International Journal of Precision Engineering and Manufacturing Online ISSN 2005-4602

https://doi.org/10.1007/512541-023-00924-2 Print ISSN 2234-7593
REGULAR PAPER q
Check for
updates

Material-Adaptive Anomaly Detection Using Property-Concatenated
Transfer Learning in Wire Arc Additive Manufacturing

Seung-Jun Shin' - Ju-Hong Lee? - Sainand Jadhav? - Duck Bong Kim*

Received: 5 April 2023 / Revised: 16 October 2023 / Accepted: 18 October 2023
© The Author(s), under exclusive licence to Korean Society for Precision Engineering 2023

Abstract

Wire arc additive manufacturing is a promising additive manufacturing process because of its high deposition rate, and
material diversity. However, the low quality of melted parts is a critical issue, owing to the difficulty in establishing design
rules for process—structure—property—performance. Previous studies have resolved this challenge by deriving anomaly detec-
tion models for quality monitoring and have largely relied on machine learning by training melt pool image data. Acquiring
sufficient data is a key to obtaining reliable models in machine learning; however, an issue arises from concerning the cost
intensiveness in high-cost materials. We propose a material-adaptive anomaly detection method to detect balling defects in a
target material using property-concatenated transfer learning. First, transfer learing is applied to derive convolutional neural
network (CNN)-based models from a source material and transfer them to a target material, wherein data are insufficient
and machine learning rarely achieves high performance. Second, material properties are concatenated on transfer learning
as additional features onto image features, contrary to typical transfer learning where CNNs only extract image features. We
perform experiments in a gas tungsten arc welding system with low-carbon steel (LCS), stainless steel (STS), and inconel
(INC) materials. Our models achieve best classification accuracies of 82.95%, 89.47%, and 84.22% when transferring from
LCS to STS, LCS to INC, and STS to INC, respectively, compared with 78.03%, 86.37%, and 73.63% obtained using typical
transfer learning. The proposed method can effectively resolve the data scarcity by model transfer from sufficient datasets
in low-cost materials to rare datasets in high-cost materials. Moreover, it outperforms typical transfer learning because
material properties are learned as manufacturing-knowledge features, accounting for melting and hardening characteristics
of materials.

Keywords Wire arc additive manufacturing - Anomaly detection - Transfer learning - Convolutional neural network -
Quality monitoring - Material property

1 Introduction

Additive manufacturing (AM) is a process of joining mate-
rials to produce parts layer upon layer based on three-
dimensional (3D) model data, contrary to subtractive and
formative manufacturing [1]. AM has been categorized
into seven processes: binder jetting, material jetting, pow-
der bed fusion, sheet lamination, vat photopolymerization
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and widely-diffused process among non-metal AM owing to
its low equipment cost and fast build-up rates, as it extrudes
material in a semisolid state via a nozzle and solidifies the
extruded material [4]. Meanwhile, metal AM has exhib-
ited flexibility in the component geometries and designs of
metallic parts because it can fuse and solidify metal alloy
structures on a substrate owing to the supplement of high-
density energy. In the metal AM, DED can be divided into
powder bed, powder feed, and wire feed processes in terms
of feedstock materials or into laser beam, electron beam and
arc-based systems in terms of energy sources. The latter is
known as wire arc additive manufacturing (WAAM), which
is a process of melting a wire feedstock and depositing the
part layer upon layer by using an arc-based system as a
source of energy.

WAAM consists of a wire as the feeding stock, a welding
arc as the energy source, and a robot arm as the deposi-
tion operator. WAAM can be categorized into gas metal arc
welding, plasma arc welding and gas tungsten arc welding
(GTAW) based on the heat sources [5]. WAAM possesses
the benefits of a high deposition rate, near-net-shape fab-
rication, diversity in applicable wires, cost efficiency for
large parts owing to its low-cost equipment installation,
and less material waste owing to the low buy-to-fly ratio
[6]. Considering these benefits, WAAM has been applied
in the automotive, aerospace, and shipbuilding industries
[7]. These benefits are similar to those of ME as mentioned
above. However, their differences occur in terms of feedstock
materials because WAAM treats metallic parts although ME
mostly deals with non-metallic parts, e.g., acrylonitrile buta-
diene styrene and polylactic acid.

Known defects in WAAM include balling, porosity, defor-
mation, oxidation, delamination, cracking, high residual
stress, and low surface finish [8]. These defects result in low
precision, poor surface quality, and deterioration of mechan-
ical properties [9]. The layer-by-layer stacking mechanism
causes poor dimensional accuracy and surface finish and
thus leads to make a volumetric error between the designed
and fabricated parts, which has limited widespread applica-
tions of additive manufacturing [10]. Moreover, WAAM can
cause defects and undesirable features, e.g., heterogeneous
microstructures, owing to non-equilibrium thermal cycles
and induce process instability, i.e., balling formation and
spatter, adversely affecting surface roughness and mechani-
cal properties. Hence, methods to achieve process stability
and high-quality parts are required in WAAM. These meth-
ods require a solid understanding of the underlying physics
together with formulation of mathematical and statistical
models. The WAAM community is actively seeking data-
driven solutions for monitoring and detecting defects based
on in-situ and real-time approaches [11]. Anomaly detection
can be used as a primary solution for detecting abnormali-
ties during the process. Anomaly detection uses sensor data
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to identify patterns that did not conform to a well-defined
notion of normal behavior [12]. Anomalies incur defects and
thus have to be automatically detected to assure the quality
of products and reduce the cost of post-process treatment
[13].

The sensor data are numerically analyzed and trans-
formed into mathematical models for anomaly detection.
For this, the design of experiments (DOE) can be used to
effectively determine the numerical relationship between the
input and output data with a small set of experiments [14].
However, the DOE is valid under restricted experimental
conditions and is not appropriate for real-time monitoring
and control. Recently, machine learning has gained increas-
ing attention as a data-driven approach for overcoming these
limitations. Machine learning derives mathematical models
for making decisions based on training data acquired from
experiments. Machine learning can generate machine-spe-
cific models for real-time monitoring and control in dynamic
environments [15]. Machine learning can be classified into
supervised, unsupervised, and reinforcement learning [16].
In supervised learning, human observations are used to
identify input and output variables based on expertise and
knowledge. Computers learn numerical causality between
these two variables using a training dataset, wherein every
input datum is labeled with a corresponding output value
[17]. On the one hand, unsupervised learning makes infer-
ences from unlabeled data by exploring hidden patterns or
grouping similar data clusters from a dataset [18]. On the
other hand, reinforcement learning is a semi-supervised
model that interacts with its environment and learns to act
optimally to gain the most significant reward [19].

Considering the advantages of machine learning, the
AM community has been characterizing the linkage among
process—structure—property—performance as the design rule
[9]. However, it is challenging to establish this relationship
because machine learning requires massive data to achieve
reliable results. For example, the materials and process
parameters significantly affect the corresponding micro-
structures and quality performance. Consequently, their
combinations incur an exponentially increasing number of
data samples. This effect is termed as the curse of dimen-
sionality [20]. While considering a high-performance mate-
rial (e.g., Inconel 625 or Ti-6A1-4V), which is expensive,
obtaining sufficient datasets becomes challenging. Moreo-
ver, data missing and scarcity occasionally occur owing to
the complexity of the process and dynamics of manufactur-
ing environments [21]. Defects should be minimized and
detected in-process to minimize post-process treatment and
reduce product disposal. Therefore, a cost-effective method
is required for real-time monitoring and control.

Transfer learning (TL) represents a key solution to this
problem. TL is a learning approach that aims to extract
knowledge from source domains or tasks to be used for
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a target domain or task [22]. In AM, TL can be used to
extract original features from raw image or numerical data
in a source material and then transfer and adjust the features
to create anomaly detection models applicable to the target
material. TL exhibits good accuracy especially when the
features learned from a source material possess high trans-
ferability, which signifies whether features are correctly
learned to obtain generic phenomena across domains. TL
can be cost-effective when source materials and source data
are inexpensive, the target material is expensive, and the
target data are insufficient or expensive. Although this TL
approach can facilitate the establishment of design rules,
it has not been comprehensively investigated, and related
knowledge is lacking.

This study proposes a TL-based material-adaptive anom-
aly detection method to use data inexpensively obtained
using a GTAW-based process. The proposed method gener-
ates anomaly detection models for classifying balling defects
as abnormal based on property-concatenated TL. The pro-
posed method uses TL to derive CNN-based anomaly detec-
tion models by transferring models derived from a source
material to a target material, where machine learning rarely
achieves good accuracy owing to data scarcity. In addi-
tion, the proposed method applies the property concatena-
tion to combine material properties as additional features
onto image features, contrary to typical TL where CNNs
use original image features extracted from source mate-
rial data. This property concatenation aims to reflect the
knowledge of WAAM, i.e., thermal properties of materials
affect melting and solidification mechanisms during depo-
sition, thereby improving accuracy. The proposed method
uses CNNs to apply image-based learning for time-series
classification by extracting the image features from voltage
image snapshots, which are converted and segregated from
a time-series profile of numerical voltage data. Experiments
are performed in a gas tungsten arc welding system to dem-
onstrate the feasibility and validity of the proposed method
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with three materials: low-carbon steel (LCS), stainless steel
316L (STS), and Inconel 625 (INC).

This study is organized as follows. Section 2 introduces
related works; Sect. 3 explains the experiments; Sect. 4 pro-
poses the method; Sect. 5 describes and discusses the valida-
tion of the proposed method; Sect. 6 concludes the study.

2 Related Works

2.1 Wire Arc Additive Manufacturing and Balling
Defect

WAAM uses DED as an energy source to fabricate 3D
metallic parts. The feedstock materials currently available
in the welding industry are titanium, aluminum, steel, nickel,
and inconel alloys. Figure 1 illustrates a schematic diagram
of GTAW and its WAAM system. GTAW helps create weld
beads on a base substrate using an arc generated from a
non-consumable tungsten electrode. The arc generates a
molten pool, solidifying the metallurgical bond between
the feedstock and base substrate (or previously deposited
layer). In GTAW, the primary process parameters are cur-
rent, travel speed (TS), and wire feed rate (WFR). The cur-
rent affects the intensity of the heat input, while the TS and
WER influence the dynamics of the bead formation. They
are determined by operators and are mutually independent
because their settings are separately applied to the control
of associated devices, including a power source, torch, and
wire feeder.

Figure 2 shows the balling phenomenon. Balling can be
specified as an irregular bead surface contour comprising
protrusions caused by the separation of spherical drop-
lets [23]. The filler metal starts melting at the wire tip and
forms a droplet at the center of the arc. Droplets are formed
sequentially, and molten pools are shaped on the base sub-
strate as the filler metal continues to move under the arc. The
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Fig. 1 Schematic diagram of gas tungsten arc welding (left) and wire arc additive manufacturing system (right)
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Fig.2 Formation of the balling
phenomenon (irregular bead
shape and spherical droplets)
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molten pool size and deposition area may decrease when the
heat input per unit length of the drop is less than a certain
threshold because of low current or high TS [24]. Molten
pools are small in size, and a separated and spherical bead
area is formed as they gradually move to the rear side. The
repetitive occurrence of this phenomenon leads to balling
defects.

Figure 3 shows one-dimensional (1D) data of current and
voltage and their corresponding bead shapes under the ball-
ing condition. The arc length is proportional to the voltage
under a constant current, wherein the arc length indicates
the distance between the electrode and bead. As shown in
Fig. 3a and c, when the bead is formed as balling closer to
the electrode, the arc length decreases, leading to a decrease

‘Molten pool

Separated bead area

# Molten pool

in voltage. In contrast, a long arc leads to a higher voltage
in the separated bead area between two humped beads, as
shown in Fig. 3b and d. Hence, voltage profiles are deci-
sive and should be analyzed to detect balling defects as they
reflect bead formation.

2.2 Anomaly Detection Using Machine Learning

Anomaly detection relies on sensor-data-driven algorithms
as they can empirically reflect melt pool behaviors, kinemat-
ics, and thermodynamics. Sensor data include heat trans-
fer tracking, surface optical or thermal imaging, melt pool
imaging, and melt pool dynamics, providing key information
concerning anomaly detection.
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Fig. 3 Balling beads and a voltage profile: short arcs in (a) and (¢) and long arcs in (b) and (d)
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Accordingly, the relevant literature highly depends on
machine learning, which can be further divided into real-
time and non-real-time approaches. Non-real-time anomaly
detection is used when an anomaly is detected in an ex-situ
procedure. Artificial neural networks (ANNSs) are commonly
used in numerical prediction using sensor data. In contrast,
convolutional neural networks (CNNs) are popular for two-
dimensional (2D) data, including melt pool images, infra-
red images, and computed tomography scans. The excellent
performance of CNNs was demonstrated as an image detec-
tor and classifier specific to anomaly detection problems in
industries [9]. A typical CNN structure comprises convolu-
tion, pooling, and fully connected layers. The convolution
layer includes a set of convolutional kernels for dividing an
image into small slices to extract feature motifs and convolv-
ing with the image using weights, i.e., by multiplying image
tensors with their corresponding slices. The pooling layer
reduces input dimensionality and provides spatial invariance
to the network. The fully connected layer considers inputs
from the preceding layers and derives the outputs of all the
layers [25]. CNNs can extract representative features without
prior knowledge and reduce the training time by decreasing
the weight dimension [26]. However, CNNs require a large
amount of training data and heavy computation as the net-
work becomes deeper [27].

Biranchi et al. (2015) suggested a machine learned
approach that predicted compressive strength using multi-
gene genetic programming and general regression neural
network in fused deposition modeling [28]. Scime and
Beuth (2018) developed a multi-scale CNN method for
detecting diverse defects from image patches in laser powder
bed fusion [17]. This method paved the way for in-process
defect rectification when a feedback control system was
implemented. Jin et al. (2019) derived a CNN encoder and
decoder for detecting outliers based on a learned distribu-
tion of normal behaviors [12]. Mojahed Yazdi et al. (2020)
proposed a deep-learning method for detecting porosity in
the internal layers of a cylindrical part [29]. They merged
a CNN with an ANN to extract features from image data to
generate statistical features. Lyu and Manoochehri (2021)
proposed a CNN model for extracting, analyzing, and clas-
sifying in-plane anomalies in fused filament fabrication
[30]. These studies derived anomaly detection algorithms
with over 90% accuracy; however, they could not reach to
real-time decision-making for in-situ quality monitoring and
control.

In recent times, real-time anomaly detection has become
a subject of interest in the AM community for two reasons.
First, real-time image acquisition has become more prac-
tical because low-cost and robust machine vision systems
have become more available. Second, real-time data analysis
has become more feasible owing to advances in computing
power. Yan et al. (2022) proposed a decomposition-based

method for real-time anomaly detection based on spatio-tem-
poral data in laser powder bed fusion [31]. This method ben-
efited from a layer-wise production paradigm for gathering
information on process quality and stability in real-time. Lee
et al. (2021) suggested a CNN-based method for detecting
anomalies in WAAM based on real-time monitoring using
high-dynamic-range (HDR) camera images [19]. Segura
et al. (2021) proposed an online framework for detecting
droplet anomalies from video images in inkjet printing [32].
Cho et al. (2022) implemented a MobileNet-based real-time
anomaly detection system [33]. In this regard, the applica-
tion of machine learning represents a promising solution for
real-time anomaly detection and provides a basis for real-
time quality control.

2.3 Anomaly Detection Using Transfer Learning

Typical machine learning requires massive training data to
achieve acceptable performance. However, collecting suf-
ficient data is significantly challenging as data acquisition
is costly. Nevertheless, learning-driven modeling is vital,
and TL is a means for overcoming this problem. The major
terms in TL are defined as follows:

e Task 7 denotes learning tasks, e.g., regression, predic-
tion, clustering, and classification. 7 comprises a label
space ) and predictive function f(-).

e Domain D denotes different feature spaces or marginal
probability distributions caused by disparate contexts in
which data are generated. D consists of a feature space
X and probability function P(X).

¢ Source denotes a task 7 or a knowledge supplier Dj.

e Target denotes a task of interest 7, or a preceding knowl-
edge consumer D;.

e Knowledge is a broad term that includes instances, fea-
tures, parameters, relations, and models and thus acts as
a transporter between the source and target.

Figure 4 presents the differences between machine learn-
ing, inductive TL and transductive TL. As shown in Fig. 4a,
machine learning learns data to derive each model for a task.
When 7 performs prediction, machine learning produces
a model, i.e., J = f(-), from training labeled data samples
that correlate inputs and outputs of predictions. When 7
performs another task, machine learning would produce
a different model specific to the task from data samples.
Figure 4b shows inductive TL, where a predictive model
is induced in D; using data in Dg and 7y when Ty # 77,
irrespective of the homogeneity between D, and D;. As con-
ditional probabilities P(Y|X) can be different across tasks,
a few labeled data in D; are required to adjust the trans-
fer of conditional probabilities or the discriminative func-
tion from 7 to 7; [34]. Figure 4c shows transductive TL,



International Journal of Precision Engineering and Manufacturing

Data

o o Learning i
o O | )| Model
o O
<><><> Learning
Different
(ORGP ‘ Model ™ tasks
&

Learning

Model

—

(a) Machine learning

Source tasks

© o
O
@) .
o O Learning
‘ Knowledge from

(e.g., clustering) source tasks

&

S0

O Knowledge
& Transfer

(e.g., classification),

Learning
‘ Model for
target task

(e.g., prediction)

Target task

(b) Inductive transfer learning

Source domain

O o
@ © .
o O Learning
‘ Knowledge from

e.g., Material A .
(g ial A) source domains

O <><>
Knowledge
NAVARS Transfer
o (Domain

(e.g., Material B) adaptation)

Learning
‘ Model for
target domain

(e.g., Material C)
Target domain

(c) Transductive transfer learning

Fig.4 Machine learning and transfer learning

@ Springer KE;E

where a predictive model is transduced in D when 7 = 7;
however, D, # D;,. Transductive TL includes two cases:
(1) the feature spaces between D and D, are different,
i.e., Xy # Xy, and (2) the feature spaces are the same, i.e.,
Xs = Xp; however, the marginal distributions of the input
data are different, i.e., P(XS) * P(XT) [22]. The latter case
is identified as domain adaptation, where a difference in the
marginal probability distributions existed between the source
and target data; thus, the knowledge of the source domains
needs to be adapted to the target domain.

TL has been applied to manufacturing to create predic-
tive models for fault diagnostics and anomaly detection [35].
Oquab et al. (2014) suggested a network for training labeled
source data and transferring CNN internal layers to a target
learner [36]. Shao et al. (2018) employed a deep TL method
to diagnose motors, gearboxes, and shaft bearings [37]. Guo
et al. (2018) suggested a deep convolutional transfer network
for the fault diagnosis of bearings in different machines [38].
Sun et al. (2018) used a sparse autoencoder and deep TL
technique to estimate the residual life of a cutting tool [39].
Ferguson et al. (2018) proposed a mask region-based CNN
to identify casting defects from X-ray images and perform
defect detection and segmentation [40]. Imoto et al. (2018)
used a CNN to automate defect classification and the TL
network to reduce the labeled data for classifying defects in
semiconductor manufacturing [41]. Pan et al. (2019) applied
TL to the fault diagnoses of high-voltage circuit breakers
[42]. Zellinger et al. (2020) presented a multisource TL
method for predicting errors using time-series data for tool
settings incorporating domain knowledge [43]. Wang and
Gao (2020) proposed a deep learning-based TL model for
diagnosing faults in rolling bearings based on vibration
analysis [44]. Gong et al. (2020) studied the same concept
for detecting defects in aeronautic composite materials using
the images of non-destructive X-ray tests [45]. Michau and
Fink (2021) proposed an unsupervised TL framework to
ensure the alignment of unit distributions for enforcing the
conservation of the inherent variability of datasets [46]. Liu
et al. (2021) suggested a deep TL approach to extract low-
dimensional features for process recognition in milling [47].
Kim et al. (2022) proposed a multisource TL. method for
creating predictive models of machining power [48]. Marei
et al. (2021) applied a TL-enabled CNN approach to esti-
mate the health of cutting tools [49]. Liu et al. (2021) sug-
gested a knowledge reuse strategy for training CNN models
to improve defect inspection accuracy for injection molding
[50].

Although TL is rarely used for anomaly detection in AM,
its application is increasing [51]. Ho et al. (2021) proposed a
TL-based method for predicting porosity in real-time using
the thermal images of a melt pool [52]. Scime et al. (2020)
presented CNN and TL-based models for the pixel-wise
semantic segmentation of layer-wise powder-bed image data
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[13]. Zhu et al. (2023) developed a TL-based method with
applying a parameteric and self-supervised object detection
model to detect surface morphology in DED [53].

The significance of the present work originates from the
need to generate and apply alternative but desirable anomaly
detection models in materials where data are insufficient.
When anomaly detection models are required for high-cost
materials, collecting sufficient data is more challenging. TL
is an efficient solution because it adopts a well-trained net-
work even using insufficient data and employs the network
across multiple domains. In other words, a low-cost mate-
rial’s (e.g., steel) model can be used to create a high-cost
material’s (e.g., Ti-6Al-4V) model for anomaly detection.
TL enables the network to be trained with a dataset collected
from a low-cost material, i.e., source material, the features
of which are extracted and stored in the hidden layers inside

the network. These features are adjusted with a high-cost
material, i.e., the target material, particularly when the two
materials are not distinct in physical and thermal aspects.

3 Experiments
3.1 Experimental Setup

The experiments were conducted using a GTAW-based
WAAM system, as shown in Fig. 5. Table 1 lists the experi-
mental setup details. The robot arm was moved to the coor-
dinates designated by the controller. As the tungsten inert
gas (TIG) torch was attached to the hand of the robot arm
and supplied with energy from a source, it deposited a feed-
ing material provided by the wire feeder to generate weld

Wire feeder

T ..
TG power source

Shielding gas ™|

Fig.5 Experimental environment, including wire feeder, shielding gas, TIG power source, TIG torch, robot, and HDR camera

Table 1 Experimental setup details

System Module Name Description
Gas tungsten arc welding (GTAW) Robot arm Fanuc ArcMate 120iC A six-axis movement for the TIG torch
Controller Fanuc R-30iA Controls the robot arm
Torch TIG Operate arc welding
70% Argon+30% Helium shielding gas
5 mm arc length
Substrate LCS 30 cmx 30 cm X 1.2 cm (size)
Wire feeder Generic wire feeder Feed a wire material
Power source Miller Dynasty400 Supply energy source

Numerical data acquisition Current and voltage sensor

Current and voltage data interface

Image data acquisition Vision sensor

Camera data interface

Miller Insight ArcAgent Auto
Miller Insight Centerpoint

Measure arc current and arc voltage

Monitor and acquire arc current and
voltage data

Weldvis WL2-H7-M35 HDR camera for monitoring weld-
ing arc, molten pool, and weld bead
images

Elgato Game Capture HD Capture and record image data
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beads on the substrate. The TS, WFR, and current were
process parameters determined for the controller input,
wire feeder, and energy source, respectively. The current
and voltage sensors measured the numerical values of arc
characteristics in real-time. The data interface monitored and
acquired the arc current and voltage data generated by the
sensor. An HDR camera was attached to the torch to capture
weld pool and bead images along with the movement of
the torch. This camera was optimized for arc welding with
a dynamic range of 140 dB to capture high-quality video
frames. Standard camera systems are inapplicable owing to
their low dynamic ranges and lightning interferences in arc
welding. The camera data interface recorded the images and
converted them into.jpg file formats.

The experiments were designed based on changes in two
process parameters: a WFR of 70-300 cm per minute (cpm)
and TS of 10-100 cpm with increments of 25 and 10, respec-
tively. The current was maintained at 200 amperes (A). Each
pair of parameters generated 100 unique trials per material,
as shown in Table 2. Accordingly, 300 trials were executed
for three materials: LCS, STS, and INC. Figure 6 shows the
samples of bead depositions on a single layer.

3.2 Data Acquisition

Three types of data were acquired: (1) bead shapes, (2)
numerical voltage data on timestamps, and (3) camera image
data on single-layer deposition. The voltage data were meas-
ured at a time rate of 1 kHz and stored as.txt files. They
formed a profile, as illustrated in Fig. 3. The camera image
data were captured at 50 frames per second (fps) and stored
as.mp4 files. Each file was partitioned into individual.jpg
images at 50 fps. The camera frame image comprised three
regions of interest: the metal transfer, arc shape, and weld
pool, as shown in Fig. 7. To avoid confusion, the camera
image data and voltage image data were defined as follows:

e Camera image data: Melt pool image files (.jpg) obtained
from each video file as captured by the HDR camera
(Fig. 7).

e Voltage image data: Image files (.jpg) converted and cap-
tured based on the time-series numerical voltage data
(.txt) as the input data of the models (Fig. 12).

4 Method

This study aims to (1) develop a TL-based method for deriv-
ing anomaly detection models learned from a single source
material and (2) apply the models to detect anomalies in a
target material. In this method, the material properties are
concatenated between the source and target materials as
manufacturing knowledge features in the model to compen-
sate for discrepancies in the melting mechanism. Figure 8
illustrates the overall prodecure of the proposed method.
Section 3.1 explains the data preprocessing procedures, and
Sect. 3.2 introduces the modeling method.

4.1 Data Preprocessing

Data preprocessing transforms raw data into high-quality
training and testing data. Feature extraction and pattern dis-
covery during learning become complicated when training
data include sparse, imprecise, qualitative, faulty, or missing
samples [54]. Hence, data preprocessing is essential because
model performance mainly relies on the quality and quan-
tity of the training data. Figure 9 shows the data preproc-
essing procedure, and the subsections hereafter explain the
technical details of each step. The input data comprises the
deposited bead shapes, numerical voltage data, and camera
image data.

Table 2 Process parameters and
bead numbers considered for

Wire feed rate

Travel speed (cpm)

the experiments (cpm) 10 20 30 40 50 60 70 80 90 100
75 1 1 21 31 4 51 61 71 81 91
100 2 2 2 32 42 2 & 17 8 92
125 3 3 23 3 43 53 6 73 08 93
150 4 14 24 34 4 54 64 74 84 94
175 5 15 25 35 45 55 65 75 85 95
200 6 16 26 36 46 56 66 716 86 9
225 7 7 27 3 41 s 61 11 87 97
250 8 18 28 38 48 58 68 78 88 98
275 9 19 29 39 49 59 6 79 89 99
300 0 20 30 40 S0 60 70 8 9 100
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Fig.6 Bead depositions for experiments
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Fig.7 Camera image data, including metal transfer, arc shape, and
weld pool
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4.1.1 Bead Classification and Balancing

Bead classification is necessary to distinguish regular data
patterns. Beads classifiable as normal and abnormal are con-
sidered, while unclassifiable beads due to their shape change
or data irregularity are excluded.

First, each bead was classified and labeled as normal,
abnormal, or unclassified based on the judgments of two
experts with unaided eyes. Figure 10 shows the voltage
data profiles of the corresponding bead shapes. As shown
in Fig. 10a and b, the two beads are classified as normal
because they are well-formed with stable and smooth data
patterns. As shown in Fig. 10c and d, the beads are clas-
sified as abnormal because they contain balling defects
along the trajectories. As shown in Fig. 10e and f, the beads
are classified as unclassified owing to their transition from
normal to abnormal states and vice versa. Theoretically, a
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Fig. 8 Procedure of material-concatenated transfer learning

bead trajectory should maintain consistency in shape with-
out a state transition because the process parameters do not

change during deposition. However, state transitions can
d Bea_:’_ occur in practice owing to external and uncontrolled factors,
eposition <Input datasets> including deposition instabilities, feeding material irregu-
.--===% ____: * Deposited bead shapes larities, and unknown reasons. Unintentional state transitions
* Numerical voltage data K . . . .
Be'a g + Video frame data can induce vagueness in pattern separation, thus making it
classification & desllrable to e>.<clu.de beads containing such state transitions,
balancing . ‘Normal’ beads as illustrated in Fig. lO.e and f: .
e 5 * ‘Abnormal’ beads Second, beads associated with stable and monotonic volt-
+ * ‘Unclassified’ beads . age profiles were considered among all the beads classified
* Beads chosen by undersampling o
Camera image data as normal. The Voltage'pro.ﬁle in Fig. 10a appears to be more
labeling stable than that shown in Fig. 10b, although both are normal,
<Referential dataset> implying that even the same normal beads can possess dif-
--====7 ____>* ‘Normal’ camera images i X .
! R « ‘Abnormal’ camera images ferent voltage patterns because the melting mechanism influ-
. * ‘Unclassified’ camera images ences voltage values, as explained in Sect. 2.1. Even in the
Voltage image data .
conversion same normal state, such unstable and fluctuating patterns can
<Primary dataset> decrease accuracy. For instance, the bead shown in Fig. 10a
A > :’°“agelitm39§5t°°""e’ted was considered in the classification process, whereas the
A 4 rom voltage data . .
Volt ) dat 9 bead shown in Fig. 10b was excluded.
oltage image data It is essential to resolve the class imbalance problem
labeling + Voltage images synchronized . o .
— with camera image data while classifying beads. The class imbalance problem
ST > « ‘Normal’ voltage images is referred as a dataset with a skewed ratio of majority to
- * Abnormal’ voltage images minority samples, as it frequently occurred in a data-scarce
Dataset » ‘Unclassified’ voltage images : X .
i and normal-biased environment [27]. This problem should
reparation . . .
prep be resolved because it can cause overfitting, resulting in a
<Output datasets> . . .. . C L.
l _______ - Training dataset small learning error during training but a high prediction
+ Testing dataset error during testing.
The class imbalance problem was also observed in
Fig.9 Data preprocessing procedure this study because more normal data were generated than
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Fig. 10 Patterns of voltage data profiles

abnormal data. It is unable to learn data patterns correctly
for the abnormal state if the training data are extremely
biased toward the normal state. Accordingly, balancing
the numbers of normal and abnormal samples is a solu-
tion to this problem. Oversampling and undersampling can
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be used to address this issue. The former increases the
size of the minority class to balance the majority class,
whereas the latter reduces the size of the majority class to
balance the minority class [55]. In this study, undersam-
pling was used to resolve the class imbalance problem.
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In undersampling, the amount of normal data is reduced
by excluding normal beads to achieve a desirable balance
with the amount of abnormal data. This procedure was
performed by considering the balance of the total time
consumed to fabricate the beads. Table 3 lists the bead
numbers selected and classified as normal or abnormal.
Each value in brackets represents the fabrication time (s).
The type indicates whether a bead is used for a training or
testing dataset.

4.1.2 Camera Image Data Labeling

Camera image data labeling was performed by tagging
each camera image frame with a classifier consisting of
normal, abnormal, or unclassified. This labeling was
intended to assign the same classifier to voltage image
data with the corresponding camera image data along with
timestamps. The two experts also analyzed the individ-
ual frames with unaided eyes and manually labeled each
classifier.

This labeling was performed easily because the bead
classification was already completed, as described in
Sect. 4.1.1. The camera image data belonging to a normal
or abnormal bead were labeled as normal or abnormal,
respectively. However, some camera image data were
labeled as unclassified when they belonged to the starting
and ending spots on the bead trajectory because TS was
zero at both ends, where the torch did not move for a short
time. Figure 11 shows camera image data labeling at bead
No. 25 in INC. The camera image data at spots (a) and
(c) are labeled unclassified. Meanwhile, the camera image
data for the ordinary period (b) are labeled normal because
the bead was classified as normal. If a bead was classified

Table 3 Selected beads and their corresponding fabrication times

as abnormal, the camera image data would be abnormal
during the ordinary period.

4.1.3 Voltage Image Data Conversion

The time-series voltage data were converted into volt-
age image data in the time domain to apply image-based
learning for time-series classification. The time-series data
are originally analyzed using three approaches: (1) The
model-based method generated an underlying model using
Markov and statistical models, (2) The distance-based
method measured the similarity between two sets of time
series using a distance function, and (3) The feature-based
method used Fourier and discrete wavelet transforms to
transform the time series into a set of representing features
[56]. However, these approaches have drawbacks in prac-
tice because (1) the time-series data must satisfy the sta-
tionary assumption, (2) the length of the two sets of time
series must be equal to high sensitivity, and (3) feature
selection cannot be easily performed without discretization
owing to information loss. These drawbacks can adversely
impact data quality. In this context, applying image-based
learning to time-series data can become viable for time-
series classification [57]. This enables to extract features
automatically without prior knowledge and handle noisy
data properly by discarding them at each subsequent layer
[58].

For image conversion, the size and frequency of each
voltage image were required to be determined to segregate
the voltage data profile into a series of image snapshots.
The bandwidth was used for the image size, and the interval
was employed for the image frequency. These are defined
as follows:

Material Normal bead Abnormal bead Type
Bead no. (time (s)) Total time (s) Bead no. (time) Total time (s)
LCS 5(75.7), 13(42.3), 14(39.6), 32(24.3), 231.6 50(16.9), 68(16.8), 69(17.1), 79(12.1), 319.3 Training
33(25.2), 34(24.5) 80(15.3), 81(20.0), 86(20.2), 88(19.6),
89(20.6), 90(21.6), 91(19.7), 93(18.4),
95(20.3), 96(20.0), 97(19.4), 98(21.2),
99(20.1)
22(30.2) 30.2 78(14.0), 87(20.8) 34.8 Testing
STS 9(78.4), 17(37.4), 28(27.8), 30(27.9), 213.2 61(14.3), 81(22.0), 82(21.7), 88(22.0), 225.6 Training
36(22.4), 48(19.3) 89(22.4), 90(22.6), 92(20.9), 93(20.9),
97(20.0), 98(19.1), 100(19.7)
27(26.5) 26.5 51(16.2), 91(16.5) 32.7 Testing
INC 6(79.8), 16(42.3), 24(30.7), 33(24.5), 215.2 30(30.6), 41(21.1), 59(17.9), 61(14.8), 297.7 Training
44(20.5), 56(17.4) 71(14.5), 76(21.9), 79(21.7), 81(20.4),
82(19.2), 83(19.9), 86(20.9), 88(20.7),
91(18.7), 99(17.2), 100(18.2)
25(30.2) 30.2 72(18.9), 87(19.3) 38.2 Testing
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e Bandwidth is the duration from the earliest to the latest
time point on an image snapshot. Bandwidth determines
the number of data points in the snapshot of a partial volt-
age profile.

e Interval is the time gap between the current and next image
snapshots. The interval determines the number of snap-
shots to be converted from the voltage profile.

Equations (1) and (2) express the k-th set of time points
(M,,; ;) and their corresponding voltage values (V, ;). Fig-
ure 12 shows the concepts of bandwidths and intervals,
where w=3, i=1, and k=1, 2, or 3. V5, includes a set of
voltage values, i.e., 3000, from the first (¢=1/1000 s) to the
last (r=3000/1000 s) time points. Vj; , includes another set
of voltage values (3000) from the first (t=1001/1000) to the
last (t=4000/1000) time points. In other words, each snapshot
possesses a 3 s bandwidth; accordingly, each snapshot includes
3000 voltage values because the measurement cycle is set to
1 kHz. The snapshots were periodically generated at intervals
of 1 s, along with the voltage profile. Thus, the voltage image
data were generated based on the designated bandwidth and
intervals.

M, = {x+jitk—Dlx €N, 1 <x < jw}, 1))

w,

V311 = {v1,v2, ., Y3000}

17.5 V312 = {V1001, Y1002: -+ Y4000}

V315 = {V2001, V2002 -+ Y5000}

/ .
ol

15

Voltage (V)
3

14.5

~N Time (s)

~
Intervali = 1

<

Bandwidth w =3

Fig. 12 Bandwidth and interval
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where w denotes the bandwidth, i denotes the interval, x
denotes the time point, j denotes the measurement cycle
(j=1,000 as a constant), and k denotes the kth snapshot.

Viik = {vulme M, ;. }. )

where v,, denotes the voltage value observed at time () =m/j.

The bandwidth and interval need to be rationally deter-
mined because they directly affect accuracy and training
time during model training. If the interval is extremely short,
the snapshots can substantially overlap at the current and
following time points, thereby sharing a large number of
the same v,,. Data overlapping may disturb feature extrac-
tion during training owing to feature similarity. In contrast,
features may be sparsely extracted if the interval is extremely
long, thus deteriorating the accuracy. Similarly, a large
bandwidth can positively affect the accuracy by providing
sufficient data samples; however, it may adversely impact
the accuracy owing to feature similarity caused by data
overlapping. Thus, the relationship between the bandwidth
and interval was analyzed using accuracy and training time
because they had to be decided heuristically. In this study,
the bandwidth was determined as 2 (w=2), and the interval
was determined as 0.1 (i=0.1), because these two values
exhibit the best accuracy in the sensitivity analysis.

Then, the height of each snapshot was adjusted to main-
tain the same image size, as the same-size images need to be
used to correctly extract representative features. The image
sizes varied depending on the minimum and maximum val-
ues of v,, because they ranged from O to 21 V. Therefore,
224 x 224 pixels were preserved in every image owing to
automatic adjustment, and the image height was adaptively
Set USING V,y 00 (= Viay—Vimin)- Figure 13 shows the mechanism
of automatic adjustment. The first and second snapshots
exhibited larger v,,,,, than the third snapshot because the
two formers demonstrated higher voltage values than those
in the latter. If v,,,00 ¢t = Vyunge k1> the image features cannot
be well extracted during the period with slight fluctuations
because the large value of v, ., dominates the determina-
tion of the horizontal pixel size. As shown in the first two

images, the image heights are automatically adjusted with a
slight difference, whereas v,,,., , Was adjusted considering
a large extension to focus on the slightly fluctuating period
in the third image.

4.1.4 Voltage Image Data Labeling

The individual voltage image data were labeled normal,
abnormal, and unclassified. All the voltage image data were
synchronized with their camera image data with regard to
the timestamps. This time synchronization enabled easy
labeling using the camera image data labels as a reference.
As shown in Fig. 14, the images in the ordinary period (b)
were labeled normal when their corresponding frames were
labeled normal. The voltage image data were labeled unclas-
sified when they belonged to the starting (a) and ending (c)
spots. The unclassified voltage image data were excluded
from the training and testing datasets. If camera image data
were labeled abnormal, their corresponding voltage image
data would be labeled abnormal. Thus, voltage image data
classified as either normal or abnormal were obtained.

4.1.5 Dataset Preparation

The training and testing datasets were prepared using voltage
image data labeled as normal or abnormal. Beads were ran-
domly selected to construct testing datasets for each mate-
rial. The classifiers labeled in the testing voltage image data
were used only for validation purposes. Table 4 lists the data
samples for the training and testing datasets for the three
materials. A common 70:30 ratio was used to segregate each
training dataset into a training or validation dataset. The
training datasets were used for model training, whereas the
validation datasets were used for measuring learning errors,
which indicated the accuracy of the models during training.
The testing datasets were used to measure prediction errors,
which represented the accuracy of the learned models in
predicting from future data.

Automatic adjustment

Vv,

range,k-2

Vv,

range,k-1

range,k

Fig. 13 Automatic adjustment (at bandwidth=2 s and interval =0.1 s)
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Table 4 Numbers of data

: Material ~ Training Testing
samples
Training Validation
Normal Abnormal Total Normal Abnormal Total Normal Abnormal Total
LCS 1224 1385 2609 566 553 1119 2115 1420 3535
STS 1093 844 1937 475 356 831 1328 1332 2660
INC 1128 1379 2507 522 553 1075 1476 1644 3120
Total 3445 3608 7053 1563 1462 3025 4919 4396 9315

4.2 Modeling

A TL-based method was developed to derive anomaly
detection models trained in the source material and apply
them to the target material. Figure 15 illustrates the model
architecture structurally separated into the source and tar-
get domains. In this study, CNNs are used as image feature
extractors in the source and target domains. It is because
CNNs can identify and extract 2D image features accu-
rately from the voltage image data that were formed into

line-typed and waveformed signals. Additionally, CNNs
allow to add different-types of features on their original
image features and thus provide flexibility to concatenate
material properties. Furthermore, our prior studies, includ-
ing Cho et al. (2022) [33] and Kim et al. (2023) [59], dem-
onstrated the performance advantage of CNNs in anomaly
detection problems, compared with You Only Look Once
(YOLO), which is also known as a good object identifier
and classifier for real-time applications.
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Fig. 15 Model architecture

The proposed method belongs to transductive TL because
the feature spaces are the same; however, the marginal distri-
butions of the input data are different. Typical transductive
TL would perform domain adaptation by transferring the
extracted image features to the target material domain. In
contrast, the proposed method performed domain adaptation
by transferring the extracted image features and concatenat-
ing material properties (particularly thermal properties) as
manufacturing knowledge features to accommodate melt-
ing characteristics. The features extracted from the voltage
image data and the features concatenated from thermal prop-
erties were transferred to the target material domain. In the
target domain, feature extraction and property concatenation
were performed using the data involved in the target material
to learn and extract image features and concatenate thermal
properties, similar to those in the source domain. Anomaly
detection models were developed, and classification was
performed to classify each image as normal or abnormal
for use in the target material. In particular, fine-tuning was
designed to calibrate weights suitable for the target material
to enhance accuracy.

4.2.1 Feature Extraction

Features were extracted from the voltage image data using
CNN techniques. A good feature extractor must be selected
among various CNN techniques to precisely extract repre-
sentative image features. A preliminary investigation was
performed to select the best feature extractor among four
candidates: DenseNet169, InceptionV3, ResNet101, and
Xception. These extractors were implemented using the
Keras TensorFlow library in Python. TensorFlow is an

@ Springer KE;E

open-source framework for machine learning and the Keras
library is an open-source machine learning library provid-
ing neural network application programming interfaces. The
hyperparameters were Adam as an optimizer, categorical
cross-entropy as a loss function, 30 epochs, and a batch size
of 16.

The best feature extractor was selected by evaluating
accuracies of the models derived by TL without material
property concatenation (typical TL), and TL with material
property concatenation (the proposed method). The training
and testing datasets listed in Table 4 were identically used
for this feature extractor selection. Models were generated
for LCS (source material) using its full set of training (2609)
and validation (1119) data samples. These models were
applied for the typical or proposed TL and then evaluated
for INC (target material) using its full set of testing (3120)
data samples. Figure 16 shows the accuracy (%) of the two
models. The DenseNet169 model was selected as the feature
extractor because it exhibits the best accuracy (84.28% and
89.38%) for both cases.

Figure 17 illustrates the extracted image feature maps
and layers. DenseNet automatically extracts representative
features by passing image data through convolutional lay-
ers [60]. As it connects all layers in a feed-forward man-
ner, the feature maps of the preceding layers act as inputs
to the subsequent layer. The dense block concatenates the
features of the preceding layers instead of adding them,
thus differentiating between the information added to the
network and the information preserved [25]. The transi-
tion layer consists of a batch normalization layer, rectified
linear units (ReLU), i.e.,a 1 X 1 convolutional layer, and a
2 x 2 average pooling layer, and performs down-sampling
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Fig. 17 Feature maps in DenseNet169

to change the sizes of feature maps [61]. The convolutional
layer comprises convolutional kernels, where each neuron
acts as a kernel. These kernels divide an image into small
slices to extract feature motifs, known as receptive fields,
and convolve with the image using weights by multiplying
the image tensors with the elements of the receptive field
[25]. The receptive field captures more global cues than
local cues as it increases along the feature hierarchy [62].
As shown in Fig. 17, the feature maps become pixel-wise,
abstract, and complicated while they are evolutionarily
trained to capture global cues throughout layers.

4.2.2 Material Property Concatenation

Typical TL is limited to explore the distributional difference
between the source and target domains, particularly when
image features in two different domains exhibit slight devia-
tions within consistent distributions, as shown in Fig. 18a.
This phenomenon is called a distributional equality prob-
lem. This problem frequently occurs in machine learning
and needs to be resolved because it could deteriorate the
model accuracy. In this study, this problem was addressed
using material property features. Figure 18b shows that
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Table 5 Thermal properties of feeding materials

Property Unit LCS STS INC
Thermal conductivity W/m K 42.5 16.3 9.8
Melting point °C 1430 1370 1290
Specific heat capacity J/g °C 0.47 0.5 0.41

the material property features were concatenated with the
image features. This material concatenation aims to make
a small deviation to a large deviation in the image feature
distributions between the source and target domains. The
domain adaptation originates from expert knowledge, which
is related to the influence of material properties on melting
and hardening characteristics in WAAM. This knowledge
in that certain materials tends to be vulnerable to specific
defects owing to their distinctive thermal deformations [8].

(b) Property-concatenated transfer learning

Each material exhibits unique physical, chemical, ther-
mal, mechanical, and electrical properties. Among them,
thermal properties affect melting and hardening charac-
teristics in WAAM. Hence, thermal conductivity, melting
point, and specific heat capacity were identified as material
property features in this study. This identification comes
from that they are primary thermal properties. Table 5 lists
the thermal property values of LCS, STS, and INC; these
values were obtained from a material database provided
by MatWeb [63]. As these values possessed different units
and ranges, normalization was performed to scale and
rearrange the original property values into specific values.
Min-max (0-1) normalization was applied while concat-
enating the material property features into modeling.
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4.2.3 Classification

Classification involved labeling each image as normal or
abnormal in the target domain. As shown in Fig. 19, the
fully connected layer globally analyzes the outputs of all
the preceding layers subordinated in the modeling stage.
This layer classifies each image by constructing a nonlin-
ear combination of the selected features and uses com-
mon classifiers in machine learning, e.g., support vector
machines, softmax, and ANNSs. Classification necessitates
fine-tuning, which represents the training of new data based
on a set of pre-trained weights [64]. Fine-tuning is essen-
tial for performance improvement in TL because it applies
pre-trained models acquired from the source domain to the
target domain.

TL uses a CNN-based model pre-trained on image data.
The proposed method was built upon a CNN model pre-
trained from voltage image data and property concatenation.
This method considers all image and material-property fea-
tures as a whole set of features at the front layers in a CNN
model. However, it trains only in the last layer, using the
data from the target domain. This method enables feature
extraction from a large amount of voltage image data in the
source domain; however, fine-tuning uses a small amount of
voltage image data in the target domain. Thus, classification
facilitates labeling an image using a normal or abnormal
classifier.

In Fig. 19, fine-tuning preserved the weights of the pre-
trained CNN model in some layers and tuned them in oth-
ers. The front layers are frozen to preserve their weights,
as features are obtained from these layers. In contrast, the
last layer becomes an unfrozen layer to revise the weights
to accommodate features specific to the target data [65].
The preceding layer constitutes 1664 output nodes from the
global average pooling (GAP) for image feature extraction
and three output nodes from material property concatena-
tion. The unfrozen layer uses 1667 nodes connected to the
frozen layer as input. This layer uses the softmax activation
function and comprises two output nodes for classifying a
data sample as normal or abnormal. This binary classifica-
tion is decided based on a higher probability of normal or
abnormal occurrence, wherein the sum of both probabilities
equals 1.

5 Validation and Discussion

5.1 Validation

The proposed method was validated in terms of accuracy
using a testing dataset. The computing environment included

an Intel Core 17-10875H CPU, NVIDIA GeForce RTX
2070 GPU, 32 GB RAM, and Windows 10 64-bit operating

system. The learned models comprised four models: refer-
ence learning model (RL), standard learning model (SL),
transfer learning model (TL), and material-concatenated and
transfer learning model (mc-TL).

e RL is a machine learning model trained and tested on the
source material. This model refers to the effective extrac-
tion of image features from the source domain.

e SL is a machine learning model trained and tested on the
target material. This model can be used as a reference to
compare the performances of machine learning and TL.

e TL is a transfer learning model, where a machine learn-
ing model is trained on the source material and trans-
ferred to the target material without material property
concatenation. This model represents typical TL.

e mc-TL is a transfer learning model, where a machine
learning model is trained on the source material and
transferred to the target material with material property
concatenation. This model signifies the proposed method.

This study derived the four models (RL, SL, TL, and
mc-TL) separately in three cases: A. LCS (source material)
to STS (target material); B. LCS to INC; C. STS to INC.
In each case, the RL and SL were derived from the source
and target materials, respectively. In addition, the TL and
mc-TL were derived to transfer models from the source
material to the target material. For example, in case A, the
RL was derived from LCS, and the SL was derived from
STS, whereas the TL and mc-TL were transferred from LCS
to STS. The accuracy was measured using Eq. (3).

Accuracy (%) = 100 X True Positive + True Negative

the number of total data samples

3
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Fig.20 Accuracy in LCS to STS
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Fig.21 Accuracy in LCS to INC

A. LCS to STS: Fig. 20 presents the accuracy with respect
to the increase in the number of training data samples.
RL shows an accuracy of 95.24%, signifying that feature
extraction is correctly performed in the source material
and image features can be transferred to the target mate-
rial. In SL, the accuracy scores under 66.48% for up to
15% of the whole set of training data samples but over
88.46% starting from 20% of the samples. Both accura-
cies increase in TL and mc-TL as the number of data
samples increases. TL shows under 60.02% up to 5% of
the samples and then sustains 77.22-81.28% when>5%
of the samples were used. In mc-TL, the accuracy scores
61.53% and 63.74% when 1% and 3% of the samples
were used, respectively. mc-TL achieved accuracies of
81.60-84.47% when > 5% of the samples were used.
Moreover, TL and mc-TL achieved good performance
with 5% of the samples. In particular, mc-TL is more
accurate than TL for all the cases. The two models out-
perform SL for small portions of data samples by up to
15%; however, SL has demonstrated higher accuracy for
20% or more of the samples used.

B. LCS to INC: Fig. 21 shows the accuracy results. The
results show a similar pattern to those of Case A. In SL,
the accuracy remains under 68.29% until 15% of the
samples are used, but exceeds 84.95% when >20% of
the samples are used. In TL, the accuracy is 72.14% for
1% of the samples and increases to 86.37% for 3% of the
samples. However, it remains at 83.60-85.24% starting
from 5% of the samples, regardless of further increases
in the number of data samples. In mc-TL, the accuracy
is 81.92% for 1% of the samples, but mc-TL exhibits
stable accuracies of 86.74-89.47% starting from 3% of
the samples. Similar to Case A, mc-TL achieves a higher
accuracy than TL in all the cases.
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70
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Fig.22 Accuracy in STS to INC

C. STS to INC: Fig. 22 shows the accuracy results. RL
achieves an accuracy of 95.53%, and the image features
are applicable for transfer from the source to the target
domain. In SL, the accuracy tends to increase, similar to
Cases A and B; however, it does not exceed 90%, con-
sidering the maximum number of data samples. In TL,
the accuracy starts increasing from 76.38% when 1%
of the samples are used; however, it remains at 73.03—
77.11% with all of the data samples. mc-TL achieves
76.99-78.94% when up to 10% of the samples are used.
mc-TL exceeds the accuracy of 81.33% when 15% of
the samples are used, whereas TL does not achieve over
80%. The accuracy of mc-TL outperforms that of TL and
exhibits a slightly increasing pattern with regard to an
increase in the number of data samples.

5.2 Discussion
5.2.1 Classification Evaluation

The proposed method was further compared validated using
additional metrics to investigate classification performances
in different viewpoints. Precision, recall, and F1-score were
used as the additional metrics. Equations (4), (5), and (6)
express the formula, respectively. Precision is a metric to
represent how many positive predictions are correctly made
over the total positive predictions, and recall is a metric to
indicate how many positive predictions are correctly made
over the total positive actual samples. F1-score is a metric
calculated by the harmonic mean of precision and recall to
weight the two metrics in a balanced way because precision
and recall are in a trade-off relationship.
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Table 6 Classification evaluation results

Case Model Material Portion over whole sam- Precision (%) Recall (%) F1-score Accuracy (%)
S — ples (number of samples)
Source Target
A.LCS to STS RL LCS LCS 100% (2609) 70.10 66.67 0.68 95.24
SL STS STS 1% (20) 48.71 100.00 0.65 46.57
3% (59) 48.71 100.00 0.65 46.57
5% (97) 51.89 100.00 0.68 46.27
10% (194) 52.73 74.39 0.61 56.86
15% (291) 49.29 100.00 0.65 66.48
20% (388) 58.71 100.00 0.75 88.46
30% (582) 61.66 100.00 0.78 90.06
TL LCS STS 1% (20) 41.07 58.00 0.48 56.71
3% (59) 51.10 62.35 0.56 60.02
5% (97) 71.78 83.64 0.77 81.28
10% (194) 58.98 68.32 0.53 77.22
15% (291) 67.40 87.02 0.75 77.93
20% (388) 68.12 87.30 0.76 78.04
30% (582) 68.89 85.94 0.76 78.03
mc-TL LCS STS 1% (20) 51.03 62.05 0.49 61.53
3% (59) 58.77 46.66 0.42 63.74
5% (97) 77.33 83.93 0.75 81.60
10% (194) 71.19 86.25 0.77 82.62
15% (291) 73.54 83.67 0.78 84.47
20% (388) 70.76 84.41 0.66 82.77
30% (582) 71.06 76.89 0.73 82.95
B. LCS to INC RL LCS LCS 100% (2609) 70.10 66.67 0.68 95.24
SL INC INC 1% (26) 56.25 100.00 0.62 56.25
3% (76) 44.28 100.00 0.62 56.25
5% (126) 44.28 100.00 0.62 56.25
10% (201) 56.25 100.00 0.72 58.25
15% (251) 61.17 68.05 0.61 68.29
20% (326) 86.14 97.20 0.91 84.95
30% (502) 88.79 97.87 0.93 90.96
TL LCS INC 1% (26) 78.55 83.37 0.85 72.14
3% (76) 79.04 85.82 0.82 86.37
5% (126) 82.39 92.82 0.87 85.18
10% (201) 81.92 99.27 0.90 84.28
15% (251) 80.22 100.00 0.89 85.24
20% (326) 81.70 100.00 0.90 83.60
30% (502) 82.73 100.00 0.91 84.80
mc-TL LCS INC 1% (26) 74.59 86.12 0.80 81.92
3% (76) 82.45 99.82 0.90 89.47
5% (126) 77.19 95.80 0.86 86.74
10% (201) 76.87 99.94 0.87 89.38
15% (251) 77.56 99.94 0.87 89.22
20% (326) 78.32 99.82 0.88 88.34
30% (502) 78.43 99.82 0.88 88.55
C. STS to INC RL STS STS 100% (1937) 95.65 93.08 0.96 95.53
SL INC INC 1% (26) 56.25 100.00 0.62 56.25
3% (76) 44.28 100.00 0.62 56.25
5% (126) 44.28 100.00 0.62 56.25
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Table 6 (continued)

Case Model Material Portion over whole sam- Precision (%) Recall (%) F1-score Accuracy (%)
ples (number of samples)
Source Target

10% (201) 56.25 100.00 0.72 66.12
15% (251) 63.25 68.05 0.62 71.16
20% (326) 76.34 83.09 0.91 82.62
30% (502) 79.87 91.59 0.83 88.81

TL STS INC 1% (26) 90.16 63.60 0.75 76.38
3% (76) 67.97 89.90 0.77 77.11
5% (126) 63.85 92.76 0.76 73.03
10% (201) 65.43 93.49 0.79 74.11
15% (251) 70.86 94.88 0.77 74.89
20% (326) 74.48 96.65 0.74 75.32
30% (502) 71.41 99.27 0.73 73.63

mc-TL STS INC 1% (26) 84.79 73.10 0.73 77.84
3% (76) 69.31 87.16 0.77 77.77
5% (126) 67.42 82.45 0.80 76.99
10% (201) 76.79 79.18 0.83 78.94
15% (251) 67.32 95.92 0.79 81.33
20% (326) 68.18 95.86 0.80 81.64
30% (502) 68.20 95.80 0.80 84.22

True Positive

Precision (%) = 100 x — — 4)
True Positive + False Positive
Recall (%) = 100 x True Positive (5)
True Positive + False Negative
Floscore = 2 x precision X recall ©

precision + recall

Table 6 lists the classification evaluation results in the
three cases (A. LCS to STS, B. LCS to INC, and C. STS
to INC). Both TL and mc-TL produce stable and desirable
precision values when < 15% of the samples are used, com-
pared with those of SL. However, they do not make precision
improvement after the data portion becomes over 20%. In
mc-TL, recall values are higher than accuracy values in gen-
eral. This result implies that mc-TL can detect and identify
true positive data samples nicely by reducing the probabil-
ity of misclassifying positive samples as negative ones. In
mc-TL, Fl-score records more than 0.7 values except 1%,
3%, and 20% of the samples in case A. Note that F1-score of
0.7 is generally regarded as acceptable although this is not
the absolute threshold.

5.2.2 Model Transferability

As shown in Figs. 20, 21 and 22, SL model exhibits an
s-curve pattern as the number of data samples increases.

@ Springer KE;E

This model appears to be superior compared with the TL
and mc-TL models and reaches up to around 90% accuracy
when the portion of data samples exceeds 20%. This pat-
tern implies that machine learning properly trains data and
becomes more accurate as the amount of data increases.
However, it reversely means that machine learning is viable
only when sufficient data are available, particularly when
low-cost materials are used.

On one hand, TL model rapidly achieves an accuracy
of >73% when 5% of the samples are used. Then, the accu-
racy remains at 75-86%. This trend indicates that TL exhib-
its good accuracy and an increase in data samples affects the
model performance less significantly. This phenomenon is
common in machine learning. TL is a good substitute where
data are absent or scarce; however, it shows a limitation in
gaining excellence in accuracy owing to the heterogeneity of
the intrinsic features between the source and target domains.

On the other hand, mc-TL model achieves accuracies of
76-89% when 5% of the samples are used. The accuracy
of the model outperforms TL in each case, implying that
deriving anomaly detection models is feasible even while
using a small amount of training data obtained from depos-
iting high-cost materials. In contrast to the typical model,
the proposed method successfully reflects the melting and
hardening characteristics of the target material by applying
thermal properties to modeling.

The difference in the accuracies between TL and mc-TL
is mainly induced based on the difference in transfer-
ability between them. Transferability is referred as the
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generalization ability of features [34]. TL properly extracts
image features to generalize the homogeneity of melting and
hardening, thus producing a common feature space; how-
ever, there is no method to specify the thermal character-
istics of materials in models. In contrast, mc-TL endows
learned features with higher transferability compared to
TL. This method imposes thermal properties as manufac-
turing knowledge features to create a common and material-
adaptive feature space, which can implement the availability
of TL and specify the discriminative thermal behaviors of
materials.

5.2.3 Industrial Applicability

In view of the above, our mc-TL models produce accept-
able classification performance in the applicability perspec-
tive because accuracy values are stably high across all the
data portions and the deviations of accuracy are not mas-
sive between mc-TL and SL models (maximum deviations
of 5.59%, 1.49%, and 4.59% in the three cases, respectively).
These deviations can be reasonable and acceptable particu-
larly for detecting defects in refractory materials, when data
are absent or scarce because their AM processes have not
been run much; otherwise, machine learning cannot be eas-
ily applied due to the cost intensiveness in data collection.

In addition, our prior studies reveal that anomaly detec-
tion models using 2D melt pool image data outperform those
using 1D numerical voltage data [33], 59. However, it is not
easy to install a welding image data acquisition system in
all WAAM systems owing to the cost intensiveness issue. In
this situation, mc-TL can provide reasonable classification
performance, taking into account cost-effectiveness with use
of cheaper numerical voltage data. Thus, applicability of
mc-TL can be found as an alternative anomaly detector in an
environment where machine learning is unavailable owing
to data absence or scarcity. Nevertheless, it is also true that
controversy may arise in applying mc-TL to industries owing
to the inferior accuracy compared to machine learning. This
is a common phenomenon in a data sufficient environment
due to the nature of TL.

6 Conclusion

This study proposed a material-adaptive anomaly detection
method for WAAM. The following conclusions can be made
from the study:

e A TL-based method was proposed to create anomaly
detection models for classifying balling defects as abnor-
mal by transferring models derived from source materi-
als to target materials. Specifically, the proposed method
differs from typical TL because it converts numerical

voltage data into voltage image data as an input to CNNs
and concatenates thermal properties with image features
in CNN-based modeling. The proposed method performs
fine-tuning to adjust the image and material-property fea-
tures of the source domain toward those of the target
domain.

e Experiments were performed using a GTAW-based
WAAM system. LCS, STS, and INC were used as mate-
rials, and DensetNet169 was used as an image feature
extractor. The proposed method generated mc-TL mod-
els that achieved accuracies of 82.95%, 89.47%, and
84.22% while transferring LCS to STS, LCS to INC,
and STS to INC, respectively, outperforming typical TL
models, which achieved accuracies of 78.03%, 86.37%,
and 73.63%, respectively. Moreover, the method can
help achieve desirable accuracy using even 3% of the
data samples for the target material, rarely achieved in
machine learning.

The proposed method can contribute to developing anom-
aly detection models for in-situ quality monitoring using TL,
which has been negligibly applied for WAAM. Furthermore,
material properties can be concatenated with typical image
features to improve accuracy, particularly when data are
scarce. Obtaining data from high-cost material fabrication
is expensive and time-consuming.

The limitations of this study are as follows: First, TL is a
good substitute for machine learning when data are absent
or scarce, with this phenomenon demonstrated in our experi-
ments. However, TL demonstrated the inferior accuracy
compared to machine learning as training data increased.
Second, the current study only uses voltage image data as
a data source. This single data source may adversely affect
accuracy when data are of low quality owing to sources of
noise. This low data quality in a single source may constrain
the achievement of a desirable accuracy because data cannot
perfectly reflect the melting and solidification phenomena.
Ensemble learning can help resolve this data quality issue.
Ensemble learning combines more than two base learners
allocated to separate data sources to improve accuracy. Each
base learner trains a dataset provided from each data source,
and an ensemble learner then trains prediction result data
obtained from the base learners. For this study, two base
learners can be derived from training the camera image data
and the voltage image data. Then, ensemble learners are
derived as the last anomaly detection model by training the
dataset, which concatenates the probabilities of abnormality
occurrences generated from the two base learners. Ensemble
learning can prevent miss-classification by resolving a local
optimal problem, in which a base learner can be trapped.

We plan to apply a multisource approach with multiple
source domains to improve accuracy. In addition, we plan
to develop a hybrid method to simultaneously use machine
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learning and TL regardless of data richness or absence,
thereby predicting and optimizing the quality performance
in the process planning phase.
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