Proceedings of the ASME 2023

International Mechanical Engineering Congress and Exposition

IMECE2023
October 29 - November 2, 2023, New Orleans, Louisiana

IMECE2023-112791

CONCEPTUAL ARCHITECTURE OF DIGITAL TWIN WITH HUMAN-IN-THE-LOOP -BASED
SMART MANUFACTURING

Duck Bong Kim

Department of Manufacturing and Engineering
Technology, Tennessee Technological University

Cookeville, TN 38505, USA

Guodong Shao, Albert Jones

National Institute of Standards and Technology

100 Bureau Drive, MS 8260
Gaithersburg, MD 20899, USA

ABSTRACT

This paper proposes a conceptual architecture of digital
twin with human-in-the-loop-based smart manufacturing (DH-
SM). Our proposed architecture integrates cyber-physical
systems with human spaces, where artificial intelligence and
human cognition are employed jointly to make informed
decisions. This will enable real-time, collaborative decision-
making between humans, software, and machines. For example,
when evaluating a new product design, information about the
product’s physical features, manufacturing requirements, and
customer demands must be processed concurrently. Moreover,
the DH-SM architecture enables the creation of an immersive
environment that allows customers to be effectively involved in
the manufacturing process. The DH-SM architecture is well
fitted to those relatively new manufacturing processes, such as
metal additive manufacturing, since they can benefit from using
digital twins, data analytics, and artificial intelligence for
monitoring and controlling those processes to support non-
contact manufacturing. The proposed DH-SM will enable
manufacturers to leverage the existing cyber-physical system
and extended reality technologies to generate immersive
experiences for end users, operators, managers, and
stakeholders. A use case of wire + arc additive manufacturing is
discussed to demonstrate the applicability of the proposed
architecture. Relevant development and implementation
challenges are also discussed.
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1. INTRODUCTION

Manufacturing is the backbone of economic development in
the U.S. [1]. The COVID-19 pandemic crisis disrupted the
manufacturing industry in many countries, resulting in (1) major
upheavals in their production networks, (2) substantial
reductions in new product demands, and (3) negative impacts in
both their local and global supply chains [2,3]. Moreover, new
lessons for manufacturing to successfully tackle these pandemic
impacts are still being learned [4]. One of those new lessons is
the “non-contact manufacturing” paradigm [5], which is based
on remotely controlling a system, a process, and a part with
minimal physical interactions.

Before the pandemic, several strategic plans such as “Smart
Manufacturing (SM)” in the USA and “Industry 4.0” in Germany
[6-8] have helped advance manufacturing industries. SM brings
smart technologies such as smart sensors, high-performance
computing, industrial internet of things (IloT), artificial
intelligence (Al), and data analytics to traditional production
processes and manufacturing systems. However, various
manufacturing operations still remain manual, where humans
can perform them better than machines. To enable human
operators to better use SM technologies and also support the non-
contact manufacturing concept, a new concept of Digital Twin
with Human-in-the-Loop-based Smart Manufacturing (DH-SM)
is introduced.

Metaverse enables the integration of a “virtual world” with
the “physical world” [9]. The resulting integration is based on an
extended reality (XR) that combines augmented reality (AR),
virtual reality (VR), and mixed reality (MR) technologies.
Currently, the “virtual world” can be the “Digital Twin (DT)”,
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which may be used for various purposes such as analyzing health
conditions of equipment for predictive maintenance, managing
the whole lifecycle of a physical asset, and improving decision-
making through engineering and numerical analysis [10]. In
addition to the functionalities provided by DTs [11-14], the
metaverse will add auditory, visual, and haptic realism to achieve
the embodiment. It will change the way humans interact with the
future virtual, physical, and pandemic worlds. Also, the
metaverse has a great potential to positively change the
manufacturing landscape by taking advantage of (1) immersive
experiences, (2) freedom from a physical distance called
“telepresence,” and (3) interconnection.

In this paper, we propose an architecture that supports DH-
SM. This architecture is intended to enable integrability,
interoperability, interactivity, and immersivity. The architecture
includes three modules: Cyber-Physical System (CPS), Avatar-
User System (AUS), and Collaborative Decision-Making Engine
(CDME). Collectively, these modules can support future human-
in-the-loop research, demonstrations, and case studies in SM.
The proposed architecture can also support non-contact
manufacturing by allowing users to remotely access a shop floor
through immersive simulation to realize real-time monitoring
and control.

The remainder of this paper is organized as follows: Section
2 provides some background information about various
manufacturing paradigms. Section 3 introduces the conceptual
architecture of digital twin with human-in-the-loop -based smart
manufacturing. Section 4 discusses a use case in wire + arc
additive manufacturing (WAAM) to demonstrate the
applicability of the proposed architecture. Section 5 discusses the
relevant development and implementation challenges, and
Section 6 concludes the paper and discusses the future work.

2. AUGMENTING SM WITH DH TECHNOLOGIES

Manufacturing paradigms have been evolving for decades.
Figure 1 shows the evolution, which includes traditional,
intelligent, concurrent, and smart manufacturing. In traditional
manufacturing, human workers use their senses to monitor,
operate, and update the process and inspect the final workpiece.
To reduce the roles of humans and speed up fabrication and
inspection, intelligent manufacturing was introduced to automate

formerly human-made decisions. Concurrent manufacturing
involves a systematic approach to simultaneously design the
product and develop its manufacturing process. That approach,
based on a Japanese idea called Kansei engineering, included
feelings, impressions, and emotions from stakeholders in
concrete design parameters [15].

SM includes transformative technologies for managing the
interconnections among physical assets, their DTs, and related
computational capabilities. A CPS generally consists of a
collection of DTs of physical assets, including (1) material
inputs, (2) manufacturing processes, and (3) final products [16-
18]. The idea is to embed data gained from advanced sensor
technologies into DTs of all three to improve process control and
part quality. For example, in additive manufacturing (AM), DTs
can be used to model the variabilities that impact process
repeatability, part reproducibility, and quality assurance [19].
These DTs can be comprised of “surrogate models” such as
physics-based, data-driven, and physics-informed, data-driven
models [12,14].

In this paper, we view the conceptual DH-SM architecture
as a framework that can help enhance SM to achieve convergent,
collaborative, and non-contact manufacturing. It consists of
multidisciplinary domains, such as advanced manufacturing
capabilities, digital technologies, and cognitive engineering.
This enables highly optimized processes/supply networks,
customized products, and resilience for unexpected and
manufacturing-unfriendly situations. The DH-SM concept and
its information flow are depicted in Figure 2. This paper focuses
on AUS and CDME since the concept of CPS is well-established.
The AUS supports better decision-making by creating an
immersive and interactive user experience across the entire
product life cycle. It comprises an enhanced user (EU) and
human digital twin (HDT). EU generates data, information, and
knowledge and provides them to the other modules for analysis,
decision-making, and control. The HDT, the digital replica of the
EU, can analyze, accumulate, and synthesize the data and
knowledge acquired from the DT and EU modules to support
collaborative decision-making. Each module is explained in
detail in Section 3.
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FIGURE 2: THE CONCEPT AND INFORMATION FLOW OF
DIGITAL TWIN WITH HUMAN-IN-THE-LOOP -BASED SMART
MANUFACTURING.

3. A CONCEPTUAL ARCHITECTURE OF DIGITAL
TWIN WITH HUMAN-IN-THE-LOOP- BASED
SMART MANUFACTURING
Figure 3 shows the detailed modules and the information

flow in the proposed DH-SM architecture based on the previous

studies [6,20]. Physical Entities comprise Process Parameters,

Experimental  Configuration, Observable Manufacturing

Elements (OME), and Data Acquisition Devices. DTs include

Data Preparation, Information Models, Modeling and

Simulation, and Digital Twin Models. EU consists of User

Experience Plans, Immersive Environments, User(s), and

Sensory Realism. The user experience plans are based on the

actual manufacturing requirements and case scenarios. For

example, given a customer’s product, its surface-appearance of
a product can be evaluated virtually using a Likert scale [21].
Immersive  environments provide real-time interactive
immersion to the user(s). They can interact with the immersive
contents of a product via metaverse technologies (e.g., XR:
VR/AR/MR). The realistic interaction among those inputs can be
achieved via multi-modal senses in Sensory Realism. Based on
their results, users can generate their desired experiences, which
can be inputs to HDT for further analysis.

HDT consists of four components: Data Preparation,
Information Model, Immersive Analysis, and CraftsAvatar. In
the Data Preparation component, both quantifiable and
unquantifiable data from the EU can be stored and preprocessed.
The two prepared data types will be formalized and transferred
to other modules in the Information Model. Immersive Analysis
can analyze the different information models, and CraftsAvatar
is a digital replica of the enhanced user(s) that can perform
simulations, acquire data, perform data analysis, and semi-
independently make decisions for better performance.
Ultimately, CraftsAvatar can continuously evolve into a “Virtual
Master” in a domain-specific area. CDME includes Verification,
Validation, Uncertainty Quantification (VVUQ), and Multi-
Criteria Decision Making (MCDM). In VVUQ, analytical
models estimate the uncertainties of the process and the parts.
Those uncertainties can be due to the lack of knowledge
(epistemic) or intrinsic randomness (aleatoric) [22]. MCDM
includes scaling, normalization, weighting, and aggregation
components for the final decision-making [23]. The following
subsections will explain the information flows in DH-SM and its
issues.

3.1 Cyber-Physical System

Cyber-Physical System includes two modules, Digital Twin
and Physical Entities. The process parameters are first decided
in the Physical Entities, and then the experimental configurations
are set, considering the available OMEs. Data acquisition
devices are then employed to obtain signatures to establish a
relationship among the process, structure, property, and
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performance (PSPP) [24]. The signatures are divided into
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FIGURE 3: THE MODULES AND INFORMATION FLOW OF DIGITAL TWIN WITH HUMAN-IN-THE-LOOP -BASED SMART

MANUFACTURING

process signatures and part signatures. The process signatures
can be 1D, such as current and voltage; 2D, such as the data
extracted from a charge- coupled device (CCD) camera, high
dynamic range (HDR) camera, and high-speed camera; and 3D,
such as the data from the profilometer. 1D process signatures
are much easier to handle and store, while 2D and 3D
signatures contain more information and can be used in
different data structures.

On the other hand, the acquired part signatures in the
architecture can be classified into three types. The first type is
the signatures based on the microstructure of the part, obtained
through material characterization techniques such as optical
microscope image, scanning electron microscope (SEM), and
electron backscatter diffraction (EBSD). These signatures can
shed light on the anisotropic and heterogeneous behavior of AM
parts. The second type is mechanical properties extracted by
tests such as tensile that can be used to obtain the stress-strain
curve for the materials. Finally, the third type is signatures
based on the part geometry obtained using a coordinate-
measuring machine (CMM), which measures geometrical
accuracy and surface roughness. The part signatures can be
used to validate the physics-based and data-driven models.

The data acquisition devices can be (1) internal or built-in
sensors such as welding power measurement and the position
tracking systems for the robot and (2) external sensors such as
pyrometers, HDR cameras, high-speed cameras, thermocouples,
and CCD cameras. In the proposed architecture, the process

monitoring, and control should be simultaneously addressed in a
unified system. This governs that the system responsible for
controlling the AM system must also communicate with the
software to run online diagnostics during manufacturing.
Through this approach, any detected failures could be corrected
or compensated by modifying or sending additional commands
to the system. The framework is constructed to allow quick
adaptation to new manufacturing conditions and the
incorporation of multiple diagnostic tools.

The other module in CPS is the Digital Twin, which aims to
create a digital replica of the physical entities and phenomena
through different modeling and simulation approaches, including
but not limited to physics-based, data-driven, physics-informed
data-driven, and surrogate models. Surrogate models are simpler
versions that mimic the mechanisms of complex models. Their
purpose of surrogates is to reduce the computation time. In the
proposed architecture, surrogate models can be generated for
processes and parts. The design of experiment (DOE) is widely
employed to create surrogate models due to its effectiveness and
efficiency.

Nevertheless, (1) DOE cannot be used for real-time
monitoring and control, and (2) a considerable number of
experiments have to be carried out, which requires significant
resources. To overcome the two limitations, machine learning
(ML) surrogate models based on process signatures for real-time
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monitoring and control have gained increasing attention due to
low cost, less time consumption, and high accuracy. ML,
specifically the semi-supervised learning algorithm and
generative adversarial network (GAN), has been extensively
employed for anomaly detection as in AnoGAN [25] and MAD-
GAN [26]. In addition, ensemble learning (EL) has been used
to improve classification, prediction, and/or function
approximation [27]. EL systematically generates and combines
several models, such as classifiers or experts, to solve a
computer intelligence problem. Despite their advantages, ML-
based surrogate models demand massive data, thus hindering
their widespread application.

3.2 Avatar-User System

The avatar user system includes two main modules: Human
Digital Twin and Enhanced User. In Human Digital Twin, the
Data Preparation component stores and preprocesses both
quantifiable and unquantifiable data, while the Information
Model component formalizes them. The Immersive Analysis
component analyzes and synthesizes the data sets. CraftsAvatar
has domain-specific data demonstrating how to perform a task
and give advice based on the user’s skill levels or professional
maturity. CraftsAvatar can access, analyze, and synthesize
manufacturing  domain-specific data, information, and
knowledge through the DT module. This will lead to domain-
specific wisdom and intuition after further analysis and synthesis
of information from DT and EH.

There are several research and technical issues. First, the
knowledge needed to digitize and formalize the data types is
significantly lacking. For example, how to formalize human
knowledge and intuition should be investigated as part of the
Data Preparation and Information Model. Second, the concept
and the implementation of Immersive Analysis are still in the
initial stage. Third, detailed case studies should be performed to
demonstrate the effectiveness of a semi-autonomous
CraftsAvatar.

The second module in AUS, the Enhanced User module,
provides immersive interactions with other physical entities
based on the human’s visual, auditory, and touch senses (taste
and smell are excluded due to the current technological
limitations). Photorealistic visualization plays the most crucial
role in immersion since humans collect up to 80 % of their
surrounding information through vision. The auditory and tactile
senses greatly enhance the immersion by hearing (e.g., 3D
sound) and providing a touch feeling of an object (e.g., the
texture of a car shift knob and handlebar). This sensory realism
can be implemented utilizing industrial metaverse technologies
for remote virtual training, concurrent design, and remote
monitoring. Users can then generate the two types of data already
discussed: (1) the quantifiable (e.g., Likert scale of customers’
preference) and (2) the unquantifiable (e.g., description of
customers’ perception).

Implementing this module, however, demands solutions to
several research and technical issues. First, as the number of data
modalities increases, the user’s immersive experience will
improve; but more complicated integration tasks will be

required. To address these issues, new open-source software tools
and interface standards will be needed. Second, the
implementations will require huge computational costs. For
example, photorealistic visualization of an object by rendering
tools is the result of complex interactions among light (e.g.,
spectrum), 3D models (e.g., texture), and viewing (e.g.,
direction) conditions. For this, an affordable high-end graphics
process unit (GPU) should be available. Third, new types of user-
friendly interfaces are required. For example, head-mounted
displays are reported to cause discomfort, pain, or visual fatigue
after use [28].

3.3 Collaborative Decision-Making Engine

The resulting data will enable “collaborative decision-
making” based on a multi-criteria optimization approach that can
improve the performance of the process and the quality of the
parts. The analytical models should be verified, validated, and
uncertainty must be quantified for accurate analyses. Then,
different analytical models must be composed into a single,
aggregated, integrated analytical model. Figure 4 conceptually
shows the composability task using three different models (A:
response surface model, B: artificial neural network, and C:
Kriging model). Then, the composed model needs to characterize
its component’s uncertainties and their propagation in the
aggregated model. Propagation requires careful consideration in
scaling, normalizing, weighting, and aggregating methods. The
decision will be transferred to the physical entities if a near-
optimal solution is determined. If not, additional data must be
collected, and further analysis must be performed.

Requirements

Surrogate Surrogate Surrogate

model A model B model C
\ J
|

Composed surrogate model

FIGURE 4: DIFFERENT TYPES OF SURROGATE MODELS
For this module, a robust approach is needed to compose

individual analytical models and propagate the uncertainties that
arise from disparate manufacturing resources. To develop this
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approach, four significant challenges must be overcome and/or
managed: (1) high uncertainty, conflicting objectives,
heterogeneous forms of data, multi-interests, and perspectives;
(2) complex and dynamically evolving manufacturing processes
and environments; (3) inherent interoperability issues in
MCDM; and (4) requirements of verification and validation in
aggregated/composed model [29].

4. A USE CASE IN WIRE + ARC ADDITIVE

MANUFACTURING

Metal AM has attracted much attention since many
complicated machinery components should be produced with
metal, and other conventional manufacturing processes are much
more time- and cost- intensive. Among various metal AM
processes, Directed Energy Deposition (DED) uses a focused
energy source where the material is melted and deposited by a
nozzle. One of the representative forms of DED is WAAM,
which uses metal wire as the feedstock and an arc as an energy
source. Since the material in this process is deposited through
metal wire, the amount of metal usage can be minimized. In
addition, it benefits from a high deposition rate and is suitable
for large and custom-made metal parts. To demonstrate a use
case, we use the in-house WAAM system [30].

Although WAAM has many benefits, most companies still
hesitate to adopt it due to some its drawbacks. The additive
process based on arc welding can raise problems such as
spatter, porosity, undercut, deformation, crack, and slag [31].
Moreover, the design space in the WAAM process is huge, and
numerous parameters, directly and indirectly, influence the
final part, therefore, choosing the near-optimal process
parameters becomes of prime importance. To ensure that optimal
parameters are selected, human cognition is kept in the loop
with Al in the collaborative decision-making engine. In
addition, in-situ process monitoring and control are ultimately
lacking in the current WAAM systems.

To address these issues, we instantiated the DH-SM
architecture for the WAAM problem. As shown in Figure 5, we
generated the system architecture based on Figure 2. The use
case consists of the physical entity, the digital twin, the human
digital twin, and the enhanced users. In the following subsection,
each of these components will be discussed.

4.1 Cyber-Physical System for the WAAM Case

In accordance with Section 3, the CPS comprises two main
modules: Physical Entities and Digital Twin. The Physical
Entities include a GTAW-based WAAM system, as shown in
Figure 6. It also consists of a robot arm that moves to the
coordinates designated by the controller. The tungsten inert gas
(TIG) torch is attached to the hand of the robot arm and supplied
with energy from the energy source. It deposits a feeding
material provided by the wire feeder to generate weld beads on
the substrate. Process parameters, including travel speed, Wire
Feed Rate (WFR), and current, are determined by the controller
input, wire feeder, and energy source, respectively. Current and
voltage sensors measure the numerical values of the arc
characteristics in real time. A data interface monitors and

acquires the arc current and voltage data delivered from the
sensor [32]. An HDR camera is attached to the torch to capture
weld pool and bead images along with the movement of the torch
[33]. This camera was optimized for arc welding with a dynamic
range of 140 dB to capture high-quality video frames. Standard
camera systems are inapplicable due to their low dynamic ranges
and lightning interferences in arc welding. A camera data
interface recorded the images and converted them into .jpg file
formats.

Cyber-Physical System
Digital Twin

Avatar-User System
Human Digital Twin

a

= Av‘f::t:trs ( )
abh L
1 [

Enhanced User

—

FIGURE 5: CONCEPTUAL ARCHITECTURE OF THE DH-SM
FOR A WAAM CASE

FIGURE 6: EXPERIMENTAL ENVIRONMENT INCLUDING
WIRE FEEDER, SHIELDING GAS, TIG POWER SOURCE, TIG
TORCH, ROBOT, AND HDR CAMERA

The other module in CPS is the Digital Twin. This module
paves the way for creating a digital twin of the physical entities
by applying 3D visualization, data analytics, physics-based
models, data-driven models (machine learning), and surrogate
models. A DT of the WAAM process was built to improve
product quality and production efficiency. Real-time monitoring
data was collected to consistently achieve the mapping and
interaction between data and models to form the real-time
interaction between the physical and digital twins. Then the
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process is analyzed. Firstly, a DT with 3D visualization of the
WAAM process is implemented. Secondly, as shown in Figure
7, residual stress modeling and Crystal Plasticity Finite Element
Simulation Method (CPFEM) are employed to model the
physical phenomena and the microstructural evolution of the
parts. Thirdly, data-driven approaches are employed for real-
time process monitoring. Finally, surrogate models that aim to
convert the computationally expensive models to a reduced-
order model are employed to enhance the DT of the process.
Figure 8 shows an example of real-time anomaly detection using
machine learning.

X normal stress [MPa]

max: 426.23
min: -230.36
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Dimensions & “ “

FIGURE 7: DT COMPONENTS FOR WAAM PARTS: (a)
RESIDUAL STRESS AND (b) CPFEM

The data collection is realized by the sensors and data
acquisition devices. By combining the real-time process, process
design, and process simulation, the DT elements are constructed.
Then, by combining the historical and real-time data, online
process monitoring is enabled by data analysis. In case of any
abnormality, the correction process parameters will be timely
sent back to the physical entity. Thus, the quality prediction and
control of welding of ship group products are realized.

4.2 Avatar-User System for the WAAM Case
In the AUS, the concept of Human-in-the-Loop is ultimately
realized by the human DT and enhanced user modules. An

enhanced user module can be categorized into edge users and
cloud users. The edge EU benefits from AR technology through
XR glasses and suits to perform remote inspection and training.
Using the XR technology, the users can access real-time data
such as the process parameters, online video of the process
including high dynamic range images, thermal images and CCD
cameras, simulations, and models. In remote locations, the users
can have the same level of access to the system through XR and
VR. The cloud-enhanced users at the cloud layer can modify the
process where needed, change the process parameters based on
their cognition and the real-time data acquired for the sensors,
and perform a real-time inspection of the process and the parts.
In addition, stakeholders of an enterprise can also have direct
access to the physical entities and the process and investigate the
possible enhancements. Figure 9 demonstrates the edge and the
cloud-enhanced users. Both types of users can access to real-time
process parameters, computational analysis of the process, and
microstructural analysis of the parts. One of the significant
advantages of EU at the edge and the cloud layer is that it
enables easy training sessions for expert users to teach the
process to beginners remotely and in real time.
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FIGURE 8: MACHINE LEARNING FOR REAL-TIME ANOMALY
DETECTION (a) NORMAL AND (b) ABNORMAL BEADS [32]

The Human Digital Twin module includes a craft avatar for
every individual, including operators, technicians, engineers,
trainers, and trainees at the edge layers and managers and
stakeholders at the cloud layers. These craft avatars can be used
for different purposes, including but not limited to training, real-
time monitoring, control, and maintenance. This becomes
advantageous, particularly in the case of complicated processes
like WAAM, where the window map is narrow, meaning that it
is challenging to find the near-optimal process parameters. This
is also true for most metal AM processes due to low process
repeatability and part reproducibility [19]. As shown in Figure
10, three types of interactions are foreseeable, human, avatar,
and human-avatar in the HDT module. Human interactions are
already well-established and available in the industry; however,
the other two types are still to be developed. These
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communications have numerous applications, such as training,
where a beginner is taught fundamentals, and concepts of the
WAAM process or an apprentice is trained to become an
operator.
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5. DISCUSSION

Enhanced User

The architecture proposed in this paper, DH-SM, can be
used to support the integration of physical assets with humans
and digital twins. It will help enable real-time, collaborative
decision-making between humans, software, and machines. For
example, when evaluating a new product design, information
about the product’s physical features, manufacturing
requirements, and customer experience must be processed
concurrently [34]. Moreover, the DH-SM architecture can
support the creation of an immersive environment that allows
customers to be effectively involved in manufacturing.

However, due to current standards and technology
limitations, implementing the DH-SM architecture still has
some challenges. First, realizing the real-time bidirectional
information flow is demanding. For example, the 3D-rendered
object of a human in an immersive environment must take place
in real time, currently, however, implementing such a real-time
interaction is challenging because of the huge amount of data that
must be collected and processed. In addition, since these
interactions occur in a wireless environment, the low data
transmission rate is another issue. Advanced wireless techniques
(e.g., 5G and 6G) should be investigated and developed. To
achieve this, the interfaces between the architecture modules
must be implemented. Second, the concept of “Plug and Play” is
difficult to achieve. Software or devices need to work perfectly
when first used or connected without the need for
reconfiguration or adjustment by the user. Interoperability
standards are required to support these functionalities and
integration. The interface specifications and communication
protocols are not yet well developed. Third, cybersecurity is an
ongoing issue that must be linked to those interoperability
standards because the abundance of personal data and immersive
content is prone to cyber threats [35]. Fourth, many
manufacturers, especially Small and Medium-sized Enterprises
(SMEs), lack the infrastructure needed to use cloud-based
standards such as open platform communication unified
architecture (OPC-UA).

To provide a sense of realism to users, new immersion
methods will also be needed. These methods will provide users
with a more accurate perception of real manufacturing activities
with comfort and intuition. For this to be realized, immersive
modeling techniques should be advanced. Common interactive
technologies include XR and human-computer interface.
Current issues with these technologies include (1) the
interactive devices are not lightweight and transparent enough,
(2) the cost of the devices is high, and (3) there are also
associated costs for learning and using these devices. In
addition, the user’s mental/physical health and socio-economic
impacts must also be considered. We believe the existing
sustainable and smart manufacturing guidelines can be
extended and updated for DH- SM.

One of the main incentives for DH-SM is realizing the
concept of non-contact and remote manufacturing, which is one
of the fast-paced advancing technologies. Metaverse technology
adds an immersive experience to the configuration layer of
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cyber-physical systems. In manufacturing, the Industrial
Metaverse’s purpose would be to speed up processes like repairs,
maintenance, starting new manufacturing lines, remote
monitoring, control, and new user/manager training through
simulation. [36]. More efforts will be needed to ensure the
seamless and secure communication and synchronization
between digital twins, remote human users, and physical
systems for non-contact manufacturing.

6. CONCLUSION

We believe that the DH-SM concept and the proposed
architecture are particularly relevant today, especially for
manufacturing processes that require human intervention. Since
these manufacturing processes include humans at every level,
taking advantage of the human’s perception, cognition, and
intuition is essential. We believe the DH-SM architecture will
provide real industrial impacts by managing a user’s
involvement in the evolving, complex, and dynamically
changing manufacturing environment. Accordingly, it will
change the manufacturing landscape and can guide future
research directions for developing standards, reference
architectures, technologies; researching necessary components;
and implementing case studies. In further studies, we aim to
develop the presented conceptual framework with different
experimental plans and physical entities to demonstrate the
capabilities and efficacy of the proposed DH-SM architecture.
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