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Abstract

Streptomyces are prolific producers of secondary metabolites from which many clinically useful compounds have been
derived. They inhabit diverse habitats but have rarely been reported in vertebrates. Here, we aim to determine to what
extent the ecological source (bat host species and cave sites) influence the genomic and biosynthetic diversity of Strepto-
myces bacteria. We analysed draft genomes of 132 Streptomyces isolates sampled from 11 species of insectivorous bats
from six cave sites in Arizona and New Mexico, USA. We delineated 55 species based on the genome-wide average nucleo-
tide identity and core genome phylogenetic tree. Streptomyces isolates that colonize the same bat species or inhabit
the same site exhibit greater overall genomic similarity than they do with Streptomyces from other bat species or sites.
However, when considering biosynthetic gene clusters (BGCs) alone, BGC distribution is not structured by the ecological
or geographical source of the Streptomyces that carry them. Each genome carried between 19-65 BGCs (median=42.5)
and varied even among members of the same Streptomyces species. Nine major classes of BGCs were detected in ten of
the 11 bat species and in all sites: terpene, non-ribosomal peptide synthetase, polyketide synthase, siderophore, RiPP-
like, butyrolactone, lanthipeptide, ectoine, melanin. Finally, Streptomyces genomes carry multiple hybrid BGCs consisting
of signature domains from two to seven distinct BGC classes. Taken together, our results bring critical insights to under-
standing Streptomyces-bat ecology and BGC diversity that may contribute to bat health and in augmenting current efforts
in natural product discovery, especially from underexplored or overlooked environments.

DATA SUMMARY

The dataset supporting the conclusions of this article is included within the article and its supplementary files. Genome
sequence data of the 73 previously published Streptomyces genomes can be found in the NCBI Sequence Read Archive (SRA)
under BioProject accession number PRINA673820. The genome sequence data of the 59 newly sequenced genomes can be
found in BioProject accession number PRJNA1010360. BioSample accession numbers, associated metadata, and genomic
features for each genome are listed in Table S1 (available in the online version of this article).

INTRODUCTION

An important source of drugs or drug precursors with broad pharmaceutical and industrial applications, including the
most effective antibiotics, are natural products produced by members of the genus Streptomyces [1]. These are Gram-
positive bacteria that exhibit a complex fungal-like life cycle consisting of vegetative hyphae, aerial hyphae, and spores
[2, 3]. Many bioactive natural products derived from Streptomyces have been developed into compounds with antibacterial,
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Impact Statement

Members of the bacterial genus Streptomyces are the world's most important natural source of drugs or drug precursors with
broad industrial, agricultural and pharmaceutical applications, from treatment of infectious diseases and other medical disor-
ders to biocatalysis and bioconversion systems. Our analyses of Streptomyces genomes derived from insectivorous bats reveal
a highly diverse group characterized by the presence of multiple species harbouring a myriad of biosynthetic gene clusters
that have the potential to produce new specialized metabolites. Our findings shed light in our understanding of the ecology of
microbe-derived natural products, the ever-growing species diversity of Streptomyces, and the adaptation of microbial commu-
nities in caves and bats.

antiviral, cytotoxic and antitumor, immunosuppressive, antifungal, and cellulolytic activities [4]. These clinically important
compounds are derived from the secondary metabolites produced by Streptomyces [1, 2]. Secondary metabolites are encoded
in biosynthetic gene clusters (BGCs), which are physically linked genes that function together in peptide assembly, regula-
tion, resistance, and synthesis of secondary metabolites [5].

The species diversity of Streptomyces is staggering, with a total of 729 validly published species (https://Ipsn.dsmz.de/
genus/streptomyces; as of August 2023). Many species of Streptomyces are found as free-living inhabitants of the soil and
are known to play a critical role in carbon recycling and biodegradation [6, 7]. Some are found in extreme environments
[8] and in pristine and nutrient-limited ecosystems [9]. Environmental conditions in nutrient-limited ecosystems such as
caves shape microbial communities toward antibiotic production to reduce competition [10]. Some Streptomyces also form
a symbiotic association with invertebrates such as beewolf digger wasps [11], ants [12-14], and beetles [15, 16], whereby
the insects use the chemical compounds produced by Streptomyces for defence [17], e.g. protection of their eggs and larvae
against opportunistic pathogens [11]. Vertebrates have not been as frequently sampled as invertebrates for Streptomyces,
but bats have been reported to harbour Streptomyces on their skin surface [18-20]. The role of Streptomyces in bats may be
significant, yet limited data are available to ascertain whether they form a symbiotic relationship with bats.

Previous studies highlight two notable features of bat-associated Streptomyces. First, bats represent a hitherto overlooked
reservoir of vast Streptomyces diversity. Previously, we identified 15 novel species using a five-locus sequence analysis from
a collection of 632 Streptomyces isolates sampled from different bat species in Arizona and New Mexico, USA [18]. In a
subsequent analysis of 73 randomly selected isolates from this same culture collection, we delineated 41 different species
based on genomic similarity [21]. Second, bat-associated Streptomyces have been reported to inhibit the growth of Pseud-
ogymnoascus destructans [18], a fungus that causes the skin infection called white-nose syndrome in North American bats
[22-24]. P. destructans disturbs the bat’s hibernation period during winter, resulting in dehydration, starvation, and often
death [22-24]. It has devastated and even led to the collapse of many bat populations [25, 26]. Hence, bats and caves may
potentially serve as a fertile reservoir for novel Streptomyces species with potent antimicrobial bioactive compounds against
white-nose syndrome [18]. Evidence that the skin microbiota of bats underlies a possible mechanism for resistance against
white-nose syndrome has been reported [27].

Nonetheless, the evolutionary and ecological drivers that shape the genetic and species diversity of bat-associated antibiotic-
producing Streptomyces remain unclear. Here, we sought to determine to what extent the bat host species and cave sites
influence the genomic and biosynthetic diversity of Streptomyces bacteria. We analysed high quality draft genome sequences
of 132 Streptomyces isolates sampled from 11 insectivorous bat species from six sites consisting of multiple caves across
Arizona and New Mexico, USA. Altogether, our results show that bat-associated Streptomyces are remarkably diverse and
their genomic and biosynthetic diversity are greatly influenced by their ecological and geographical sources.

METHODS
Sampling and isolation of Streptomyces isolates

A total of 132 isolates of Streptomyces bacteria were analysed in the current study, of which 73 isolates were previously sequenced
by our group and are publicly available in the National Centre for Biotechnology Information (NCBI) Sequence Read Archive
(SRA) [21] (Table S1). Isolates were randomly chosen from a culture collection of Streptomyces from healthy bats (i.e. free of white-
nose syndrome) sampled in 2013-2016, of which a subset (1=632) has been described elsewhere [18]. Details on bat collection
protocols, sampling permits, and bacterial isolation procedures have been described previously and were approved by the institu-
tions and licensing committees in reference [18]. We followed the approved protocols under the following collection permits:
2014 Arizona and New Mexico Game and Fish Department Scientific Collecting Permit (SP670210, SCI#3423, and SCI#3350),
National Park Service Scientific Collecting Permit (CAVE-2014-SCI-0012, ELMA-2013-SCI-0005, ELMA-2014-SCI-0001, and
PARA-2012-SCI-0003), USGS Fort Collins Science Centre Standard Operating Procedure (SOP) 2013-01, and an Institutional
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Animal Care and Use Committee (IACUC) permit from the University of New Mexico (protocol #12-100835-MCC) and from
the National Park Service (protocol #IMR-ELMA.PARA-Northup-Bat-2013.A2).

Briefly, bats were caught using mist nets or were hand-plucked from cave walls. Bats were swabbed from caves post-hibernation
or from netting on the surface of caves near their drinking sources. Four actinobacterium selective media were used to isolate
Streptomyces (Actinomycete isolation agar [Difco, Sparks, Maryland, USA], gellan gum agar, humic acid-vitamin agar, and glucose
yeast extract agar), which were supplemented with cycloheximide, nalidixic acid, trimethoprim and a vitamin solution. Agar
plates were inoculated immediately after swabbing the bats and kept at 4°C during transport to the laboratory, after which they
were transferred to 20°C incubator for 2-4 days. Initial Streptomyces identification was done by comparing sequence variation in
the 16S rRNA locus carried out using Sanger sequencing [18].

Genomic DNA extraction and whole genome sequencing

Streptomyces DNA was extracted using the Quick-DNA Fungal/Bacterial Miniprep Kit (ZYMO Research) following the manufacturer’s
protocol. DNA concentration and quality were measured using a Nanodrop spectrophotometer and Qubit four fluorometer. Genome
sequencing was carried out using the NextSeq2000 platform at the SeqCenter (Pittsburgh, Pennsylvania, USA) in 2022. Sample
libraries were prepared using the Illumina DNA Preparation kit and IDT 10bp UDI indices following the manufacturer’s instructions.
Sequencing generated paired-end reads (2x151 bp) on multiplexed libraries. Demultiplexing, quality control, and adapter trimming
were carried out using the Illumina bcl-convert v3.9.3.

Genome assembly, quality check, annotation and species delineation

Raw Illumina paired-end reads were assembled into contigs using the Shovill pipeline v.1.1.0 (https://github.com/tseemann/shovill),
which uses the SPAdes assembly algorithm v.3.15.2 [28]. All assembled genomes had <600 contigs (Fig. S1). Genome quality was assessed
using QUAST v.5.0.2 [29] and CheckM v.1.1.6 [30]. We calculated the genome completeness (mean=99.91%; range=99.24-100%)
and genome contamination (mean=1.26%; range=0.00-2.85%), which were all within the genome quality standards recommended
by CheckM (Table S1). To delineate species boundaries, we calculated the genome-wide average nucleotide identity (ANI) for every
possible pair of genomes using fastANI v.1.32 [31]. ANI refers to the mean nucleotide identity of all orthologous genes shared between
a pair of genomes [31]. We used the 295% ANI threshold to confirm that genomes are of the same species [31]. The draft genomes
were annotated using Prokka v.1.14.6 [32].

Pan-genome analysis and phylogenetic tree reconstruction

Using Panaroo v.1.2.7 [33], we identified all the genes that were present in the entire dataset (referred to as the pan-genome [34]). Core
genes were defined as those present in 295% of the genomes, while accessory genes were those present in <95% of the genomes. Gene
sequences were aligned using MAFFT v.7.505 [35]. Sequence alignments of the core genes were concatenated to generate the core
genome alignment. Single nucleotide polymorphisms (SNPs) were extracted from the core genome alignment using snp-sites v.2.5.1
[36]. The core SNP alignment was used as input for building a maximum likelihood phylogenetic tree using RAXML v.8.2.12 [37]. We
used the general time reversible model for nucleotide substitution [38] with the GAMMA model of rate heterogeneity. Phylogenetic
trees were visualized and annotated using the Interactive Tree of Life [39].

Identification of BGCs

BGCs encoding secondary metabolites were predicted and annotated using the standalone version of antiSMASH v.6.0.1 [40] with
--genefinding-tool none and a relaxed stringency level (--hmmdetection-strictness relaxed) as recommended for common detection
of bacterial BGCs. AntiSMASH identifies BGCs using a signature profile Hidden Markov Model based on multiple sequence align-
ments of experimentally characterized signature proteins or protein domains [40]. AntiSMASH first identifies the sequences for the
primary core enzymes of a specific BGC and then identifies the secondary core gene neighbourhood upstream and downstream of
the primary core gene. Thus, antiSMASH can identify a BGC even in contig edges or overlapping contigs based on the location of
the core genes of a BGC. AntiSMASH defines hybrid clusters either as a single BGC which produces a hybrid compound from the
combination of two or more protein scaffold types or two separate BGCs that are in close proximity [40]. Here, we do not distinguish
between these two types. Individual BGC components of hybrid BGCs were also tallied. For example, the hybrid terpene-t1PKS was
counted as one terpene and one t1PKS (type one polyketide synthase). We also distinguished the variants within each BGC class, e.g.
NRPS (non-ribosomal peptide synthetase) consisted of NRPS only, NRPS-like, and thioamide-NRP. We also manually checked the
contigs on which the BGCs were detected by antiSMASH to ensure that we are not double counting the BGCs. We used RStudio [41]
to create and visualize all plots, and polished using Linearity Curve (https://www.linearity.io).

Statistical analysis

The coefficient of determination (R?) was calculated using the ggpubr package [42] in R [43]. Statistical significance was measured
using the non-parametric Mann-Whitney U test (also known as Wilcoxon rank sum test) and ANOVA implemented in R [43]. We
used a p-value threshold <0.05to consider significance of our results.
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RESULTS
Bat-associated Streptomyces are phylogenetically diverse

We obtained whole genome sequences of 132 Streptomyces isolates sampled from the skin and fur surfaces of healthy bats (Table S1).
These consisted of 73 previously published genomes [21] and 59 sequenced in the current study. The isolates came from insectivorous
bats representing six genera and 11 species: pallid bat (Antrozous pallidus; ANPA), Townsend’s big-eared bat (Corynorhinus townsendii;
COTO), big brown bat (Eptesicus fuscus; EPFU), silver-haired bat (Lasionycteris noctivagans; LANO), California bat (Myotis californicus;
MYCA), western small-footed bat (Myotis ciliolabrum; MYCI), western long-eared bat (Myotis evotis; MYEV), fringed bat (Myotis
thysanodes; MYTH), cave bat (Myotis velifer; MY VE), long-legged bat (Myotis volans; MY VO), and canyon bat (Parastrellus hesperus;
PAHE) (Fig. 1a). These were collected from two caves sites in Arizona (Grand Canyon-Parashant National Monument [PARA] and
Fort Bowie/Chiricahua National Park [SEAZ]) and four sites in New Mexico (El Malpais Conservation Area [ELMA], Bureau of Land
Management caves 45 and 55 [BLM], Fort Stanton-Snowy River Cave National Conservation Area [FS], and Carlsbad Caverns National
Park [CAVE]) (Fig. 1b). The number of contigs per genome ranged between 27-600 (median=169), N50 contig length values between
24857-1491574 bp (median=108954 bp), and genome length between 7.2-11.1 Mbp (median=9 Mbp) (Fig. SIA-C and Table S1). The
GC content ranged from 69.64-72.92% (median=70.96%) (Fig. S1D and Table S1), which is typical of Streptomyces genomes [44, 45].

Using the genome-wide ANI values of all orthologous genes shared between every pair of genomes [31], we delineated 55 species
based on the 95% ANI threshold (Figs 1a and S2, Table S2). Only seven species, designated as species 18, 21, 40, 44, 52, 53, and 55,
were represented by more than five genomes. A total of 32 Streptomyces species were represented by a single genome. The core genome
phylogenetic tree built from 297305 SNPs in an alignment of 620 core genes revealed an intermingled distribution of the isolates from
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Fig. 1. Species diversity and geographical distribution of bat-associated Streptomyces. (a) Maximum likelihood phylogenetic tree built using 297 305
single nucleotide polymorphisms (SNPs) in an alignment of 620 core genes. The tree was rooted at its midpoint. Tree scale represents the number of
nucleotide substitutions per site. The alternating orange and yellow strip represent the species boundaries calculated using the genome-wide average
nucleotide identity (ANI). For visual clarity, only the species represented by more than five genomes are labelled (sp. 18, 21, 40, 44,52, 53, 55). Coloured
dots next to the tree indicate the bat species (labelled 1) and site (labelled 2) from which the isolate was obtained. (b) The six sites from where the bats
were sampled. For each site, a pie chart shows the distribution of the different bat species and the number of Streptomyces isolates collected is shown
in parenthesis. Bar plots showing the number of Streptomyces isolates from each site (c) and bat species (d). The seven most frequently detected
species are represented in coloured blocks. The colours of bat species and sites are identical in all four panels and correspond to the colour legend in
panel A. For visual clarity, we used acronyms to represent the names of bat species and sites. Bat species and site abbreviations are defined in Fig. 1.
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different bat hosts and cave sites. However, caution must be exercised in making inferences about the phylogenetic distribution of
isolates. The numbers of isolates from each bat species and from each site were uneven, but these differences reflect the difficulty in
sampling such environments. We note that multiple bat species were present in each of the six sites, ranging from three bat species in
CAVE to eight bat species in PARA (Figs 1b and S3).

When considering only the seven Streptomyces species with more than five genomes represented in our phylogeny, we observed differ-
ences in their geographical distribution (Fig. 1c). For example, sp. 44 was present in BLM, ELMA, FS and SEAZ, sp. 40 and sp. 52 were
detected in CAVE, ELMA, and ES, sp. 53 in BLM and FS, and sp. 55 in ELMA and SEAZ. In contrast, sp. 18 and sp. 21 were only found
in ELMA. In terms of the bacterial distribution among bat species, all seven Streptomyces species were detected in more than one bat
species (Fig. 1d). For example, sp. 21 was found in COTO, MYCI, and MY VO. Sp. 40 was detected in COTO, EPFU, MYCI, MYTH,
and MY VE. Sp. 52 was obtained from COTO, LANO, MYCIL, MYEV, MYTH, and MY VE. Not one Streptomyces species was detected
in all 11 bat species or all six sites. Overall, these results show a remarkable level of genetic diversity in bat-associated Streptomyces.

The overall genome composition of Streptomyces is influenced by the bat host and cave site

The set of protein-coding genes in the entire dataset (or pan-genome [34]) consisted of 620 core genes (i.e. genes present in 295% of
genomes), 119119 shared accessory genes (i.e. present between two and 95% of the genomes), and 43474 singletons (genes present
in only one genome) (Table S3). We estimated a mean of 7050 genes per genome, with 6439 accessory genes per genome (including
singletons). The number of genes per genome ranged from 1799 to 9284 protein-coding genes per genome (Table S1). We detected a
significant positive correlation between the genome size and number of protein-coding genes in Streptomyces (R*=0.32, p-value=2.4e-
12; Fig. 2a).

Next, we partitioned the genome-wide ANI values within and between the sources where Streptomyces were obtained. Pairwise
ANI values were significantly higher between Streptomyces genomes from the same bat species compared to those from different bat
species (p-value=2.2e-16, Wilcoxon rank sum test; Fig. 2b). Pairs of Streptomyces from the same bat species have a median ANI of
99.38%, while pairs of Streptomyces obtained from different bat species have a median ANI of 97.78%. In terms of cave sites, pairwise
ANI values were significantly higher between genomes from the same site compared to those from different sites (p-value=2.2e-16,
Wilcoxon rank sum test; Fig. 2c). Pairs of Streptomyces genomes from the same site have a median ANI of 99.13%, while pairs of
Streptomyces obtained from different sites have a median ANI of 97.57%. We also observed similar results when we considered ANI
between pairs of genomes of a single Streptomyces species. Here, we focus on Streptomyces sp. 40, which has the highest number of
representative genomes in our dataset (n=18 genomes). Pairwise ANI values were significantly higher between Streptomyces sp. 40
genomes from the same bat species compared to those from different bat species (p-value=1.278e-13, Wilcoxon rank sum test; Fig. 2d)
and genomes from the same site than between sites (p-value=5.329¢-15, Wilcoxon rank sum test; Fig. 2e). These results show that
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Fig. 2. Genomic characteristics of bat-associated Streptomyces. (a) Correlation between the genome size and the number of genes per genome for
isolates randomly chosen from a culture collection of Streptomyces from healthy bats (i.e. free of white-nose syndrome) sampled in 2013-2016. Each
green dot represents a Streptomyces genome. The shaded area surrounding the fitted linear regression line represent the 95% confidence interval
based on the standard error of the mean slope of the regression line. (b, c) Pairwise genome-wide average nucleotide identity (ANI) values comparing
all pairs of Streptomyces isolates sampled (b) between the same and different bat species and (c) between the same and different sites. (d, e) Pairwise
genome-wide ANI values comparing all pairs of Streptomyces sp. 40 isolates sampled (d) between the same and different bat species and (e) between
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quartile, median, third quartile, and maximum values with outliers depicted as single points. Mann-Whitney U test, *** <0.0001.
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shared ecological source is a major contributor to shaping the overall genome composition of Streptomyces. Streptomyces isolates that
colonize the same bat species or inhabit the same cave site exhibit greater genomic resemblance than they do with Streptomyces from
other bat species or sites.

BGCs are diverse and abundant, but not structured by the source of Streptomyces

Across our entire dataset, we detected a total of 5647 putative BGCs (Table S4). The number of BGCs per genome greatly varied, even
among members of the same species (Fig. S4). The number of BGCs per genome in our dataset ranged from 19 to 65 (median=42.5)
(Fig. 3a), which is consistent with those reported in other studies of Streptomyces [45-47]. We detected a significant positive correlation
albeit small between the genome size and the number of BGCs per genome (R?=0.13, p-value=3.1e-05; Fig. 3b), but not between the
number of protein-coding genes per genome and the number of BGCs per genome (R*=0.004, p-value=0.47; Fig. 3c).

The BGCs in bat-associated Streptomyces can be classified into 50 major classes (Fig. S4 and Table S4). The most common BGC classes
were the non-ribosomal peptide synthetase (NRPS), polyketide synthase (PKS), siderophore, and terpene, all of which were detected
in all genomes at least once (Fig. 3d). BGCs found in fewer than ten genomes included resorcinol (eight genomes), phosphonate
(seven genomes), aminoglycoside/aminocyclitol (four genomes), ranthipeptide (four genomes), lipolanthine (three genomes),
homoserine lactone (two genomes), beta-lactam (one genome), bottromycin (one genome), and cyanobactin (one genome). The
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BGC domain, but differ in the linear order of the domains. (c) Sankey plot showing the different combinations of BGC domains in the five most common
hybrid BGCs. The first column of colours represents the first BGC domain in a linear order of domains within a hybrid BGC, while the second column
of colours represent the second BGC domain. The colours are identical to those found in Fig. 3d. Connecting lines represent the different combinations
of BGC domains. The numbers represent the number of hybrid BGCs that contain each BGC domain. (d) The relationship between the number of BGCs
per genome and the number of hybrids per genome. Each green dot represents a Streptomyces genome. The shaded area surrounding the fitted linear
regression line represent the 95% confidence interval based on the standard error of the mean slope of the regression line.

number of copies of a BGC from a specific class varied between genomes. We found a median of four terpenes (range: 2-11 copies)
per genome, three NRPS (range: 0-9 copies) per genome, three PKS (range: 0-10 copies) per genome, two butyrolactones (range: 2-4)
per genome, two ribosomally synthesized and post-translationally modified peptide products (RiPP-like; range: 0-4) per genome,
and two siderophores (range: 1-5) per genome.

Some of the BGCs can be further classified into structural variants (Fig. 3d). For example, NRPS can be distinguished into NRPS only
(present in 132 genomes), NRPS-like (119 genomes), and thioamide-NRPS (14 genomes). Type 1 (T1PKS), Type 2 (T2PKS) and Type
3 (T3PKS) were the most frequent variations of PKS and were detected in 130, 124 and 113 genomes, respectively. Four other variants
of PKS were also detected in Streptomyces genomes. Of the five classes of lanthipeptides, classes I (lanthipeptides like nisin) and III
(lanthipeptides like labyrinthopeptin) were the most frequently detected (67 and 62 genomes, respectively).

When we subdivided the Streptomyces BGCs according to bat species, we detected seven BGCs present in ten of the 11 bat species
(Fig. 3e). These include terpene, PKS, NRPS, siderophore, RiPP-like, butyrolactone, lanthipeptide, ectoine, and melanin. We did not
find a significant difference in the number of Streptomyces BGCs across all bat host species (Fig. S5A; p = 0.097, ANOVA). When we
categorized the Streptomyces BGCs according to site, we found BGC classes that were present in all six sites (Fig. 3f). These include
terpene, PKS, NRPS, siderophore, RiPP-like, butyrolactone, lanthipeptide, ectoine, and melanin. The number of Streptomyces BGCs
was significantly different among the six sites (P=0.18, ANOVA) (Fig. S5B). We also did not find any significant correlation between
the number of accessory genes and the number of BGCs per genome when we subdivided the genomes according to bat species and
site (Fig. S6).

These results show that bat-associated Streptomyces harbour a highly diverse repertoire of BGCs, with major BGC classes widely
distributed across different bat species and cave sites.
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Hybrid BGCs expand the biosynthetic potential of Streptomyces

Hybrid BGCs contain genes that code for signature domains of more than one distinct class of BGC [48-50]. The structural and
chemical modifications in hybrid BGCs lead to the production of derivatives of a secondary metabolite, thus greatly expanding the
chemical repertoire of a bacterium [5, 48]. Across the 132 bat-associated Streptomyces, we detected a total of 1086 hybrid BGCs, of
which 353 were unique combinations of hybrid BGCs (Table S5). Hybrid BGCs were identified in all genomes, regardless of bat species
or cave sites (Fig. S4). The median number of hybrid BGCs per genome was eight (range: 3-17). We found hybrid BGCs consisting
of signature domains from two to seven distinct BGC classes (Fig. 4a). The most common were hybrids with two domains, which
we detected in 132 genomes. The least common hybrids were those that contain six or seven domains. Only two genomes contain
seven-domain hybrids (sp. 8 from Myotis ciliolabrum in BLM; sp. 31 from Eptesicus fuscus in PARA). The most frequently detected
two-domain hybrid combinations were T2PKS-terpene (present in 49 genomes) and NRPS-T1PKS (48 genomes) (Fig. 4b). The 3-, 4-,
5-, 6- and 7-domain hybrids were also present but were not as frequently detected as the two-domain hybrids (Fig. S7). A BGC class
can form a hybrid with multiple classes of BGCs. For example, NRPS can form a hybrid with terpene, T1PKS, or NRPS-like BGCs.
T2PKS can form a hybrid with terpene, T1PKS, and linear azol(in)e-containing peptides (LAP) (Fig. 4c).

Further modifications in hybrid BGCs are derived from alterations in the linear order of each BGC domain in the chromosome,
which can alter the order of synthesis of compounds and their structural derivatives [51, 52]. For example, we found NRPS-T1PKS
and T1PKS-NRPS in 48 and 29 genomes, respectively. Thiopeptide-LAP and LAP-thiopeptide were detected in 35 and 15 genomes,
respectively. Lastly, we detected a significant positive correlation between the number of BGCs per genome and the number of hybrid
BGCs per genome (R?=0.42, p-value <2.2e-16; Fig. 4d). The origin and mechanisms involved in hybrid BGC formation remain unclear,
but it is notable that the presence of hybrid BGCs greatly expands the biosynthetic repertoire of Streptomyces.

DISCUSSION

A crucial approach to addressing global health threats and sustaining industrial production is to maximize our ability to explore the
chemical diversity already found in nature and understand how it arose. Streptomyces bacteria are a fertile source of metabolites with
immense utility in clinical and non-clinical settings. Here, we characterized the genomic and biosynthetic diversity of 132 Streptomyces
isolates sampled from 11 species of insectivorous bats across six cave sites in Arizona and New Mexico, USA.

We highlight two major findings. First, bat-associated Streptomyces are remarkably diverse. From the 132 isolates sequenced,
a total of 55 species can be delineated, of which 32 species are represented by a single genome. Despite the recorded diversity
of Streptomyces [53, 54], the largest phylum in the domain Bacteria, new species continue to be discovered. Our findings
expand the current knowledge of the breadth of vertebrate niches of Streptomyces. In humans, rare species of Streptomyces
cause chronic subcutaneous infection [55] and respiratory infection [56]. Our group has pioneered sampling efforts of bacteria
from bats across the United States [18, 57-59]. Many of the bat-associated Streptomyces may therefore likely represent novel
species. Future work exploring Streptomyces in other underexplored environments may identify additional novel species.
For example, it would be interesting to elucidate how different types of caves (e.g. lava cave, karst cave), type of rock, bat
species from other geographical regions, and bat behaviours influence the assemblage of Streptomyces species and their
genomic elements. Reconstructing the evolutionary history of bat-associated Streptomyces will bring important insights
on the ancient origins, ancestral lifestyles, and the long-term stability of these bacteria in bats, including any signature of
co-evolution between them.

Second, cave sites and bat host species influence the genomic diversity but did not affect the distribution of major BCG
classes. The distribution of major BGC classes does not appear to be ecologically structured or restricted; rather, they were
widespread across ten of the 11 bat species and in all cave sites. In contrast, Streptomyces isolates that colonize the same bat
species or inhabit the same site exhibit greater overall genomic similarity than they do with Streptomyces from other bat
species or sites. This suggests that bat-associated Streptomyces benefit from a common pool of BGC-encoded metabolites,
yet the rest of their genomes experience continued differentiation in response to adaptation to specific environments. In
contrast, soil-dwelling Streptomyces experience diversification of their BGCs that coincides with lineage divergence [60]. A
more comprehensive analysis of animal-associated versus free-dwelling Streptomyces from diverse sources will bring critical
insights to the evolutionary and ecological factors that shape the divergence of this pharmaceutically important taxon.

The biosynthetic repertoire of bat-associated Streptomyces consisted of remarkably diverse classes of BGCs, which are
augmented by the numerous BGC structural variants within each class and hybrid BGCs. Chemical analyses and inhibition
assays of these compounds against pathogens will shed light on how Streptomyces BGCs can be leveraged and/or manipu-
lated to improve bats’ resistance against P. destructans. It is possible that the assemblage of certain Streptomyces strains can
produce a specific potent or specialized cocktail of antifungals, similar to what has been described in beewolf digger wasps
[11]. Such unique combination of antimicrobials is due to the interactions between Streptomyces strains that can alter the
production of different metabolites depending on the identity of neighbouring strains [61, 62]. Future work focused on
creating synthetic microbial Streptomyces communities, i.e. co-culturing specific taxa under well-defined conditions [63], is
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an excellent approach to identifying antibiotic cocktails. Moreover, the contributions of Streptomyces to bat defence against
numerous lineages of ectoparasitic insects, most notably bat flies (Diptera) [64], remain to be elucidated. Bat-fly interactions
are specialized and are influenced by the environment [65], and we can speculate that the bacterial composition of bat skin
may modulate or restructure the bat’s interactions with insects [66].

The result of our BGC analysis is also an important step in understanding the mechanisms that allow Streptomyces to survive
on bat skin and fur. However, whether bats are actually colonized by Streptomyces (i.e. the bacteria are actively growing
on the skin) versus simply harbouring spores or non-growing cells due to environmental exposure remains unclear. The
siderophore BGCs are particularly intriguing and may shed light on Streptomyces survival on bat skin. All the Streptomyces
genomes in our analyses carry at least one siderophore BGC. Siderophores are small and low-molecular-weight metabolites
that function to sequester and chelate Fe**, and which can also influence microbial social interactions and host cellular
iron homeostasis [67, 68]. It is a common strategy used by microbes to survive in iron-deficient environments, such as the
skin. Future investigations on the structural and functional diversity of siderophores in Streptomyces (e.g. ferrioxamine,
desferrioxamine, foroxymithine; [69, 70]) are needed to understand bacterial adaptive strategies in bats. We can postulate
that patterns of siderophore production will vary under different environmental conditions, for example, in instances when
bats are exposed to pathogens or harsh conditions, different bat activities such as foraging and hibernation, or differences
in caves that bats occupy.

We recognize the limitations of the current study. First, our sampling scheme involves only a single Streptomyces isolate
obtained from an individual bat. As shown previously in other studies, there is considerable microbial diversity within
individual bats [66, 71]. Such within-host diversity of bacterial strains may contribute to better understanding of disease
susceptibility and/or resistance and the overall health of the bat host. Second, in silico gene prediction, including BGC iden-
tification, is affected by both the composition of sequence databases used for comparison and the quality of query sequences.
Streptomyces genomes are extremely large, exceptionally GC-rich, and contain many highly repetitive DNA sequences [72, 73],
all of which pose obstacles in obtaining a high quality genome assembly when using short-read sequencing methods. Contig
breakpoints are frequently associated with highly repetitive sequences [74], which are present in Streptomyces genomes
[72, 73] and tend to be associated with secondary metabolism [75]. The unavoidable consequence of this is that the BGC
count is usually elevated for draft genomes compared to if they were closed. Although our BGC estimates were consistent
with previous reports of Streptomyces BGCs [45-47], we recognize that our use of short-read sequencing can influence
BGC estimates. Short-read assembly polished with long-read sequencing should considerably improve future Streptomyces
sequencing efforts.

In conclusion, we show that the importance of bat hosts and geographical sites in shaping the exceptional Streptomyces
diversity. Overlapping niches in terms of cave sites and bat host species influence the overall genomic diversity of Streptomyces
bacteria but did not influence the distribution of major BGCs classes. Taken together, our results bring critical insights to
understanding Streptomyces-bat ecology and BGC diversity that may contribute to bat health and in augmenting current
efforts in natural product discovery, especially from underexplored or overlooked environments.
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