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A B S T R A C T   

Accurate and reliable precipitation predictions made by dynamical forecast models could provide crucial in
formation for human socioeconomic activities by enabling hydrologic forecasts at the Subseasonal-to-Seasonal 
(S2S) timescale. To utilize available S2S precipitation predictions for hydrologic forecasts, post-processing 
techniques have been applied to adapt the raw S2S precipitation to local watersheds. However, conventional 
statistical-based post-processing techniques are more focused on correcting the forecast bias, but rather limited in 
improving the predictive skill of available S2S precipitation forecasts. In this study, we combine the Random 
Forest classifiers (RF) with the Bias Correction and Spatial Disaggregation (BCSD) to adapt the 10-member 
ensemble precipitation forecast from the NASA Goddard Earth Observing System model version 5 (GEOS5) at 
4 watersheds located in the NCEI South climate region of the United States. The adapted S2S precipitation is 
further applied for streamflow forecast by forcing a classical lumped hydrologic model. The performance of S2S 
precipitation as well as the corresponding streamflow predictions are benchmarked with the randomly resampled 
precipitation and the corresponding Ensemble Streamflow Prediction (ESP) framework-generated streamflow 
predictions. Evaluation statistics of Kling-Gupta Efficiency (KGE), Continuous Ranked Probability Skill Score 
(CRPSS), Reliability, Resolution, and Sharpness are employed to evaluate the predictive skill of precipitation and 
streamflow both deterministically and probabilistically. Our results indicate that dynamical S2S precipitation 
after forecast adaptation leads to consistently higher deterministic skill over ESP at all forecast lead times and 
across study watersheds. However, at longer forecast lead times beyond 10–15 days, S2S precipitation with a 
limited ensemble size does not present higher probabilistic skill than ESP. Our results shows that the joint 
application of RF and BCSD improves the predictive skill of the raw S2S precipitation at study watersheds in 
contrast to BCSD. Further, the added predictive skill of S2S precipitation brought by RF propagates into 
streamflow predictions, predominantly at longer forecast lead times exceeding 10 days. Overall, our results 
highlight the potential success of future work to apply other data-driven approaches to adapt the raw precipi
tation to local watersheds for more accurate and reliable streamflow forecasts at the S2S timescale.   

1. Introduction 

Accurate and reliable streamflow predictions at a Subseasonal-to- 
Seasonal (S2S) timescale, which spans from 10 to 30 days into the 
future (Vitart et al., 2017), could provide crucial information benefiting 
human socio-economic activities of various kinds (Chiew et al., 2003; 
White et al., 2017; Yang et al., 2021). The Ensemble Streamflow Pre
diction (ESP) framework is commonly adopted for streamflow fore
casting at the S2S timescale (Day, 1985; Schaake and Larson, 1998). 

There are mainly two key steps to apply ESP for hydrologic forecasts at 
the S2S timescale. First, a calibrated hydrologic model is forced with 
measured hydrometeorological information up to the “current” time 
step to estimate the initial hydrologic conditions (IHCs). Then, with the 
estimated IHCs, the calibrated hydrologic model is further forced with 
multiple randomly resampled historical precipitation measurements to 
predict streamflow volumes probabilistically over the forecast horizon 
of interest. While exploiting our current understanding of hydrology 
through the application of a chosen hydrologic model, the ESP considers 

* Corresponding author at: 202 W. Boyd St., Room 334, Norman, OK 73019, United States. 
E-mail address: tiantian.yang@ou.edu (T. Yang).  

Contents lists available at ScienceDirect 

Journal of Hydrology 

journal homepage: www.elsevier.com/locate/jhydrol 

https://doi.org/10.1016/j.jhydrol.2024.130643 
Received 26 August 2023; Received in revised form 8 December 2023; Accepted 26 December 2023   

mailto:tiantian.yang@ou.edu
www.sciencedirect.com/science/journal/00221694
https://www.elsevier.com/locate/jhydrol
https://doi.org/10.1016/j.jhydrol.2024.130643
https://doi.org/10.1016/j.jhydrol.2024.130643
https://doi.org/10.1016/j.jhydrol.2024.130643
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2024.130643&domain=pdf


Journal of Hydrology 631 (2024) 130643

2

the predictability of streamflow from both the IHCs (i.e., initial soil 
moisture and/or snow conditions) and future hydrometeorological 
conditions. By incorporating an ensemble of resampled historical pre
cipitation measurements, probabilistic predictions on future extreme 
events (i.e., floods) can be achieved (Delaney et al., 2020; Harrigan 
et al., 2018; Troin et al., 2021). 

However, one common challenge persists when predicting stream
flow at the S2S timescale under the ESP framework. That is when the 
forecast lead time is long enough (typically beyond 5–10 days), the 
predictability of streamflow coming from the IHCs would be lost, leaving 
the volumetric prediction of streamflow dominated by inaccurate 
resampled precipitation forecasts. As a result, the corresponding 
streamflow predictions normally present little deterministic predictive 
skill (Cao et al., 2021; Shukla et al., 2013; Wood and Lettenmaier, 2008). 

Advancements in weather/climate predictions have provided an 
opportunity to advance ensemble streamflow forecasting at the S2S 
timescale. Many dynamical S2S precipitation forecast products have 
been made available by different mission agencies and/or through in
ternational collaborations over the globe in the recent decade (Kirtman 
et al., 2014; Pegion et al., 2019; Richter et al., 2022; Vitart et al., 2017). 
These dynamical S2S precipitation forecast products are generated by 
General Circulation Models (GCMs) coupled with dynamical land sur
face and oceanic components with a consideration of the “real-time” 
state of the Earth System. Therefore, available S2S precipitation forecast 
should be more reliable and accurate compared to the randomly 
resampled precipitation and could be used to force a hydrological model 
and enable climate-model-based hydrological forecasting for more ac
curate streamflow predictions (Liu et al., 2022; Ma and Yuan, 2023; 
Yuan, 2016; Yuan et al., 2013). 

However, according to several previous evaluation studies, available 
S2S precipitation forecasts are commonly associated with a substantial 
amount of forecast bias and only present a marginal level of predictive 
skill when forecast lead time exceeds 2 weeks (de Andrade et al., 2021; 
Tian et al., 2017; Zhang et al., 2021). Combining the fact that the raw 
S2S precipitation forecasts often come with a spatial resolution coarser 
than ~ 32 km that exceeds the conventional hydrologic scale, post- 
processing techniques need to be applied to adapt the raw S2S precipi
tation to a typical watershed scale before any potential hydrologic 
applications. 

To enhance the utilization of available S2S precipitation for hydro
logical predictions, various statistical-based forecast adaptation tech
niques are frequently applied (Wood et al., 2004). However, these 
available statistical-based techniques often prioritize the removal of 
forecast bias, potentially resulting in either unchanged or diminished 
overall predictive skill of S2S precipitation (Cao et al., 2021; Su et al., 
2023; Wood and Lettenmaier, 2008). As a result, there remains a 
continuous demand for novel forecast adaptation techniques for S2S 
precipitation forecasts and the corresponding hydrological applications. 

Machine Learning (ML)-based techniques are promising alternatives 
to conventional post-processing techniques such as BCSD to further 
improve the quality of available S2S forecasts through post-processing. 
Many recent studies have demonstrated the effectiveness of ML in the 
field of hydrometeorology for various forecast-related applications (Kim 
et al., 2021; Li et al., 2022; Liu et al., 2022; Zhu et al., 2023). Most 
recently, Zhang et al. (2023b) applied the Random Forest classifiers (RF) 
to combine additional forecast variables to improve the predictive skill 
of the S2S precipitation forecasts from NASA Goddard Earth Observing 
System Model Version 5 (i.e., GEOS5, one contributing model to the 
NMME-2 project) over the CONUS. According to Zhang et al. (2023b), 
the proposed RF improved the capability of the S2S forecasts from 
GEOS5 in forecasting weekly extreme precipitation over the CONUS. 
This highlights the potential success of various data-driven ML appli
cations for more skillful S2S precipitation forecasts, which could enable 
more accurate and reliable streamflow forecasts at the S2S timescale. 

However, the RF framework proposed by Zhang et al. (2023b) is due 
for a verification of its effectiveness at watersheds for climate-model- 

based hydrological forecasting approach for primarily two reasons. 
Firstly, Zhang et al. (2023b) carried out over the entire CONUS, which 
exceeds the conventional hydrologic scale. Further, in Zhang et al. 
(2023b), only categorical information was provided with the application 
of RF but without any volumetric information (which is critically needed 
for hydrologic forecasting). It is thus unclear whether the proposed RF 
can be applied at local watersheds for climate-model-based S2S 
streamflow predictions. 

In this study, we aim to test and verify the effectiveness of ML in 
adapting raw S2S precipitation for daily streamflow predictions for the 
climate-model-based streamflow forecasting approach. We reckon that 
the successful application of ML-adapted S2S precipitation at the 
smallest water resource management unit could better demonstrate the 
potential effectiveness of available S2S precipitation in streamflow 
forecasting. Therefore, we carried out a series of streamflow hindcast 
experiments at several USGS HUC8 level watersheds, which are often 
considered to be the smallest spatial units of water resources manage
ment in the United States (Jones et al., 2022) via addressing research 
questions as follows: 1) Can an ML-based forecast adaptation technique 
improve the predictive skill of daily S2S precipitation forecasts at the 
HUC-8 scale? 2) Can the ML-adapted S2S precipitation lead to overall 
more skillful streamflow prediction than a baseline post-processing 
technique? And 3) If ML indeed shows improved predictive skills, how 
does the added skill of the S2S precipitation forecast propagate into 
streamflow predictions based on the climate-model-based streamflow 
forecasting approach at various forecast lead times? 

To answer the above-mentioned research questions and extend the 
previous works by Zhang et al. (2023b), we apply RF at watersheds for 
climate-model-based streamflow forecasting. To be more specific, the RF 
framework proposed by Zhang et al. (2023b) is jointly employed with 
BCSD to adapt the raw S2S precipitation from GEOS5 to 4 watersheds in 
the NCEI South climate region where S2S precipitation appears to 
perform consistently worse than it is in other climate regions (Zhang 
et al., 2021). The underlying logic of selecting these 4 study watersheds 
in the NCEI South climate region is that if the proposed approach is 
proven to be effective at the selected watersheds, then it should be more 
likely to show at least the same level of effectiveness when transferred to 
other watersheds where S2S precipitation predictions are more accurate. 
The adapted S2S precipitation is further input to a lumped hydrologic 
model for streamflow forecasting experiments at the selected study 
watersheds to verify its hydrologic performances. In this study, the 
classical ESP enabled by the randomly resampled precipitation as well as 
BCSD-adapted S2S precipitation are treated as two baseline approaches 
to benchmark the performance of the proposed RF in S2S precipitation 
forecast adaptation and the corresponding streamflow forecasting. In 
addition, the “elasticities” between the added skill of precipitation and 
the corresponding added skill of streamflow forecasts brought by RF are 
computed for quantification and interpretation. This study covers a 
period from 1982 to 2011 (30 years). 

In this study, multiple RFs are trained for categorical predictions on 
the occurrence of high-percentile extreme precipitation. The BCSD is 
applied to further correct the volumetric information of the S2S pre
cipitation after RF-based corrections. There are primarily two reasons 
for such a design. The first reason is that previous works show ML 
techniques tend to underestimate high percentile rare values (Akbari 
Asanjan et al., 2018; Kim et al., 2022). Another perhaps more important 
reason is that we do not have a sufficient number of input-measurement 
pairs but only a rather limited number of hindcast experiments. We 
believe that, under this circumstance, the application of RF could be 
prone to overfitting if directly targeted on numerical values during the 
training of RF (Caruana et al., 2000; Karras et al., 2020). Therefore, we 
train RF for categorical predictions on the occurrence of high-percentile 
extreme precipitation first and further correct the volumetric informa
tion of precipitation with BCSD. 

The remainder of this paper contains the following contents: Section 
2 introduces datasets and study watersheds. Section 3 describes the 
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general experiment design, methodology, and evaluation statistics of 
this study. The results are presented in Section 4. Section 5 and Section 6 
present and summarize the discussions and main conclusions, 
respectively. 

2. Datasets and study regions 

2.1. Datasets 

Three measurement/reanalysis hydrometeorological datasets and 
one S2S forecast product used in this study including 1) the AN81d 
precipitation from the Parameter-elevation Regressions on the Inde
pendent Slopes Model (PRISM), 2) Daily potential evapotranspiration 
(PET) reanalysis dataset from the North American Regional Reanalysis 
(NARR), 3) Daily streamflow measurements from the National Water 
Information System at the United States Geological Survey (USGS), and 
4) Multiple S2S hindcast variables from the NASA Goddard Earth 
Observing System Model version 5 (GEOS5), as one model member in 
the NMME-2 data archive. All datasets used in this study cover a com
mon, 30-year period from 01/01/1982 to 12/31/2011. 

Multiple S2S hindcast variables of precipitation, temperature, and 
500-hPa and 850-hPa geopotential height from GEOS5 are used in this 
study as well. The GEOS5 produces ensemble forecasts/hindcasts con
taining 10 members by perturbing initial conditions (Borovikov et al., 
2019). The collected S2S hindcasts have a monthly frequency that was 
initialized on the first day of the month throughout the entire study 
period. Although the collected S2S hindcasts span up to 274 days over 
the forecast horizon, we focus on the first 28 days of each collected 
hindcast as this study is specifically targeted at the S2S timescale. More 
details about the datasets used in this study are presented in Table 1. 

2.2. Target watersheds 

In this study, the same 4 watersheds in the South climate region of 
the United States (per NCEI definition) studied by Zhang et al., (2023a) 
are selected as the study watersheds. Fig. 1 shows the general infor
mation of the study watershed including locations, elevation, river 
networks, and streamflow gauge locations. The selected watersheds are 
considered less affected by human activities, which makes them suitable 
study watersheds in the region (Newman et al., 2015). 

The selected study watersheds are dry. According to the collected 
PRSIM dataset, the 30-year averaged daily precipitation ranges from 3.2 
mm/day to 4.2 mm/day across the study watersheds without strong 
seasonal patterns. In brief, precipitation in the summer seasons of June, 
July, and August accounts for less annual rainfall than that in other 
seasons at the BC, SC, and CR watersheds. Whereas precipitation at the 
BP watershed shows slightly higher values in the Winter and Spring 
seasons from December through May. The observed precipitation is 
distributed quite uniformly over the 4 study watersheds without sig
nificant spatial clustering (More detailed information in terms of the 
spatial and seasonal patterns of the climatology of precipitation at the 4 
study watersheds is presented in the Supplementary material). Other 

relevant information about the study watersheds is presented in Table 2. 

3. Experiment design, methodology, and evaluation statistics 

3.1. General experiment design 

Two forecast adaptation schemes are tested to adapt the raw S2S 
precipitation forecasts at the 4 selected watersheds and evaluated 
against the randomly resampled precipitation under the classical ESP. 
The first post-processing scheme (i.e., the baseline scheme) is the BCSD 
post-processing. To apply BCSD, the raw precipitation forecasts are 
bilinearly interpolated into 0.07-degree pixels first (i.e., the spatial 
resolution of PRISM). Then, bias corrections are conducted at each 
interpolated pixel using Multi-Segmented Quantile Mapping (i.e., 
MSQM, originally introduced by Grillakis et al. (2013)). The second 
post-processing scheme is a combination of BCSD and RF (hereafter 
referred to as “RF-BCSD”). Under the second post-processing scheme, 
the raw precipitation forecasts are also bilinearly interpolated into 0.07- 
degree pixels first. Only this time the RF is applied to correct the 
interpolated precipitation forecasts at each interpolated pixel first 
before the application of MSQM to remove forecast bias. Precipitation 
adapted under both schemes is eventually transformed into mean areal 
values over the study watersheds for evaluation as well as next-step 
experiments. More details about the two post-processing schemes of 
BCSD and RF-BCSD are introduced in the following section 3.2. 

The adapted S2S precipitation is then applied for streamflow hind
cast experiments following the classical ESP framework. The perfor
mance of streamflow predictions associated with the adapted S2S 
precipitation is benchmarked with the randomly resampled 
precipitation-enabled ESP streamflow predictions. The inclusion of the 
streamflow hindcasts generated by ESP could enable more informative 
comparisons between S2S precipitation-forced and conventional ESP- 
generated streamflow forecasting. To keep this study focused, more 
detailed information about the technical steps of executing S2S precip
itation forced streamflow forecasts and ESP is included in the Supple
mentary material for interesting readers. 

The streamflow hindcasts resulted from ESP and the adapted S2S 
precipitation are evaluated against the proxies of streamflow measure
ments (i.e., streamflow simulations generated by forcing the calibrated 
hydrologic model with precipitation and PET measurements). The usage 
of such streamflow proxies instead of measured streamflow during the 
evaluation is for later quantification of the propagation of the added skill 
from precipitation to streamflow, without mixing the effects coming 
from other sources, e.g., the imperfect structure of the hydrologic model, 
uncertainty arises from parameters of the hydrologic model, etc. The 
overall experiment design is depicted in Fig. 2. 

In this study, we choose the Sacramental Soil Moisture Accounting 
(Sac-SMA) as the hydrologic model for streamflow hindcast experi
ments. The Sac-SMA is calibrated at each study watershed using the SC- 
SAHEL algorithm developed by Naeini et al. (2018). Since there are 
three groups of precipitation inputs (S2S precipitation from two post- 
processing scenarios, as well as the resampled precipitation) to be 

Table 1 
Hydrometeorological datasets used in this study.   

Name Temporal resolution Spatial resolution Data sources 

Measurements 
/Reanalysis 

Precipitation 
(PRISM) 

Daily ~0.07◦ https://prism.oregonstate.edu/ 

PET 
(NARR) 

~0.3◦ https://www.emc.ncep.noaa.gov/mmb/rreanl/ 

Streamflow 
(USGS) 

N/A https://waterdata.usgs.gov/nwis 

GEOS5 
S2S hindcasts 

Precipitation 1◦ https://www.cpc.ncep.noaa.gov/products/NMME/data.html 
Temperature 1◦

500 hPa Geopotential 1◦

850 hPa Geopotential 1◦
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applied for S2S streamflow forecasting, a total number of 1080 
streamflow hindcast experiments, i.e., 3 groups of precipitation × 12 
months × 30 years, are conducted at each of the study watersheds. 
Subject to the frequency of the collected S2S precipitation forecasts, the 
resulting streamflow hindcasts also have a monthly frequency and are 
initialized on the 1st day of the months during the entire study period. 

The evaluation of precipitation in this study is carried out with Kling- 
Gupta Efficiency (KGE) and the Continuous Ranked Probability Skill 
Score (CRPSS) at different forecast lead times and across different study 
watersheds. In addition, the reliability, resolution, and sharpness of the 
adapted S2S precipitation were computed to gain a better understanding 
of the corrected ensemble forecasting system. The evaluation of the 
resulting streamflow forecasts in this study is carried out with the Kling- 
Gupta Efficiency (KGE) and the Continuous Ranked Probability Skill 
(CRPS). Since it is expected that the proposed RF-BCSD should bring 
overall more skillful precipitation as well as streamflow forecasts than 
BCSD, the “elasticity” values between the added skill of precipitation 
and corresponding streamflow prediction at different forecast lead times 
are computed. More details about the aforementioned evaluation sta
tistics are described in section 3.3. 

3.2. S2S forecast adaptation schemes 

In this study, we employ two S2S forecast adaptation schemes. For 
both forecast adaptation schemes, we adopted the same cross-correction 

strategy to correct the entire record of the collected S2S precipitation. To 
do that, all collected datasets are equally divided into three 10-year 
groups (i.e., 1982–1991, 1992–2001, and 2002–2011). Each 10-year 
period is treated as the correction period in rotation, while the corre
sponding remaining 20-year period is treated as a reference period to 
train correction models under different forecast adaptation schemes (i. 
e., RF-BCSD or BCSD). During the post-processing/correction under both 
schemes, seasonality and different forecast lead times are considered as 
well. Specifically, the S2S data and PRISM from a certain reference 
period are divided into different groups based on 4 weeks of forecast 
lead times (i.e., 1 to 7 days, 8 to 14 days, 15 to 21 days, and 22 to 28 
days) and 4 different seasons (i.e., December, January, February; March, 
April, May; June July August; and September, October, November) to 
train different correction models. The obtained correction model is then 
applied to correct the raw S2S precipitation from the correction period 
for a certain forecast lead time and within a certain season. The post- 
processed S2S precipitation under both schemes is eventually trans
formed into mean areal values for evaluation and the subsequent 
streamflow hindcast experiments. 

Under the first forecast adaptation scheme, the slightly modified Bias 
Correction and Spatial Disaggregation (BCSD) was applied. There are 
generally two steps when applying BCSD to post-process precipitation 
forecasts. Firstly, the raw S2S precipitation is first bilinearly interpolated 
into 0.07◦ pixels (i.e., the spatial resolution of PRISM). Then, bias cor
rections are conducted at each interpolated 0.07◦ pixel using the Multi- 

Fig. 1. Map of the 4 study watersheds (BC is in Texas; SC is in Arkansas; CR is in Louisiana; BP is in Missouri).  

Table 2 
Topography and hydrometeorology information of the study watersheds.  

Watershed 
Names 

Drainage Area 
(Square Kilometers) 

Mean Elevation 
(Meters) 

Aridity 
(PET/P) 

Snow 
Fraction 

USGS 
Gauge ID 

Black Cypress Bayou (BC) 960  105.07  0.88  0.017 7,346,045 
Smackover Creek (SC) 996  79.29  0.80  0.018 7,362,100 
Calcasieu River (CR) 1295  81.79  0.75  0.003 8,013,000 
Bayou Pierre (BP) 1689  102.05  0.82  0.004 7,290,650  
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Segmented Quantile Mapping (MSQM). Given the popularity of the 
MSQM technique, more detailed technical steps of the MSQM bias 
correction are described in the Supplementary material to keep the 
paper concise. 

In the second forecast adaptation scheme, a combination of RF and 
BCSD (i.e., RF-BCSD) was jointly employed. To be more specific, the raw 
S2S precipitation forecast is also bilinearly interpolated into 0.07-degree 
pixels first. However, before the MSQM bias correction, the RF is 
employed to correct the raw S2S precipitation for better categorical 
predictions on the high-percentile extreme events. The RF employed 
under the second forecast adaptation scheme is for the improvement of 
the predictive performance of S2S precipitation in forecasting the 
occurrence of daily extreme values. To be more specific, the RF is trained 
to make categorical predictions of either (1) no extreme precipitation, 
(2) extreme precipitation from 97 % to 98.5 %, (3) extreme precipitation 
from 98.5 to 99.5 %, (4) extreme precipitation from 99.5 % to 99.9 %, or 
(5) extreme precipitation above 99.9 %. The training/correction of RF 
was executed while considering different forecast lead times and with 
the same cross-validation strategy as explained in the previous section. 
When training the RF classifier, all collected S2S variables (i.e., pre
cipitation, temperature, geopotential height at 500 hPa, and geo
potential height at 850 hPa) are used as inputs. The application of RF in 
this study is realized through the Python-based open-source package of 
“scikit-learn”. The hyperparameters of RF are set to values recom
mended by Zhang et al. (2023b), where the “max_depth”, the “max_
features”, and the “n_estimations” are set to be 7, 0.6, and 200, 
respectively. 

After the RF-based correction, the positive predictions on extreme 
precipitation are restored to numerical values based on the statistics of 
the raw S2S precipitation forecasts. For example, if the RF made a 
positive prediction on extreme precipitation within the percentile 
segment of 99.5 % to 99.9 % on date X, the median value of the quantile 
segments from 99.5 % to 99.9 % of the raw S2S precipitation will be 
placed on date X to replace the original forecast values. Finally, the RF- 
corrected S2S precipitation forecast with all numerical values is further 
corrected using the MSQM technique to thoroughly remove the forecast 
bias. 

3.3. Evaluation statistics 

In this study, evaluation is carried out from two perspectives to 
comprehensively quantify the predictive skill of the adapted S2S pre
cipitation forecast both deterministically and probabilistic. Kling-Gupta 
Efficiency (KGE) and Correlation Coefficient (CC) are employed to 

evaluate the adapted S2S precipitation forecast as well as the randomly 
resampled precipitation deterministically. The Continuous Ranked 
Probability Skill Score (CRPSS) is employed to evaluate the adapted S2S 
precipitation from a probabilistic perspective. The reliability, resolution, 
and sharpness were further computed to specifically evaluate the per
formance of the adapted S2S precipitation on extreme precipitation 
events above 97 % subject to our RF-based corrections. For the resulting 
streamflow predictions associated with ESP and the adapted S2S pre
cipitation, we applied KGE and CPRS for evaluation. More details about 
the methodology of employed evaluation statistics are described in the 
following sections 3.3.1, 3.3.2, and 3.3.3. 

3.3.1. Kling-Gupta Efficiency (KGE) and correlation coefficient (CC) 
The Kling-Gupta Efficiency (KGE) was originally introduced by 

Gupta et al. (2009) and has become a widely applied performance 
evaluation statistic in the field of hydrology ever since. The KGE is 
computed based on three distinct statistics of correlation coefficient 
(CC), Bias Ratio (BR) following equation (2): and relative variability 
(RV). The values of CC, BR, and RV can be computed with the following 
equations (2), (3), and (4): 

CC =

∑n
i=1

((
QSim,i − QSim

)
−
(
QObs,i − QObs

) )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
QSim,i − QSim

)2 ∑n

i=1

(
QObs,i − QObs

)2
√ (2)  

BR =
QSim

QObs
(3)  

RV =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(
QSim,i − QSim

)2
√

/QSim

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(
QObs,i − QObs

)2
√

/QObs

(4) 

In equations (2), (3), and (4), n represents the total number of data 
points, QSim,i and QObs,i are the model simulated/predicted data and 
observed data, and QSim and QObs are the means of the model simulated/ 
predicted and observed data series, respectively. With the computed 
values of CC, BR, and RV, KGE can be computed with the following 
equation (5): 

KGE = 1−
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(CC − 1)2
+ (BR − 1)2

+ (RV − 1)2
√

(5) 

The values of KGE have no unit and range from −∞ to 1. The ideal 
value of KGE would be 1, indicating that model simulated/predicted 
values are perfectly aligned with measurements. KGE values below 

Fig. 2. A schematic diagram of the experiment design.  
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−0.41 would indicate the simulated/predicted values are not skillful 
compared to climatology (Knoben et al., 2019). 

3.3.2. Continuous Ranked Probability skill Score (CRPSS) 
The Continuous Ranked Probability Skill Score (CRPSS) is a widely 

applied measure of how well the forecast probability of a prediction 
system matches with the observed outcomes. CRPSS is computed with 
the following equation (6): 

CRPSS = 1−CRPSfore/CRPSclim (6) 

In equation (6), CRPSfore is the Continuous Ranked Probability Score 
(CRPS) of a prediction system to be evaluated and the CRPSclim is the 
CRPS of the climatology. In this study, we compute CRPSclim based on the 
randomly resampled precipitation in ESP. The computed CRPSclim is then 
employed to compute CRPSS of the adapted S2S precipitation forecasts. 
CRPSS ranges from zero to one, with one indicating the forecast has 
perfect predictive skill in comparison to climatology. 

The CRPS is calculated based on the empirical probability density 
function (PDF) of the ensemble forecast system X and the corresponding 
measurement Y following equation (7): 

CRPS =
1
N

∑N

n=1

∫

[Fn(x) − Fn(y)]2dx (7) 

In equation (7), n represents a certain forecast case, Fn(x) is the 
empirical probability density function (PDF) of the ensemble forecast 
system, Fn(y) is the empirical PDF given a measured value. The unit of 
CRPS is subject to the variable to be evaluated. 

3.3.3. Reliability, resolution, and sharpness of the adapted ensemble S2S 
precipitation forecast 

It is well known that once forecast lead time exceeded the weather 
timescale, the dynamical S2S precipitation forecast would show very 
limited predictive skills. Therefore, it is important to quantify the use
fulness of available ensemble predictions, especially for extreme pre
cipitation events. In this study, we follow Yuan and Wood (2013) and 
Wilks (2011) to compute the reliability, resolution, and sharpness of the 
adapted ensemble S2S precipitation forecast. The calculation of the 
aforementioned statistics is specifically targeted at extreme precipita
tion events above 97 % subject to our previous RF-based forecast cor
rections. The reliability, resolution, and sharpness of the adapted S2S 
ensemble precipitation forecast are computed following equations (8), 
(9), and (10): 

Reliability =
1
n
∑E

i=1
Ni(fi − yi)

2 (8)  

Resolution =
1
n
∑E

i=1
Ni(yi − y)2 (9)  

Sharpness =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑E

i=1
Ni(fi − y)2

√
√
√
√ (10) 

In equations (8) (9) and (10), fi is the overall forecast probability of 
the extreme event of the ensemble member i from an ensemble forecast 
system consisting of E ensemble members. yi is the conditional proba
bility of the extreme event that was observed given the forecast proba
bility of ensemble member i. Ni is the number of cases where the 
ensemble member i has given a positive prediction on the extreme event. 
n is the total number of forecast instances. y is defined as 1/n

∑E
i=1Niyi. 

Smaller reliability values and larger resolution values would indicate 
better probabilistic forecast. The sharpness values do not quantify the 
performance of the ensemble forecast system directly, but they are 
jointly considered with reliability and resolution values for a more 
comprehensive evaluation of the adapted S2S precipitation forecast. 

3.3.4. The “elasticities” of the added skills between precipitation and 
streamflow 

The “elasticities” are computed at different forecast lead times to 
quantity the propagation of the added skill from precipitation to 
streamflow hindcasts brought by RF-BCSD in contrast to BCSD. The 
computation of elasticity is defined as the following equation (11): 

E = ΔKGE(Precipitation)/ΔKGE(Streamflow) (11) 

The skill elasticities are defined as the unit change of streamflow 
hindcasts skill in correspondence to the unit change of precipitation 
hindcast skill. Note that when computing skill elasticities, only KGE was 
used. 

4. Results 

4.1. Calibration of Sac-SMA 

Fig. 3 presents the streamflow simulations at 4 study watersheds 
after the calibrations of Sac-SMA. The red lines indicate streamflow 
measurements, and the blue lines indicate the simulated streamflow. 
The vertical dashed lines separate the entire study period into the cali
bration and validation periods. The KGE values within calibration and 
validation periods at each study watershed are labeled on the figure as 
well. 

From Fig. 3, it can be observed that after the calibration of Sac-SMA, 
the high-volume streamflow events seem to be consistently under
estimated at all watersheds. But in general, KGE ranges from 0.84 to 
0.69 at all watersheds during the calibration period. Although the per
formances of hydrologic simulations drop during the validation periods, 
the values of KGE remain above 0.6 at all study watersheds. 

4.2. Predictive performance of precipitation 

To examine the quality of the S2S precipitation resulting from the 2 
forecast adaptation schemes, both forecast bias and predictive skill are 
examined. The forecast bias is examined with Quantile-Quantile plots 
(QQ-plots) and the predictive skill is quantified through the employment 
of KGE and CRPSS. 

4.2.1. Forecast bias 
In Fig. 4, the mean areal S2S precipitation hindcasts of all ensemble 

members from GEOS5 over the 4 study watersheds are plotted as scatter 
points against the reference values from the PRISM dataset at the same 
ranking/percentile (Quantile-to-Quantile plots). The 4 columns of Fig. 4 
correspond to the 4 study watersheds. The 3 rows of Fig. 4 correspond to 
the raw GEOS5 S2S precipitation hindcasts (grey-colored dots), the 
BCSD-adapted S2S precipitation (black-colored dots), and the RF-BCSD 
adapted S2S precipitation (blue-colored dots), respectively. The ideal 
S2S precipitation hindcast values would lie perfectly on the red-colored 
45-degree lines, which indicates that there’s no bias of S2S precipitation 
at all magnitudes. 

From Fig. 4, differences can be observed in terms of the climatology 
of precipitation. The maximum precipitation ranges from around 120 
mm (BC) to 200 mm (CR) across the 4 study watersheds. The raw S2S 
hindcasts from GEOS5 underestimate precipitation across all study 
watersheds, as all the grey-colored scatter points lie above the 45-degree 
reference lines. The application of BCSD removed the forecast bias 
effectively at all magnitudes and across all study watersheds, as most of 
the black-colored scatter points aligned with the 45-degree reference 
line much better if compared to the grey-colored scatter points. On the 
other hand, the joint application of RF and BCSD also removes forecast 
bias effectively. No major differences can be told if comparing second 
and third-row panels, which indicates that the application of RF does not 
affect the removal of forecast bias. 
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4.2.2. Predictive skill 
To further quantify the predictive skill of S2S precipitation resulting 

from BCSD and RF-BCSD adaptations, two evaluation statistics of the 
KGE and the CRPSS are computed. Fig. 5 presents the deterministic KGE 

values of the ensemble means of S2S precipitation at the 4 selected study 
watersheds over the forecast horizon of 28 days. The higher the KGE 
values the more skillful the S2S precipitation is. In Fig. 5, the grey- 
colored, blue-colored, and red-colored lines are the KGE skill of the 

Fig. 3. Simulated and observed daily hydrographs at four study watersheds after the parameter calibration of the Sac-SMA.  

Fig. 4. QQ-plots of the mean areal S2S precipitation in raw condition, after BCSD adaptation, and after RF-BCSD adaptation.  
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raw S2S precipitation and the S2S precipitation adapted by BCSD and 
RF-BCSD respectively. The KGE skills of the randomly resampled pre
cipitation are plotted in black dashed lines. 

From Fig. 5, it can be observed that all S2S precipitation shows a 
similar decreasing trend across the forecast horizon and over the 4 study 
watersheds except for the randomly resampled precipitation as it reflects 
the constant climatology skills. Comparisons can be made between the 
S2S precipitation and the resampled precipitation first. For all study 
watersheds, S2S precipitation shows higher skills than the randomly 
resampled precipitation when forecast lead times are smaller ~ 10 days. 
Once the forecast lead exceeds ~ 10 days, the raw S2S precipitation 
shows an equivalent level of KGE skills to the randomly resampled 
precipitation whereas the BCSD and RF-BCSD adapted S2S precipitation 
consistently performs better than the randomly resampled precipitation. 

Comparisons can also be made between different S2S precipitation. It 
can be observed that the S2S precipitation resulting from BCSD and RF- 
BCSD show consistently higher predictive skill than the raw S2S pre
cipitation at all forecast lead times and across 4 study watersheds. 
Faburther, the RF-BCSD adaptation leads to the highest predictive skills 
over the entire forecast horizon and across all study watersheds. Over 

the entire forecast horizon and across different study watersheds, the 
RF-BCSD seems bringing more significant improvement in KGE values at 
longer forecast lead times. This can be told as RF-BCSD associated KGE 
values are sometimes equivalent to the BCSD associated KGE values at 
much shorter lead times (e.g., at the BC watershed, RF-BCSD at day 12 
and BCSD at day 1; at the SC watershed, RF-BCSD at days 14–18 and 
BCSD at days 1–2; at the CR watershed, RF-BCSD at days 19–28 and 
BCSD at days 5–8; at the BP watershed, RF-BCSD at days 23–26 and 
BCSD at days 7–10). 

Fig. 6 presents the probabilistic statistic of the CRPSS of S2S 
ensemble precipitation as well as the randomly resampled precipitation 
at the study watersheds over the forecast horizon of 28 days. The larger 
the CRPSS values the more skillful the precipitation forecast is. Similar 
to previous Fig. 5, the grey-colored, blue-colored, and red-colored lines 
are the CRPSS skills of the raw S2S precipitation and the S2S precipi
tation adapted by BCSD and RF-BCSD respectively. The CPRSS skills of 
the randomly resampled precipitation are constantly zero and plotted in 
black dashed lines. 

From Fig. 6, it can be observed that both raw and adapted S2S pre
cipitation present a slight decreasing trend of CRPSS. Specifically, S2S 

Fig. 5. KGE skill of the mean areal raw S2S precipitation, BCSD-adapted S2S precipitation, RF-BCSD-adapted S2S precipitation, and randomly-resampled precipi
tation at 4 study watersheds and over the 28-day forecast horizon. 

Fig. 6. CRPSS skill of the mean areal raw S2S precipitation, BCSD-adapted S2S precipitation, RF-BCSD-adapted S2S precipitation, and randomly-resampled pre
cipitation at 4 study watersheds and over the 28-day forecast horizon. 
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precipitation does not present overall superior performance than the 
randomly resampled precipitation does. S2S precipitation sometimes 
presents CRPSS values smaller than zero (less skillful than climatology) 
at forecast lead times within a week (e.g., days 3 and 4 at the BC 
watershed; day 3 at the SC watershed; days 2, 3, and 4 at the CR 
watershed; day 2 at the BP watershed). Beyond a week, S2S precipitation 
also presents less consistent performance where a mixed behavior of 
both outperforming and underperforming of the climatology CRPSS is 
observed. 

Comparing CRPSS values between different S2S precipitation, it can 
be observed that RF-BCSD-adapted S2S precipitation outperforms both 
raw and BCSD-adapted S2S precipitation. It can be observed that RF- 
BCSD brings consistently higher CRPSS values (more skillful) across 
different study watersheds at all forecast lead times. On the other hand, 
the BCSD-adapted S2S precipitation forecast does not show significant 
improvement over the raw S2S precipitation. The BCSD-adapted S2S 
precipitation generally presents very close CRPSS values to that from 
raw S2S precipitation at all forecast lead times and across different study 
watersheds. 

4.2.3. Probabilistic performance on extreme precipitation events 
The probabilistic evaluation statistics of reliability, resolution, and 

sharpness were computed to further examine the performance of the 
adapted S2S precipitation in predicting extreme precipitation events 
above 97 %. The values of the aforementioned statistics are listed in 
Table 3. 

According to Table 3, the ML-BCSD presents overall less skillful 
ensemble predictions than BCSD does. The ML-BCSD presents less reli
able ensemble forecasts than ML-BCSD does, given overall larger reli
ability values across the 4 study watersheds. Furthermore, ML-BCSD also 
presents worse (larger) resolution values than BCSD does, despite pre
viously presented better determinisic KGE and CPRSS skills. Neverthe
less, ML-BCSD presents sharper ensemble forecasts in comparison to 
BCSD as indicated by larger sharpness values. Such larger sharpness 
values indicate that when predicting extreme events, ML-BCSD tends to 
produce a narrower ensemble spread in comparison to BCSD. 

4.3. Predictive performance of streamflow 

To quantify how available S2S precipitation affects the overall 
quality of streamflow predictions while excluding other factors (e.g., the 
imperfect structure of the hydrologic model, uncertainty arising from 
parameters of the hydrologic model, etc.), the streamflow predictions 
resulting from S2S precipitation are evaluated against the proxy of the 
streamflow measurements (i.e., simulated streamflow from Sac-SMA 
using the calibrated parameter set and precipitation measurements 
from PRISM). Similar to the previous evaluation of the S2S precipitation, 
a deterministic evaluation metric KGE, and a probabilistic metric of 
CRPS are employed. 

Fig. 7 presents the deterministic KGE values of the ensemble means 
of the streamflow hindcasts resulting from ESP and the adapted S2S 
precipitation over the forecast horizon of 28 days and across 4 study 
watersheds. In Fig. 7, the grey-colored lines are the KGE values of the 
baseline ESP-generated streamflow hindcasts. The blue and red color 
lines are the KGE values of streamflow hindcasts associated with BCSD 

and RF-BCSD-adapted S2S precipitation. 
The KGE of streamflow hindcasts presented in Fig. 7 shows a 

decreasing trend over the forecast horizon at all study watersheds. 
Comparing KGE at different study watersheds, similar patterns are 
observed. The KGE values are drastically higher (close to 1) at forecast 
lead times within 2–3 days than at longer forecast lead times. However, 
at the BP watershed, such a pattern appears to be less significant 
compared to that at other watersheds. Comparing the KGE of streamflow 
associated with ESP, BCSD, and RF-BCSD, ESP presents the lowest KGE 
values across all study watersheds across the entire forecast horizon, 
indicating the overall advantage of BCSD and RF-BCSD. Comparing 
BCSD and RF-BCSD-adapted S2S precipitation, RF-BCSD presents 
consistently higher KGE values across different study watersheds. 
However, unlike previous precipitation evaluation results, the differ
ences in KGE values between ESP, BCSD, and RF-BCSDb appear to be 
marginal at forecast lead times within ~ 3 to ~ 7 days at all watersheds 
except at BP. At the BP watershed, the advantages of KGE brought by RF- 
BCSD are rather consistent and show less difference at different forecast 
lead times. 

Fig. 8 presents the probabilistic CRPS values of the entire ensemble 
of the streamflow hindcasts resulting from ESP, as well as BCSD and RF- 
BCSD adapted S2S precipitation over the forecast horizon of 28 days and 
across 4 study watersheds with grey, blue, and red lines. 

From Fig. 8, it can be observed that CRPS generally shows an 
increasing trend over forecast lead time across 4 study watersheds. Such 
an increase in CRPS indicates a decrease in the predictive skill of 
streamflow over forecast lead times, which is consistent with the KGE 
results presented in Fig. 7. One exception would be the BC watershed 
where such a decreasing trend of the predictive skill seems more chaotic. 

Across the entire forecast horizon, no major differences can be 
observed between CRPS of ESP, BCSD, and RF-BCSD at very short 
forecast lead times within ~ 3 to ~ 5 days. However, as the forecast lead 
time increases, such differences become much more apparent and sig
nificant. The only exception is the BP watershed where the differences 
between the CRPS of ESP, BCSD, and RF-BCSD appear to be inconsistent 
where different CRPS skill curves intersect with each other more often. 

Comparing ESP and BCSD, BCSD outperforms or at least provides an 
equivalent level of CRPS to that of ESP at very short forecast lead times 
within 7–10 days. However, once exceeding a certain forecast lead time 
(i.e., at BC watershed after day 9; at SC watershed after day 11; at CR 
watershed after day 7; at BP watershed after day 7), BCSD underperform 
ESP and presents higher CRPS values. 

In contrast, RF-BCSD presents consistently lower CRPS values (more 
skillful) than BCSD does at all forecast lead times and across different 
study watersheds. However, RF-BCSD presents similar characteristics to 
BCSD when compared to the baseline ESP. That is the advantage of RF- 
BCSD over ESP becomes less obvious or no longer exists once exceeding 
a certain forecast lead time (i.e., at BC watershed after day 20; at SC 
watershed after day 15; at CR watershed after day 14; at BP watershed 
after day 9). 

4.4. The “elasticities” of the added skill between precipitation and 
streamflow 

To further quantify the changes in the predictive skill of streamflow 
hindcasts corresponding to the changes in the predictive skill of pre
cipitation, the “elasticities” of KGE at different forecast lead times are 
computed and presented in Table 4. 

According to the “elasticities” shown in Table 4, the 4 study water
sheds can be divided into 2 groups in general. The firs group, being the 
BC and SC watersheds, show similar behavior, where the “elasticities” 
are relatively small at very short lead times within 8 days but become 
drastically larger after ~ 8 days. In the other group, i.e., the CR and BP 
watersheds, the “elasticities” show different behaviors. At the CR 
watershed, the elasticities fluctuate across the entire forecast horizon 
without showing an obvious pattern. The elasticity at the BP watershed 

Table 3 
Reliability, Resolution, and Sharpness of the adapted S2S precipitation forecast 
for extreme precipitation events above 97 %.  

Watersheds Reliability Resolution Sharpness 

BCSD ML-BCSD BCSD ML-BCSD BCSD ML-BCSD 

BC 4.62e-5 7.15e-4 8.24e-5 7.44e-4  0.033  0.036 
SC 3.77e-5 2.75e-4 7.39e-5 3.33e-4  0.035  0.035 
CR 8.39e-5 1.20e-4 1.36e-4 1.20e-3  0.037  0.042 
BP 6.13e-5 1.20e-4 1.17e-4 1.21e-3  0.040  0.046  
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remains rather stable around the values of 1 across the entire forecast 
horizon. 

5. Discussion 

In this study, we have employed two post-processing schemes to 
adapt the raw S2S precipitation at 4 local watersheds for climate-model- 
based streamflow predictions. The performance of the adapted S2S 

precipitation and the corresponding streamflow predictions is bench
marked with the randomly resampled precipitation and the corre
sponding ESP-generated streamflow predictions. The first post- 
processing scheme is a popular and standard BCSD while another is a 
combination of the RF and BCSD. 

Our result from section 4.2 shows that both BCSD and RF-BCSD 
remove the original forecast bias very effectively. Further, the KGE of 
the ensemble means of randomly resampled precipitation and the 
adapted S2S precipitation indicate after BCSD and the proposed RF- 
BCSD forecast adaptation, dynamical S2S precipitation presents 
consistently higher deterministic skill than the randomly resampled 
precipitation under the classical ESP framework. However, the proba
bilistic evaluation metric of CRPSS indicates the dynamical S2S pre
cipitation does not consistently present higher skill compared over 
climatology (i.e., randomly resampled precipitation). 

We reckon that this inconsistency between KGE and CRPSS of the 
dynamical S2S precipitation could be due to a rather limited size of the 
ensemble members of the selected dynamical forecasting products. To 

Fig. 7. KGE skill of the streamflow hindcasts resulted from BCSD-adapted S2S precipitation, RF-BCSD-adapted S2S precipitation, and randomly-resampled pre
cipitation (ESP) at 4 study watersheds and over the 28-day forecast horizon. 

Fig. 8. CRPS skill of the streamflow hindcasts resulted from resulted from BCSD-adapted S2S precipitation, RF-BCSD-adapted S2S precipitation, and randomly- 
resampled precipitation (ESP) at 4 study watersheds and over the 28-day forecast horizon. 

Table 4 
KGE “elasticities” at different forecast lead times and different study watersheds.  

Study 
watersheds 

Forecast lead times (days) Mean 

1 to 
4 

5 to 
8 

9 to 
12 

13 to 
16 

17 to 
20 

20 to 
24 

25 to 
28 

BC  0.08  0.93  2.50  2.63  2.02  1.74  1.20 1.59 
SC  0.00  0.13  0.63  0.62  0.51  0.48  0.56 0.42 
CR  0.32  2.24  1.03  0.60  2.01  0.85  0.83 1.13 
BP  1.06  0.95  1.02  0.97  1.03  0.97  1.00 1  
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be more specific, the selected GEOS5 S2S precipitation forecast only has 
10 ensemble members whereas the randomly resampled precipitation 
consists of 29 ensemble members. Such differences in the ensemble sizes 
could potentially cause the inconsistency between KGE and CRPSS re
sults, as a small ensemble size could greatly impact the quality of 
probabilistic forecasts according to Mullen and Buizza (2002). 

The proposed RF-BCSD has shown better statistics for most of the 
evaluation metrics in contrast to BCSD at all forecast lead times and 
across different study watersheds. In this regard, we reckon the pro
posed RF-BCSD is effective. However, RF-BCSD did produce inferior 
statistics in terms of reliability and resolution which are specifically 
targeted at extreme precipitation events above 97 %. Our explanation is 
that the proposed RF-BCSD is trained to identify positive extreme events 
and substitute (statistically) additional high percentile values into the 
origin ensemble forecasts, which disturbs and worsens reliability and 
resolution values. Such a post-processing strategy also leads to a nar
rower ensemble spread which is indicated by larger sharpness values. 
One potential way to address this issue is to utilize more advanced ML or 
Deep Learning techniques to jointly consider the entire ensemble fore
cast for post-processing (Ganaie et al., 2022; Grönquist et al., 2021; 
Wang et al., 2017a). The Bayesian Joint Probability (BJP) technique 
could be another alternative in this regard. Previous studies have 
demonstrated the effectiveness of BJP in post-processing ensemble 
precipitation forecasts which could reliably quantify forecast uncer
tainty (Li et al., 2021; Robertson et al., 2013; Yuan and Wood, 2012; 
Zhao et al., 2016). However, due to the length of this study, it will be a 
future effort to further explore and compare the effectiveness of other 
ML and BJP in adapting dynamical ensemble S2S precipitation forecasts. 

Nevertheless, the major focus of this study is to introduce a novel and 
simple forecast adaptation technique in contrast to BCSD for ensemble 
streamflow predictions. In this regard, our proposed RF-BCSD has shown 
overall superior performance than the BCSD does. Expectedly, the added 
skill of the S2S precipitation brought by the application of RF has 
propagated into the streamflow predictions through the employed hy
drologic model. According to the computed KGE and CRPS values in 
section 4.3, the RF-BCSD adapted S2S precipitation has led to consis
tently more skillful streamflow predictions over the entire forecast ho
rizon of 28 days and across 4 different study watersheds. 

To further quantify the propagation of the added skill of S2S pre
cipitation to streamflow predictions, the “elasticities” of KGE at different 
forecast lead times are computed and presented in section 4.4. We found 
that the streamflow forecast seems unaffected by the quality of precip
itation at very short forecast lead times at the BC and SC watersheds. 
However, similar behavior is not observed in the CR and BP watersheds. 
To explain such differences observed in “elasticities” at the 4 study 
watersheds, we took a look at the calibrated parameter sets of the Sac- 
SMA models at the 4 study watersheds. For BC and SC, the upper zone 
free water capacities (UZFWC) are 46 mm and 52 mm (3 folds averaged 
parameter values, below the same), which are much larger than upper 
zone tension water capacities (UZTWC) of 8.33 mm and 12.31 mm. 
Further, the upper zone water depletion coefficient (UZK, which de
scribes the linear relationship between the stored water in UZFWC and 
its contributing runoff) at BC and SC are relatively small with values of 
0.21 and 0.17. In contrast, the UZFWC at CR and BP (82 mm and 37 mm) 
are much smaller than the UZTWC (140 mm and 120 mm). In addition, 
the UZK at CR and BP (0.58 and 0.68) are much larger than that at BC 
and SC. 

Given these parameters, while considering the computation logic of 
the Sac-SMA, we believe the observed difference in “elasticities” could at 
least be partially attributed to the differences in “hydrologic memories” 
at the 4 study watersheds. In Sac-SMA, the amount of input precipitation 
tries to fill UZTWC first before entering UZFWC. Therefore, a larger 
UZTWC would result in less water in UZFWC. However, only the water 
stored in UZFWC contributes to streamflow. Further, smaller UZK values 
could make such lagged effects last longer due to a slower draining 
speed. Therefore, at BC and SC, relatively more water in the UZFWC and 

relatively slower draining speed lead to relatively longer “hydrologic 
memories”, and vice versa at the CR and BP watersheds. 

The different drainage areas of the study watersheds could also 
contribute to the observed difference among “elasticities”. That is, for 
watersheds with a larger drainage area, precipitation falls on the upper 
end of the watershed would naturally take longer time to manifest as 
streamflow compared to that at watersheds with smaller drainage areas. 
This characteristic of larger watersheds could potentially lead to a 
longer “hydrologic memory” in our previous analysis. However, our 
previous analysis of the “hydrologic memory” indicates that the largest 
study watershed BP actually presents a relatively shorter “hydrologic 
memory”. Therefore, we reckon our analysis is not compromised by the 
difference in drainage areas between study watersheds in general. 
Nevertheless, to better quantify the impact of the “hydrologic memory” 
on streamflow prediction at different watersheds, more advanced 
distributed hydrologic models need to be employed for more detailed 
analysis for future studies. 

Our interpretation of the different behaviors of “elasticity” values 
across study watersheds suggests that further advancements of stream
flow predictions at the S2S timescale perhaps require efforts in multi- 
aspects. analysis of “elasticities” at different forecast lead times in
dicates that at shorter forecast lead times, the quality of streamflow 
predictions could be significantly affected by the uncertainty arising 
from the estimation of IHCs. Therefore, more advanced data assimilation 
techniques should be developed to consider the land-surface inertia of 
watersheds more accurately and comprehensively. 

Previous studies suggest that accurate, reliable, and seamless 
streamflow predictions at the S2S timescale could greatly benefit many 
human activities including public health, disaster preparedness, hydro- 
power generation scheduling, and irrigation planning (Graham et al., 
2022; White et al., 2017; Yang et al., 2017; Yang et al., 2020). Our 
analysis indicates that the quality of precipitation forecasts at the S2S 
timescale is still the limiting factor for superior streamflow predictions. 
According to our result, at longer forecast lead times exceeding ~ 10 
days, the predictive skill of streamflow is more likely to be dominated by 
the quality of precipitation forecasts. Efforts have been made to advance 
weather/climate predictions at the S2S timescale by identifying addi
tional predictability sources, better assimilating measured atmospheric 
variables, and improving modeling tools (Domeisen et al., 2022; Mayer 
and Barnes, 2022; White et al., 2022; Yang et al., 2016). However, due to 
uncertainty arising from various sources, it is still extremely challenging 
to provide accurate and reliable weather/climate forecasts at the S2S 
timescale to this date (AghaKouchak et al., 2022; Krishnamurthy, 2019). 

It is therefore important for hydrologists, or other forecast end-users, 
to make the best of available S2S precipitation forecasts through various 
post-processing techniques. In this study, we have demonstrated the 
effectiveness of a rather simple and popular ML-based approach (i.e., 
RF) at 4 study watersheds by combining it with a more conventional 
distribution-based forecast adaption technique (i.e., BCSD) for stream
flow forecasting at the S2S timescale. Due to a rather limited training 
sample size subject to the availability of S2S precipitation hindcasts, we 
did not train RF for direct volumetric information. Instead, in this study, 
the RF is trained to give categorical predictions. The corresponding 
volumetrical information is further corrected by the BCSD. The effec
tiveness of such a framework suggests that more advanced data-driven 
techniques could also be effective for similar tasks, as long as enough 
training samples are provided. Most recently, Pan et al. (2021) have 
applied a deep learning technique, termed generative adversarial 
network (GAN), in correcting the bias of GCM-simulated precipitation 
over the entire CONUS. The successful application of GAN by Pan et al. 
(2021) shed some light on potential future works at a watershed scale, as 
GAN is known for its prone to over-fitting with limited training data 
(Creswell et al., 2018; Wang et al., 2017b). Therefore, we encourage 
future studies to further explore the effectiveness of more advanced 
data-driven approaches in adapting S2S precipitation at different wa
tersheds for more accurate and reliable S2S streamflow forecasting. 
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In summary, the authors believe that to advance streamflow forecast 
at the S2S timescale, future studies could (1) develop novel or more 
advanced data assimilation techniques to better consider the “hydro
logic memory” of watersheds; (2) improve weather/climate predictions 
from its core for more accurate and reliable S2S hydrometeorological 
forecasts; (3) apply other data-driven approaches to harness S2S forecast 
products in hydrology through various emerging deep learning 
techniques. 

6. Conclusion 

In this study, we investigated the effectiveness of an ML technique, 
termed RF, in adapting the raw S2S precipitation forecasts from NASA 
GEOS5 to 4 local watersheds in the NCEI South climate region. To 
address the commonly presented forecast bias as well as to improve the 
predictive skill of raw S2S forecast during the forecast adaptation, the RF 
is jointly employed with BCSD (i.e., RF-BCSD) in contrast to another 
scenario where only BCSD is employed. The adapted S2S precipitation 
under both schemes is further applied to force the lumped Sac-SMA 
model for streamflow hindcast experiments. The randomly resampled 
precipitation and the corresponding streamflow predictions generated 
with the classical ESP are also incorporated in this study to serve as the 
benchmark against the two sets of adapted dynamical S2S precipitation 
and their corresponding streamflow predictions. 

According to our result, the adapted S2S precipitation presents 
higher deterministic skill (higher KGE) compared to the randomly 
resampled precipitation. However, the adapted S2S precipitation does 
not consistently present higher probabilistic skill compared to the 
randomly resampled precipitation as indicated by CRPSS. We reckon 
this inconsistency between KGE and CRPSS of the adapted S2S precip
itation could be due to its limited ensemble size, compared to the 
randomly resampled precipitation. Comparing the proposed RF-BCSD 
and BCSD, RF-BCSD outperforms BCSD with not only higher KGE but 
also better CRPSS. However, one drawback of the proposed RF-BCSD is 
the worsened reliability and resolution of the resulting ensemble 
forecast. 

The resulting streamflow predictions generally present consistent 
performance with precipitation forecasts. Specifically, the adapted S2S 
precipitation (RF-BCSD and BCSD) leads to overall higher deterministic 
skills (KGE) in contrast to ESP. However, the streamflow prediction 
associated with adapted S2S precipitation (RF-BCSD and BCSD) does not 
outperform ESP in terms of probabilistic skills (CRPS) when forecast 
lead times exceed 10–21 days at different watersheds. We reckon this 
issue may be mitigated by including more dynamical precipitation 
forecast products to form a larger ensemble size. Nevertheless, the 
proposed RF-BCSD outperforms BCSD in streamflow forecasting. In 
addition, the propagation of the added skill from precipitation to 
streamflow brought by RF-BCSD is quantified with our pre-defined 
“elasticity”. Our results highlight future applications of other data- 
driven ML or Deep Learning techniques at watersheds to get the best 
use of available S2S forecast products for more accurate streamflow 
forecasts. Our major conclusions are summarized as follows:  

1. With proper forecast adaptation, dynamical S2S precipitation from 
GEOS leads to consistently higher deterministic predictive skills in 
contrast to the randomly resampled precipitation. However, the 
adapted S2S precipitation does not present superior probabilistic 
skill metrics over ESP.  

2. The resulting streamflow prediction generally presents consistent 
performance with the precipitation where adapted S2S precipitation 
leads to deterministically more skillful streamflow forecasting at all 
forecast lead times and across all study watersheds. However, once 
forecast lead time exceeds a certain forecast lead time, adapted S2S 
precipitation presents inferior probabilistic skill in contrast to ESP.  

3. Comparing the proposed RF-BCSD and BCSD, RF-BCSD leads to 
overall more skillful precipitation as well as streamflow predictions 

as suggested by different evaluation statistics. However, under the 
current design of RF-BCSD, the reliability and resolution of the 
adapted S2S ensemble recitation are worsened compared to BCSD. 

4. Our analysis of the “elasticity” of the added skill between precipi
tation and streamflow suggests that the “memory” of the hydrologic 
system could play an important role in terms of the accuracy of 
streamflow forecasts, especially at relatively shorter forecast lead 
times. 
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