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A B S T R A C T   

Convolutional neural network (CNN), a type of deep learning algorithm, is a powerful tool for analyzing visual 
images. It has been actively investigated to monitor metal additive manufacturing (AM) processes for quality 
control and has been proven effective. However, typical CNN algorithms inherently have two issues when used in 
metal AM processes. First, in many cases, acquiring datasets with sufficient quantity and quality, as well as 
necessary information, is challenging because of technical difficulties and/or cost intensiveness. Second, 
determining a near-optimal CNN model takes considerable effort and is time-consuming. This is because the 
types and quality of datasets can be significantly different with respect to different AM processes and materials. 
The study proposes a novel concatenated ensemble learning method to obtain a flexible and robust algorithm for 
in-situ anomaly detection in wire + arc additive manufacturing (WAAM), a type of wire-based direct energy 
deposition (DED) process. For this, data, as well as machine learning models, were seamlessly integrated to 
overcome the limitations and difficulties in acquiring sufficient data and finding a near-optimal machine learning 
model. Using inexpensively obtainable and comprehensive datasets from the WAAM process, the proposed 
method was investigated and validated. In contrast to the one-dimensional and two-dimensional CNN models’ 
accuracies of 81.6 % and 88.6 %, respectively, the proposed concatenated ensemble model achieved an accuracy 
of 98 %.   

1. Introduction 

Metal additive manufacturing (AM) can be categorized into powder- 
bed fusion (PBF) and direct-energy deposition (DED) processes. DED can 
be further classified into powder-fed and wire-fed processes, which in 
turn can be classified according to energy source electron beam-, laser-, 
ultrasonic-, and arc-based systems [1]. This study focuses on an arc- 
based system known as wire-arc additive manufacturing (WAAM), 
which utilizes the wire as the feeding stock, welding arc as the energy 
source, and robot arms or computer numerical control (CNC) router for 
movement [2]. WAAM has the following advantages: (1) inexpensive 
setup, (2) high deposition rate (up to 10 kg/h), and (3) wide selection of 
materials [2,3]. In addition, the energy efficiency of WAAM is >90 %, 
whereas that of the laser/electron beams is 5–20 % [4–6]. WAAM can be 
further classified into gas metal arc welding (GMAW), gas tungsten arc 
welding (GTAW), and plasma-based processes [7]. 

Metal AM has inherent uncertainties and complexities because it is a 
multi-scale, multiphysics process [8]. For instance, non-equilibrium 
WAAM thermal cycles and layer-by-layer stacking mechanisms induce 
defects that negatively affect the geometry, surface quality, micro
structure, and mechanical properties [9]. This contrasts with the ulti
mate goal of metal AM, which is to fabricate defect-free parts with 
desirable structures applicable as end-user products. Numerous factors, 
such as process complexities and instabilities, contribute to the quality 
and microstructure of an AM part, which can be controlled by aligning 
process parameters with optimized values through in-situ monitoring 
and control. Although the critical factor in a successful AM process is 
monitoring and feedback control [10], in-situ data acquisition for 
closed-loop control and detecting material discontinuities have been 
highlighted as crucial barriers to AM implementation as well as a pri
ority area for research and development [11]. 

Design of experiments (DOE) is a commonly used approach for 
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process control and window-map generation for metal AM processes 
because of its success rate and efficiency. However, it cannot be used for 
in-situ monitoring and control since several experiments must be con
ducted, which requires considerable resources and time. Machine 
learning (ML) approaches have gained increasing attention for over
coming the limitations of DOE [12]. ML algorithms, in general, can be 
divided into supervised, unsupervised, and reinforcement learning [13]. 
In supervised learning, each input datum is labeled with an output, and 
the training set consists of many input-output pairs [14]. Unsupervised 
learning infers unlabelled data and can find hidden patterns or similar 
group data (i.e., clustering) in a given dataset and perform anomaly 
detection [15,16]. In contrast, reinforcement learning is a semi- 
supervised ML paradigm that employs agents to make decisions to 
maximize the cumulative reward. It can be implemented for anomaly 
detection when the problem is formulated as a Markov decision process 
(MDP) [17]. 

ML techniques are considered a viable solution to establish the re
lationships among process, structure, and property for AM control, 
called the “design rule.” Since process parameters significantly affect 
microstructures and mechanical properties, reliable and extensive 
datasets for training are required. The vast number of process parame
ters results in the “curse of dimensionality”. For instance, since the 
number of process parameters in a powder bed fusion process is >100, 
the possible combinations of process parameters exponentially increase, 
as shown by Mani et al. [18]. Moreover, acquiring datasets for high- 
performance materials (e.g., nickel- or titanium-based alloys) would 
be cost-intensive. A flexible and robust ML algorithm can work around 
the need for large datasets and thus is necessary for anomaly detection in 
metal AM processes. 

To achieve real-time anomaly detection, convolutional neural net
works (CNN), a form of supervised machine learning algorithms, have 
been widely studied [12]. For example, two CNN algorithms that could 
obtain accuracies of 95.5 % [19] and 97.5 % [20], respectively, were 
successfully developed for real-time anomaly detection. However, these 
typical CNN algorithms have two inherent issues. First, in many cases, 
acquiring datasets of reliable quality after sensitivity analysis is time- 
consuming and cost-intensive due to the requirement of expensive re
sources. Second, although necessary datasets are obtained, finding a 
near-optimal CNN model is time-consuming because CNN models 
significantly depend on datasets’ types and quality, which can differ 
considerably with variations in AM processes and materials. 

Ensemble learning (EL) is a viable solution because it uses multiple 
learning algorithms to obtain better predictive performance than any 
constituent learning algorithms alone [21]. It compensates for poor 
learning algorithms by performing additional computations. Although 
EL algorithms are widely used in other manufacturing processes, to our 
knowledge, they have neither been investigated nor applied in metal AM 
processes because they lack available datasets [12]. For example, in the 
case of the powder bed process to generate a dataset, a high-resolution, 
high-speed thermal camera with an appropriate field of view is required 
to capture clear melt-pool images because of the rapid solidification 
[22], and AM-grade Inconel 625 powder, costs double the price of its 
wire counterpart [23]. For these reasons, datasets for EL investigations 
are lacking in the case of laser- and powder-based AM processes. 

This study proposes a novel data-fused, concatenated EL method to 
develop a flexible and robust algorithm for in-situ anomaly detection in 
AM. This algorithm involves four stages: data pre-processing, data 
preparation, pretraining, predictions, and concatenated ensemble. In the 
data pre-processing stage, voltage and WAAM video data are collected, 
transformed into 1D (one-dimensinoal) and 2D (two-dimensional) for
mats, resized, and labeled. Data preparation involves synchronizing and 
splitting the dataset, training CNN models, and validating their accu
racy. In the pretraining and predictions stage, pre-trained CNN models 
are used to achieve varying accuracies based on hyperparameters and 
training time. Finally, in the concatenated ensemble stage, prediction 
results from these models are combined, and six binary classifiers are 

applied. The final prediction is made through a voting-based ensemble, 
incorporating K-fold cross-validation to mitigate model bias. 

The proposed model can effectively detect anomalies in the WAAM 
process, namely, bead cut and balling effects. This model takes advan
tage of the 1D and 2D process signatures to detect the anomalies which is 
expected to enhance the predictive performance of the model. The bead 
cut anomaly signifies a separated bead formation caused by discontin
uous deposition of a feeding material on a substrate, and the balling 
anomaly indicates an irregular bead surface contour owing to the sep
aration of small spherical balls from the melt pool [19]. Moreover, data 
and ML models were readily integrated to overcome the limitations and 
difficulties in acquiring sufficient data and finding a near-optimal ML 
model. The proposed method is investigated and validated by taking 
advantage of the inexpensive and comprehensive datasets from a 
GTAW-based WAAM process. In contrast to the 1D and 2D CNN models’ 
accuracies of 81.6 % and 88.6 %, respectively, the data-fused, concat
enated ensemble model obtained an accuracy of 98 %. The remainder of 
this paper is organized as follows. Section 2 discusses related work on 
the state of ML in AM. The data-fused, concatenated ensemble algorithm 
is proposed in Section 3, followed by the deliberation of its results and 
validations in Section 4. Finally, concluding remarks are presented in 
Section 5. 

2. Related work 

The studies conducted in the field of ML for anomaly detection can be 
categorized into four main categories: (1) non-real-time, data-driven ML 
methods, (2) non-real-time CNN-based methods, (3) real-time CNN- 
based methods, and (4) EL-based methods. This section discusses the 
performance and limitations of the state-of-the-art methods. 

Non-real-time ML methods were applied to design experiments with 
large labeled datasets that used artificial neural networks (ANN) for 
bead geometry predictions and parameter optimizations. Manan in
troduces a Federated Learning (FL) approach with U-Net architecture for 
privacy and data availability, showcasing its superior defect detection 
compared to individual learning and highlighting FL’s promise in 
privacy-preserving collaborative ML for AM process control with a mean 
intersection over union of 0.807. [24]. Mahmoudi et al. devised a 99.6 % 
accurate anomaly detection framework for L-PBF AM by analyzing 
thermal signatures of melt pools, employing image segmentation, clus
tering, spatial statistics, and classification techniques. [25]. Tapia et al. 
create a Gaussian process-based model to predict porosity in metallic 
parts produced via selective laser melting, demonstrating its effective
ness through a case study on 17–4 PH stainless steel manufacturing. 
[26]. Khanzadeh et al. developed a porosity prediction method in ad
ditive manufacturing by analyzing melt pool characteristics using su
pervised machine learning, with K-Nearest Neighbor (KNN) achieving 
the highest accuracy (98.44 %) in classifying melt pools, outperforming 
traditional metrics and enabling broader applications in similar AM 
processes. [27]. Aminzadeh et al. develop a monitoring system for laser 
powder-bed fusion quality using Bayesian inference, creating a unique 
dataset for in-situ visual images of the process, which is then used to 
train a Bayesian classifier to detect defective build layers or regions in 
real-time with an accuracy of 89.5 % [28]. Poudel et al. use high- 
resolution X-ray computed tomography to analyze and classify volu
metric defects in laser powder bed fused Ti-6Al-4 V by quantifying nine 
morphological parameters, achieving high accuracy in defect classifi
cation through a decision tree (>98 %) [29]. Moreno et al. present a 
three-stage approach using random forests to automatically classify 
porosity in metallographic data, achieving an accuracy of 94.41 % and a 
low out-of-bag error, demonstrating high precision for porosity classi
fication in metallic additively manufactured components. [30]. 
Although these approaches effectively predict weld bead geometry, they 
are generally limited to using 1D process signatures (e.g., power and 
acoustic). Furthermore, they could not provide a scheme for real-time 
monitoring and control. 
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Non-real-time CNN-based methods use the capability of CNN to 
process images that tend to show good performance with offline images. 
For instance, Khumaidi et al. developed a Gaussian kernel-based clas
sifier that could detect four defect types with an accuracy of 95.83 % 
[31]. Hou et al. implemented a three-stage deep neural network (DNN) 
that used the pre-processed GDXray data set [32] as input and a sliding 
window for the final classification, achieving an accuracy of 91.84 % 
(90.27 % precision and 92.78 % recall) [33]. Zhu et al. used a combi
nation of CNN for high-level feature extraction and random forest (RF) 
for final classification, which achieved an accuracy of 98.75 % [34]. 
Park et al. used a two-stage model to classify non-pattern weld defects 
using 32,000 sample images, wherein the first stage, the region of in
terest (RoI) was detected, followed by the classification of these RoIs 
[35]. Jiang et al. used the improved pooling strategy and feature se
lection for weld defect recognition using the ReliefF algorithm, which 
achieved an accuracy of 91.71 % [36]. Liu et al. developed an anchor- 
free region-based convolutional neural network (AF-RCNN), which 
resulted in a prediction accuracy of 95 % compared to Faster-RCNN 
[37]. Although these algorithms utilize cutting-edge CNN techniques, 
they have not been investigated for real-time monitoring and control. 
Experimental samples were used to classify the weld defects and predict 
the bead geometry after welding. 

In contrast, CNN models can be effective for the real-time monitoring 
and control of AM. Scime et al. proposed a multi-scale patch detector for 
anomaly detection fidelity that was trained with 70,000 images from a 
PBF process and attained 85 % and 93 % differentiation and detection 
accuracy, respectively [38]. Caggiano et al. suggested a bi-stream deep 
convolutional network for fault detection in PBF with an accuracy of 
99.4 % [39]. Reisch et al. proposed an unsupervised multivariate pre
dictor using 1D and 2D process signatures to reduce labeled dataset 
deficiency [40]. Lyu et al. developed a CNN model to extract features for 
a physically labeled dataset that contained 17,595 images and recorded 
an accuracy of 90.08 % [41]. Cho et al. proposed a real-time anomaly 
detection algorithm that used weld pool images as inputs and detected 
bead cuts and balling abnormalities with a prediction accuracy of 98 % 
[19]. Lee et al. developed a real-time CNN monitoring console that 
converts voltage images into time-series waveshape data to classify 
normal and abnormal beads [42]. Kim et al. developed CNN-based real- 
time monitoring that predicts anomalies for the WAAM process using 
molybdenum, consisting of three modules: image conversion, CNN 
prediction, and real-time tracking [20]. Despite the improved perfor
mance of these models, acquiring sufficient and reliable data and 
determining a near-optimal model proved time-consuming and cost- 
intensive. Thus, robust and flexible algorithms are necessary to over
come these limitations in the current CNN models. 

EL methods can address the adequately labeled dataset deficiency 
challenge by implementing transfer learning. The main advantage of EL 
is that it can improve the performance of an ML base learner. Although 
some studies have included EL as the basis for anomaly detection, this 
area remains mostly unexplored in AM. For instance, Li et al. developed 
an EL model to predict the surface roughness in extruded AM processes 
comprising RF, AdaBoost, CART, SVR, RR, and RVFL as the base 
learners, which showed better accuracy than the ensemble [43]. Khan 
et al. developed a RF classifier model for layer-wise monitoring in metal 
additive manufacturing, achieving a 99.98 % detection accuracy for 
anomalies, which were validated using optical tomography (OT) imag
ing and correlated with defects from computerized tomography (CT) 
data. [44]. Zhang et al. developed an enhanced ensemble learning pre
diction model for predicting the yield stress of lattice structures in ad
ditive manufacturing by using data from finite element simulation, 
integrating a Boosting module and feature transformation methods to 
improve prediction accuracy (R-squared of 0.844) and generalization, 
reducing preparation time and testing costs, and offering valuable in
sights for industrial inspection and evaluation of such structures. [45]. Li 
et al. introduced a cost-efficient EL approach (Bagging of Trees, Gradient 
Boosting, Random Forest) with accuracies around 99 % using synthetic 

3D point clouds to detect defects in additively manufactured objects, 
outperforming existing methods and demonstrating the applicability of 
their scheme to in-situ defect detection during additive manufacturing 
with the aid of 3D data acquisition [46]. However, these studies mainly 
used rudimentary EL models that operated 1D process signatures. Thus, 
a robust and flexible EL algorithm that uses both 1D and 2D process 
signatures and multiple classifiers simultaneously can be a better design 
for prediction. 

3. Proposed methodology 

Fig. 1 shows the proposed data-fused, concatenated EL algorithm 
that can flexibly and robustly detect anomalies from insufficient data
sets, less accurate ML models, and classifiers. The procedure for imple
menting the proposed algorithm in the WAAM process is discussed in 
this section. It consists of four stages: data pre-processing, data prepa
ration, pretraining and predictions, and concatenated ensemble detailed 
as under:  

• Step 1 (Data pre-processing): First, voltage data and WAAM videos 
were collected from specially designed experiments. Second, the 
voltage data were converted into voltage image data, and the WAAM 
video was partitioned into 2D frame data. Third, these data were 
resized and cleaned according to the requirements for uniformity. 
Fourth, both data types were labeled with predefined classes. As a 
result, the raw WAAM data were converted into 1D and 2D pre- 
processed data.  

• Step 2 (Data preparation): Each pre-processed voltage image data was 
synchronized to the corresponding 2D frame data to prepare a uni
fied dataset. The unified dataset was consequently divided into 
training and test data with a ratio of 90:10, respectively. 30 % of the 
training data was set aside for the validation dataset. With the 
remaining 70 % of training data, the CNN models were trained. The 
validation data with matching labels was used to check the model’s 
training accuracy. On the other hand, the test data without labels 
was used to test the models to obtain the predicted labels. The pre
dicted labels thus were compared to the actual test labels to deter
mine the final accuracy of the models.  

• Step 3 (Pretraining and predictions): Three pre-trained CNN models 
were individually trained from the voltage dataset, whereas four 
CNN models were trained from the 2D dataset. The models can 
achieve different accuracies depending on the hyperparameters and 
train time. For investigation, four ranges of accuracies were selected 
for each model, and their corresponding weights were preserved.  

• Step 4 (Concatenated ensemble): The prediction results of the pre- 
trained CNN models for 1D and 2D data were concatenated 
together, forming a vector of probabilities. Six distinct binary clas
sifiers were employed in this stage that uses the concatenated 
probability vector as the input. Among the six classifiers, the four 
most accurate classifiers were selected for the final prediction using a 
voting-based ensemble. Second-order voting was also performed to 
select the final concatenated ensemble prediction outcome. K-fold 
cross-validation was incorporated to reshuffle the dataset into train 
and validation to avoid model bias. 

3.1. Step 1: Data pre-processing 

A GTAW-based WAAM process was used to deposit weld beads on a 
low-carbon steel substrate fed from a wire feeder; the feeder used 
Inconel 625 wire to create the weld beads. The experimental setup 
consisted of a Fanuc ARC Mate 120ic robot arm with a Fanuc R-30iA 
controller, tungsten inert gas (TIG) torch, and Miller Dynasty 400 GTA 
welding power source. The detailed setups can be found in previous 
studies [19,20,47]. The following stages describe the entire data- 
preparation process, as shown in Fig. 4. 

D.B. Kim et al.                                                                                                                                                                                                                                  



Journal of Manufacturing Processes 112 (2024) 273–289

276

Bead deposition on the substrate was initially designed as an 
experimental trial controlled by experimental parameters. In this case, 
current (A), wire feed rate (cpm), and welding/travel speed (cpm) were 
considered variable parameters. Two process parameters—a Wire feed 
rate of 70–300 cm per minute (cpm) and a travel speed of 10–100 cpm 
with steps of 25 and 10, respectively—were changed in order to create 
the experiments. A constant current of 200 A (A) was used. As indicated 
in Table 1, each set of settings created 100 distinct trials for each ma
terial. As a result, 300 testing for the three materials LCS, STS, and INC 
were conducted. The experimental setup’s design is seen in Fig. 2. The 
central composite design (CCD) suggested by the National Institute of 
Standards and Technology (NIST) Handbook was used to design the 
experiments. Experimental parameters, such as shield gas, which used 
70 % argon and 30 % helium, and arc length set to 5 mm, were kept 
constant throughout the experiment. The detailed experimental condi
tions can be found in Lee et al. [47]. 

The creation of the voltage dataset consisted of four steps: (1) voltage 
data acquisition, (2) voltage image data conversion, (3) voltage image 

data resizing, and (4) voltage image data labeling. Each step is described 
in detail below:  

• Voltage data acquisition: The voltage data were measured by the 
Miller Insight ArcAgent Auto current voltage sensor and collected by 
the Miller Insight Centerpoint current voltage interface. These data 
were collected as numerical time-series data at a 1 kHz sampling rate 
that was stored in a .txt file. All 25 trials generated 25 .txt files.  

• Voltage Image data conversion: Each voltage data point was plotted as 
a graph showing the change in voltage values with respect to time, 
which essentially converted the numerical data to voltage image 
data. This process was performed because feature extractions 
become difficult in numerical form owing to extensive fluctuations. 
In comparison, image-based detection often employs advanced 
image classification networks such as CNN. The voltage image data 
represents a chart displaying variations in voltage values over time, 
reflecting the time-series nature of the voltage data. The voltage 
values were first defined to perform image conversion. Suppose, 
vm be the mth voltage value for a particular time instant T. Hence 
when T = 1/1000, the first voltage is observed that is v1. Hence, vm is 
the voltage value observed at T = m/1000. Assuming Vw,i,k to be the 
kth set of voltage values, i the interval between the current and the 
next snapshot, and w the bandwidth defined as the duration between 
the initial and final time point in a particular snapshot, then Vw,i,k can 
be defined as Eq. 1. For instance, V3,1,1 indicates 3000 voltages from 
T = (1/1000)→(3000/1000), similarly, V3,1,2 and V3,1,3 indicate 
3000 voltages from T = (1001/1000)→(4000/1000) and T =

(2001/1000)→(5000/1000), respectively. The bandwidth and in
terval must be decided logically because too small a bandwidth or 
interval will result in an overlap in the values of vm. In this case, the 
bandwidth and intervals are maintained at 3 and 0.5, respectively. 

Fig. 1. Implemented data-fused, concatenated EL algorithm.  

Table 1 
Process parameters and bead numbers considered for the experiments.  

Wire feed rate 
(cpm) 

Travel speed (cpm) 

10 20 30 40 50 60 70 80 90 100  

75  1  11  21  31  41  51  61  71  81  91  
100  2  12  22  32  42  52  62  72  82  92  
125  3  13  23  33  43  53  63  73  83  93  
150  4  14  24  34  44  54  64  74  84  94  
175  5  15  25  35  45  55  65  75  85  95  
200  6  16  26  36  46  56  66  76  86  96  
225  7  17  27  37  47  57  67  77  87  97  
250  8  18  28  38  48  58  68  78  88  98  
275  9  19  29  39  49  59  69  79  89  99  
300  10  20  30  40  50  60  70  80  90  100  
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Vw,i,k =
{

vm : m ∈ Mw,i,k
}

(1)  

where Mw,i,k is the set of m instances, and consequently, can be denoted 
by Eq. 2. 

Mw,i,k = {x + (k − 1)(1000i) : x ∈ ℕ , 1 ≤ x ≤ 1000w } (2)  

where x is a certain time point. 
Fig. 3 pertains to Vw,i,k with w = 3 and i = 0.5. In this context, the 

horizontal and vertical axes represent T and vm, respectively, at time T. 
Since w = 3, each element of Vw,i,k encompasses a set of 9000 voltage 
values. For example, V3,0.5,1 is the initial dataset and encompasses v1,v2,

…, v9000. Given i = 0.5, V3,0.5,2 comprises v1501, v2, …, v10500. It’s note
worthy that any two consecutive voltage value datasets share 7500 

voltage values, owing to the parameters w = 3 and i = 0.5.  

• Voltage Image data resizing: Upon defining the Vw,i,k values, each Vw,i,k 
undergoes transformation into voltage image data, representing 
time-series waveforms. Notably, each Vw,i,k component exhibits 
varying minimum and maximum vm values, leading to differences in 
image sizes based on these extrema. However, since CNN necessi
tates uniform image sizes so that, features can be extracted effort
lessly, adjustments are made to the vertical axes of the images to 
ensure that they all share the consistent dimensions of 224 × 224 

Fig. 2. Gas tungsten arc welding-based WAAM experimental setup.  

Fig. 3. Voltage image data conversion process with w = 3 and i = 0.5 [20].  Fig. 4. Steps of 1D and 2D data pre-processes for the dataset preparation.  

D.B. Kim et al.                                                                                                                                                                                                                                  



Journal of Manufacturing Processes 112 (2024) 273–289

278

pixels. The size of 224 × 224 was selected primarily for two reasons. 
First, most CNN architectures for pre-trained models uses this size for 
feature extraction and classification process. Second, it is considered 
an optimal size that sufficiently contains time and spatial context of 
an image for the purpose of prediction. Hence, resizing should al
ways be done such that no meaningful information is lost from the 
concerned images, which was done by adaptive resizing for each 
Vw,i,k snapshot. Adaptive resizing was done by setting a range, that is, 
vrange = vmax − vmin. Ranges for each snapshot are variable in nature. 
If a snapshot has a small range compared to another, it automatically 
re-adjusts to incorporate the larger voltage value, maintaining the 
exact image size.  

• Voltage Image data labeling: All the image snapshots were labeled 
manually by two professionals using their expert judgment into three 
distinct classes Normal, Abnormal, and Unclassified. Beads with 
stable and unimpeded voltage patterns were classified as Normal, 
whereas fluctuating and irregular data patterns were labeled as 
Abnormal. Unclassified types were patterns that started as normal 
but transitioned to abnormal or vice-versa. Any bead deposition’s 
starting and ending points were also labeled as unclassified because 
the welding speed was zero in those positions. For proper training, 
the output labels need to be balanced. If a particular class of data 
becomes very high for some reason, the network tends to get biased 
toward that class. This can be avoided by implementing under- 

Fig. 5. Voltage and HDR images in the cases of normal (left) and abnormal (right) beads.  

Fig. 6. Concatenated predictions.  
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sampling, which reduces the size of the majority class to balance the 
minority class [50]. The final voltage image data set was prepared 
with only image snapshots labeled as Normal and Abnormal, dis
carding the unclassified class. 

The 2D datasets consisted of three steps: (1) frame data acquisition, 
(2) frame data cropping, and (3) frame data labeling. Each step is 
described in detail below:  

• Frame data acquisition: The WAAM process was captured by a 
Weldvis WL2-H7ML-M35 high dynamic range (HDR) camera at a 
sampling rate of 50 frames per second (fps), tracking the movement 
of the TIG torch from start to end. In this case, each DoE generated 
one mp4 file that is partitioned into .jpg while maintaining the same 
sampling rate. This .jpg frame data are subsequently cleansed, 
disposing of any image obstructed by shadow, smoke, or any form of 
signal noise.  

• Frame data cropping: Cropping was performed on frame images to 
focus on the presently associated melt-pool image, dismissing any 
form of noise and irregularities in the raw data. Each frame cut was 
obtained as an image of size 224 × 224 pixels. Because the 224 × 224 
image contains unnecessary areas and noises unrelated to the 
anomaly detection in the WAAM process, cropping was performed to 
remove these. Cropping was performed based on the average co
ordinates obtained using the You Only Look Once (YOLO) model, 
which is an object detection technique.  

• Frame data labeling: Data labeling for frame data was performed in a 
manner similar to that for voltage data. Two professionals also 
labeled the frame data with an unbiased expert perception. Each 

frame was labeled as normal, abnormal, or unclassified. In the 
normal case, the shape of the bead made through WAAM is normal, 
whereas in the abnormal case, the shape of the bead is cut (e.g., 
balling effect) or thin. The unclassified images include several issues, 
such as the mixing of normal and abnormal images, preheating, and 
processing start/stop images. 

3.2. Step 2: Data preparation 

The final dataset was prepared by synchronizing both the image and 
frame data to a single metadata set. Synchronization was performed 
after each type of voltage data image (1D) and frame (2D) data were 
individually labeled. Because each frame data is sampled every 
1/50 seconds and the voltage data are sampled at 1/1000 s, each frame 
data consists of 20 voltage values which was synchronized using 
considering each time stamp of the frame data. Hence, any form of la
tency was avoided all together. All 20 voltage values were labeled as 
those of the frame data label. The same was also the case for the voltage 
image data, where the each data were labeled as normal only if all the 
voltage values corresponding to the voltage image data were labeled 
normal. The same was the case for the abnormal class; otherwise, the 
voltage image data are removed from the dataset. In doing so, it was 
found that the voltage image data label tended to coincide with the 
corresponding frame data label. The total number of frame cuts used in 
this process was 29,089. Among them, 10,032 frame cuts were classified 
as normal, whereas 12,596 and 6461 frame cuts were classified as 
abnormal and unclassified, respectively. The total number of data points 
in the training sets was 25,666, consisting of normal (8853), abnormal 
(11,136), and unclassified (5677) images. The test set consisted of 3423 

Fig. 7. 1D model ensemble.  

Fig. 8. 2D model ensemble.  

D.B. Kim et al.                                                                                                                                                                                                                                  



Journal of Manufacturing Processes 112 (2024) 273–289

280

images: normal (1179), abnormal (1460), and unclassified (784) 
images. 

Fig. 5 shows two typical examples of “Normal” and “Abnormal” 
classes of input metadata. In the case of the metadata labeled normal, 

the bead was found to be stable and monotonic, and the voltage image 
pattern was smooth and unfluctuating. The 2D frame data also show no 
signs of balling or bead-cut defects. In contrast, for the abnormal class of 
metadata, the bead formed was unstable and full of irregularities, the 

Fig. 9. Data fusion EL.  

Fig. 10. Accuracy of 1D CNN, 2D CNN, 1D ensemble, 2D ensemble, Data fusion ensemble, and data-fused, concatenated ensemble.  
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voltage (1D) profile showed significant fluctuations, and the 2D frame 
data showed signs of balling. 

3.3. Step 3: Pretraining and predictions 

The difference between the proposed and previous methods is that 
data fusion was used with two types of data (i.e., voltage images and 2D 
HDR frame cuts). In contrast, existing methods use single data in an 
ensemble architecture. Prior to the ensemble, the CNN models were 
trained to create a new input variable. From the voltage data set, Den
seNet121, DenseNet169, and InceptionResNetV2 were individually 
trained. DenseNet achieved the highest prediction accuracy and pre
diction time [20]. CNN models, such as DenseNet121 (DN121), Dense
Net169 (DN169), MobileNetV2 (MNV2), and InceptionResNetV2 
(IRV2), were pretrained on a large dataset consisting of numerous im
ages and output classes for the 2D dataset. MobileNetV2 for 2D data 
showed the best accuracy with the minimum prediction time [19]. In 
addition to storing the highest accuracy weights (e.g., 99 %), weights of 
50 %, 80 %, 90 %, and 95 % were also preserved for comparison and 
validation. 

3.4. Step 4: Concatenated ensemble 

This step aimed to create a new dataset that could be used for the 
concatenated ensemble for better prediction. The CNN models in the 
previous steps used voltage (1D) images and 2D frame cuts as the input 
datasets for classification. The concatenated dataset defined in this 
subsection is different because instead of using images, it uses numeric 
values for prediction. This resulted in two inherent advantages. First, 
because computation on numeric data is far more relaxed than that of 
images, it substantially reduces the processing time. Second, the sheer 
amount of data in the voltage image dataset is much more than the 
numeric dataset, which is also computationally taxing. 

In the previous steps, it was seen that voltage (1D) images and 2D 
frame cuts data provide the probability of certain data occurring in a 
particular class rather than giving the final classification. Once the 
pretrained model is completed, a set of these probabilities is obtained for 
each image. Then, an ensemble is performed based on the prediction 
probability through CNN. The probability that a specific dataset belongs 
to a particular class was calculated. The dataset was used to create a new 
link matrix, that is, the concatenated dataset. A concatenated dataset 
was created using a concatenated matrix of these probabilities. Suppose 
a particular image Img1 has a set of voltage images probabilities as S1D =
{

S1D
class Normal, S1D

class Abnormal
}

and the corresponding 2D voting probabilities 
as S2D =

{
S2D

class Normal, S2D
class Abnormal

}
and if the original class label of Img1 

is l1 then the concatenated data point for Img1 will be, 

[
Img1 l1 S1D

class Normal1 S1D
class Abnormal1 S2D

class Normal1 S2D
class Abnormal1

]

Consequently, for the other images, the dataset follows the format 
shown in Fig. 6, where all the soft voting probabilities become the input 
of the new dataset. 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Img1 l1 S1D
class Normal1 S1D

class Abnormal1 S2D
class Normal1 S2D

class Abnormal1

Img2 l2 S1D
class Normal2 S1D

class Abnormal2 S2D
class Normal2 S2D

class Abnormal2

Img3 l3 S1D
class Normal3 S1D

class Abnormal3 S2D
class Normal3 S2D

class Abnormal3

⋮
Imgn ln S1D

class Normaln S1D
class Abnormaln S2D

class Normaln S2D
class Abnormaln

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Because the probability is concatenated, it is based on soft voting 
cases. For instance, for the same Img1 if the original label is l1 and the 
probability of belonging to the normal class; the abnormal class is 
S1D

class Normal1 ,S1D
class Abnormal1 for the voltage image data, and the probability of 

belonging to the normal class, the abnormal class is S2D
class Normal1 ,

S2D
class Abnormal1 for the 2D data. The dataset is a concatenation of the results 

of different data types. This newly created dataset can be used for 
concatenating ensembles. As seen above, concatenation also creates 
synchronization between the two data types. 

The concatenated ensemble is based on the stacking technique, 
where a group of base learners is trained, and the stacking result of the 
base learner, instead of showing the final classification, is driven as 
input to another group of classifiers. The output of these classifiers was 
considered as the final classification. Note that the ensemble uses several 
classifiers after concatenating the prediction results and proceeds with 
the ensemble, whereas the stacking method uses a classifier after 
stacking the results for the final prediction. 

In this study, the voltage image data and 2D frame cut data were the 
initial inputs that were then passed on to the CNN networks, which 
functioned as base learners. The output of the CNN was then concate
nated to a new dataset and driven to the next layer of the ensemble, 
which in our case are six distinct ML classifiers: logistic regression (LR), 
k-nearest neighbor (KNN), decision tree (DT), Gaussian naive bias 
(GNB), support vector classification (SVC), and random forest (RF). 
These classifiers were chosen because they tend to exhibit better per
formance in binary classification. After classification, the results of the 
top four classifiers with high accuracy were selected from among the six. 
The voting-based ensemble was performed on the results of the selected 
classifier to derive the final prediction class and measure the accuracy. 

We compared four models: (1) Voltage image ensemble model and 
Voltage image CNN model, (2) Frame cut image ensemble model and 

Fig. 11. Correlation between input variables of data set through concatenation using low-accuracy (right) and high-accuracy (left) models.  
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Frame cut image CNN model, (3) a data fusion ensemble that uses 
voltage image data and 2D frame cut image data simultaneously, and (4) 
the proposed data fused, concatenated ensemble. In addition, the data- 
fused, concatenated ensemble model was verified by the k-fold cross- 
validation method, and the value of k was set to 10. When all four 
models were compared, it was observed that the increase in accuracy of 
the proposed method, that is, the data-fused, concatenated ensemble, 
was the highest. 

4. Results and validation 

In this section, we compared the results obtained from four model 
configurations: single source-based CNN: 1D (voltage image)-based CNN 
and 2D (frame cut image)-based CNN, and single source-based 
ensemble: 1D (voltage image) model ensemble and 2D (frame cut 
image) model ensemble, 1D (voltage image)-2D (framecut image) dou
ble source-based ensemble (Data-fused ensemble), and the proposed 1D 
(voltage image)-2D (frame cut image) double source-based concate
nated ensemble (Data-fused, concatenated ensemble). From here on
wards, each model will be referred to by the name in the parentheses for 
ease of nomenclature: 1D-based CNN (1D-CNN), 2D-based CNN (2D- 
CNN), 1D model ensemble (1D-Ensemble), 2D model ensemble (2D- 
Ensemble), 1D–2D double source-based ensemble (Data-fused 
Ensemble), and 1D–2D concatenated ensemble (Data-fused, concate
nated ensemble). As mentioned earlier, the models can perform at 
different accuracies by tuning the hyperparameters. Hence, for ease of 
contrast, the models were divided into four ranges of accuracies:  

• 0 % – 60 % referred to as ≈ 50 %  
• 60 % – 89 %, referred to as ≈ 80 %  
• 90 % – 95 % referred to as ≈ 90 %  
• 95 % – 100 % referred to as ≈ 95 % 

The development environment used Google’s Colab pro- 
environment, including GPU T4, RAM 25.51 GB, CPU Intel(R) Xeon(R) 
CPU @ 2.30GHz. The Google TensorFlow library defined the CNN 
models for training and testing. 

4.1. Ensemble models for comparisons 

Each procedure and its accuracy results for the 1D-Ensemble, 2D- 
Ensemble, and Data Fusion Ensemble will be explained. 

4.1.1. 1D model ensemble 
Fig. 7 shows the 1D ensemble model. Here the voltage image data are 

individually classified using the three pre-trained CNN models: Dense
Net121 (DN121), DenseNet 169 (DN169), and InceptionResNetV2 
(IRV2). Consequently, the predicted outcomes of each model are 
equated through a voting classification approach for hard and weighted 

soft voting as defined in Eqs. 3–5. Two models are considered at a time 
for the voting classification, and the subsequent accuracy for each voting 
class is shown in Table 2. 

For Eqs. 3–5, suppose there are T base learners and N classes, and the 
base learner obtains {h1, h2, …, hT} as the probability value for hi(x). In 
the case of Eq. 3, if the majority predicts that the results of the classifiers 
hN

i (x) is the class of Cj, it becomes the output class of the base learner. By 
contrast, the probability itself is compared, and classification is per
formed in the class with a higher probability value in Eq. 4. In the case of 
Eq. (5), the classification progresses by adding the weights in Eq. 4. 

H(x) =

⎧
⎪⎨

⎪⎩

Cj, if
∑T

i=1
hj

i(x) > 0.5
∑N

k=1

∑T

i=1
hk

i (x)

reject, otherwise

(3)  

H(x) = Cargimax

∑T

i=1
hi

i(x) (4)  

H(x) = Cargimax

∑T

i=1
wihi

i(x) (5) 

The final predictions of each single and double-source ensemble 
model were made using these hard and weighted soft voting classifiers. 
As shown in Table 2, seven distinct voting conditions were used. The 
first two conditions are based on hard voting classification. In both 
Condition 1 and Condition 2, when the individual classifications were 
the same, the final classification followed the individual classification. 
For instance, if classification and classification* both predict “normal” 
then the final prediction is also normal. However, when both the 
models’ classification differs, then in Condition 1, the final prediction 
followed the prediction of ‘classification*’ in Condition 2, followed the 
prediction of ‘classification’. Conditions 3–7 were based on a soft voting 
approach. Suppose that the probability of a model classifying an instant 
as “normal” is P(N) and that of another model is P(N*). The soft voting 
approach takes the aggregate of P(N) and P(N*) multiplied by a pre
defined weight (that is different for each condition) and compares it to 
0.5, which, if greater, gives the final prediction of ‘normal’ otherwise 
‘abnormal’. 

In Table 3, the 1D-Ensemble results are shown in terms of the seven 
voting conditions. The best accuracy is increased for the ensemble pairs 
marked as the 1D model and 1D model*. The underlined cells in the 
table indicate the best accuracy. 

4.1.2. 2D model ensemble 
The overall classification process of the 2D model ensemble is similar 

to that of the 1D ensemble model. Although in this case, instead of 
voltage image data, 2D frame cut data was used for classification by four 
pre-trained CNN models, namely: DenseNet121 (DN121), DenseNet 169 
(DN169), InceptionResNetV2 (IRV2), and MobileNetV2 (MNV2), as 
shown in Fig. 8. The same voting technique (given by Eqs. 3–5) and 

Table 2 
Voting conditions for EL.  

Case Classification Classification* Final prediction 

Condition 1 

Normal Normal Normal 
Normal Abnormal Normal 
Abnormal Normal Normal 
Abnormal Abnormal Abnormal 

Condition 2 

Normal Normal Normal 
Normal Abnormal Abnormal 
Abnormal Normal Abnormal 
Abnormal Abnormal Abnormal 

Condition 3 (w1D = 0.4, w2D = 0.6) 

P(Normal) P(Normal*)

if (P(N) × w1D + P(N*) × w2D ) ≥ 0.5 
→normal 
else→abnormal 

Condition 4 (w1D = 0.45, w2D = 0.55) 
Condition 5 (w1D = 0.5, w2D = 0.5) 
Condition 6 (w1D = 0.55, w2D = 0.45) 
Condition 7 (w1D = 0.6, w2D = 0.4)  
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voting conditions (given in Table 2) were employed to determine the 
final prediction of the 2D model ensemble. 

Table 4 provides the accuracy comparison of the 2D ensemble model 
of the six ensemble pairs for the four CNN models. Similar to the 1D 
model ensemble, seven voting condition cases, as shown in Table 2, were 
used to determine the output classification probabilities. The best-case 
accuracies ranged from 0.44 to 1.00 for the ensemble pairs. Compared 
with the 1D single-source ensemble, the results were reasonably 
improved (Table 4). 

4.1.3. Data fusion ensemble (1D and 2D double source-based ensemble) 
The data fusion ensemble, otherwise called the double source 

ensemble, uses both voltage (1D) images and 2D frame cuts together for 
the ensemble. First, the CNN model was trained for each data type. 
Three models were trained on the voltage image dataset, whereas four 
models were trained on the 2D dataset. But instead of ensembling pairs 
of CNN models trained using the same data type, ensemble pairs were 

created with CNN models trained using different data types, as shown in 
Fig. 9. This resulted in 12 combinations of ensemble pairs. Comparable 
to the single-source ensemble, each pair’s prediction result was deter
mined using the voting conditions in Table 2. 

The 1D–2D data fusion ensemble results are presented in Table 5. 
This generates 12 ensemble pair combinations that yield better results 
than a 1D single-source ensemble. However, compared with the 2D 
single-source ensemble, the accuracies deteriorated. Overall, the soft- 
voting method yielded better results than the hard-voting method. 

4.2. Proposed data-fused, concatenated ensemble 

Table 6 shows the model results taking advantage of the entire notion 
of this study. Here, the data-fused and concatenated ensemble results are 
described. The concatenated dataset comprises the prediction outcomes 
of both 1D and 2D prediction pairs. The average accuracy is shown for 
each ML model. As expected, this technique yields the best results. Soft* 

Table 3 
1D model EL results.  

Accuracy 1D model 1D* model 1D acc 1D* acc Voting Conditions 

1 2 3 4 5 6 7 

≈ 95 % 
DN121 IRV2  0.96  0.92  0.95  0.93  0.94  0.94  0.93  0.92  0.92 
DN121 DN169  0.96  0.98  0.97  0.97  0.98  0.99  0.98  0.98  0.98 
DN169 IRV2  0.98  0.92  0.98  0.92  0.97  0.96  0.95  0.93  0.93 

Average  0.97  0.94  0.97  0.94  0.97  0.94  0.97  0.96  0.95 

≈ 90 % 
DN121 IRV2  0.90  0.87  0.91  0.87  0.91  0.91  0.90  0.88  0.88 
DN121 DN169  0.90  0.89  0.88  0.91  0.91  0.91  0.91  0.90  0.90 
DN169 IRV2  0.89  0.87  0.89  0.87  0.90  0.90  0.90  0.89  0.88 

Average  0.9  0.88  0.90  0.88  0.89  0.88  0.91  0.91  0.90 

≈ 80 % 
DN121 IRV2  0.86  0.71  0.66  0.90  0.84  0.81  0.72  0.71  0.71 
DN121 DN169  0.86  0.88  0.86  0.88  0.91  0.92  0.92  0.90  0.90 
DN169 IRV2  0.88  0.71  0.71  0.88  0.90  0.90  0.92  0.73  0.72 

Average    0.87  0.76  0.74  0.89  0.88  0.88  0.85  0.78  0.78 

≈ 50 % 
DN121 IRV2  0.56  0.64  0.64  0.56  0.56  0.56  0.59  0.63  0.63 
DN121 DN169  0.56  0.58  0.58  0.56  0.56  0.56  0.56  0.58  0.58 
DN169 IRV2  0.58  0.64  0.64  0.58  0.59  0.59  0.62  0.63  0.64 

Average  0.57  0.62  0.57  0.62  0.62  0.57  0.57  0.57  0.59  

Table 4 
2D model EL results.  

Accuracy 2D model 2D* model 2D acc 2D* acc Voting Conditions 

1 2 3 4 5 6 7 

≈ 95 % 

DN121 IRV2  0.995  0.989  0.989  0.995  0.995  0.997  1  0.999  0.998 
DN121 DN169  0.995  0.994  0.994  0.995  0.999  0.999  0.999  0.998  0.998 
DN169 IRV2  0.994  0.989  0.984  0.999  0.995  0.997  0.997  0.998  0.998 
DN121 MNV2  0.995  0.941  0.948  0.988  0.95  0.954  0.997  0.997  0.997 
DN169 MNV2  0.994  0.941  0.945  0.99  0.951  0.955  0.969  0.991  0.993 
MNV2 IRV2  0.941  0.989  0.939  0.991  0.952  0.957  0.995  0.997  0.995 

Average  0.986  0.974  0.967  0.993  0.974  0.976  0.993  0.997  0.997 

≈ 90 % 

DN121 IRV2  0.986  0.967  0.99  0.963  0.97  0.97  0.982  0.986  0.986 
DN121 DN169  0.986  0.916  0.986  0.916  0.941  0.946  0.955  0.964  0.97 
DN169 IRV2  0.916  0.967  0.981  0.902  0.96  0.955  0.952  0.945  0.94 
DN121 MNV2  0.986  0.919  0.919  0.986  0.933  0.941  0.994  0.995  0.994 
DN169 MNV2  0.916  0.919  0.919  0.916  0.933  0.941  0.982  0.949  0.949 
MNV2 IRV2  0.919  0.967  0.919  0.967  0.933  0.941  0.996  0.978  0.978 

Average  0.951  0.942  0.952  0.941  0.945  0.949  0.977  0.97  0.97 

≈ 80 % 

DN121 IRV2  0.77  0.97  0.77  0.97  0.98  0.98  0.99  0.94  0.9 
DN121 DN169  0.77  0.92  0.77  0.92  0.94  0.95  1  0.94  0.9 
DN169 IRV2  0.92  0.97  0.98  0.9  0.96  0.95  0.95  0.95  0.94 
DN121 MNV2  0.77  0.89  0.73  0.93  0.91  0.91  0.92  0.89  0.86 
DN169 MNV2  0.92  0.89  0.89  0.91  0.92  0.93  0.96  0.95  0.94 
MNV2 IRV2  0.89  0.97  0.91  0.95  0.92  0.93  0.96  0.97  0.97 

Average  0.84  0.93  0.84  0.93  0.94  0.94  0.96  0.94  0.92 

≈ 50 % 

DN121 IRV2  0.445  0.555  0.445  0.555  0.555  0.555  0.727  0.445  0.445 
DN121 DN169  0.445  0.487  0.445  0.487  0.485  0.479  0.639  0.445  0.445 
DN169 IRV2  0.487  0.555  0.487  0.555  0.555  0.555  0.534  0.502  0.496 
DN121 MNV2  0.445  0.592  0.445  0.592  0.601  0.599  0.662  0.445  0.445 
DN169 MNV2  0.487  0.592  0.531  0.549  0.583  0.579  0.574  0.505  0.5 
MNV2 IRV2  0.592  0.555  0.592  0.555  0.583  0.581  0.558  0.555  0.555 

Average  0.484  0.556  0.491  0.549  0.56  0.558  0.616  0.483  0.481  
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and hard * voting gave a prediction accuracy ranging from 0.72 to 1.00, 
with a standard deviation as low as 0.002 for some cases. 

5. Discussion 

To compare the accuracy improvement, the increase in accuracy 
after the ensemble was calculated and compared with the average ac
curacy of the two existing models. The increase in accuracy is defined by 
Eq. 6. 

Increase of accuracy =
Ensemble acc − average (model acc, model*acc)

average (model acc, model*acc)

(6) 

Fig. 10 shows the accuracy of the 1D CNN, 2D CNN, 1D model 
ensemble, 2D model ensemble, data fusion ensemble, and data-fused, 
concatenated ensemble. It is observed that significant accuracy 

improvement was observed when the base CNN model performed at the 
range of ≈50 %. In that case, both the single source ensemble provided 
better accuracy by a 5–10 % margin compared to the 1D and 2D base 
CNN models. The double source model demonstrated further improve
ment in accuracy, whereas the proposed concatenated ensemble showed 
the highest accuracy, >80 %. However, it is also observed that with the 
increase in accuracy ranges of the base model (i.e., ≈80 %, ≈90 %, and 
≈95 %), the increase in accuracy compared to the double source 
ensemble and the proposed concatenated ensemble is considerably 
reduced. This is because the model becomes overfitted to the data set 
with increased CNN base classifier accuracies. As such, the scope of 
accuracy improvement is lessened. 

Moreover, to check the proposed data fused concatenated ensemble, 
averages of the probability of belonging to a class (i.e., normal and 
abnormal) from the CNN models in the ranges ≈50 % and ≈95 % cases 
are shown in Table 9 where the test data consists of 1280 normal and 

Table 5 
Data fusion EL results.  

Accuracy 1D model 2D model 1D acc 2D acc Case 

1 2 3 4 5 6 7 

≈ 95 % 

DN121 

DN121  

0.961  

0.995  0.985  0.931  0.997  0.998  0.993  0.974  0.967 
DN169  0.994  0.980  0.934  0.999  0.999  0.998  0.974  0.967 
IRV2  0.989  0.974  0.935  0.995  0.997  0.993  0.974  0.967 
MNV2  0.941  0.933  0.933  0.949  0.953  0.954  0.961  0.959 

DN169 

DN121  

0.976  

0.995  0.980  0.953  0.998  0.997  0.992  0.974  0.973 
DN169  0.994  0.975  0.957  0.999  0.999  0.994  0.974  0.973 
IRV2  0.989  0.970  0.957  0.994  0.994  0.989  0.973  0.973 
MNV2  0.941  0.929  0.955  0.950  0.954  0.991  0.973  0.972 

IRV2 

DN121  

0.921  

0.995  0.988  0.910  0.998  0.997  0.984  0.942  0.938 
DN169  0.994  0.984  0.914  0.999  0.999  0.992  0.944  0.939 
IRV2  0.989  0.978  0.914  0.994  0.994  0.983  0.944  0.939 
MNV2  0.941  0.937  0.912  0.950  0.953  0.975  0.942  0.938 

Average  0.953  0.980  0.953  0.980  0.968  0.934  0.985  0.986  0.987 

≈ 90 % 

DN121 

DN121  

0.905  

0.986  0.984  0.885  0.982  0.978  0.951  0.924  0.918 
DN169  0.916  0.960  0.842  0.932  0.932  0.931  0.918  0.915 
IRV2  0.967  0.966  0.884  0.967  0.964  0.932  0.918  0.915 
MNV2  0.919  0.908  0.894  0.933  0.941  0.983  0.929  0.921 

DN169 

DN121  

0.885  

0.986  0.936  0.918  0.989  0.988  0.986  0.960  0.945 
DN169  0.916  0.920  0.868  0.937  0.941  0.958  0.941  0.935 
IRV2  0.967  0.924  0.911  0.969  0.969  0.968  0.949  0.939 
MNV2  0.919  0.859  0.929  0.931  0.939  0.970  0.961  0.948 

IRV2 

DN121  

0.872  

0.986  0.985  0.854  0.981  0.977  0.946  0.896  0.890 
DN169  0.916  0.951  0.822  0.928  0.926  0.905  0.886  0.883 
IRV2  0.967  0.967  0.854  0.967  0.963  0.934  0.897  0.890 
MNV2  0.919  0.910  0.863  0.933  0.941  0.965  0.901  0.893 

Average  0.947  0.939  0.947  0.939  0.877  0.954  0.955  0.952  0.923 

≈ 80 % 

DN121 

DN121  

0.860  

0.771  0.699  0.903  0.825  0.839  0.866  0.865  0.872 
DN169  0.916  0.876  0.874  0.937  0.941  0.958  0.928  0.919 
IRV2  0.967  0.876  0.921  0.973  0.974  0.976  0.933  0.922 
MNV2  0.888  0.830  0.888  0.901  0.907  0.915  0.900  0.898 

DN169 

DN121  

0.882  

0.771  0.766  0.866  0.901  0.942  0.973  0.903  0.896 
DN169  0.916  0.956  0.824  0.927  0.924  0.898  0.886  0.884 
IRV2  0.967  0.971  0.857  0.966  0.962  0.914  0.901  0.895 
MNV2  0.888  0.890  0.860  0.919  0.928  0.936  0.901  0.895 

IRV2 

DN121  

0.706  

0.771  0.526  0.919  0.842  0.853  0.734  0.704  0.701 
DN169  0.916  0.698  0.894  0.943  0.948  0.927  0.721  0.711 
IRV2  0.967  0.698  0.942  0.974  0.975  0.861  0.721  0.711 
MNV2  0.888  0.675  0.886  0.895  0.894  0.787  0.714  0.707 

Average  0.820  0.816  0.82  0.816  0.886  0.788  0.886  0.917  0.924 

≈ 50 % 

DN121 

DN121  

0.563  

0.445  0.445  0.555  0.445  0.445  0.901  0.571  0.571 
DN169  0.487  0.503  0.555  0.501  0.509  0.559  0.571  0.571 
IRV2  0.555  0.571  0.555  0.555  0.555  0.571  0.571  0.571 
MNV2  0.592  0.588  0.555  0.584  0.582  0.567  0.571  0.571 

DN169 

DN121  

0.580  

0.445  0.445  0.573  0.445  0.445  0.691  0.603  0.598 
DN169  0.487  0.520  0.555  0.502  0.510  0.576  0.586  0.587 
IRV2  0.555  0.590  0.555  0.555  0.555  0.571  0.585  0.586 
MNV2  0.592  0.591  0.570  0.586  0.584  0.599  0.590  0.590 

IRV2 

DN121  

0.644  

0.445  0.445  0.634  0.445  0.445  0.766  0.661  0.658 
DN169  0.487  0.578  0.559  0.505  0.517  0.610  0.636  0.640 
IRV2  0.555  0.650  0.555  0.555  0.555  0.592  0.637  0.640 
MNV2  0.592  0.620  0.601  0.595  0.596  0.626  0.652  0.652 

Average  0.596  0.520  0.596  0.520  0.545  0.569  0.523  0.525  0.636  
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1597 abnormal images, leading to a ratio of 0.44 and 0.56. It is hy
pothesized that the classification was successful only when the proba
bility of belonging to each class was 0.44 and 0.56. It was observed that 
the classification in the range of ≈50 % case was biased because the 
model’s accuracy was low. For example, all models were biased in 
classifying images as abnormal in voltage image data. In contrast, the 
three models (DenseNet121, DenseNet169, and InceptionResNetV2) 

were biased toward classifying images as normal or abnormal, and 
MobileNet was unbiased in 2D. In contrast, the ratio is similar to the 
composition of 0.44 and 0.56 in the range of ≈95 % case because it is a 
high-accuracy model. It can be concluded that classification with high 
accuracy can be performed using the biased 1D and 2D models through 
the proposed data-fused, concatenated ensemble. 

In the case of the ≈50 % accuracy range, classification is biased 

Table 6 
1D–2D data-fused, concatenated EL results.  

Accuracy ≈95 %  

Case Avg. 

1* 2* 3* 4* 5* 6* 7* 8* 9* 10* 11* 12* 

LR  0.997  1.000  0.998  0.967  1.000  1.000  0.993  0.977  0.998  0.998  0.995  0.962  0.990 
KNN  0.998  1.000  1.000  0.969  1.000  1.000  0.998  0.995  0.998  0.998  0.998  0.981  0.995 
DT  1.000  1.000  0.998  0.969  1.000  0.998  1.000  1.000  1.000  0.998  0.998  0.981  0.995 
GNB  1.000  0.998  0.997  0.960  1.000  1.000  0.995  0.974  1.000  0.998  0.995  0.951  0.989 
SVC  0.995  1.000  0.998  0.958  0.997  1.000  0.993  0.974  0.997  0.998  0.995  0.960  0.989 
RF  1.000  1.000  1.000  0.972  1.000  1.000  1.000  1.000  1.000  0.998  0.998  0.984  0.996 
VH  1.000  1.000  0.998  0.972  1.000  1.000  0.997  0.995  1.000  0.998  0.997  0.971  0.994 
VS  0.998  1.000  0.998  0.967  1.000  1.000  0.997  0.993  1.000  0.998  0.997  0.984  0.994 
VH*  1.000  1.000  1.000  0.972  1.000  1.000  0.998  1.000  1.000  0.998  0.998  0.986  0.996 
VS*  0.998  1.000  1.000  0.971  1.000  1.000  1.000  1.000  1.000  0.998  0.998  0.986  0.996   

Accuracy≈90 %  

Case Avg.  

1* 2* 3* 4* 5* 6* 7* 8* 9* 10* 11* 12* 

LR  0.997  0.981  0.984  0.946  0.990  0.960  0.967  0.984  0.993  0.946  0.974  0.938  0.972 
KNN  1.000  0.962  0.993  0.998  0.995  0.962  0.976  0.990  0.995  0.991  0.979  0.981  0.985 
DT  0.998  1.000  0.995  1.000  0.997  0.997  0.990  0.991  0.998  1.000  0.979  0.988  0.994 
GNB  0.995  0.986  0.974  0.964  0.993  0.995  0.974  0.979  0.993  0.991  0.972  0.972  0.982 
SVC  1.000  0.977  0.986  0.934  0.993  0.964  0.967  0.979  0.991  0.950  0.979  0.936  0.971 
RF  0.998  1.000  0.995  0.998  0.998  0.997  0.991  0.990  0.998  1.000  0.983  0.990  0.995 
VH  0.998  0.993  0.991  0.964  0.997  0.993  0.979  0.993  0.997  0.993  0.983  0.972  0.988 
VS  1.000  0.993  0.986  1.000  0.993  0.993  0.979  0.991  0.998  0.991  0.984  0.988  0.991 
VH*  0.998  0.997  0.995  0.998  0.998  0.997  0.990  0.991  0.997  0.998  0.981  0.986  0.994 
VS*  1.000  0.998  0.993  1.000  0.995  0.997  0.990  0.991  0.998  0.997  0.984  0.988  0.994   

Accuracy ≈80 %  

Case Avg. 

1* 2* 3* 4* 5* 6* 7* 8* 9* 10* 11* 12* 

LR  0.971  0.965  0.969  0.918  0.986  0.976  0.977  0.917  0.962  0.943  0.976  0.918  0.957 
KNN  0.984  0.969  0.976  0.957  0.993  0.995  0.977  0.953  0.993  0.995  0.986  0.915  0.974 
DT  0.998  0.998  0.983  0.944  0.997  1.000  0.988  0.948  1.000  1.000  0.993  0.976  0.985 
GNB  0.997  0.995  0.971  0.912  0.993  0.984  0.971  0.936  0.993  0.997  0.977  0.912  0.970 
SVC  0.977  0.950  0.971  0.913  0.967  0.977  0.977  0.899  0.981  0.946  0.976  0.918  0.954 
RF  0.998  0.998  0.986  0.969  0.995  0.998  0.990  0.974  1.000  1.000  0.995  0.971  0.990 
VH  0.995  0.997  0.979  0.941  0.993  0.997  0.981  0.938  0.998  1.000  0.991  0.922  0.978 
VS  0.998  0.997  0.979  0.944  0.993  0.997  0.981  0.953  0.998  1.000  0.991  0.948  0.982 
VH*  0.995  0.998  0.984  0.953  0.993  0.998  0.990  0.962  1.000  1.000  0.995  0.965  0.986 
VS*  0.997  0.998  0.983  0.957  0.995  0.998  0.988  0.960  1.000  1.000  0.995  0.974  0.987   

Accuracy ≈50 %  

Case Avg.  

1* 2* 3* 4* 5* 6* 7* 8* 9* 10* 11* 12* 

LR  0.569  0.554  0.589  0.550  0.606  0.594  0.620  0.606  0.693  0.649  0.648  0.637  0.610 
KNN  0.920  0.589  0.828  0.670  0.938  0.660  0.792  0.729  0.932  0.707  0.781  0.745  0.774 
DT  0.931  0.736  0.745  0.691  0.941  0.743  0.799  0.778  0.913  0.741  0.809  0.797  0.802 
GNB  0.917  0.554  0.589  0.580  0.731  0.668  0.693  0.665  0.917  0.646  0.648  0.635  0.687 
SVC  0.569  0.554  0.589  0.563  0.599  0.587  0.608  0.589  0.689  0.635  0.639  0.635  0.605 
RF  0.938  0.752  0.722  0.693  0.944  0.778  0.839  0.788  0.938  0.797  0.839  0.814  0.820 
VH  0.941  0.679  0.752  0.689  0.922  0.731  0.818  0.754  0.931  0.747  0.802  0.748  0.793 
VS  0.941  0.729  0.821  0.688  0.912  0.769  0.802  0.797  0.941  0.780  0.816  0.783  0.815 
VH*  0.941  0.731  0.783  0.705  0.939  0.748  0.825  0.781  0.936  0.769  0.830  0.806  0.816 
VS*  0.924  0.726  0.821  0.729  0.936  0.747  0.800  0.785  0.929  0.754  0.816  0.809  0.815  
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toward the abnormal class for all three models of the 1D classification. In 
addition, in the case of 2D, such an inclination is seen toward the 
Abnormal class, except for DenseNet121. The proposed data fused, 
concatenated ensemble, shown in Table 6, on the other hand, for ≈50 % 
accuracy range using DenseNet121 for 2D, the final accuracies were 
higher in Cases 1, 5, and 9 than that of the other cases. Suppose that both 
the models used for the proposed EL classify different classes in a biased 
manner. In this case, accuracy can be increased by learning according to 
a specific pattern and classifying the final result into the correct class. It 
is known that suitable models that can classify “Normal” and 
“Abnormal” are different depending on the characteristics of models and 
data. Even if each model does not perform well, the pattern can achieve 
the final classification. In addition, both models are inherently biased 
toward abnormal classes. However, their data were intrinsically normal. 
In such a case, the accuracy is also improved by recognizing the pattern 
when both models are incorrect. Ultimately, in this study, even if clas
sification using specific data or models is incorrect, the classification 
accuracy can be increased by learning through pattern recognition and 

feedback from the results as new inputs. 
For a better understanding of the empirical values, the analysis of the 

average accuracies is presented in Table 7, and the percentage 
improvement in the accuracy is shown in Table 8. The average accuracy 
of the data-fused, concatenated ensemble was found to be the highest, 
which is approximately 98.8 %. The average percentage increase in 
accuracy was also the highest at approximately 16.3 % compared with 
the average original CNN accuracy. 

Three specific reasons can be attributed to the high-performance 
accuracy of the proposed concatenated ensemble model in particular 
and the ensemble models in general. First is overfitting avoidance, 
which means that the learning algorithm finds several hypotheses for 
small data that seamlessly predict the training data. However, when 
unseen data are provided, the model fails to classify it correctly. In our 
case, for the low accuracy range of the base CNN models, overfitting is 
avoided because by taking the voting approach to different model pre
dictions, reducing the probability of choosing the wrong model, and 
increasing overall performance. Nevertheless, with the increase in the 

Table 7 
Average accuracies of models tested with CNN weights.  

Acc. Cases 1D Model 2D Model 1D Ensemble 2D Ensemble Data fusion ensemble Data fused concatenated ensemble 

≈ 95 % 

1*  

0.961  

0.995 – –  0.997  1.000 
2*  0.994 0.986 0.999  0.999  1.000 
3*  0.989 0.955 1.000  0.997  1.000 
4*  0.941 – 0.997  0.961  0.972 
5*  

0.976  

0.995 0.986 0.999  0.998  1.000 
6*  0.994 – –  0.999  1.000 
7*  0.989 0.975 0.999  0.994  1.000 
8*  0.941 – 0.993  0.991  1.000 
9*  

0.921  

0.995 0.955 1.000  0.998  1.000 
10*  0.994 0.975 0.999  0.999  0.998 
11*  0.989 – –  0.994  0.998 
12*  0.941 – 0.997  0.975  0.986 

Avg.  0.953  0.980 0.972 0.998  0.992  0.996 

≈ 90 % 

1*  

0.905  

0.986 – –  0.984  1.000 
2*  0.916 0.913 0.986  0.960  0.998 
3*  0.967 0.906 0.990  0.967  0.995 
4*  0.919 – 0.995  0.983  1.000 
5*  

0.885  

0.986 0.913 0.986  0.989  0.998 
6*  0.916 – –  0.958  0.997 
7*  0.967 0.903 0.981  0.969  0.990 
8*  0.919 – 0.982  0.970  0.993 
9*  

0.872  

0.986 0.906 0.990  0.985  0.998 
10*  0.916 0.903 0.981  0.951  0.998 
11*  0.967 –   0.967  0.984 
12*  0.919 – 0.996  0.965  0.988 

Avg.  0.887  0.947 0.907 0.987  0.971  0.995 

≈ 80 % 

1*  

0.860  

0.771 – –  0.903  0.998 
2*  0.916 0.920 0.997  0.958  0.998 
3*  0.967 0.903 0.986  0.976  0.984 
4*  0.888 – 0.931  0.915  0.957 
5*  

0.882  

0.771 0.920 0.997  0.973  0.995 
6*  0.916 – –  0.956  0.998 
7*  0.967 0.922 0.981  0.971  0.990 
8*  0.888 – 0.958  0.936  0.962 
9*  

0.706  

0.771 0.903 0.986  0.919  1.000 
10*  0.916 0.922 0.981  0.948  1.000 
11*  0.967 – –  0.975  0.995 
12*  0.888 – 0.966  0.895  0.974 

Avg.  0.816  0.886 0.915 0.976  0.944  0.988 

≈ 50 % 

1*  

0.563  

0.445 – –  0.901  0.941 
2*  0.487 0.580 0.639  0.571  0.731 
3*  0.555 0.644 0.727  0.571  0.941 
4*  0.592 – 0.662  0.588  0.731 
5*  

0.580  

0.445 0.580 0.639  0.691  0.939 
6*  0.487 – –  0.587  0.769 
7*  0.555 0.644 0.555  0.590  0.825 
8*  0.592 – 0.579  0.599  0.797 
9*  

0.644  

0.445 0.644 0.727  0.766  0.941 
10*  0.487 0.644 0.555  0.640  0.780 
11*  0.555 – –  0.650  0.830 
12*  0.592 – 0.583  0.652  0.809 

Avg.  0.596  0.520 0.623 0.630  0.651  0.836  
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accuracy range of the base CNN models, the room for improvement 
becomes significantly narrow; thus, some overfitting is bound to 
happen. 

Second, base models, when individually used for classification, have 
the tendency to be trapped in the local minimum accuracy. Whereas, in 
the case of ensemble models, multiple base models are trained for the 
prediction purpose. By the voting approach, the global lowest optimum 
is selected. Third, the representation indicates that a single model’s 
search space cannot often enclose the optimal hypothesis. However, 
merging several models using an ensemble can better fit the data space 
[48]. Moreover, the data-fused, concatenated ensemble used both 
voltage (1D) images and 2D frame cuts data in conjunction with one 
another for the prediction, which resulted in a more extensive dataset 
for improving prediction. Second, as seen in [47], the prediction out
comes were concatenated instead of the image features, generating a 
simple numeric matrix of prediction probabilities. Matrix was used as 
the input for the double ensemble to reduce the overall training time. 
Ultimately, the results improved due to the stacking ensemble approach, 
which used six ML classifiers. 

When comparing training time with accuracy, the data-fused, 
concatenated ensemble algorithm scored the best prediction; the 
training time was increased by 20 to 60 s. The reason is that the 
initialization and weight selections took longer when the proposed 
ensemble operation was done for the lower accuracy range base CNN 
model. In the higher accuracy range, CNN models continuously per
formed backpropagation, increasing overall accuracy but increasing the 
time for weight selection. Nevertheless, the mentioned models main
tained a lower training prediction time, which decreased the overall 
training time. The percentage increase in accuracy for the said models is 
found to be low. As such, a trade-off exists between the training time and 
the percentage increase in prediction accuracy. The trade-off cannot be 
eradicated completely; however, a near optimal approach is suggested. 
For example, if prediction time is disregarded, then substantial 
improvement is observed from ≈50 % accuracy to 83.6 % concatenated 
accuracy. However, considering training time, the ≈80 % accuracy 
range model can be considered optimal, with a prediction improvement 
of 16 %, an average training time of 28.48 s, and 98.8 % accuracy. 
Accordingly, it can be concluded that the high-accuracy range model 
showed an increase in accuracy from 90 % to 99.5 %, with a training 

Table 8 
Increase in percentage accuracies for various CNN pre-trained models.  

Acc. Data Original 1D Ensemble 2D Ensemble Data fusion ensemble Data-fused concatenated Ensemble 

≈ 95 % 
1D  0.953 2 % – 4 % 4 % 
2D  0.98 – 2 % 1 % 2 % 
Avg.  0.966 2 % 2 % 3 % 3 % 

≈ 90 % 
1D  0.887 2 % – 9 % 11 % 
2D  0.995 – 4 % 2 % 5 % 
Avg.  0.917 2 % 4 % 6 % 8 % 

≈ 80 % 
1D  0.816 12 % – 16 % 21 % 
2D  0.886 – 9 % 7 % 11 % 
Avg.  0.851 12 % 9 % 11 % 16 % 

≈ 50 % 
1D  0.596 5 % – 9 % 40 % 
2D  0.52 – 20 % 25 % 61 % 
Avg.  0.558 5 % 20 % 17 % 50 %  

Table 9 
Probability distribution of classes of 95 % accuracy model (left) and 50 % accuracy model (right).  

Model 50 % accuracy model 95 % accuracy model 

1D 2D 1D 2D 

Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal 

DenseNet121 0.03 0.97  0.99  0.01 0.44 0.56  0.44  0.56 
DenseNet169 0.05 0.95  0.15  0.85 0.44 0.56  0.45  0.55 
InceptionResNetV2 0.11 0.89  0.01  0.99 0.39 0.61  0.47  0.53 
MobileNet – –  0.42  0.58 – –  0.48  0.52  

Table 10 
Training times for different accuracy models.  

Range of model accuracy Ensemble Concatenated ensemble 

Acc Time (s) Acc Time (s) 

≈ 50 %  0.6505  0.52  0.836  63.66 
≈ 80 %  0.9438  0.69  0.988  28.48 
≈ 90 %  0.9706  0.76  0.995  23.89 
≈ 95 %  0.9922  0.85  0.996  16.14  

Table 11 
Result of classification for total images and specific images.   

Number of images 

Low accuracy High accuracy 

1D 2D Total Test Total Test 

Incorrect Correct 
2722 (10.6 
%) 

353 (12.3 
%) 

1915 (7.4 
%) 

230 (8.0 
%) 

Correct Incorrect 4768 (18.4 
%) 

955 (33.2 
%) 

352 (1.4 %) 13 (0.4 %) 

Incorrect Incorrect 1202 (4.6 
%) 

135 (4.7 
%) 

152 (0.6 %) 1 (0.1 %) 

Correct Correct 
17,201 
(66.4 %) 

1434 
(49.8 %) 

23,474 
(90.6 %) 

2633 
(91.5 %) 

Total 
25,893 (100 
%) 

2877 (100 
%) 

25,893 (100 
%) 

2877 (100 
%)  

Table 12 
Result of classification before and after ensemble.   

Number of images 

Low accuracy model High accuracy model 

Before After Before After 

Incorrect 1443 (50.2 %) 121 (4.2 %) 244(9.5 %) 7 (0.3 %) 
Correct 1434 (49.8 %) 2756 (95.8 %) 2633 (91.5 %) 2870 (99.7 %) 
Total 2877 (100 %) 2877 (100 %) 2877 (100 %) 2877 (100 %)  
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time of 23.89 s. In contrast, the low-accuracy model’s growth in accu
racy was from ≈50 % to 83.6 %, with a training time of 63.66 s. The 
near-optimal model reduced this trade-off between time and accuracy 
by increasing average accuracy from ≈80 % to 98.8 % with a reasonable 
training time of 28.48 s. The relationship between the accuracies and 
training times is presented in Table 10. 

A ‘heatmap’ was used to determine the correlation between 
1D_Normal, 1D_Abnormal, 2D_Normal, and 2D_Abnormal input vari
ables of the concatenated data set. Fig. 11 shows a heatmap showing the 
correlation in an ensemble using a low-accuracy model on the right and 
a high-accuracy model on the left. Here, the input variables of 1D_ 
Normal and 2D_Normal of the probabilities are the prediction results of 
the 1D and 2D models, respectively, being the normal class. Hence, if the 
accuracy of the two models is high, then the correlation between the 
input variables should be high. In addition, the input variables of 
1D_Abnormal and 2D_Abnormal of probabilities are the prediction re
sults of the 1D and 2D models, respectively, representing the abnormal 
class. Hence, if the accuracy of the two models is high, then the corre
lation between the input variables should be high. 1D_Normal and 
2D_Normal, which represent the probability of belonging to the same 
normal class, have a positive correlation, whereas 1D_Abnormal and 
2D_Abnormal, which represent the probability of belonging to the 
abnormal class, have a positive correlation. In contrast, Normal, which 
indicates the probability of belonging to the normal class, and 
Abnormal, which shows the probability of belonging to the abnormal 
class, have a negative correlation. 

Table 11 lists the classification results for the input images. The total 
number of images that the 1D and 2D low-accuracy models misclassified 
was 1202, accounting for 4.6 % of the total images. The test data pre
pared with 2877 images also showed a similar percentage of misclassi
fication. Conversely, the percentage of misclassification was noticeably 
reduced using the high-accuracy models by 0.6 % for total data and 0.1 
% for test data. In Table 12, the misclassified cases were reduced by 46 % 
and 9.2 % after performing ensemble for the low- and high-accuracy 
models, respectively. 

As shown in Table 13, comparisons were made based on the detec
tion time of prediction for each model. In anomaly detection (1D model) 
using existing voltage image data, the prediction time per image was 
0.075 s, which was relatively large because it was performed after 
converting the voltage value into a graph image. In contrast, anomaly 
detection using frame cut images (2D model) required a prediction time 
of 0.033 s per image. Since an additional 0.005 s is generated when the 
ensemble is performed, it takes 0.08 s and 0.038 s for 1D ensemble and 
2D ensemble models, respectively. Also, an additional time of 0.005 s is 
required for data fusion ensemble and data-fused concatenated 
ensemble models. As a result, if real-time prediction is performed during 
the bead deposition process, a prediction time of 0.113 s (1D: 0.075 +
2D: 0.033 + ensemble: 0.005) per image is required for the data fusion 
ensemble. In the case of data-fused concatenated ensemble, predictions 
of 1D and 2D models are made simultaneously, requiring 0.08 s (1D: 
0.075 + ensemble: 0.005) per image. Since the 1D model prediction time 
(0.075 s) is longer than the 2D one (0.033 s), the 2D model prediction 
result is already available. Thus, the frame per second (fps) is 12.5 in the 
case of the data-fused concatenated ensemble. 

6. Conclusion 

We proposed a novel data-fused, concatenated EL algorithm to 
obtain a flexible and robust methodology for in-situ anomaly detection 
in WAAM. To achieve this, voltage (1D) images and 2D frame cuts 
datasets and ML models were seamlessly integrated to overcome the 
limitations and difficulties in acquiring sufficient data and finding a 
near-optimal ML algorithm. The proposed method was investigated and 
validated on inexpensive and comprehensive datasets from the WAAM 
process. The data were pre-trained using CNN models (i.e., Dense
Net121, DenseNet169, MobileNetV2, and InceptionResNetV2), 
achieving accuracies ranging from 50 % to 95 %. Upon implementing 
the proposed EL algorithm, the accuracy increased by 3 %, 8 %, 16 %, 
and even 50 % in CNN models with accuracy ranges of 95 %, 90 %, 80 %, 
and 50 %, respectively. Furthermore, as shown in Table 8, the proposed 
EL algorithm achieves an accuracy of 98 %, compared with 81.6 % and 
88.6 % of 1D and 2D CNN models, respectively. Results also showed that 
in addition to improving the prediction accuracy, the proposed 
ensemble model increases the overall prediction time. Considering the 
trade-off between the accuracy and prediction time, it can be concluded 
that the proposed method is suitable and effective when the accuracy of 
each CNN model is approximately 80 %, whose accuracy was finally 
increased to 98 %. 

Although in this work, the process of Data-fused concatenated 
ensemble prediction of the anomaly was done for the WAAM process, in 
essence, the concept can also be applied to the prediction of anomalies in 
other DED powder-fed and wire-fed processes. Moreover, in this work, 
we used two types of data that can be expanded to a multi-source 
approach that can incorporate a wide range of data collection 
methods such as 3D scanner, dual camera setup, and laser profilometry, 
among others, as the data set can be enhanced by the usage of the 3D 
data which is expected to improve the prediction accuracy. In our case, 
as 1D data, only voltage is considered; however, the incorporation of 
other 1D signals, such as acoustics, temperature, and pyrometry data, 
can further improve the model performance. Similarly, in the case of 2D 
data, x-ray and infrared images can also result in better prediction re
sults. Furthermore, the work can also be modified for other applications 
in the WAAM field, such as bead geometry prediction and surface 
roughness determination. Using the vast number of process parameters 
can result in optimization problems, in which case reinforcement 
learning can be used for the optimization and process planning. The 
mentioned cases are yet to be explored and are taken into consideration 
for the future expansion of the work. 
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Results of detecting time for the anomaly detections with respect to different models.  

Required time (seconds) 1D 2D 1D ensemble 2D ensemble Data fusion ensemble Data-fused concatenated ensemble 

1D 0.075 – 0.075 –  0.075 Max (1D: 0.075, 
2D: 0.033) 2D – 0.033 – 0.033  0.033 

Ensemble – – 0.005 0.005  0.005 0.005 
Total 0.075 0.033 0.08 0.038  0.113 0.08  
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