in black dashed lines.

From Fig. 5, it can be observed that all S2S precipitation shows a
similar decreasing trend across the forecast horizon and over the 4 study
watersheds except for the randomly resampled precipitation as it reflects
the constant climatology skills. Comparisons can be made between the
S2S precipitation and the resampled precipitation first. For all study
watersheds, S2S precipitation shows higher skills than the randomly
resampled precipitation when forecast lead times are smaller ~ 10 days.
Once the forecast lead exceeds ~ 10 days, the raw S2S precipitation
shows an equivalent level of KGE skills to the randomly resampled
precipitation whereas the BCSD and RF-BCSD adapted S2S precipitation
consistently performs better than the randomly resampled precipitation.

Comparisons can also be made between different S2S precipitation. It
can be observed that the S2S precipitation resulting from BCSD and RF-
BCSD show consistently higher predictive skill than the raw S2S pre-
cipitation at all forecast lead times and across 4 study watersheds.
Faburther, the RF-BCSD adaptation leads to the highest predictive skills
over the entire forecast horizon and across all study watersheds. Over

0.4

the entire forecast horizon and across different study watersheds, the
RF-BCSD seems bringing more significant improvement in KGE values at
longer forecast lead times. This can be told as RF-BCSD associated KGE
values are sometimes equivalent to the BCSD associated KGE values at
much shorter lead times (e.g., at the BC watershed, RF-BCSD at day 12
and BCSD at day 1; at the SC watershed, RF-BCSD at days 14-18 and
BCSD at days 1-2; at the CR watershed, RF-BCSD at days 19-28 and
BCSD at days 5-8; at the BP watershed, RF-BCSD at days 23-26 and
BCSD at days 7-10).

Fig. 6 presents the probabilistic statistic of the CRPSS of S2S
ensemble precipitation as well as the randomly resampled precipitation
at the study watersheds over the forecast horizon of 28 days. The larger
the CRPSS values the more skillful the precipitation forecast is. Similar
to previous Fig. 5, the grey-colored, blue-colored, and red-colored lines
are the CRPSS skills of the raw S2S precipitation and the S2S precipi-
tation adapted by BCSD and RF-BCSD respectively. The CPRSS skills of
the randomly resampled precipitation are constantly zero and plotted in
black dashed lines.

From Fig. 6, it can be observed that both raw and adapted S2S pre-
cipitation present a slight decreasing trend of CRPSS. Specifically, S2S
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cipitation at 4 study watersheds and over the 28-day forecast horizon.
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precipitation does not present overall superior performance than the
randomly resampled precipitation does. S2S precipitation sometimes
presents CRPSS values smaller than zero (less skillful than climatology)
at forecast lead times within a week (e.g., days 3 and 4 at the BC
watershed; day 3 at the SC watershed; days 2, 3, and 4 at the CR
watershed; day 2 at the BP watershed). Beyond a week, S2S precipitation
also presents less consistent performance where a mixed behavior of
both outperforming and underperforming of the climatology CRPSS is
observed.

Comparing CRPSS values between different S2S precipitation, it can
be observed that RF-BCSD-adapted S2S precipitation outperforms both
raw and BCSD-adapted S2S precipitation. It can be observed that RF-
BCSD brings consistently higher CRPSS values (more skillful) across
different study watersheds at all forecast lead times. On the other hand,
the BCSD-adapted S2S precipitation forecast does not show significant
improvement over the raw S2S precipitation. The BCSD-adapted S2S
precipitation generally presents very close CRPSS values to that from
raw S2S precipitation at all forecast lead times and across different study
watersheds.

4.2.3. Probabilistic performance on extreme precipitation events

The probabilistic evaluation statistics of reliability, resolution, and
sharpness were computed to further examine the performance of the
adapted S2S precipitation in predicting extreme precipitation events
above 97 %. The values of the aforementioned statistics are listed in
Table 3.

According to Table 3, the ML-BCSD presents overall less skillful
ensemble predictions than BCSD does. The ML-BCSD presents less reli-
able ensemble forecasts than ML-BCSD does, given overall larger reli-
ability values across the 4 study watersheds. Furthermore, ML-BCSD also
presents worse (larger) resolution values than BCSD does, despite pre-
viously presented better determinisic KGE and CPRSS skills. Neverthe-
less, ML-BCSD presents sharper ensemble forecasts in comparison to
BCSD as indicated by larger sharpness values. Such larger sharpness
values indicate that when predicting extreme events, ML-BCSD tends to
produce a narrower ensemble spread in comparison to BCSD.

4.3. Predictive performance of streamflow

To quantify how available S2S precipitation affects the overall
quality of streamflow predictions while excluding other factors (e.g., the
imperfect structure of the hydrologic model, uncertainty arising from
parameters of the hydrologic model, etc.), the streamflow predictions
resulting from S2S precipitation are evaluated against the proxy of the
streamflow measurements (i.e., simulated streamflow from Sac-SMA
using the calibrated parameter set and precipitation measurements
from PRISM). Similar to the previous evaluation of the S2S precipitation,
a deterministic evaluation metric KGE, and a probabilistic metric of
CRPS are employed.

Fig. 7 presents the deterministic KGE values of the ensemble means
of the streamflow hindcasts resulting from ESP and the adapted S2S
precipitation over the forecast horizon of 28 days and across 4 study
watersheds. In Fig. 7, the grey-colored lines are the KGE values of the
baseline ESP-generated streamflow hindcasts. The blue and red color
lines are the KGE values of streamflow hindcasts associated with BCSD

Table 3
Reliability, Resolution, and Sharpness of the adapted S2S precipitation forecast
for extreme precipitation events above 97 %.

Watersheds  Reliability Resolution Sharpness

BCSD ML-BCSD BCSD ML-BCSD BCSD ML-BCSD
BC 4.62e-5 7.15e-4 8.24e-5 7.44e-4 0.033 0.036
SC 3.77e-5  2.75e-4 7.3%e-5  3.33e-4 0.035  0.035
CR 8.3%-5  1.20e-4 1.36e-4  1.20e-3 0.037  0.042
BP 6.13e-5  1.20e-4 1.17e-4  1.21e-3 0.040  0.046
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and RF-BCSD-adapted S2S precipitation.

The KGE of streamflow hindcasts presented in Fig. 7 shows a
decreasing trend over the forecast horizon at all study watersheds.
Comparing KGE at different study watersheds, similar patterns are
observed. The KGE values are drastically higher (close to 1) at forecast
lead times within 2-3 days than at longer forecast lead times. However,
at the BP watershed, such a pattern appears to be less significant
compared to that at other watersheds. Comparing the KGE of streamflow
associated with ESP, BCSD, and RF-BCSD, ESP presents the lowest KGE
values across all study watersheds across the entire forecast horizon,
indicating the overall advantage of BCSD and RF-BCSD. Comparing
BCSD and RF-BCSD-adapted S2S precipitation, RF-BCSD presents
consistently higher KGE values across different study watersheds.
However, unlike previous precipitation evaluation results, the differ-
ences in KGE values between ESP, BCSD, and RF-BCSDb appear to be
marginal at forecast lead times within ~ 3 to ~ 7 days at all watersheds
except at BP. At the BP watershed, the advantages of KGE brought by RF-
BCSD are rather consistent and show less difference at different forecast
lead times.

Fig. 8 presents the probabilistic CRPS values of the entire ensemble
of the streamflow hindcasts resulting from ESP, as well as BCSD and RF-
BCSD adapted S2S precipitation over the forecast horizon of 28 days and
across 4 study watersheds with grey, blue, and red lines.

From Fig. 8, it can be observed that CRPS generally shows an
increasing trend over forecast lead time across 4 study watersheds. Such
an increase in CRPS indicates a decrease in the predictive skill of
streamflow over forecast lead times, which is consistent with the KGE
results presented in Fig. 7. One exception would be the BC watershed
where such a decreasing trend of the predictive skill seems more chaotic.

Across the entire forecast horizon, no major differences can be
observed between CRPS of ESP, BCSD, and RF-BCSD at very short
forecast lead times within ~ 3 to ~ 5 days. However, as the forecast lead
time increases, such differences become much more apparent and sig-
nificant. The only exception is the BP watershed where the differences
between the CRPS of ESP, BCSD, and RF-BCSD appear to be inconsistent
where different CRPS skill curves intersect with each other more often.

Comparing ESP and BCSD, BCSD outperforms or at least provides an
equivalent level of CRPS to that of ESP at very short forecast lead times
within 7-10 days. However, once exceeding a certain forecast lead time
(i.e., at BC watershed after day 9; at SC watershed after day 11; at CR
watershed after day 7; at BP watershed after day 7), BCSD underperform
ESP and presents higher CRPS values.

In contrast, RF-BCSD presents consistently lower CRPS values (more
skillful) than BCSD does at all forecast lead times and across different
study watersheds. However, RF-BCSD presents similar characteristics to
BCSD when compared to the baseline ESP. That is the advantage of RF-
BCSD over ESP becomes less obvious or no longer exists once exceeding
a certain forecast lead time (i.e., at BC watershed after day 20; at SC
watershed after day 15; at CR watershed after day 14; at BP watershed
after day 9).

4.4. The “elasticities” of the added skill between precipitation and
streamflow

To further quantify the changes in the predictive skill of streamflow
hindcasts corresponding to the changes in the predictive skill of pre-
cipitation, the “elasticities” of KGE at different forecast lead times are
computed and presented in Table 4.

According to the “elasticities” shown in Table 4, the 4 study water-
sheds can be divided into 2 groups in general. The firs group, being the
BC and SC watersheds, show similar behavior, where the “elasticities”
are relatively small at very short lead times within 8 days but become
drastically larger after ~ 8 days. In the other group, i.e., the CR and BP
watersheds, the “elasticities” show different behaviors. At the CR
watershed, the elasticities fluctuate across the entire forecast horizon
without showing an obvious pattern. The elasticity at the BP watershed
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Table 4
KGE “elasticities” at different forecast lead times and different study watersheds.
Study Forecast lead times (days) Mean
watersheds
1to S5to 9to 13 to 17 to 20 to 25to
4 8 12 16 20 24 28
BC 0.08 0.93 2.50 2.63 2.02 1.74 1.20 1.59
SC 0.00 0.13 0.63 0.62 0.51 0.48 0.56 0.42
CR 0.32 2.24 1.03 0.60 2.01 0.85 0.83 1.13
BP 1.06 0.95 1.02 0.97 1.03 0.97 1.00 1

remains rather stable around the values of 1 across the entire forecast
horizon.

5. Discussion
In this study, we have employed two post-processing schemes to

adapt the raw S2S precipitation at 4 local watersheds for climate-model-
based streamflow predictions. The performance of the adapted S2S

10

precipitation and the corresponding streamflow predictions is bench-
marked with the randomly resampled precipitation and the corre-
sponding ESP-generated streamflow predictions. The first post-
processing scheme is a popular and standard BCSD while another is a
combination of the RF and BCSD.

Our result from section 4.2 shows that both BCSD and RF-BCSD
remove the original forecast bias very effectively. Further, the KGE of
the ensemble means of randomly resampled precipitation and the
adapted S2S precipitation indicate after BCSD and the proposed RF-
BCSD forecast adaptation, dynamical S2S precipitation presents
consistently higher deterministic skill than the randomly resampled
precipitation under the classical ESP framework. However, the proba-
bilistic evaluation metric of CRPSS indicates the dynamical S2S pre-
cipitation does not consistently present higher skill compared over
climatology (i.e., randomly resampled precipitation).

We reckon that this inconsistency between KGE and CRPSS of the
dynamical S2S precipitation could be due to a rather limited size of the
ensemble members of the selected dynamical forecasting products. To
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be more specific, the selected GEOS5 S2S precipitation forecast only has
10 ensemble members whereas the randomly resampled precipitation
consists of 29 ensemble members. Such differences in the ensemble sizes
could potentially cause the inconsistency between KGE and CRPSS re-
sults, as a small ensemble size could greatly impact the quality of
probabilistic forecasts according to Mullen and Buizza (2002).

The proposed RF-BCSD has shown better statistics for most of the
evaluation metrics in contrast to BCSD at all forecast lead times and
across different study watersheds. In this regard, we reckon the pro-
posed RF-BCSD is effective. However, RF-BCSD did produce inferior
statistics in terms of reliability and resolution which are specifically
targeted at extreme precipitation events above 97 %. Our explanation is
that the proposed RF-BCSD is trained to identify positive extreme events
and substitute (statistically) additional high percentile values into the
origin ensemble forecasts, which disturbs and worsens reliability and
resolution values. Such a post-processing strategy also leads to a nar-
rower ensemble spread which is indicated by larger sharpness values.
One potential way to address this issue is to utilize more advanced ML or
Deep Learning techniques to jointly consider the entire ensemble fore-
cast for post-processing (Ganaie et al., 2022; Gronquist et al., 2021;
Wang et al., 2017a). The Bayesian Joint Probability (BJP) technique
could be another alternative in this regard. Previous studies have
demonstrated the effectiveness of BJP in post-processing ensemble
precipitation forecasts which could reliably quantify forecast uncer-
tainty (Li et al., 2021; Robertson et al., 2013; Yuan and Wood, 2012;
Zhao et al., 2016). However, due to the length of this study, it will be a
future effort to further explore and compare the effectiveness of other
ML and BJP in adapting dynamical ensemble S2S precipitation forecasts.

Nevertheless, the major focus of this study is to introduce a novel and
simple forecast adaptation technique in contrast to BCSD for ensemble
streamflow predictions. In this regard, our proposed RF-BCSD has shown
overall superior performance than the BCSD does. Expectedly, the added
skill of the S2S precipitation brought by the application of RF has
propagated into the streamflow predictions through the employed hy-
drologic model. According to the computed KGE and CRPS values in
section 4.3, the RF-BCSD adapted S2S precipitation has led to consis-
tently more skillful streamflow predictions over the entire forecast ho-
rizon of 28 days and across 4 different study watersheds.

To further quantify the propagation of the added skill of S2S pre-
cipitation to streamflow predictions, the “elasticities” of KGE at different
forecast lead times are computed and presented in section 4.4. We found
that the streamflow forecast seems unaffected by the quality of precip-
itation at very short forecast lead times at the BC and SC watersheds.
However, similar behavior is not observed in the CR and BP watersheds.
To explain such differences observed in “elasticities” at the 4 study
watersheds, we took a look at the calibrated parameter sets of the Sac-
SMA models at the 4 study watersheds. For BC and SC, the upper zone
free water capacities (UZFWC) are 46 mm and 52 mm (3 folds averaged
parameter values, below the same), which are much larger than upper
zone tension water capacities (UZTWC) of 8.33 mm and 12.31 mm.
Further, the upper zone water depletion coefficient (UZK, which de-
scribes the linear relationship between the stored water in UZFWC and
its contributing runoff) at BC and SC are relatively small with values of
0.21 and 0.17. In contrast, the UZFWC at CR and BP (82 mm and 37 mm)
are much smaller than the UZTWC (140 mm and 120 mm). In addition,
the UZK at CR and BP (0.58 and 0.68) are much larger than that at BC
and SC.

Given these parameters, while considering the computation logic of
the Sac-SMA, we believe the observed difference in “elasticities” could at
least be partially attributed to the differences in “hydrologic memories”
at the 4 study watersheds. In Sac-SMA, the amount of input precipitation
tries to fill UZTWC first before entering UZFWC. Therefore, a larger
UZTWC would result in less water in UZFWC. However, only the water
stored in UZFWC contributes to streamflow. Further, smaller UZK values
could make such lagged effects last longer due to a slower draining
speed. Therefore, at BC and SC, relatively more water in the UZFWC and
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relatively slower draining speed lead to relatively longer “hydrologic
memories”, and vice versa at the CR and BP watersheds.

The different drainage areas of the study watersheds could also
contribute to the observed difference among “elasticities”. That is, for
watersheds with a larger drainage area, precipitation falls on the upper
end of the watershed would naturally take longer time to manifest as
streamflow compared to that at watersheds with smaller drainage areas.
This characteristic of larger watersheds could potentially lead to a
longer “hydrologic memory” in our previous analysis. However, our
previous analysis of the “hydrologic memory” indicates that the largest
study watershed BP actually presents a relatively shorter “hydrologic
memory”. Therefore, we reckon our analysis is not compromised by the
difference in drainage areas between study watersheds in general.
Nevertheless, to better quantify the impact of the “hydrologic memory”
on streamflow prediction at different watersheds, more advanced
distributed hydrologic models need to be employed for more detailed
analysis for future studies.

Our interpretation of the different behaviors of “elasticity” values
across study watersheds suggests that further advancements of stream-
flow predictions at the S2S timescale perhaps require efforts in multi-
aspects. analysis of “elasticities” at different forecast lead times in-
dicates that at shorter forecast lead times, the quality of streamflow
predictions could be significantly affected by the uncertainty arising
from the estimation of IHCs. Therefore, more advanced data assimilation
techniques should be developed to consider the land-surface inertia of
watersheds more accurately and comprehensively.

Previous studies suggest that accurate, reliable, and seamless
streamflow predictions at the S2S timescale could greatly benefit many
human activities including public health, disaster preparedness, hydro-
power generation scheduling, and irrigation planning (Graham et al.,
2022; White et al., 2017; Yang et al., 2017; Yang et al., 2020). Our
analysis indicates that the quality of precipitation forecasts at the S2S
timescale is still the limiting factor for superior streamflow predictions.
According to our result, at longer forecast lead times exceeding ~ 10
days, the predictive skill of streamflow is more likely to be dominated by
the quality of precipitation forecasts. Efforts have been made to advance
weather/climate predictions at the S2S timescale by identifying addi-
tional predictability sources, better assimilating measured atmospheric
variables, and improving modeling tools (Domeisen et al., 2022; Mayer
and Barnes, 2022; White et al., 2022; Yang et al., 2016). However, due to
uncertainty arising from various sources, it is still extremely challenging
to provide accurate and reliable weather/climate forecasts at the S2S
timescale to this date (AghaKouchak et al., 2022; Krishnamurthy, 2019).

It is therefore important for hydrologists, or other forecast end-users,
to make the best of available S2S precipitation forecasts through various
post-processing techniques. In this study, we have demonstrated the
effectiveness of a rather simple and popular ML-based approach (i.e.,
RF) at 4 study watersheds by combining it with a more conventional
distribution-based forecast adaption technique (i.e., BCSD) for stream-
flow forecasting at the S2S timescale. Due to a rather limited training
sample size subject to the availability of S2S precipitation hindcasts, we
did not train RF for direct volumetric information. Instead, in this study,
the RF is trained to give categorical predictions. The corresponding
volumetrical information is further corrected by the BCSD. The effec-
tiveness of such a framework suggests that more advanced data-driven
techniques could also be effective for similar tasks, as long as enough
training samples are provided. Most recently, Pan et al. (2021) have
applied a deep learning technique, termed generative adversarial
network (GAN), in correcting the bias of GCM-simulated precipitation
over the entire CONUS. The successful application of GAN by Pan et al.
(2021) shed some light on potential future works at a watershed scale, as
GAN is known for its prone to over-fitting with limited training data
(Creswell et al., 2018; Wang et al., 2017b). Therefore, we encourage
future studies to further explore the effectiveness of more advanced
data-driven approaches in adapting S2S precipitation at different wa-
tersheds for more accurate and reliable S2S streamflow forecasting.
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In summary, the authors believe that to advance streamflow forecast
at the S2S timescale, future studies could (1) develop novel or more
advanced data assimilation techniques to better consider the “hydro-
logic memory” of watersheds; (2) improve weather/climate predictions
from its core for more accurate and reliable S2S hydrometeorological
forecasts; (3) apply other data-driven approaches to harness S2S forecast
products in hydrology through various emerging deep learning
techniques.

6. Conclusion

In this study, we investigated the effectiveness of an ML technique,
termed RF, in adapting the raw S2S precipitation forecasts from NASA
GEOS5 to 4 local watersheds in the NCEI South climate region. To
address the commonly presented forecast bias as well as to improve the
predictive skill of raw S28 forecast during the forecast adaptation, the RF
is jointly employed with BCSD (i.e., RF-BCSD) in contrast to another
scenario where only BCSD is employed. The adapted S2S precipitation
under both schemes is further applied to force the lumped Sac-SMA
model for streamflow hindcast experiments. The randomly resampled
precipitation and the corresponding streamflow predictions generated
with the classical ESP are also incorporated in this study to serve as the
benchmark against the two sets of adapted dynamical S2S precipitation
and their corresponding streamflow predictions.

According to our result, the adapted S2S precipitation presents
higher deterministic skill (higher KGE) compared to the randomly
resampled precipitation. However, the adapted S2S precipitation does
not consistently present higher probabilistic skill compared to the
randomly resampled precipitation as indicated by CRPSS. We reckon
this inconsistency between KGE and CRPSS of the adapted S2S precip-
itation could be due to its limited ensemble size, compared to the
randomly resampled precipitation. Comparing the proposed RF-BCSD
and BCSD, RF-BCSD outperforms BCSD with not only higher KGE but
also better CRPSS. However, one drawback of the proposed RF-BCSD is
the worsened reliability and resolution of the resulting ensemble
forecast.

The resulting streamflow predictions generally present consistent
performance with precipitation forecasts. Specifically, the adapted S2S
precipitation (RF-BCSD and BCSD) leads to overall higher deterministic
skills (KGE) in contrast to ESP. However, the streamflow prediction
associated with adapted S2S precipitation (RF-BCSD and BCSD) does not
outperform ESP in terms of probabilistic skills (CRPS) when forecast
lead times exceed 10-21 days at different watersheds. We reckon this
issue may be mitigated by including more dynamical precipitation
forecast products to form a larger ensemble size. Nevertheless, the
proposed RF-BCSD outperforms BCSD in streamflow forecasting. In
addition, the propagation of the added skill from precipitation to
streamflow brought by RF-BCSD is quantified with our pre-defined
“elasticity”. Our results highlight future applications of other data-
driven ML or Deep Learning techniques at watersheds to get the best
use of available S2S forecast products for more accurate streamflow
forecasts. Our major conclusions are summarized as follows:

1. With proper forecast adaptation, dynamical S2S precipitation from
GEOS leads to consistently higher deterministic predictive skills in
contrast to the randomly resampled precipitation. However, the
adapted S2S precipitation does not present superior probabilistic
skill metrics over ESP.

2. The resulting streamflow prediction generally presents consistent
performance with the precipitation where adapted S2S precipitation
leads to deterministically more skillful streamflow forecasting at all
forecast lead times and across all study watersheds. However, once
forecast lead time exceeds a certain forecast lead time, adapted S2S
precipitation presents inferior probabilistic skill in contrast to ESP.

3. Comparing the proposed RF-BCSD and BCSD, RF-BCSD leads to
overall more skillful precipitation as well as streamflow predictions
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as suggested by different evaluation statistics. However, under the
current design of RF-BCSD, the reliability and resolution of the
adapted S2S ensemble recitation are worsened compared to BCSD.

4. Our analysis of the “elasticity” of the added skill between precipi-
tation and streamflow suggests that the “memory” of the hydrologic
system could play an important role in terms of the accuracy of
streamflow forecasts, especially at relatively shorter forecast lead
times.
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