
1 © 2023 by ASME  

Proceedings of the ASME 2023 
International Mechanical Engineering Congress and Exposition 

IMECE2023 
October 29 - November 2, 2023, New Orleans, Louisiana 

 
 

  IMECE2023-112791 
 
 
 

CONCEPTUAL ARCHITECTURE OF DIGITAL TWIN WITH HUMAN-IN-THE-LOOP -BASED 
SMART MANUFACTURING 

 
 

Duck Bong Kim 
Department of Manufacturing and Engineering 

Technology, Tennessee Technological University 
Cookeville, TN 38505, USA 

 
Guodong Shao, Albert Jones 

National Institute of Standards and Technology 
100 Bureau Drive, MS 8260 

Gaithersburg, MD 20899, USA 

Mahdi Sadeqi Bajestani 
Department of Mechanical Engineering 
Tennessee Technological University 

Cookeville, TN 38505, USA 
 

Sang Do Noh 
Department of Systems Management Engineering 

Sungkyunkwan University, 2066, Seobu-ro, 
Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Korea 

 
 
ABSTRACT 

This paper proposes a conceptual architecture of digital 
twin with human-in-the-loop-based smart manufacturing (DH- 
SM). Our proposed architecture integrates cyber-physical 
systems with human spaces, where artificial intelligence and 
human cognition are employed jointly to make informed 
decisions. This will enable real-time, collaborative decision- 
making between humans, software, and machines. For example, 
when evaluating a new product design, information about the 
product’s physical features, manufacturing requirements, and 
customer demands must be processed concurrently. Moreover, 
the DH-SM architecture enables the creation of an immersive 
environment that allows customers to be effectively involved in 
the manufacturing process. The DH-SM architecture is well 
fitted to those relatively new manufacturing processes, such as 
metal additive manufacturing, since they can benefit from using 
digital twins, data analytics, and artificial intelligence for 
monitoring and controlling those processes to support non-
contact manufacturing. The proposed DH-SM will enable 
manufacturers to leverage the existing cyber-physical system 
and extended reality technologies to generate immersive 
experiences for end users, operators, managers, and 
stakeholders. A use case of wire + arc additive manufacturing is 
discussed to demonstrate the applicability of the proposed 
architecture. Relevant development and implementation 
challenges are also discussed. 

 
Keywords: Digital Twin, Smart Manufacturing, Human-in- 

the-loop, Collaborative Decision Making, Non-contact 
Manufacturing, Industrial Metaverse. 

 
1. INTRODUCTION 

Manufacturing is the backbone of economic development in 
the U.S. [1]. The COVID-19 pandemic crisis disrupted the 
manufacturing industry in many countries, resulting in (1) major 
upheavals in their production networks, (2) substantial 
reductions in new product demands, and (3) negative impacts in 
both their local and global supply chains [2,3]. Moreover, new 
lessons for manufacturing to successfully tackle these pandemic 
impacts are still being learned [4]. One of those new lessons is 
the “non-contact manufacturing” paradigm [5], which is based 
on remotely controlling a system, a process, and a part with 
minimal physical interactions. 

Before the pandemic, several strategic plans such as “Smart 
Manufacturing (SM)” in the USA and “Industry 4.0” in Germany 
[6-8] have helped advance manufacturing industries. SM brings 
smart technologies such as smart sensors, high-performance 
computing, industrial internet of things (IIoT), artificial 
intelligence (AI), and data analytics to traditional production 
processes and manufacturing systems. However, various 
manufacturing operations still remain manual, where humans 
can perform them better than machines. To enable human 
operators to better use SM technologies and also support the non- 
contact manufacturing concept, a new concept of Digital Twin 
with Human-in-the-Loop-based Smart Manufacturing (DH-SM) 
is introduced. 

Metaverse enables the integration of a “virtual world” with 
the “physical world” [9]. The resulting integration is based on an 
extended reality (XR) that combines augmented reality (AR), 
virtual reality (VR), and mixed reality (MR) technologies. 
Currently, the “virtual world” can be the “Digital Twin (DT)”, 
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which may be used for various purposes such as analyzing health 
conditions of equipment for predictive maintenance, managing 
the whole lifecycle of a physical asset, and improving decision- 
making through engineering and numerical analysis [10]. In 
addition to the functionalities provided by DTs [11-14], the 
metaverse will add auditory, visual, and haptic realism to achieve 
the embodiment. It will change the way humans interact with the 
future virtual, physical, and pandemic worlds. Also, the 
metaverse has a great potential to positively change the 
manufacturing landscape by taking advantage of (1) immersive 
experiences, (2) freedom from a physical distance called 
“telepresence,” and (3) interconnection. 

In this paper, we propose an architecture that supports DH- 
SM. This architecture is intended to enable integrability, 
interoperability, interactivity, and immersivity. The architecture 
includes three modules: Cyber-Physical System (CPS), Avatar- 
User System (AUS), and Collaborative Decision-Making Engine 
(CDME). Collectively, these modules can support future human- 
in-the-loop research, demonstrations, and case studies in SM. 
The proposed architecture can also support non-contact 
manufacturing by allowing users to remotely access a shop floor 
through immersive simulation to realize real-time monitoring 
and control. 

The remainder of this paper is organized as follows: Section 
2 provides some background information about various 
manufacturing paradigms. Section 3 introduces the conceptual 
architecture of digital twin with human-in-the-loop -based smart 
manufacturing. Section 4 discusses a use case in wire + arc 
additive manufacturing (WAAM) to demonstrate the 
applicability of the proposed architecture. Section 5 discusses the 
relevant development and implementation challenges, and 
Section 6 concludes the paper and discusses the future work. 

 
2. AUGMENTING SM WITH DH TECHNOLOGIES 

 
Manufacturing paradigms have been evolving for decades. 

Figure 1 shows the evolution, which includes traditional, 
intelligent, concurrent, and smart manufacturing. In traditional 
manufacturing, human workers use their senses to monitor, 
operate, and update the process and inspect the final workpiece. 
To reduce the roles of humans and speed up fabrication and 
inspection, intelligent manufacturing was introduced to automate 

formerly human-made decisions. Concurrent manufacturing 
involves a systematic approach to simultaneously design the 
product and develop its manufacturing process. That approach, 
based on a Japanese idea called Kansei engineering, included 
feelings, impressions, and emotions from stakeholders in 
concrete design parameters [15]. 

SM includes transformative technologies for managing the 
interconnections among physical assets, their DTs, and related 
computational capabilities. A CPS generally consists of a 
collection of DTs of physical assets, including (1) material 
inputs, (2) manufacturing processes, and (3) final products [16- 
18]. The idea is to embed data gained from advanced sensor 
technologies into DTs of all three to improve process control and 
part quality. For example, in additive manufacturing (AM), DTs 
can be used to model the variabilities that impact process 
repeatability, part reproducibility, and quality assurance [19]. 
These DTs can be comprised of “surrogate models” such as 
physics-based, data-driven, and physics-informed, data-driven 
models [12,14]. 

In this paper, we view the conceptual DH-SM architecture 
as a framework that can help enhance SM to achieve convergent, 
collaborative, and non-contact manufacturing. It consists of 
multidisciplinary domains, such as advanced manufacturing 
capabilities, digital technologies, and cognitive engineering. 
This enables highly optimized processes/supply networks, 
customized products, and resilience for unexpected and 
manufacturing-unfriendly situations. The DH-SM concept and 
its information flow are depicted in Figure 2. This paper focuses 
on AUS and CDME since the concept of CPS is well-established. 
The AUS supports better decision-making by creating an 
immersive and interactive user experience across the entire 
product life cycle. It comprises an enhanced user (EU) and 
human digital twin (HDT). EU generates data, information, and 
knowledge and provides them to the other modules for analysis, 
decision-making, and control. The HDT, the digital replica of the 
EU, can analyze, accumulate, and synthesize the data and 
knowledge acquired from the DT and EU modules to support 
collaborative decision-making. Each module is explained in 
detail in Section 3. 
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FIGURE 1: MANUFACTURING FROM TRADITIONAL TO SMART MANUFACTURING AND THE PROPOSED PARADIGM OF DH-SM 

 
example, given a customer’s product, its surface-appearance of 
a product can be evaluated virtually using a Likert scale [21]. 
Immersive environments provide real-time interactive 
immersion to the user(s). They can interact with the immersive 
contents of a product via metaverse technologies (e.g., XR: 
VR/AR/MR). The realistic interaction among those inputs can be 
achieved via multi-modal senses in Sensory Realism. Based on 
their results, users can generate their desired experiences, which 
can be inputs to HDT for further analysis. 

HDT consists of four components: Data Preparation, 
Information Model, Immersive Analysis, and CraftsAvatar. In 
the Data Preparation component, both quantifiable and 
unquantifiable data from the EU can be stored and preprocessed. 
The two prepared data types will be formalized and transferred 
to other modules in the Information Model. Immersive Analysis 
can analyze the different information models, and CraftsAvatar 
is a digital replica of the enhanced user(s) that can perform 
simulations, acquire data, perform data analysis, and semi- 
independently make decisions for better performance. 
Ultimately, CraftsAvatar can continuously evolve into a “Virtual 
Master” in a domain-specific area. CDME includes Verification, 

FIGURE 2: THE CONCEPT AND INFORMATION FLOW OF 
DIGITAL TWIN WITH HUMAN-IN-THE-LOOP -BASED SMART 
MANUFACTURING. 

 
3. A CONCEPTUAL ARCHITECTURE OF DIGITAL 

TWIN WITH HUMAN-IN-THE-LOOP- BASED 
SMART MANUFACTURING 
Figure 3 shows the detailed modules and the information 

flow in the proposed DH-SM architecture based on the previous 
studies [6,20]. Physical Entities comprise Process Parameters, 
Experimental Configuration, Observable Manufacturing 
Elements (OME), and Data Acquisition Devices. DTs include 
Data Preparation, Information Models, Modeling and 
Simulation, and Digital Twin Models. EU consists of User 
Experience Plans, Immersive Environments, User(s), and 
Sensory Realism. The user experience plans are based on the 
actual manufacturing requirements and case scenarios. For 

Validation, Uncertainty Quantification (VVUQ), and Multi- 
Criteria Decision Making (MCDM). In VVUQ, analytical 
models estimate the uncertainties of the process and the parts. 
Those uncertainties can be due to the lack of knowledge 
(epistemic) or intrinsic randomness (aleatoric) [22]. MCDM 
includes scaling, normalization, weighting, and aggregation 
components for the final decision-making [23]. The following 
subsections will explain the information flows in DH-SM and its 
issues. 

 
3.1 Cyber-Physical System 

Cyber-Physical System includes two modules, Digital Twin 
and Physical Entities. The process parameters are first decided 
in the Physical Entities, and then the experimental configurations 
are set, considering the available OMEs. Data acquisition 
devices are then employed to obtain signatures to establish a 
relationship  among  the  process,  structure,  property,  and 
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performance (PSPP) [24]. The signatures are divided into  
 

 
 
FIGURE 3: THE MODULES AND INFORMATION FLOW OF DIGITAL TWIN WITH HUMAN-IN-THE-LOOP -BASED SMART 
MANUFACTURING 

 

process signatures  and part signatures. The process signatures 
can be 1D, such as current and voltage; 2D, such as the data 
extracted from a charge- coupled device (CCD) camera, high 
dynamic range (HDR) camera, and high-speed camera; and 3D, 
such as the data from the profilometer. 1D process signatures 
are much easier to handle and store, while 2D and 3D 
signatures contain more information and can be used in 
different data structures. 

On the other hand, the acquired part signatures in the 
architecture can be classified into three types. The first type is 
the signatures based on the microstructure of the part, obtained 
through material characterization techniques such as optical 
microscope image, scanning electron microscope (SEM), and 
electron backscatter diffraction (EBSD). These signatures can 
shed light on the anisotropic and heterogeneous behavior of AM 
parts. The second type is mechanical properties extracted by 
tests such as tensile that can be used to obtain the stress-strain 
curve for the materials. Finally, the third type is signatures 
based on the part geometry obtained using a coordinate-
measuring machine (CMM), which measures geometrical 
accuracy and surface roughness. The part signatures can be 
used to validate the physics-based and data-driven models. 

The data acquisition devices can be (1) internal or built-in 
sensors such as welding power measurement and the position 
tracking systems for the robot and (2) external sensors such as 
pyrometers, HDR cameras, high-speed cameras, thermocouples, 
and CCD cameras. In the proposed architecture, the process 

monitoring, and control should be simultaneously addressed in a 
unified system. This governs that the system responsible for 
controlling the AM system must also communicate with the 
software to run online diagnostics during manufacturing. 
Through this approach, any detected failures could be corrected 
or compensated by modifying or sending additional commands 
to the system. The framework is constructed to allow quick 
adaptation to new manufacturing conditions and the 
incorporation of multiple diagnostic tools. 

The other module in CPS is the Digital Twin, which aims to 
create a digital replica of the physical entities and phenomena 
through different modeling and simulation approaches, including 
but not limited to physics-based, data-driven, physics-informed 
data-driven, and surrogate models. Surrogate models are simpler 
versions that mimic the mechanisms of complex models. Their 
purpose of surrogates is to reduce the computation time. In the 
proposed architecture, surrogate models can be generated for 
processes and parts. The design of experiment (DOE) is widely 
employed to create surrogate models due to its effectiveness and 
efficiency. 

Nevertheless, (1) DOE cannot be used for real-time 
monitoring and control, and (2) a considerable number of 
experiments have to be carried out, which requires significant 
resources. To overcome the two limitations, machine learning 
(ML) surrogate models based on process signatures for real-time 
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monitoring and control have gained increasing attention due to 
low cost, less time consumption, and high accuracy. ML,  
specifically the semi-supervised learning algorithm and 
generative adversarial network (GAN), has been extensively 
employed for anomaly detection as in AnoGAN [25] and MAD-
GAN [26]. In addition, ensemble learning (EL) has been used 
to improve classification, prediction, and/or function 
approximation [27]. EL systematically generates and combines 
several models, such as classifiers or experts, to solve a 
computer intelligence problem. Despite their advantages, ML-
based surrogate models demand massive data, thus hindering 
their widespread application. 

 
3.2 Avatar-User System 

The avatar user system includes two main modules: Human 
Digital Twin and Enhanced User. In Human Digital Twin, the 
Data Preparation component stores and preprocesses both 
quantifiable and unquantifiable data, while the Information 
Model component formalizes them. The Immersive Analysis 
component analyzes and synthesizes the data sets. CraftsAvatar 
has domain-specific data demonstrating how to perform a task 
and give advice based on the user’s skill levels or professional 
maturity. CraftsAvatar can access, analyze, and synthesize 
manufacturing domain-specific data, information, and 
knowledge through the DT module. This will lead to domain- 
specific wisdom and intuition after further analysis and synthesis 
of information from DT and EH. 

There are several research and technical issues. First, the 
knowledge needed to digitize and formalize the data types is 
significantly lacking. For example, how to formalize human 
knowledge and intuition should be investigated as part of the 
Data Preparation and Information Model. Second, the concept 
and the implementation of Immersive Analysis are still in the 
initial stage. Third, detailed case studies should be performed to 
demonstrate the effectiveness of a semi-autonomous 
CraftsAvatar. 

The second module in AUS, the Enhanced User module, 
provides immersive interactions with other physical entities 
based on the human’s visual, auditory, and touch senses (taste 
and smell are excluded due to the current technological 
limitations). Photorealistic visualization plays the most crucial 
role in immersion since humans collect up to 80 % of their 
surrounding information through vision. The auditory and tactile 
senses greatly enhance the immersion by hearing (e.g., 3D 
sound) and providing a touch feeling of an object (e.g., the 
texture of a car shift knob and handlebar). This sensory realism 
can be implemented utilizing industrial metaverse technologies 
for remote virtual training, concurrent design, and remote 
monitoring. Users can then generate the two types of data already 
discussed: (1) the quantifiable (e.g., Likert scale of customers’ 
preference) and (2) the unquantifiable (e.g., description of 
customers’ perception). 

Implementing this module, however, demands solutions to 
several research and technical issues. First, as the number of data 
modalities increases, the user’s immersive experience will 
improve; but more complicated integration tasks will be 

required. To address these issues, new open-source software tools 
and interface standards will be needed. Second, the 
implementations will require huge computational costs. For 
example, photorealistic visualization of an object by rendering 
tools is the result of complex interactions among light (e.g., 
spectrum), 3D models (e.g., texture), and viewing (e.g., 
direction) conditions. For this, an affordable high-end graphics 
process unit (GPU) should be available. Third, new types of user- 
friendly interfaces are required. For example, head-mounted 
displays are reported to cause discomfort, pain, or visual fatigue 
after use [28]. 

 
3.3 Collaborative Decision-Making Engine 

The resulting data will enable “collaborative decision- 
making” based on a multi-criteria optimization approach that can 
improve the performance of the process and the quality of the 
parts. The analytical models should be verified, validated, and 
uncertainty must be quantified for accurate analyses. Then, 
different analytical models must be composed into a single, 
aggregated, integrated analytical model. Figure 4 conceptually 
shows the composability task using three different models (A: 
response surface model, B: artificial neural network, and C: 
Kriging model). Then, the composed model needs to characterize 
its component’s uncertainties and their propagation in the 
aggregated model. Propagation requires careful consideration in 
scaling, normalizing, weighting, and aggregating methods. The 
decision will be transferred to the physical entities if a near- 
optimal solution is determined. If not, additional data must be 
collected, and further analysis must be performed. 

 

 

FIGURE 4: DIFFERENT TYPES OF SURROGATE MODELS 
 

For this module, a robust approach is needed to compose 
individual analytical models and propagate the uncertainties that 
arise from disparate manufacturing resources. To develop this 
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approach, four significant challenges must be overcome and/or 
managed: (1) high uncertainty, conflicting objectives, 
heterogeneous forms of data, multi-interests, and perspectives; 
(2) complex and dynamically evolving manufacturing processes 
and environments; (3) inherent interoperability issues in 
MCDM; and (4) requirements of verification and validation in 
aggregated/composed model [29]. 

 
4. A USE CASE IN WIRE + ARC ADDITIVE 

MANUFACTURING 
Metal AM has attracted much attention since many 

complicated machinery components should be produced with 
metal, and other conventional manufacturing processes are much 
more time- and cost- intensive. Among various metal AM 
processes, Directed Energy Deposition (DED) uses a focused 
energy source where the material is melted and deposited by a 
nozzle. One of the representative forms of DED is WAAM, 
which uses metal wire as the feedstock and an arc as an energy 
source. Since the material in this process is deposited through 
metal wire, the amount of metal usage can be minimized. In 
addition, it benefits from a high deposition rate and is suitable 
for large and custom-made metal parts. To demonstrate a use 
case, we use the in-house WAAM system [30].  

Although WAAM has many benefits, most companies still 
hesitate to adopt it due to some its drawbacks. The additive 
process based on arc welding can raise problems such as 
spatter, porosity, undercut, deformation, crack, and slag [31]. 
Moreover, the design space in the WAAM process is huge, and 
numerous parameters, directly and indirectly, influence the 
final part, therefore, choosing the near-optimal process 
parameters becomes of prime importance. To ensure that optimal 
parameters are selected, human cognition is kept in the loop 
with AI in the collaborative decision-making engine. In 
addition, in-situ process monitoring and control are ultimately 
lacking in the current WAAM systems. 

To address these issues, we instantiated the DH-SM 
architecture for the WAAM problem. As shown in Figure 5, we 
generated the system architecture based on Figure 2. The use 
case consists of the physical entity, the digital twin, the human 
digital twin, and the enhanced users. In the following subsection, 
each of these components will be discussed. 

 
4.1 Cyber-Physical System for the WAAM Case 

In accordance with Section 3, the CPS comprises two main 
modules: Physical Entities and Digital Twin. The Physical 
Entities include a GTAW-based WAAM system, as shown in 
Figure 6. It also consists of a robot arm that moves to the 
coordinates designated by the controller. The tungsten inert gas 
(TIG) torch is attached to the hand of the robot arm and supplied 
with energy from the energy source. It deposits a feeding 
material provided by the wire feeder to generate weld beads on 
the substrate. Process parameters, including travel speed, Wire 
Feed Rate (WFR), and current, are determined by the controller 
input, wire feeder, and energy source, respectively. Current and 
voltage sensors measure the numerical values of the arc 
characteristics in real time. A data interface monitors and 

acquires the arc current and voltage data delivered from the 
sensor [32]. An HDR camera is attached to the torch to capture 
weld pool and bead images along with the movement of the torch 
[33]. This camera was optimized for arc welding with a dynamic 
range of 140 dB to capture high-quality video frames. Standard 
camera systems are inapplicable due to their low dynamic ranges 
and lightning interferences in arc welding. A camera data 
interface recorded the images and converted them into .jpg file 
formats. 

 

FIGURE 5: CONCEPTUAL ARCHITECTURE OF THE DH-SM 
FOR A WAAM CASE 

 

 
FIGURE 6: EXPERIMENTAL ENVIRONMENT INCLUDING 
WIRE FEEDER, SHIELDING GAS, TIG POWER SOURCE, TIG 
TORCH, ROBOT, AND HDR CAMERA 

 
The other module in CPS is the Digital Twin. This module 

paves the way for creating a digital twin of the physical entities 
by applying 3D visualization, data analytics, physics-based 
models, data-driven models (machine learning), and surrogate 
models. A DT of the WAAM process was built to improve 
product quality and production efficiency. Real-time monitoring 
data was collected to consistently achieve the mapping and 
interaction between data and models to form the real-time 
interaction between the physical and digital twins. Then the 
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process is analyzed. Firstly, a DT with 3D visualization of the 
WAAM process is implemented. Secondly, as shown in Figure 
7, residual stress modeling and Crystal Plasticity Finite Element 
Simulation Method (CPFEM) are employed to model the 
physical phenomena and the microstructural evolution of the 
parts. Thirdly, data-driven approaches are employed for real- 
time process monitoring. Finally, surrogate models that aim to 
convert the computationally expensive models to a reduced- 
order model are employed to enhance the DT of the process. 
Figure 8 shows an example of real-time anomaly detection using 
machine learning. 

 

 
(a) 

 

 
(b) 

FIGURE 7: DT COMPONENTS FOR WAAM PARTS: (a) 
RESIDUAL STRESS AND (b) CPFEM 

 
The data collection is realized by the sensors and data 

acquisition devices. By combining the real-time process, process 
design, and process simulation, the DT elements are constructed. 
Then, by combining the historical and real-time data, online 
process monitoring is enabled by data analysis. In case of any 
abnormality, the correction process parameters will be timely 
sent back to the physical entity. Thus, the quality prediction and 
control of welding of ship group products are realized. 

 
4.2 Avatar-User System for the WAAM Case 
In the AUS, the concept of Human-in-the-Loop is ultimately 
realized by the human DT and enhanced user modules. An 

enhanced user module can be categorized into edge users and 
cloud users. The edge EU benefits from AR technology through 
XR glasses and suits to perform remote inspection and training. 
Using the XR technology, the users can access real-time data 
such as the process parameters, online video of the process 
including high dynamic range images, thermal images and CCD 
cameras, simulations, and models. In remote locations, the users 
can have the same level of access to the system through XR and 
VR. The cloud-enhanced users at the cloud layer can modify the 
process where needed, change the process parameters based on 
their cognition and the real-time data acquired for the sensors, 
and perform a real-time inspection of the process and the parts. 
In addition, stakeholders of an enterprise can also have direct 
access to the physical entities and the process and investigate the 
possible enhancements. Figure 9 demonstrates the edge and the 
cloud-enhanced users. Both types of users can access to real-time 
process parameters, computational analysis of the process, and 
microstructural analysis of the parts. One of the significant 
advantages of EU at the edge and the cloud layer is that it 
enables easy training sessions for expert users to teach the 
process to beginners remotely and in real time. 

 

(a) 
 

 
(b) 

FIGURE 8: MACHINE LEARNING FOR REAL-TIME ANOMALY 
DETECTION (a) NORMAL AND (b) ABNORMAL BEADS [32] 

 
The Human Digital Twin module includes a craft avatar for 

every individual, including operators, technicians, engineers, 
trainers, and trainees at the edge layers and managers and 
stakeholders at the cloud layers. These craft avatars can be used 
for different purposes, including but not limited to training, real- 
time monitoring, control, and maintenance. This becomes 
advantageous, particularly in the case of complicated processes 
like WAAM, where the window map is narrow, meaning that it 
is challenging to find the near-optimal process parameters. This 
is also true for most metal AM processes due to low process 
repeatability and part reproducibility [19]. As shown in Figure 
10, three types of interactions are foreseeable, human, avatar, 
and human-avatar in the HDT module. Human interactions are 
already well-established and available in the industry; however, 
the  other  two  types  are  still  to  be  developed.  These 
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communications have numerous applications, such as training, 
where a beginner is taught fundamentals, and concepts of the 
WAAM process or an apprentice is trained to become an 
operator. 

 

(a) 
 

 
(b) 

FIGURE 9: ENHANCED USERS AT (a) THE EDGE LAYER (b) 
THE CLOUD LAYER 

 

 
 

The architecture proposed in this paper, DH-SM, can be 
used to support the integration of physical assets with humans 
and digital twins. It will help enable real-time, collaborative 
decision-making between humans, software, and machines. For 
example, when evaluating a new product design, information 
about the product’s physical features, manufacturing 
requirements, and customer experience must be processed 
concurrently [34]. Moreover, the DH-SM architecture can 
support the creation of an immersive environment that allows 
customers to be effectively involved in manufacturing. 

However, due to current standards and technology 
limitations, implementing the DH-SM architecture still has 
some challenges. First, realizing the real-time bidirectional 
information flow is demanding. For example, the 3D-rendered 
object of a human in an immersive environment must take place 
in real time, currently, however, implementing such a real-time 
interaction is challenging because of the huge amount of data that 
must be collected and processed. In addition, since these 
interactions occur in a wireless environment, the low data 
transmission rate is another issue. Advanced wireless techniques 
(e.g., 5G and 6G) should be investigated and developed. To 
achieve this, the interfaces between the architecture modules 
must be implemented. Second, the concept of “Plug and Play” is 
difficult to achieve. Software or devices need to work perfectly 
when first used or connected without the need for 
reconfiguration or adjustment by the user. Interoperability 
standards are required to support these functionalities and 
integration. The interface specifications and communication 
protocols are not yet well developed. Third, cybersecurity is an 
ongoing issue that must be linked to those interoperability 
standards because the abundance of personal data and immersive 
content is prone to cyber threats [35]. Fourth, many 
manufacturers, especially Small and Medium-sized Enterprises 
(SMEs), lack the infrastructure needed to use cloud-based 
standards such as open platform communication unified 
architecture (OPC-UA). 

To provide a sense of realism to users, new immersion 
methods will also be needed. These methods will provide users 
with a more accurate perception of real manufacturing activities 
with comfort and intuition. For this to be realized, immersive 
modeling techniques should be advanced. Common interactive 
technologies include XR and human-computer interface. 
Current issues with these technologies include (1) the 
interactive devices are not lightweight and transparent enough, 
(2) the cost of the devices is high, and (3) there are also 
associated costs for learning and using these devices. In 
addition, the user’s mental/physical health and socio-economic 
impacts must also be considered. We believe the existing 
sustainable and smart manufacturing guidelines can be 
extended and updated for DH- SM. 

FIGURE 10: INTERACTIONS BETWEEN THE HDTS AND EUS 
 
 
5. DISCUSSION 

One of the main incentives for DH-SM is realizing the 
concept of non-contact and remote manufacturing, which is one 
of the fast-paced advancing technologies. Metaverse technology 
adds an immersive experience to the configuration layer of 
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cyber-physical systems. In manufacturing, the Industrial 
Metaverse’s purpose would be to speed up processes like repairs, 
maintenance, starting new manufacturing lines, remote 
monitoring, control, and new user/manager training through 
simulation. [36]. More efforts will be needed to ensure the 
seamless and secure communication and synchronization 
between digital twins, remote human users, and physical 
systems for non-contact manufacturing. 

 
6. CONCLUSION 

 
We believe that the DH-SM concept and the proposed 
architecture are particularly relevant today, especially for 
manufacturing processes that require human intervention. Since 
these manufacturing processes include humans at every level, 
taking advantage of the human’s perception, cognition, and 
intuition is essential. We believe the DH-SM architecture will 
provide real industrial impacts by managing a user’s 
involvement in the evolving, complex, and dynamically 
changing manufacturing environment. Accordingly, it will 
change the manufacturing landscape and can guide future 
research directions for developing standards, reference 
architectures, technologies; researching necessary components; 
and implementing case studies. In further studies, we aim to 
develop the presented conceptual framework with different 
experimental plans and physical entities to demonstrate the 
capabilities and efficacy of the proposed DH-SM architecture. 

 
DISCLAIMER 

Certain commercial software systems are identified in this 
paper to facilitate understanding. Such identification does not 
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