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Convolutional neural network (CNN), a type of deep learning algorithm, is a powerful tool for analyzing visual
images. It has been actively investigated to monitor metal additive manufacturing (AM) processes for quality
control and has been proven effective. However, typical CNN algorithms inherently have two issues when used in
metal AM processes. First, in many cases, acquiring datasets with sufficient quantity and quality, as well as
necessary information, is challenging because of technical difficulties and/or cost intensiveness. Second,
determining a near-optimal CNN model takes considerable effort and is time-consuming. This is because the
types and quality of datasets can be significantly different with respect to different AM processes and materials.
The study proposes a novel concatenated ensemble learning method to obtain a flexible and robust algorithm for
in-situ anomaly detection in wire + arc additive manufacturing (WAAM), a type of wire-based direct energy
deposition (DED) process. For this, data, as well as machine learning models, were seamlessly integrated to
overcome the limitations and difficulties in acquiring sufficient data and finding a near-optimal machine learning
model. Using inexpensively obtainable and comprehensive datasets from the WAAM process, the proposed
method was investigated and validated. In contrast to the one-dimensional and two-dimensional CNN models’
accuracies of 81.6 % and 88.6 %, respectively, the proposed concatenated ensemble model achieved an accuracy
of 98 %.

1. Introduction Metal AM has inherent uncertainties and complexities because it is a

multi-scale, multiphysics process [8]. For instance, non-equilibrium

Metal additive manufacturing (AM) can be categorized into powder-
bed fusion (PBF) and direct-energy deposition (DED) processes. DED can
be further classified into powder-fed and wire-fed processes, which in
turn can be classified according to energy source electron beam-, laser-,
ultrasonic-, and arc-based systems [1]. This study focuses on an arc-
based system known as wire-arc additive manufacturing (WAAM),
which utilizes the wire as the feeding stock, welding arc as the energy
source, and robot arms or computer numerical control (CNC) router for
movement [2]. WAAM has the following advantages: (1) inexpensive
setup, (2) high deposition rate (up to 10 kg/h), and (3) wide selection of
materials [2,3]. In addition, the energy efficiency of WAAM is >90 %,
whereas that of the laser/electron beams is 5-20 % [4-6]. WAAM can be
further classified into gas metal arc welding (GMAW), gas tungsten arc
welding (GTAW), and plasma-based processes [7].

WAAM thermal cycles and layer-by-layer stacking mechanisms induce
defects that negatively affect the geometry, surface quality, micro-
structure, and mechanical properties [9]. This contrasts with the ulti-
mate goal of metal AM, which is to fabricate defect-free parts with
desirable structures applicable as end-user products. Numerous factors,
such as process complexities and instabilities, contribute to the quality
and microstructure of an AM part, which can be controlled by aligning
process parameters with optimized values through in-situ monitoring
and control. Although the critical factor in a successful AM process is
monitoring and feedback control [10], in-situ data acquisition for
closed-loop control and detecting material discontinuities have been
highlighted as crucial barriers to AM implementation as well as a pri-
ority area for research and development [11].

Design of experiments (DOE) is a commonly used approach for
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process control and window-map generation for metal AM processes
because of its success rate and efficiency. However, it cannot be used for
in-situ monitoring and control since several experiments must be con-
ducted, which requires considerable resources and time. Machine
learning (ML) approaches have gained increasing attention for over-
coming the limitations of DOE [12]. ML algorithms, in general, can be
divided into supervised, unsupervised, and reinforcement learning [13].
In supervised learning, each input datum is labeled with an output, and
the training set consists of many input-output pairs [14]. Unsupervised
learning infers unlabelled data and can find hidden patterns or similar
group data (i.e., clustering) in a given dataset and perform anomaly
detection [15,16]. In contrast, reinforcement learning is a semi-
supervised ML paradigm that employs agents to make decisions to
maximize the cumulative reward. It can be implemented for anomaly
detection when the problem is formulated as a Markov decision process
(MDP) [17].

ML techniques are considered a viable solution to establish the re-
lationships among process, structure, and property for AM control,
called the “design rule.” Since process parameters significantly affect
microstructures and mechanical properties, reliable and extensive
datasets for training are required. The vast number of process parame-
ters results in the “curse of dimensionality”. For instance, since the
number of process parameters in a powder bed fusion process is >100,
the possible combinations of process parameters exponentially increase,
as shown by Mani et al. [18]. Moreover, acquiring datasets for high-
performance materials (e.g., nickel- or titanium-based alloys) would
be cost-intensive. A flexible and robust ML algorithm can work around
the need for large datasets and thus is necessary for anomaly detection in
metal AM processes.

To achieve real-time anomaly detection, convolutional neural net-
works (CNN), a form of supervised machine learning algorithms, have
been widely studied [12]. For example, two CNN algorithms that could
obtain accuracies of 95.5 % [19] and 97.5 % [20], respectively, were
successfully developed for real-time anomaly detection. However, these
typical CNN algorithms have two inherent issues. First, in many cases,
acquiring datasets of reliable quality after sensitivity analysis is time-
consuming and cost-intensive due to the requirement of expensive re-
sources. Second, although necessary datasets are obtained, finding a
near-optimal CNN model is time-consuming because CNN models
significantly depend on datasets’ types and quality, which can differ
considerably with variations in AM processes and materials.

Ensemble learning (EL) is a viable solution because it uses multiple
learning algorithms to obtain better predictive performance than any
constituent learning algorithms alone [21]. It compensates for poor
learning algorithms by performing additional computations. Although
EL algorithms are widely used in other manufacturing processes, to our
knowledge, they have neither been investigated nor applied in metal AM
processes because they lack available datasets [12]. For example, in the
case of the powder bed process to generate a dataset, a high-resolution,
high-speed thermal camera with an appropriate field of view is required
to capture clear melt-pool images because of the rapid solidification
[22], and AM-grade Inconel 625 powder, costs double the price of its
wire counterpart [23]. For these reasons, datasets for EL investigations
are lacking in the case of laser- and powder-based AM processes.

This study proposes a novel data-fused, concatenated EL method to
develop a flexible and robust algorithm for in-situ anomaly detection in
AM. This algorithm involves four stages: data pre-processing, data
preparation, pretraining, predictions, and concatenated ensemble. In the
data pre-processing stage, voltage and WAAM video data are collected,
transformed into 1D (one-dimensinoal) and 2D (two-dimensional) for-
mats, resized, and labeled. Data preparation involves synchronizing and
splitting the dataset, training CNN models, and validating their accu-
racy. In the pretraining and predictions stage, pre-trained CNN models
are used to achieve varying accuracies based on hyperparameters and
training time. Finally, in the concatenated ensemble stage, prediction
results from these models are combined, and six binary classifiers are
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applied. The final prediction is made through a voting-based ensemble,
incorporating K-fold cross-validation to mitigate model bias.

The proposed model can effectively detect anomalies in the WAAM
process, namely, bead cut and balling effects. This model takes advan-
tage of the 1D and 2D process signatures to detect the anomalies which is
expected to enhance the predictive performance of the model. The bead
cut anomaly signifies a separated bead formation caused by discontin-
uous deposition of a feeding material on a substrate, and the balling
anomaly indicates an irregular bead surface contour owing to the sep-
aration of small spherical balls from the melt pool [19]. Moreover, data
and ML models were readily integrated to overcome the limitations and
difficulties in acquiring sufficient data and finding a near-optimal ML
model. The proposed method is investigated and validated by taking
advantage of the inexpensive and comprehensive datasets from a
GTAW-based WAAM process. In contrast to the 1D and 2D CNN models’
accuracies of 81.6 % and 88.6 %, respectively, the data-fused, concat-
enated ensemble model obtained an accuracy of 98 %. The remainder of
this paper is organized as follows. Section 2 discusses related work on
the state of ML in AM. The data-fused, concatenated ensemble algorithm
is proposed in Section 3, followed by the deliberation of its results and
validations in Section 4. Finally, concluding remarks are presented in
Section 5.

2. Related work

The studies conducted in the field of ML for anomaly detection can be
categorized into four main categories: (1) non-real-time, data-driven ML
methods, (2) non-real-time CNN-based methods, (3) real-time CNN-
based methods, and (4) EL-based methods. This section discusses the
performance and limitations of the state-of-the-art methods.

Non-real-time ML methods were applied to design experiments with
large labeled datasets that used artificial neural networks (ANN) for
bead geometry predictions and parameter optimizations. Manan in-
troduces a Federated Learning (FL) approach with U-Net architecture for
privacy and data availability, showcasing its superior defect detection
compared to individual learning and highlighting FL’s promise in
privacy-preserving collaborative ML for AM process control with a mean
intersection over union of 0.807. [24]. Mahmoudi et al. devised a 99.6 %
accurate anomaly detection framework for L-PBF AM by analyzing
thermal signatures of melt pools, employing image segmentation, clus-
tering, spatial statistics, and classification techniques. [25]. Tapia et al.
create a Gaussian process-based model to predict porosity in metallic
parts produced via selective laser melting, demonstrating its effective-
ness through a case study on 17-4 PH stainless steel manufacturing.
[26]. Khanzadeh et al. developed a porosity prediction method in ad-
ditive manufacturing by analyzing melt pool characteristics using su-
pervised machine learning, with K-Nearest Neighbor (KNN) achieving
the highest accuracy (98.44 %) in classifying melt pools, outperforming
traditional metrics and enabling broader applications in similar AM
processes. [27]. Aminzadeh et al. develop a monitoring system for laser
powder-bed fusion quality using Bayesian inference, creating a unique
dataset for in-situ visual images of the process, which is then used to
train a Bayesian classifier to detect defective build layers or regions in
real-time with an accuracy of 89.5 % [28]. Poudel et al. use high-
resolution X-ray computed tomography to analyze and classify volu-
metric defects in laser powder bed fused Ti-6Al-4 V by quantifying nine
morphological parameters, achieving high accuracy in defect classifi-
cation through a decision tree (>98 %) [29]. Moreno et al. present a
three-stage approach using random forests to automatically classify
porosity in metallographic data, achieving an accuracy of 94.41 % and a
low out-of-bag error, demonstrating high precision for porosity classi-
fication in metallic additively manufactured components. [30].
Although these approaches effectively predict weld bead geometry, they
are generally limited to using 1D process signatures (e.g., power and
acoustic). Furthermore, they could not provide a scheme for real-time
monitoring and control.
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Non-real-time CNN-based methods use the capability of CNN to
process images that tend to show good performance with offline images.
For instance, Khumaidi et al. developed a Gaussian kernel-based clas-
sifier that could detect four defect types with an accuracy of 95.83 %
[31]. Hou et al. implemented a three-stage deep neural network (DNN)
that used the pre-processed GDXray data set [32] as input and a sliding
window for the final classification, achieving an accuracy of 91.84 %
(90.27 % precision and 92.78 % recall) [33]. Zhu et al. used a combi-
nation of CNN for high-level feature extraction and random forest (RF)
for final classification, which achieved an accuracy of 98.75 % [34].
Park et al. used a two-stage model to classify non-pattern weld defects
using 32,000 sample images, wherein the first stage, the region of in-
terest (Rol) was detected, followed by the classification of these Rols
[35]. Jiang et al. used the improved pooling strategy and feature se-
lection for weld defect recognition using the ReliefF algorithm, which
achieved an accuracy of 91.71 % [36]. Liu et al. developed an anchor-
free region-based convolutional neural network (AF-RCNN), which
resulted in a prediction accuracy of 95 % compared to Faster-RCNN
[37]. Although these algorithms utilize cutting-edge CNN techniques,
they have not been investigated for real-time monitoring and control.
Experimental samples were used to classify the weld defects and predict
the bead geometry after welding.

In contrast, CNN models can be effective for the real-time monitoring
and control of AM. Scime et al. proposed a multi-scale patch detector for
anomaly detection fidelity that was trained with 70,000 images from a
PBF process and attained 85 % and 93 % differentiation and detection
accuracy, respectively [38]. Caggiano et al. suggested a bi-stream deep
convolutional network for fault detection in PBF with an accuracy of
99.4 % [39]. Reisch et al. proposed an unsupervised multivariate pre-
dictor using 1D and 2D process signatures to reduce labeled dataset
deficiency [40]. Lyu et al. developed a CNN model to extract features for
a physically labeled dataset that contained 17,595 images and recorded
an accuracy of 90.08 % [41]. Cho et al. proposed a real-time anomaly
detection algorithm that used weld pool images as inputs and detected
bead cuts and balling abnormalities with a prediction accuracy of 98 %
[19]. Lee et al. developed a real-time CNN monitoring console that
converts voltage images into time-series waveshape data to classify
normal and abnormal beads [42]. Kim et al. developed CNN-based real-
time monitoring that predicts anomalies for the WAAM process using
molybdenum, consisting of three modules: image conversion, CNN
prediction, and real-time tracking [20]. Despite the improved perfor-
mance of these models, acquiring sufficient and reliable data and
determining a near-optimal model proved time-consuming and cost-
intensive. Thus, robust and flexible algorithms are necessary to over-
come these limitations in the current CNN models.

EL methods can address the adequately labeled dataset deficiency
challenge by implementing transfer learning. The main advantage of EL
is that it can improve the performance of an ML base learner. Although
some studies have included EL as the basis for anomaly detection, this
area remains mostly unexplored in AM. For instance, Li et al. developed
an EL model to predict the surface roughness in extruded AM processes
comprising RF, AdaBoost, CART, SVR, RR, and RVFL as the base
learners, which showed better accuracy than the ensemble [43]. Khan
et al. developed a RF classifier model for layer-wise monitoring in metal
additive manufacturing, achieving a 99.98 % detection accuracy for
anomalies, which were validated using optical tomography (OT) imag-
ing and correlated with defects from computerized tomography (CT)
data. [44]. Zhang et al. developed an enhanced ensemble learning pre-
diction model for predicting the yield stress of lattice structures in ad-
ditive manufacturing by using data from finite element simulation,
integrating a Boosting module and feature transformation methods to
improve prediction accuracy (R-squared of 0.844) and generalization,
reducing preparation time and testing costs, and offering valuable in-
sights for industrial inspection and evaluation of such structures. [45]. Li
etal. introduced a cost-efficient EL approach (Bagging of Trees, Gradient
Boosting, Random Forest) with accuracies around 99 % using synthetic
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3D point clouds to detect defects in additively manufactured objects,
outperforming existing methods and demonstrating the applicability of
their scheme to in-situ defect detection during additive manufacturing
with the aid of 3D data acquisition [46]. However, these studies mainly
used rudimentary EL models that operated 1D process signatures. Thus,
a robust and flexible EL algorithm that uses both 1D and 2D process
signatures and multiple classifiers simultaneously can be a better design
for prediction.

3. Proposed methodology

Fig. 1 shows the proposed data-fused, concatenated EL algorithm
that can flexibly and robustly detect anomalies from insufficient data-
sets, less accurate ML models, and classifiers. The procedure for imple-
menting the proposed algorithm in the WAAM process is discussed in
this section. It consists of four stages: data pre-processing, data prepa-
ration, pretraining and predictions, and concatenated ensemble detailed
as under:

e Step 1 (Data pre-processing): First, voltage data and WAAM videos
were collected from specially designed experiments. Second, the
voltage data were converted into voltage image data, and the WAAM
video was partitioned into 2D frame data. Third, these data were
resized and cleaned according to the requirements for uniformity.
Fourth, both data types were labeled with predefined classes. As a
result, the raw WAAM data were converted into 1D and 2D pre-
processed data.

e Step 2 (Data preparation): Each pre-processed voltage image data was
synchronized to the corresponding 2D frame data to prepare a uni-
fied dataset. The unified dataset was consequently divided into
training and test data with a ratio of 90:10, respectively. 30 % of the
training data was set aside for the validation dataset. With the
remaining 70 % of training data, the CNN models were trained. The
validation data with matching labels was used to check the model’s
training accuracy. On the other hand, the test data without labels
was used to test the models to obtain the predicted labels. The pre-
dicted labels thus were compared to the actual test labels to deter-
mine the final accuracy of the models.

e Step 3 (Pretraining and predictions): Three pre-trained CNN models
were individually trained from the voltage dataset, whereas four
CNN models were trained from the 2D dataset. The models can
achieve different accuracies depending on the hyperparameters and
train time. For investigation, four ranges of accuracies were selected
for each model, and their corresponding weights were preserved.

e Step 4 (Concatenated ensemble): The prediction results of the pre-
trained CNN models for 1D and 2D data were concatenated
together, forming a vector of probabilities. Six distinct binary clas-
sifiers were employed in this stage that uses the concatenated
probability vector as the input. Among the six classifiers, the four
most accurate classifiers were selected for the final prediction using a
voting-based ensemble. Second-order voting was also performed to
select the final concatenated ensemble prediction outcome. K-fold
cross-validation was incorporated to reshuffle the dataset into train
and validation to avoid model bias.

3.1. Step 1: Data pre-processing

A GTAW-based WAAM process was used to deposit weld beads on a
low-carbon steel substrate fed from a wire feeder; the feeder used
Inconel 625 wire to create the weld beads. The experimental setup
consisted of a Fanuc ARC Mate 120ic robot arm with a Fanuc R-30iA
controller, tungsten inert gas (TIG) torch, and Miller Dynasty 400 GTA
welding power source. The detailed setups can be found in previous
studies [19,20,47]. The following stages describe the entire data-
preparation process, as shown in Fig. 4.
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Fig. 1. Implemented data-fused, concatenated EL algorithm.

Bead deposition on the substrate was initially designed as an
experimental trial controlled by experimental parameters. In this case,
current (A), wire feed rate (cpm), and welding/travel speed (cpm) were
considered variable parameters. Two process parameters—a Wire feed
rate of 70-300 cm per minute (cpm) and a travel speed of 10-100 cpm
with steps of 25 and 10, respectively—were changed in order to create
the experiments. A constant current of 200 A (A) was used. As indicated
in Table 1, each set of settings created 100 distinct trials for each ma-
terial. As a result, 300 testing for the three materials LCS, STS, and INC
were conducted. The experimental setup’s design is seen in Fig. 2. The
central composite design (CCD) suggested by the National Institute of
Standards and Technology (NIST) Handbook was used to design the
experiments. Experimental parameters, such as shield gas, which used
70 % argon and 30 % helium, and arc length set to 5 mm, were kept
constant throughout the experiment. The detailed experimental condi-
tions can be found in Lee et al. [47].

The creation of the voltage dataset consisted of four steps: (1) voltage
data acquisition, (2) voltage image data conversion, (3) voltage image

Table 1
Process parameters and bead numbers considered for the experiments.

Wire feed rate Travel speed (cpm)

(cpm) 10 20 30 40 50 60 70 80 90 100
75 1 11 21 31 4 5 61 71 8 91
100 2 12 22 32 42 52 62 72 8 92
125 3 13 23 33 43 53 63 73 83 93
150 4 14 24 34 44 54 64 74 84 94
175 5 15 25 35 45 55 65 75 8 95
200 6 16 26 36 46 56 66 76 8 96
225 7 17 27 37 47 57 67 77 8 97
250 8 18 28 38 48 58 68 78 88 98
275 9 19 20 39 49 59 69 79 8 99
300 10 20 30 40 50 60 70 8 90 100
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data resizing, and (4) voltage image data labeling. Each step is described
in detail below:

e Voltage data acquisition: The voltage data were measured by the
Miller Insight ArcAgent Auto current voltage sensor and collected by
the Miller Insight Centerpoint current voltage interface. These data
were collected as numerical time-series data at a 1 kHz sampling rate
that was stored in a .txt file. All 25 trials generated 25 .txt files.
Voltage Image data conversion: Each voltage data point was plotted as
a graph showing the change in voltage values with respect to time,
which essentially converted the numerical data to voltage image
data. This process was performed because feature extractions
become difficult in numerical form owing to extensive fluctuations.
In comparison, image-based detection often employs advanced
image classification networks such as CNN. The voltage image data
represents a chart displaying variations in voltage values over time,
reflecting the time-series nature of the voltage data. The voltage
values were first defined to perform image conversion. Suppose,
Vi be the m™ voltage value for a particular time instant T. Hence
when T = 1/1000, the first voltage is observed that is v, . Hence, vy, is
the voltage value observed at T = m/1000. Assuming V,, ; to be the
k™ set of voltage values, i the interval between the current and the
next snapshot, and w the bandwidth defined as the duration between
the initial and final time point in a particular snapshot, then V;,, ; x can
be defined as Eq. 1. For instance, V3 ; indicates 3000 voltages from
T = (1/1000)—(3000/1000), similarly, V312 and Vs;3 indicate
3000 voltages from T = (1001/1000)—(4000/1000) and T =
(2001,/1000)—(5000/1000), respectively. The bandwidth and in-
terval must be decided logically because too small a bandwidth or
interval will result in an overlap in the values of v;,. In this case, the
bandwidth and intervals are maintained at 3 and 0.5, respectively.
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Fig. 2. Gas tungsten arc welding-based WAAM experimental setup.
Viis = {V 1 m € My 5} ¢)) voltage values, owing to the parameters w = 3 and i = 0.5.
where M,, ;« is the set of m instances, and consequently, can be denoted o Voltage Image data resizing: Upon defining the V,, ;x values, each V,,;x
by Eq. 2. undergoes transformation into voltage image data, representing

time-series waveforms. Notably, each V,;x component exhibits
varying minimum and maximum v,, values, leading to differences in
image sizes based on these extrema. However, since CNN necessi-
tates uniform image sizes so that, features can be extracted effort-
lessly, adjustments are made to the vertical axes of the images to
ensure that they all share the consistent dimensions of 224 x 224

M, = {x+ (k—1)(1000i) : x € N,1 < x < 1000w } 2

where x is a certain time point.

Fig. 3 pertains to V,,;, with w =3 and i = 0.5. In this context, the
horizontal and vertical axes represent T and vy, respectively, at time T.
Since w = 3, each element of V,,;; encompasses a set of 9000 voltage
values. For example, V351 is the initial dataset and encompasses v;,V2,
..., Voooo. Given i = 0.5, V3052 comprises viso1, Va2, ..., Viosoo. It’s note-
worthy that any two consecutive voltage value datasets share 7500
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Fig. 3. Voltage image data conversion process with w = 3 and i = 0.5 [20]. Fig. 4. Steps of 1D and 2D data pre-processes for the dataset preparation.
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Fig. 6. Concatenated predictions.

pixels. The size of 224 x 224 was selected primarily for two reasons.
First, most CNN architectures for pre-trained models uses this size for
feature extraction and classification process. Second, it is considered
an optimal size that sufficiently contains time and spatial context of
an image for the purpose of prediction. Hence, resizing should al-
ways be done such that no meaningful information is lost from the
concerned images, which was done by adaptive resizing for each
Vw.ik snapshot. Adaptive resizing was done by setting a range, that is,

Vrange = Vmax — Vmin- Ranges for each snapshot are variable in nature.

If a snapshot has a small range compared to another, it automatically

re-adjusts to incorporate the larger voltage value, maintaining the
exact image size.
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e Voltage Image data labeling: All the image snapshots were labeled
manually by two professionals using their expert judgment into three
distinct classes Normal, Abnormal, and Unclassified. Beads with
stable and unimpeded voltage patterns were classified as Normal,
whereas fluctuating and irregular data patterns were labeled as
Abnormal. Unclassified types were patterns that started as normal
but transitioned to abnormal or vice-versa. Any bead deposition’s
starting and ending points were also labeled as unclassified because
the welding speed was zero in those positions. For proper training,
the output labels need to be balanced. If a particular class of data
becomes very high for some reason, the network tends to get biased
toward that class. This can be avoided by implementing under-
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sampling, which reduces the size of the majority class to balance the
minority class [50]. The final voltage image data set was prepared
with only image snapshots labeled as Normal and Abnormal, dis-
carding the unclassified class.

The 2D datasets consisted of three steps: (1) frame data acquisition,
(2) frame data cropping, and (3) frame data labeling. Each step is
described in detail below:

e Frame data acquisition: The WAAM process was captured by a
Weldvis WL2-H7ML-M35 high dynamic range (HDR) camera at a
sampling rate of 50 frames per second (fps), tracking the movement
of the TIG torch from start to end. In this case, each DoE generated
one mp4 file that is partitioned into .jpg while maintaining the same
sampling rate. This .jpg frame data are subsequently cleansed,
disposing of any image obstructed by shadow, smoke, or any form of
signal noise.

Frame data cropping: Cropping was performed on frame images to
focus on the presently associated melt-pool image, dismissing any
form of noise and irregularities in the raw data. Each frame cut was
obtained as an image of size 224 x 224 pixels. Because the 224 x 224
image contains unnecessary areas and noises unrelated to the
anomaly detection in the WAAM process, cropping was performed to
remove these. Cropping was performed based on the average co-
ordinates obtained using the You Only Look Once (YOLO) model,
which is an object detection technique.

Frame data labeling: Data labeling for frame data was performed in a
manner similar to that for voltage data. Two professionals also
labeled the frame data with an unbiased expert perception. Each
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frame was labeled as normal, abnormal, or unclassified. In the
normal case, the shape of the bead made through WAAM is normal,
whereas in the abnormal case, the shape of the bead is cut (e.g.,
balling effect) or thin. The unclassified images include several issues,
such as the mixing of normal and abnormal images, preheating, and
processing start/stop images.

3.2. Step 2: Data preparation

The final dataset was prepared by synchronizing both the image and
frame data to a single metadata set. Synchronization was performed
after each type of voltage data image (1D) and frame (2D) data were
individually labeled. Because each frame data is sampled every
1/50 seconds and the voltage data are sampled at 1/1000 s, each frame
data consists of 20 voltage values which was synchronized using
considering each time stamp of the frame data. Hence, any form of la-
tency was avoided all together. All 20 voltage values were labeled as
those of the frame data label. The same was also the case for the voltage
image data, where the each data were labeled as normal only if all the
voltage values corresponding to the voltage image data were labeled
normal. The same was the case for the abnormal class; otherwise, the
voltage image data are removed from the dataset. In doing so, it was
found that the voltage image data label tended to coincide with the
corresponding frame data label. The total number of frame cuts used in
this process was 29,089. Among them, 10,032 frame cuts were classified
as normal, whereas 12,596 and 6461 frame cuts were classified as
abnormal and unclassified, respectively. The total number of data points
in the training sets was 25,666, consisting of normal (8853), abnormal
(11,136), and unclassified (5677) images. The test set consisted of 3423
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images: normal (1179), abnormal (1460), and unclassified (784)

images.

Fig. 5 shows two typical examples of “Normal” and “Abnormal”
classes of input metadata. In the case of the metadata labeled normal,

the bead was found to be stable and monotonic, and the voltage image
pattern was smooth and unfluctuating. The 2D frame data also show no
signs of balling or bead-cut defects. In contrast, for the abnormal class of
metadata, the bead formed was unstable and full of irregularities, the
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Fig. 11. Correlation between input variables of data set through concatenation using low-accuracy (right) and high-accuracy (left) models.

voltage (1D) profile showed significant fluctuations, and the 2D frame
data showed signs of balling.

3.3. Step 3: Pretraining and predictions

The difference between the proposed and previous methods is that
data fusion was used with two types of data (i.e., voltage images and 2D
HDR frame cuts). In contrast, existing methods use single data in an
ensemble architecture. Prior to the ensemble, the CNN models were
trained to create a new input variable. From the voltage data set, Den-
seNet121, DenseNet169, and InceptionResNetV2 were individually
trained. DenseNet achieved the highest prediction accuracy and pre-
diction time [20]. CNN models, such as DenseNet121 (DN121), Dense-
Netl69 (DN169), MobileNetV2 (MNV2), and InceptionResNetV2
(IRV2), were pretrained on a large dataset consisting of numerous im-
ages and output classes for the 2D dataset. MobileNetV2 for 2D data
showed the best accuracy with the minimum prediction time [19]. In
addition to storing the highest accuracy weights (e.g., 99 %), weights of
50 %, 80 %, 90 %, and 95 % were also preserved for comparison and
validation.

3.4. Step 4: Concatenated ensemble

This step aimed to create a new dataset that could be used for the
concatenated ensemble for better prediction. The CNN models in the
previous steps used voltage (1D) images and 2D frame cuts as the input
datasets for classification. The concatenated dataset defined in this
subsection is different because instead of using images, it uses numeric
values for prediction. This resulted in two inherent advantages. First,
because computation on numeric data is far more relaxed than that of
images, it substantially reduces the processing time. Second, the sheer
amount of data in the voltage image dataset is much more than the
numeric dataset, which is also computationally taxing.

In the previous steps, it was seen that voltage (1D) images and 2D
frame cuts data provide the probability of certain data occurring in a
particular class rather than giving the final classification. Once the
pretrained model is completed, a set of these probabilities is obtained for
each image. Then, an ensemble is performed based on the prediction
probability through CNN. The probability that a specific dataset belongs
to a particular class was calculated. The dataset was used to create a new
link matrix, that is, the concatenated dataset. A concatenated dataset
was created using a concatenated matrix of these probabilities. Suppose
a particular image Img; has a set of voltage images probabilities as S1p =

{80+ Normat: Seiss Abmorma ; @0d the corresponding 2D voting probabilities

as Sap = {S20 . Normats Sy apmormar } @0d if the original class label of Img,

is I; then the concatenated data point for Img; will be,
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Consequently, for the other images, the dataset follows the format

shown in Fig. 6, where all the soft voting probabilities become the input

of the new dataset.
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Because the probability is concatenated, it is based on soft voting
cases. For instance, for the same Img, if the original label is /; and the
probability of belonging to the normal class; the abnormal class is
s st for the voltage image data, and the probability of

D
class Normaly " class Abnormaly
2D

class Normal, ®

belonging to the normal class, the abnormal class is S
SZD

class Abnormaly
of different data types. This newly created dataset can be used for
concatenating ensembles. As seen above, concatenation also creates
synchronization between the two data types.

The concatenated ensemble is based on the stacking technique,
where a group of base learners is trained, and the stacking result of the
base learner, instead of showing the final classification, is driven as
input to another group of classifiers. The output of these classifiers was
considered as the final classification. Note that the ensemble uses several
classifiers after concatenating the prediction results and proceeds with
the ensemble, whereas the stacking method uses a classifier after
stacking the results for the final prediction.

In this study, the voltage image data and 2D frame cut data were the
initial inputs that were then passed on to the CNN networks, which
functioned as base learners. The output of the CNN was then concate-
nated to a new dataset and driven to the next layer of the ensemble,
which in our case are six distinct ML classifiers: logistic regression (LR),
k-nearest neighbor (KNN), decision tree (DT), Gaussian naive bias
(GNB), support vector classification (SVC), and random forest (RF).
These classifiers were chosen because they tend to exhibit better per-
formance in binary classification. After classification, the results of the
top four classifiers with high accuracy were selected from among the six.
The voting-based ensemble was performed on the results of the selected
classifier to derive the final prediction class and measure the accuracy.

We compared four models: (1) Voltage image ensemble model and
Voltage image CNN model, (2) Frame cut image ensemble model and

for the 2D data. The dataset is a concatenation of the results
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Frame cut image CNN model, (3) a data fusion ensemble that uses
voltage image data and 2D frame cut image data simultaneously, and (4)
the proposed data fused, concatenated ensemble. In addition, the data-
fused, concatenated ensemble model was verified by the k-fold cross-
validation method, and the value of k was set to 10. When all four
models were compared, it was observed that the increase in accuracy of
the proposed method, that is, the data-fused, concatenated ensemble,
was the highest.

4. Results and validation

In this section, we compared the results obtained from four model
configurations: single source-based CNN: 1D (voltage image)-based CNN
and 2D (frame cut image)-based CNN, and single source-based
ensemble: 1D (voltage image) model ensemble and 2D (frame cut
image) model ensemble, 1D (voltage image)-2D (framecut image) dou-
ble source-based ensemble (Data-fused ensemble), and the proposed 1D
(voltage image)-2D (frame cut image) double source-based concate-
nated ensemble (Data-fused, concatenated ensemble). From here on-
wards, each model will be referred to by the name in the parentheses for
ease of nomenclature: 1D-based CNN (1D-CNN), 2D-based CNN (2D-
CNN), 1D model ensemble (1D-Ensemble), 2D model ensemble (2D-
Ensemble), 1D—2D double source-based ensemble (Data-fused
Ensemble), and 1D—2D concatenated ensemble (Data-fused, concate-
nated ensemble). As mentioned earlier, the models can perform at
different accuracies by tuning the hyperparameters. Hence, for ease of
contrast, the models were divided into four ranges of accuracies:

0 % — 60 % referred to as ~ 50 %
60 % — 89 %, referred to as ~ 80 %
90 % — 95 % referred to as ~ 90 %
95 % — 100 % referred to as ~ 95 %

The development environment used Google’s Colab pro-
environment, including GPU T4, RAM 25.51 GB, CPU Intel(R) Xeon(R)
CPU @ 2.30GHz. The Google TensorFlow library defined the CNN
models for training and testing.

4.1. Ensemble models for comparisons

Each procedure and its accuracy results for the 1D-Ensemble, 2D-
Ensemble, and Data Fusion Ensemble will be explained.

4.1.1. 1D model ensemble

Fig. 7 shows the 1D ensemble model. Here the voltage image data are
individually classified using the three pre-trained CNN models: Dense-
Net121 (DN121), DenseNet 169 (DN169), and InceptionResNetV2
(IRV2). Consequently, the predicted outcomes of each model are
equated through a voting classification approach for hard and weighted

Table 2
Voting conditions for EL.
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soft voting as defined in Egs. 3-5. Two models are considered at a time
for the voting classification, and the subsequent accuracy for each voting
class is shown in Table 2.

For Egs. 3-5, suppose there are T base learners and N classes, and the
base learner obtains {hj, hy, ..., h} as the probability value for h;(x). In
the case of Eq. 3, if the majority predicts that the results of the classifiers
h¥(x) is the class of C;, it becomes the output class of the base learner. By
contrast, the probability itself is compared, and classification is per-
formed in the class with a higher probability value in Eq. 4. In the case of
Eq. (5), the classification progresses by adding the weights in Eq. 4.

T N T
Ciif > Hi(x)>0.5 1 (x)
Hx)=4 77 % ; ; 3)
reject, otherwise
H()C) = Carg,‘mnxziill’l; (x) 4
H(x) = Carg,maxz[ilw,'h::(x) (5)

The final predictions of each single and double-source ensemble
model were made using these hard and weighted soft voting classifiers.
As shown in Table 2, seven distinct voting conditions were used. The
first two conditions are based on hard voting classification. In both
Condition 1 and Condition 2, when the individual classifications were
the same, the final classification followed the individual classification.
For instance, if classification and classification* both predict “normal”
then the final prediction is also normal. However, when both the
models’ classification differs, then in Condition 1, the final prediction
followed the prediction of ‘classification*” in Condition 2, followed the
prediction of ‘classification’. Conditions 3-7 were based on a soft voting
approach. Suppose that the probability of a model classifying an instant
as “normal” is P(N) and that of another model is P(N"). The soft voting
approach takes the aggregate of P(N) and P(N") multiplied by a pre-
defined weight (that is different for each condition) and compares it to
0.5, which, if greater, gives the final prediction of ‘normal’ otherwise
‘abnormal’.

In Table 3, the 1D-Ensemble results are shown in terms of the seven
voting conditions. The best accuracy is increased for the ensemble pairs
marked as the 1D model and 1D model*. The underlined cells in the
table indicate the best accuracy.

4.1.2. 2D model ensemble

The overall classification process of the 2D model ensemble is similar
to that of the 1D ensemble model. Although in this case, instead of
voltage image data, 2D frame cut data was used for classification by four
pre-trained CNN models, namely: DenseNet121 (DN121), DenseNet 169
(DN169), InceptionResNetV2 (IRV2), and MobileNetV2 (MNV2), as
shown in Fig. 8. The same voting technique (given by Egs. 3-5) and

Case Classification Classification* Final prediction
Normal Normal Normal
Condition 1 Normal Abnormal Normal
Abnormal Normal Normal
Abnormal Abnormal Abnormal
Normal Normal Normal
Condition 2 Normal Abnormal Abnormal
Abnormal Normal Abnormal
Abnormal Abnormal Abnormal
Condition 3 (w;p = 0.4, wop = 0.6)
if (P(N) x wip +P(N") x wop ) > 0.5
Ctmd%qon 4 (wip = 0.45, wap = 0.55) P(Normal) P(Normal') —normal
Condition 5 (w;p = 0.5, wop = 0.5) else—abnormal

Condition 6 (w;p = 0.55, wop = 0.45)
Condition 7 (w;p = 0.6, wap = 0.4)
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Table 3
1D model EL results.
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Accuracy 1D model 1D* model 1D acc 1D* acc Voting Conditions
1 2 3 4 5 6 7
DN121 IRV2 0.96 0.92 0.95 0.93 0.94 0.94 0.93 0.92 0.92
~ 95 % DN121 DN169 0.96 0.98 0.97 0.97 0.98 0.99 0.98 0.98 0.98
DN169 IRV2 0.98 0.92 0.98 0.92 0.97 0.96 0.95 0.93 0.93
Average 0.97 0.94 0.97 0.94 0.97 0.94 0.97 0.96 0.95
DN121 IRV2 0.90 0.87 0.91 0.87 0.91 0.91 0.90 0.88 0.88
~ 90 % DN121 DN169 0.90 0.89 0.88 0.91 0.91 0.91 0.91 0.90 0.90
DN169 IRV2 0.89 0.87 0.89 0.87 0.90 0.90 0.90 0.89 0.88
Average 0.9 0.88 0.90 0.88 0.89 0.88 0.91 0.91 0.90
DN121 IRV2 0.86 0.71 0.66 0.90 0.84 0.81 0.72 0.71 0.71
~ 80 % DN121 DN169 0.86 0.88 0.86 0.88 0.91 0.92 0.92 0.90 0.90
DN169 IRV2 0.88 0.71 0.71 0.88 0.90 0.90 0.92 0.73 0.72
Average 0.87 0.76 0.74 0.89 0.88 0.88 0.85 0.78 0.78
DN121 IRV2 0.56 0.64 0.64 0.56 0.56 0.56 0.59 0.63 0.63
~ 50 % DN121 DN169 0.56 0.58 0.58 0.56 0.56 0.56 0.56 0.58 0.58
DN169 IRV2 0.58 0.64 0.64 0.58 0.59 0.59 0.62 0.63 0.64
Average 0.57 0.62 0.57 0.62 0.62 0.57 0.57 0.57 0.59

voting conditions (given in Table 2) were employed to determine the
final prediction of the 2D model ensemble.

Table 4 provides the accuracy comparison of the 2D ensemble model
of the six ensemble pairs for the four CNN models. Similar to the 1D
model ensemble, seven voting condition cases, as shown in Table 2, were
used to determine the output classification probabilities. The best-case
accuracies ranged from 0.44 to 1.00 for the ensemble pairs. Compared
with the 1D single-source ensemble, the results were reasonably
improved (Table 4).

4.1.3. Data fusion ensemble (1D and 2D double source-based ensemble)
The data fusion ensemble, otherwise called the double source
ensemble, uses both voltage (1D) images and 2D frame cuts together for
the ensemble. First, the CNN model was trained for each data type.
Three models were trained on the voltage image dataset, whereas four
models were trained on the 2D dataset. But instead of ensembling pairs
of CNN models trained using the same data type, ensemble pairs were

Table 4
2D model EL results.

created with CNN models trained using different data types, as shown in
Fig. 9. This resulted in 12 combinations of ensemble pairs. Comparable
to the single-source ensemble, each pair’s prediction result was deter-
mined using the voting conditions in Table 2.

The 1D—2D data fusion ensemble results are presented in Table 5.
This generates 12 ensemble pair combinations that yield better results
than a 1D single-source ensemble. However, compared with the 2D
single-source ensemble, the accuracies deteriorated. Overall, the soft-
voting method yielded better results than the hard-voting method.

4.2. Proposed data-fused, concatenated ensemble

Table 6 shows the model results taking advantage of the entire notion
of this study. Here, the data-fused and concatenated ensemble results are
described. The concatenated dataset comprises the prediction outcomes
of both 1D and 2D prediction pairs. The average accuracy is shown for
each ML model. As expected, this technique yields the best results. Soft*

Accuracy 2D model 2D* model 2D acc 2D* acc Voting Conditions
1 2 3 4 5 6 7
DN121 IRV2 0.995 0.989 0.989 0.995 0.995 0.997 1 0.999 0.998
DN121 DN169 0.995 0.994 0.994 0.995 0.999 0.999 0.999 0.998 0.998
~ 05 % DN169 IRV2 0.994 0.989 0.984 0.999 0.995 0.997 0.997 0.998 0.998
DN121 MNV2 0.995 0.941 0.948 0.988 0.95 0.954 0.997 0.997 0.997
DN169 MNV2 0.994 0.941 0.945 0.99 0.951 0.955 0.969 0.991 0.993
MNV2 IRV2 0.941 0.989 0.939 0.991 0.952 0.957 0.995 0.997 0.995
Average 0.986 0.974 0.967 0.993 0.974 0.976 0.993 0.997 0.997
DN121 IRV2 0.986 0.967 0.99 0.963 0.97 0.97 0.982 0.986 0.986
DN121 DN169 0.986 0.916 0.986 0.916 0.941 0.946 0.955 0.964 0.97
~ 90 % DN169 IRV2 0.916 0.967 0.981 0.902 0.96 0.955 0.952 0.945 0.94
DN121 MNV2 0.986 0.919 0.919 0.986 0.933 0.941 0.994 0.995 0.994
DN169 MNV2 0.916 0.919 0.919 0.916 0.933 0.941 0.982 0.949 0.949
MNV2 IRV2 0.919 0.967 0.919 0.967 0.933 0.941 0.996 0.978 0.978
Average 0.951 0.942 0.952 0.941 0.945 0.949 0.977 0.97 0.97
DN121 IRV2 0.77 0.97 0.77 0.97 0.98 0.98 0.99 0.94 0.9
DN121 DN169 0.77 0.92 0.77 0.92 0.94 0.95 1 0.94 0.9
~ 80 % DN169 IRV2 0.92 0.97 0.98 0.9 0.96 0.95 0.95 0.95 0.94
DN121 MNV2 0.77 0.89 0.73 0.93 0.91 0.91 0.92 0.89 0.86
DN169 MNV2 0.92 0.89 0.89 0.91 0.92 0.93 0.96 0.95 0.94
MNV2 IRV2 0.89 0.97 0.91 0.95 0.92 0.93 0.96 0.97 0.97
Average 0.84 0.93 0.84 0.93 0.94 0.94 0.96 0.94 0.92
DN121 IRV2 0.445 0.555 0.445 0.555 0.555 0.555 0.727 0.445 0.445
DN121 DN169 0.445 0.487 0.445 0.487 0.485 0.479 0.639 0.445 0.445
~50 % DN169 IRV2 0.487 0.555 0.487 0.555 0.555 0.555 0.534 0.502 0.496
DN121 MNV2 0.445 0.592 0.445 0.592 0.601 0.599 0.662 0.445 0.445
DN169 MNV2 0.487 0.592 0.531 0.549 0.583 0.579 0.574 0.505 0.5
MNV2 IRV2 0.592 0.555 0.592 0.555 0.583 0.581 0.558 0.555 0.555
Average 0.484 0.556 0.491 0.549 0.56 0.558 0.616 0.483 0.481
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Table 5
Data fusion EL results.
Accuracy 1D model 2D model 1D acc 2D acc Case
1 2 3 4 5 6 7
DN121 0.995 0.985 0.931 0.997 0.998 0.993 0.974 0.967
DN121 DN169 0.961 0.994 0.980 0.934 0.999 0.999 0.998 0.974 0.967
IRV2 0.989 0.974 0.935 0.995 0.997 0.993 0.974 0.967
MNV2 0.941 0.933 0.933 0.949 0.953 0.954 0.961 0.959
DN121 0.995 0.980 0.953 0.998 0.997 0.992 0.974 0.973
DN169 0.994 0.975 0.957 0.999 0.999 0.994 0.974 0.973
~95% DN169 IRV2 0.976 0.989 0.970 0.957 0.994 0.994 0.989 0.973 0.973
MNV2 0.941 0.929 0.955 0.950 0.954 0.991 0.973 0.972
DN121 0.995 0.988 0.910 0.998 0.997 0.984 0.942 0.938
IRV2 DN169 0.921 0.994 0.984 0.914 0.999 0.999 0.992 0.944 0.939
IRV2 0.989 0.978 0.914 0.994 0.994 0.983 0.944 0.939
MNV2 0.941 0.937 0.912 0.950 0.953 0.975 0.942 0.938
Average 0.953 0.980 0.953 0.980 0.968 0.934 0.985 0.986 0.987
DN121 0.986 0.984 0.885 0.982 0.978 0.951 0.924 0.918
DN121 DN169 0.905 0.916 0.960 0.842 0.932 0.932 0.931 0.918 0.915
IRV2 0.967 0.966 0.884 0.967 0.964 0.932 0.918 0.915
MNV2 0.919 0.908 0.894 0.933 0.941 0.983 0.929 0.921
DN121 0.986 0.936 0.918 0.989 0.988 0.986 0.960 0.945
DN169 0.916 0.920 0.868 0.937 0.941 0.958 0.941 0.935
~90% DN169 IRV2 0.885 0.967 0.924 0.911 0.969 0.969 0.968 0.949 0.939
MNV2 0.919 0.859 0.929 0.931 0.939 0.970 0.961 0.948
DN121 0.986 0.985 0.854 0.981 0.977 0.946 0.896 0.890
IRV2 DN169 0.872 0.916 0.951 0.822 0.928 0.926 0.905 0.886 0.883
IRV2 0.967 0.967 0.854 0.967 0.963 0.934 0.897 0.890
MNV2 0.919 0.910 0.863 0.933 0.941 0.965 0.901 0.893
Average 0.947 0.939 0.947 0.939 0.877 0.954 0.955 0.952 0.923
DN121 0.771 0.699 0.903 0.825 0.839 0.866 0.865 0.872
DN121 DN169 0.860 0.916 0.876 0.874 0.937 0.941 0.958 0.928 0.919
IRV2 0.967 0.876 0.921 0.973 0.974 0.976 0.933 0.922
MNV2 0.888 0.830 0.888 0.901 0.907 0.915 0.900 0.898
DN121 0.771 0.766 0.866 0.901 0.942 0.973 0.903 0.896
DN169 0.916 0.956 0.824 0.927 0.924 0.898 0.886 0.884
~80% DN169 IRV2 0.882 0.967 0.971 0.857 0.966 0.962 0.914 0.901 0.895
MNV2 0.888 0.890 0.860 0.919 0.928 0.936 0.901 0.895
DN121 0.771 0.526 0.919 0.842 0.853 0.734 0.704 0.701
IRV2 DN169 0.706 0.916 0.698 0.894 0.943 0.948 0.927 0.721 0.711
IRV2 0.967 0.698 0.942 0.974 0.975 0.861 0.721 0.711
MNV2 0.888 0.675 0.886 0.895 0.894 0.787 0.714 0.707
Average 0.820 0.816 0.82 0.816 0.886 0.788 0.886 0.917 0.924
DN121 0.445 0.445 0.555 0.445 0.445 0.901 0.571 0.571
DN121 DN169 0.563 0.487 0.503 0.555 0.501 0.509 0.559 0.571 0.571
IRV2 0.555 0.571 0.555 0.555 0.555 0.571 0.571 0.571
MNV2 0.592 0.588 0.555 0.584 0.582 0.567 0.571 0.571
DN121 0.445 0.445 0.573 0.445 0.445 0.691 0.603 0.598
DN169 0.487 0.520 0.555 0.502 0.510 0.576 0.586 0.587
~ 50 % DN169 IRV2 0.580 0.555 0.590 0.555 0.555 0.555 0.571 0.585 0.586
MNV2 0.592 0.591 0.570 0.586 0.584 0.599 0.590 0.590
DN121 0.445 0.445 0.634 0.445 0.445 0.766 0.661 0.658
RV2 DN169 0.644 0.487 0.578 0.559 0.505 0.517 0.610 0.636 0.640
IRV2 0.555 0.650 0.555 0.555 0.555 0.592 0.637 0.640
MNV2 0.592 0.620 0.601 0.595 0.596 0.626 0.652 0.652
Average 0.596 0.520 0.596 0.520 0.545 0.569 0.523 0.525 0.636

and hard * voting gave a prediction accuracy ranging from 0.72 to 1.00,

with a standard deviation as low as 0.002 for some cases.

5. Discussion

To compare the accuracy improvement, the increase in accuracy
after the ensemble was calculated and compared with the average ac-
curacy of the two existing models. The increase in accuracy is defined by

Eq. 6.

Ensemble acc — average (model acc, model” acc)

Increase of accuracy =

average (model acc, model acc)

(6)

Fig. 10 shows the accuracy of the 1D CNN, 2D CNN, 1D model

ensemble, 2D model ensemble, data fusion ensemble, and data-fused,
concatenated ensemble. It is observed that significant accuracy
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improvement was observed when the base CNN model performed at the
range of ~50 %. In that case, both the single source ensemble provided
better accuracy by a 5-10 % margin compared to the 1D and 2D base
CNN models. The double source model demonstrated further improve-
ment in accuracy, whereas the proposed concatenated ensemble showed
the highest accuracy, >80 %. However, it is also observed that with the
increase in accuracy ranges of the base model (i.e., ~80 %, ~90 %, and
~95 %), the increase in accuracy compared to the double source
ensemble and the proposed concatenated ensemble is considerably
reduced. This is because the model becomes overfitted to the data set
with increased CNN base classifier accuracies. As such, the scope of
accuracy improvement is lessened.

Moreover, to check the proposed data fused concatenated ensemble,
averages of the probability of belonging to a class (i.e., normal and
abnormal) from the CNN models in the ranges ~50 % and ~95 % cases
are shown in Table 9 where the test data consists of 1280 normal and
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Table 6
1D—2D data-fused, concatenated EL results.
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Accuracy ~95 %

Case Avg.

1* 2% 3% 4% 5% 6% 7% 8% o 10* 11* 12%
LR 0.997 1.000 0.998 0.967 1.000 1.000 0.993 0.977 0.998 0.998 0.995 0.962 0.990
KNN 0.998 1.000 1.000 0.969 1.000 1.000 0.998 0.995 0.998 0.998 0.998 0.981 0.995
DT 1.000 1.000 0.998 0.969 1.000 0.998 1.000 1.000 1.000 0.998 0.998 0.981 0.995
GNB 1.000 0.998 0.997 0.960 1.000 1.000 0.995 0.974 1.000 0.998 0.995 0.951 0.989
SvC 0.995 1.000 0.998 0.958 0.997 1.000 0.993 0.974 0.997 0.998 0.995 0.960 0.989
RF 1.000 1.000 1.000 0.972 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.984 0.996
VH 1.000 1.000 0.998 0.972 1.000 1.000 0.997 0.995 1.000 0.998 0.997 0.971 0.994
\'S 0.998 1.000 0.998 0.967 1.000 1.000 0.997 0.993 1.000 0.998 0.997 0.984 0.994
VH* 1.000 1.000 1.000 0.972 1.000 1.000 0.998 1.000 1.000 0.998 0.998 0.986 0.996
VSs* 0.998 1.000 1.000 0.971 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.986 0.996
Accuracy~90 %

Case Avg.

1* 2% 3* 4 5% 6* 7 8* 9 10* 11* 12*
LR 0.997 0.981 0.984 0.946 0.990 0.960 0.967 0.984 0.993 0.946 0.974 0.938 0.972
KNN 1.000 0.962 0.993 0.998 0.995 0.962 0.976 0.990 0.995 0.991 0.979 0.981 0.985
DT 0.998 1.000 0.995 1.000 0.997 0.997 0.990 0.991 0.998 1.000 0.979 0.988 0.994
GNB 0.995 0.986 0.974 0.964 0.993 0.995 0.974 0.979 0.993 0.991 0.972 0.972 0.982
SvC 1.000 0.977 0.986 0.934 0.993 0.964 0.967 0.979 0.991 0.950 0.979 0.936 0.971
RF 0.998 1.000 0.995 0.998 0.998 0.997 0.991 0.990 0.998 1.000 0.983 0.990 0.995
VH 0.998 0.993 0.991 0.964 0.997 0.993 0.979 0.993 0.997 0.993 0.983 0.972 0.988
\'S 1.000 0.993 0.986 1.000 0.993 0.993 0.979 0.991 0.998 0.991 0.984 0.988 0.991
VH* 0.998 0.997 0.995 0.998 0.998 0.997 0.990 0.991 0.997 0.998 0.981 0.986 0.994
VS* 1.000 0.998 0.993 1.000 0.995 0.997 0.990 0.991 0.998 0.997 0.984 0.988 0.994
Accuracy ~80 %

Case Avg.

1* 2% 3* 4* 5% 6* 7% 8* 9* 10* 11* 12*
LR 0.971 0.965 0.969 0.918 0.986 0.976 0.977 0.917 0.962 0.943 0.976 0.918 0.957
KNN 0.984 0.969 0.976 0.957 0.993 0.995 0.977 0.953 0.993 0.995 0.986 0.915 0.974
DT 0.998 0.998 0.983 0.944 0.997 1.000 0.988 0.948 1.000 1.000 0.993 0.976 0.985
GNB 0.997 0.995 0.971 0.912 0.993 0.984 0.971 0.936 0.993 0.997 0.977 0.912 0.970
SvC 0.977 0.950 0.971 0.913 0.967 0.977 0.977 0.899 0.981 0.946 0.976 0.918 0.954
RF 0.998 0.998 0.986 0.969 0.995 0.998 0.990 0.974 1.000 1.000 0.995 0.971 0.990
VH 0.995 0.997 0.979 0.941 0.993 0.997 0.981 0.938 0.998 1.000 0.991 0.922 0.978
\S 0.998 0.997 0.979 0.944 0.993 0.997 0.981 0.953 0.998 1.000 0.991 0.948 0.982
VH* 0.995 0.998 0.984 0.953 0.993 0.998 0.990 0.962 1.000 1.000 0.995 0.965 0.986
VS* 0.997 0.998 0.983 0.957 0.995 0.998 0.988 0.960 1.000 1.000 0.995 0.974 0.987
Accuracy ~50 %

Case Avg.

1* 2% 3* 4* 5% 6* 7 8* 9% 10* 11* 12*
LR 0.569 0.554 0.589 0.550 0.606 0.594 0.620 0.606 0.693 0.649 0.648 0.637 0.610
KNN 0.920 0.589 0.828 0.670 0.938 0.660 0.792 0.729 0.932 0.707 0.781 0.745 0.774
DT 0.931 0.736 0.745 0.691 0.941 0.743 0.799 0.778 0.913 0.741 0.809 0.797 0.802
GNB 0.917 0.554 0.589 0.580 0.731 0.668 0.693 0.665 0.917 0.646 0.648 0.635 0.687
SvC 0.569 0.554 0.589 0.563 0.599 0.587 0.608 0.589 0.689 0.635 0.639 0.635 0.605
RF 0.938 0.752 0.722 0.693 0.944 0.778 0.839 0.788 0.938 0.797 0.839 0.814 0.820
VH 0.941 0.679 0.752 0.689 0.922 0.731 0.818 0.754 0.931 0.747 0.802 0.748 0.793
\S 0.941 0.729 0.821 0.688 0.912 0.769 0.802 0.797 0.941 0.780 0.816 0.783 0.815
VH* 0.941 0.731 0.783 0.705 0.939 0.748 0.825 0.781 0.936 0.769 0.830 0.806 0.816
Vs* 0.924 0.726 0.821 0.729 0.936 0.747 0.800 0.785 0.929 0.754 0.816 0.809 0.815

1597 abnormal images, leading to a ratio of 0.44 and 0.56. It is hy-
pothesized that the classification was successful only when the proba-
bility of belonging to each class was 0.44 and 0.56. It was observed that
the classification in the range of ~50 % case was biased because the
model’s accuracy was low. For example, all models were biased in
classifying images as abnormal in voltage image data. In contrast, the
three models (DenseNet121, DenseNet169, and InceptionResNetV2)
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were biased toward classifying images as normal or abnormal, and
MobileNet was unbiased in 2D. In contrast, the ratio is similar to the
composition of 0.44 and 0.56 in the range of ~95 % case because it is a
high-accuracy model. It can be concluded that classification with high
accuracy can be performed using the biased 1D and 2D models through
the proposed data-fused, concatenated ensemble.

In the case of the ~50 % accuracy range, classification is biased
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toward the abnormal class for all three models of the 1D classification. In
addition, in the case of 2D, such an inclination is seen toward the
Abnormal class, except for DenseNet121. The proposed data fused,
concatenated ensemble, shown in Table 6, on the other hand, for ~50 %
accuracy range using DenseNet121 for 2D, the final accuracies were
higher in Cases 1, 5, and 9 than that of the other cases. Suppose that both
the models used for the proposed EL classify different classes in a biased
manner. In this case, accuracy can be increased by learning according to
a specific pattern and classifying the final result into the correct class. It
is known that suitable models that can classify “Normal” and
“Abnormal” are different depending on the characteristics of models and
data. Even if each model does not perform well, the pattern can achieve
the final classification. In addition, both models are inherently biased
toward abnormal classes. However, their data were intrinsically normal.
In such a case, the accuracy is also improved by recognizing the pattern
when both models are incorrect. Ultimately, in this study, even if clas-
sification using specific data or models is incorrect, the classification
accuracy can be increased by learning through pattern recognition and

Table 7
Average accuracies of models tested with CNN weights.
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feedback from the results as new inputs.

For a better understanding of the empirical values, the analysis of the
average accuracies is presented in Table 7, and the percentage
improvement in the accuracy is shown in Table 8. The average accuracy
of the data-fused, concatenated ensemble was found to be the highest,
which is approximately 98.8 %. The average percentage increase in
accuracy was also the highest at approximately 16.3 % compared with
the average original CNN accuracy.

Three specific reasons can be attributed to the high-performance
accuracy of the proposed concatenated ensemble model in particular
and the ensemble models in general. First is overfitting avoidance,
which means that the learning algorithm finds several hypotheses for
small data that seamlessly predict the training data. However, when
unseen data are provided, the model fails to classify it correctly. In our
case, for the low accuracy range of the base CNN models, overfitting is
avoided because by taking the voting approach to different model pre-
dictions, reducing the probability of choosing the wrong model, and
increasing overall performance. Nevertheless, with the increase in the

Acc. Cases 1D Model 2D Model 1D Ensemble 2D Ensemble Data fusion ensemble Data fused concatenated ensemble
1* 0.995 - - 0.997 1.000
2% 0.961 0.994 0.986 0.999 0.999 1.000
3% 0.989 0.955 1.000 0.997 1.000
4* 0.941 - 0.997 0.961 0.972
5% 0.995 0.986 0.999 0.998 1.000
6* 0.994 - - 0.999 1.000
~95% 7% 0.976 0.989 0.975 0.999 0.994 1.000
8 0.941 - 0.993 0.991 1.000
9* 0.995 0.955 1.000 0.998 1.000
10* 0.921 0.994 0.975 0.999 0.999 0.998
11* 0.989 - - 0.994 0.998
12* 0.941 - 0.997 0.975 0.986
Avg. 0.953 0.980 0.972 0.998 0.992 0.996
1% 0.986 - - 0.984 1.000
2% 0.905 0.916 0.913 0.986 0.960 0.998
3% 0.967 0.906 0.990 0.967 0.995
4% 0.919 - 0.995 0.983 1.000
5% 0.986 0.913 0.986 0.989 0.998
6* 0.916 - - 0.958 0.997
~90% 7* 0.885 0.967 0.903 0.981 0.969 0.990
8* 0.919 - 0.982 0.970 0.993
9% 0.986 0.906 0.990 0.985 0.998
10* 0.872 0.916 0.903 0.981 0.951 0.998
11% 0.967 - 0.967 0.984
12* 0.919 - 0.996 0.965 0.988
Avg. 0.887 0.947 0.907 0.987 0.971 0.995
1% 0.771 - - 0.903 0.998
2% 0.860 0.916 0.920 0.997 0.958 0.998
3* 0.967 0.903 0.986 0.976 0.984
4% 0.888 - 0.931 0.915 0.957
5% 0.771 0.920 0.997 0.973 0.995
6* 0.916 - - 0.956 0.998
~80% 7* 0.882 0.967 0.922 0.981 0.971 0.990
8* 0.888 - 0.958 0.936 0.962
9% 0.771 0.903 0.986 0.919 1.000
10* 0.706 0.916 0.922 0.981 0.948 1.000
11* 0.967 - - 0.975 0.995
12% 0.888 - 0.966 0.895 0.974
Avg. 0.816 0.886 0.915 0.976 0.944 0.988
1* 0.445 - - 0.901 0.941
2% 0.563 0.487 0.580 0.639 0.571 0.731
3* 0.555 0.644 0.727 0.571 0.941
4% 0.592 - 0.662 0.588 0.731
5% 0.445 0.580 0.639 0.691 0.939
6* 0.487 - - 0.587 0.769
~50% 7* 0.580 0.555 0.644 0.555 0.590 0.825
8* 0.592 - 0.579 0.599 0.797
* 0.445 0.644 0.727 0.766 0.941
10* 0.644 0.487 0.644 0.555 0.640 0.780
11* 0.555 - - 0.650 0.830
12* 0.592 - 0.583 0.652 0.809
Avg. 0.596 0.520 0.623 0.630 0.651 0.836
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Table 8

Increase in percentage accuracies for various CNN pre-trained models.
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Acc. Data Original 1D Ensemble 2D Ensemble Data fusion ensemble Data-fused concatenated Ensemble
1D 0.953 2% - 4% 4%
~ 95 % 2D 0.98 - 2% 1% 2%
Avg. 0.966 2% 2% 3% 3%
1D 0.887 2% - 9% 11 %
~ 90 % 2D 0.995 - 4% 2% 5%
Avg. 0.917 2% 4% 6 % 8%
1D 0.816 12 % - 16 % 21 %
~ 80 % 2D 0.886 - 9% 7 % 11 %
Avg. 0.851 12% 9% 11 % 16 %
1D 0.596 5% - 9% 40 %
~ 50 % 2D 0.52 - 20 % 25 % 61 %
Avg. 0.558 5% 20 % 17 % 50 %
Table 9

Probability distribution of classes of 95 % accuracy model (left) and 50 % accuracy model (right).

Model 50 % accuracy model 95 % accuracy model

1D 2D 1D 2D

Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal
DenseNet121 0.03 0.97 0.99 0.01 0.44 0.56 0.44 0.56
DenseNet169 0.05 0.95 0.15 0.85 0.44 0.56 0.45 0.55
InceptionResNetV2 0.11 0.89 0.01 0.99 0.39 0.61 0.47 0.53
MobileNet - - 0.42 0.58 - - 0.48 0.52
bl accuracy range of the base CNN models, the room for improvement

Table 10

Training times for different accuracy models.

Range of model accuracy Ensemble Concatenated ensemble
Acc Time (s) Acc Time (s)
~ 50 % 0.6505 0.52 0.836 63.66
~ 80 % 0.9438 0.69 0.988 28.48
~ 90 % 0.9706 0.76 0.995 23.89
~ 95 % 0.9922 0.85 0.996 16.14
Table 11

Result of classification for total images and specific images.

Number of images

Low accuracy

High accuracy

1D 2D Total Test Total Test

Incorrect  Correct 2722 (10.6 353 (12.3 1915 (7.4 230 (8.0
%) %) %) %)

Correct Incorrect 4768 (18.4 955 (33.2 352 (1.4 %) 13 (0.4 %)
%) %)

Incorrect Incorrect 1202 4.6 135 (4.7 152 (0.6 %) 1 (0.1 %)

Correct Correct 17,201 1434 23,474 2633
(66.4 %) (49.8 %) (90.6 %) (91.5 %)

Total 25,893 (100 2877 (100 25,893 (100 2877 (100
%) %) %) %)

Table 12

Result of classification before and after ensemble.

Number of images

Low accuracy model

High accuracy model

Before After Before After
Incorrect 1443 (50.2 %) 121 (4.2 %) 244(9.5 %) 7 (0.3 %)
Correct 1434 (49.8 %) 2756 (95.8 %) 2633 (91.5 %) 2870 (99.7 %)
Total 2877 (100 %) 2877 (100 %) 2877 (100 %) 2877 (100 %)
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becomes significantly narrow; thus, some overfitting is bound to
happen.

Second, base models, when individually used for classification, have
the tendency to be trapped in the local minimum accuracy. Whereas, in
the case of ensemble models, multiple base models are trained for the
prediction purpose. By the voting approach, the global lowest optimum
is selected. Third, the representation indicates that a single model’s
search space cannot often enclose the optimal hypothesis. However,
merging several models using an ensemble can better fit the data space
[48]. Moreover, the data-fused, concatenated ensemble used both
voltage (1D) images and 2D frame cuts data in conjunction with one
another for the prediction, which resulted in a more extensive dataset
for improving prediction. Second, as seen in [47], the prediction out-
comes were concatenated instead of the image features, generating a
simple numeric matrix of prediction probabilities. Matrix was used as
the input for the double ensemble to reduce the overall training time.
Ultimately, the results improved due to the stacking ensemble approach,
which used six ML classifiers.

When comparing training time with accuracy, the data-fused,
concatenated ensemble algorithm scored the best prediction; the
training time was increased by 20 to 60 s. The reason is that the
initialization and weight selections took longer when the proposed
ensemble operation was done for the lower accuracy range base CNN
model. In the higher accuracy range, CNN models continuously per-
formed backpropagation, increasing overall accuracy but increasing the
time for weight selection. Nevertheless, the mentioned models main-
tained a lower training prediction time, which decreased the overall
training time. The percentage increase in accuracy for the said models is
found to be low. As such, a trade-off exists between the training time and
the percentage increase in prediction accuracy. The trade-off cannot be
eradicated completely; however, a near optimal approach is suggested.
For example, if prediction time is disregarded, then substantial
improvement is observed from ~50 % accuracy to 83.6 % concatenated
accuracy. However, considering training time, the ~80 % accuracy
range model can be considered optimal, with a prediction improvement
of 16 %, an average training time of 28.48 s, and 98.8 % accuracy.
Accordingly, it can be concluded that the high-accuracy range model
showed an increase in accuracy from 90 % to 99.5 %, with a training
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Table 13
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Results of detecting time for the anomaly detections with respect to different models.

Required time (seconds) 1D 2D 1D ensemble 2D ensemble Data fusion ensemble Data-fused concatenated ensemble
1D 0.075 - 0.075 - 0.075 Max (1D: 0.075,

2D - 0.033 - 0.033 0.033 2D: 0.033)

Ensemble - - 0.005 0.005 0.005 0.005

Total 0.075 0.033 0.08 0.038 0.113 0.08

time of 23.89 s. In contrast, the low-accuracy model’s growth in accu-
racy was from ~50 % to 83.6 %, with a training time of 63.66 s. The
near-optimal model reduced this trade-off between time and accuracy
by increasing average accuracy from ~80 % to 98.8 % with a reasonable
training time of 28.48 s. The relationship between the accuracies and
training times is presented in Table 10.

A ‘heatmap’ was used to determine the correlation between
1D_Normal, 1D_Abnormal, 2D_Normal, and 2D_Abnormal input vari-
ables of the concatenated data set. Fig. 11 shows a heatmap showing the
correlation in an ensemble using a low-accuracy model on the right and
a high-accuracy model on the left. Here, the input variables of 1D_
Normal and 2D_Normal of the probabilities are the prediction results of
the 1D and 2D models, respectively, being the normal class. Hence, if the
accuracy of the two models is high, then the correlation between the
input variables should be high. In addition, the input variables of
1D_Abnormal and 2D_Abnormal of probabilities are the prediction re-
sults of the 1D and 2D models, respectively, representing the abnormal
class. Hence, if the accuracy of the two models is high, then the corre-
lation between the input variables should be high. 1D_Normal and
2D _Normal, which represent the probability of belonging to the same
normal class, have a positive correlation, whereas 1D_Abnormal and
2D_Abnormal, which represent the probability of belonging to the
abnormal class, have a positive correlation. In contrast, Normal, which
indicates the probability of belonging to the normal class, and
Abnormal, which shows the probability of belonging to the abnormal
class, have a negative correlation.

Table 11 lists the classification results for the input images. The total
number of images that the 1D and 2D low-accuracy models misclassified
was 1202, accounting for 4.6 % of the total images. The test data pre-
pared with 2877 images also showed a similar percentage of misclassi-
fication. Conversely, the percentage of misclassification was noticeably
reduced using the high-accuracy models by 0.6 % for total data and 0.1
% for test data. In Table 12, the misclassified cases were reduced by 46 %
and 9.2 % after performing ensemble for the low- and high-accuracy
models, respectively.

As shown in Table 13, comparisons were made based on the detec-
tion time of prediction for each model. In anomaly detection (1D model)
using existing voltage image data, the prediction time per image was
0.075 s, which was relatively large because it was performed after
converting the voltage value into a graph image. In contrast, anomaly
detection using frame cut images (2D model) required a prediction time
of 0.033 s per image. Since an additional 0.005 s is generated when the
ensemble is performed, it takes 0.08 s and 0.038 s for 1D ensemble and
2D ensemble models, respectively. Also, an additional time of 0.005 s is
required for data fusion ensemble and data-fused concatenated
ensemble models. As a result, if real-time prediction is performed during
the bead deposition process, a prediction time of 0.113 s (1D: 0.075 +
2D: 0.033 + ensemble: 0.005) per image is required for the data fusion
ensemble. In the case of data-fused concatenated ensemble, predictions
of 1D and 2D models are made simultaneously, requiring 0.08 s (1D:
0.075 + ensemble: 0.005) per image. Since the 1D model prediction time
(0.075 s) is longer than the 2D one (0.033 s), the 2D model prediction
result is already available. Thus, the frame per second (fps) is 12.5 in the
case of the data-fused concatenated ensemble.
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6. Conclusion

We proposed a novel data-fused, concatenated EL algorithm to
obtain a flexible and robust methodology for in-situ anomaly detection
in WAAM. To achieve this, voltage (1D) images and 2D frame cuts
datasets and ML models were seamlessly integrated to overcome the
limitations and difficulties in acquiring sufficient data and finding a
near-optimal ML algorithm. The proposed method was investigated and
validated on inexpensive and comprehensive datasets from the WAAM
process. The data were pre-trained using CNN models (i.e., Dense-
Net121, DenseNet169, MobileNetV2, and InceptionResNetV2),
achieving accuracies ranging from 50 % to 95 %. Upon implementing
the proposed EL algorithm, the accuracy increased by 3 %, 8 %, 16 %,
and even 50 % in CNN models with accuracy ranges of 95 %, 90 %, 80 %,
and 50 %, respectively. Furthermore, as shown in Table 8, the proposed
EL algorithm achieves an accuracy of 98 %, compared with 81.6 % and
88.6 % of 1D and 2D CNN models, respectively. Results also showed that
in addition to improving the prediction accuracy, the proposed
ensemble model increases the overall prediction time. Considering the
trade-off between the accuracy and prediction time, it can be concluded
that the proposed method is suitable and effective when the accuracy of
each CNN model is approximately 80 %, whose accuracy was finally
increased to 98 %.

Although in this work, the process of Data-fused concatenated
ensemble prediction of the anomaly was done for the WAAM process, in
essence, the concept can also be applied to the prediction of anomalies in
other DED powder-fed and wire-fed processes. Moreover, in this work,
we used two types of data that can be expanded to a multi-source
approach that can incorporate a wide range of data collection
methods such as 3D scanner, dual camera setup, and laser profilometry,
among others, as the data set can be enhanced by the usage of the 3D
data which is expected to improve the prediction accuracy. In our case,
as 1D data, only voltage is considered; however, the incorporation of
other 1D signals, such as acoustics, temperature, and pyrometry data,
can further improve the model performance. Similarly, in the case of 2D
data, x-ray and infrared images can also result in better prediction re-
sults. Furthermore, the work can also be modified for other applications
in the WAAM field, such as bead geometry prediction and surface
roughness determination. Using the vast number of process parameters
can result in optimization problems, in which case reinforcement
learning can be used for the optimization and process planning. The
mentioned cases are yet to be explored and are taken into consideration
for the future expansion of the work.
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