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ABSTRACT

Loops of inflationary gravitons are known to induce large temporal and spatial logarithms
which can cause perturbation theory to break down. Nonlinear sigma models possess the
same kind of derivative interactions and induce the same sorts of large logarithms, without
the complicated index structure and potential gauge problem. Previous studies have exam-
ined models with zero field space curvature which can be reduced to free field theories by
local, invertible field redefinitions. Here we study a model which cannot be so reduced and
still shows the same sorts of large logarithms. We compute the evolution of the background
at 1-loop and 2-loop orders, and we find the 1-loop β and γ functions.
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1 Introduction

The background geometry of cosmology is characterized by scale factor a(t), Hubble param-
eter H(t) and first slow roll parameter ǫ(t),

ds2 = −dt2 + a2(t)d~x·d~x =⇒ H(t) ≡ ȧ

a
, ǫ(t) ≡ − Ḣ

H2
. (1)

The accelerated expansion of inflation (H(t) > 0 with 0 ≤ ǫ(t) < 1) rips virtual scalars
and gravitons out of the vacuum. This is the basis for the primordial spectra of scalars [1]
and tensors [2]. At some level these quanta must interact among themselves and with
other particles. Gravitons are especially interesting because their couplings are universal
and because their tensor structure allows them to mediate effects which scalars cannot. For
example, on de Sitter background (ǫ(t) = 0) one loop gravitons modify the plane wave mode
function u(t, k) of gravitational radiation [3] and the gravitational response Ψ(t, r) to a point
mass [4] to,

u(t, k) = u0(t, k)

{
1 +

16GH2

3π
ln2(a) +O(G2)

}
, (2)

Ψ(t, r) = −GM

ar

{
1 +

103G

15πa2r2
− 8GH2

π
ln3(a) +O(G2)

}
. (3)

Similar results have been obtained for the corrections of inflationary gravitons to fermions [5],
to electrodynamics [6, 7], and to massless, minimally coupled scalars [8].

A fascinating aspect of these corrections is that the steady production of inflationary
gravitons endows them with a secular growth which must eventually overwhelm the loop-
counting parameter GH2 provided inflation persists long enough. One must develop a non-
perturbative resummation technique in order to evolve past that point. Nonlinear sigma
models provide a useful testing ground for developing such a technique because they pos-
sess the same sorts of derivative interactions as gravitons, and induce the same sorts of
large logarithms, without the complicating tensor structures or the potential for gauge de-
pendence [9–12]. A successful technique has been devised through combining a variant of
Starobinsky’s stochastic formalism [13,14] with a variant of the renormalization group [15,16].
Even better, the technique can be generalized from de Sitter to an arbitrary cosmological
background (1) which has undergone primordial inflation [17]. Applying this technique shows
that the large scales of primordial inflation can be transmitted to late time [18].

The obvious next step is generalizing the resummation technique from nonlinear sigma
models to quantum gravity. This seems to be entirely possible, and works for the one graviton
loop correction on which it has been checked [8]. However, our purpose here is to clear up a
worry concerning the sorts of nonlinear sigma models on which the resummation technique
has so far been applied. Specifically, both of those models can be reduced to free theories
by means of local invertible field redefinitions, which means that their flat space S-matrices
are unity by Borchers Theorem [19]. That in no way precludes interesting evolutions for the
scalar backgrounds, and for the 1-particle states, and it was these evolutions which suggested
and confirmed the resummation technique. One might still worry that the technique only
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works for models which can be reduced to free theories. The purpose of this paper is to
demonstrate that the resummation technique applies for a model whose flat space S-matrix
is nontrivial.

This paper contains five sections, of which this Introduction is the first. In Section 2
we describe the old and new models, and we give the Feynman rules. Section 3 computes
the time-evolving background at 1-loop and 2-loop orders. It also computes and renormal-
izes the 1PI (one-particle-irreducible) 2-point and 3-point functions at 1-loop order. The
resummation technique is applied in Section 4. Our conclusions comprise Section 5.

2 The Model

The purpose of this section is to define the model and give those of its Feynman rules which
are required for our work. We begin by presenting the old models and explaining why their
S-matrices are trivial. Then a new model is proposed by making a small variation which
preserves the lowest order interactions.

The resummation technique was developed based on work with two nonlinear sigma
models [15]. One of these was based on a single field. All models of this sort can be made
free by a local, invertible field redefinition,

L = −1

2
f 2(Φ)∂µΦ∂νΦg

µν
√
−g , dΨ ≡ f(Φ)dΦ =⇒ L = −1

2
∂µΨ∂νΨgµν

√
−g . (4)

A second model was based on two fields,

Lold = −1

2
∂µA∂νAg

µν√−g − 1

2

(
1 +

λ

2
A
)2

∂µB∂νBgµν
√−g . (5)

Although it was not initially realized, this model can be also reduced to a theory of two free
scalars by making a local, invertible field redefinition,1

X ≡ 2

λ

(
1 +

λ

2
A
)
cos

(λ
2
B
)
, (6)

Y ≡ 2

λ

(
1 +

λ

2
A
)
sin

(λ
2
B
)
. (7)

Hence the flat space S-matrices of (4) and (5) are both unity by Borchers Theorem [19]. That
in no way precludes these models frommanifesting interesting evolutions of their backgrounds
and of the single-particle kinematics.

To be certain that the resummation technique does not rely on having a trivial S-matrix
we devised a slight modification of the 2-field model (5) whose field space curvature implies
that it cannot be reduced to a fee theory,

Lnew = −1

2
∂µA∂νAg

µν√−g − 1

2

(
1 +

λ

4
A
)4

∂µB∂νBgµν
√−g . (8)

The 3-point coupling in this model is identical to that of the old model (5), and the 4-point
coupling has the same field content with the old numerical coefficient of 1

8
replaced by 3

16
.

1We thank Arkady Tseytlin for this observation.
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There are additional 5-point and 6-point interactions which make only simple contributions
to the diagrams we evaluate in section 3,

1

2

(
1+

λ

4
A
)4

(∂B)2 − 1

2
(∂B)2 =

λ

2
A(∂B)2 +

3λ2

16
A2(∂B)2 +

λ3

32
A3(∂B)2 +

λ4

512
A4(∂B)2. (9)

A diagrammatic representation of the Feynman rules is shown in Figure 1.

Figure 1: Primitive interactions of the bare Lagrangian (8). A lines are solid and B lines are dashed.

The new model (8) is no more renormalizable than the old one (5). Hence divergences
must be subtracted, order-by-order, using BPHZ counterterms (Bogoliubov-Parasiuk-Hepp-
Zimmermann [20–23]). The 1-loop counterterms we require are shown in Figure 2. The first

Figure 2: Diagrammatic representation of the 1-loop counterterms we require. The first two diagrams
renormalize the A and B self-masses while the rightmost diagram renormalizes the vertex function. Recall
that A lines are solid and B lines are dashed.

and second diagrams renormalize the A andB self-masses and correspond to the counterterm,

∆L(2) = −1

2
C1A2 A A

√−g − 1

2
C2A2R∂µA∂νAg

µν√−g

−1

2
C1B2 B B

√−g − 1

2
C2B2R∂µB∂νBgµν

√−g . (10)

The 3rd diagram is required to renormalize the 3-point vertex and corresponds to,

δL(3) = −1

2
C1AB2�A∂µB∂νBgµν

√−g − C2AB2∂µA∂νB�Bgµν
√−g

−1

2
C3AB2A�B�B

√−g − 1

2
C4AB2RA∂µB∂νBgµν

√−g . (11)

Here R = D(D − 1)H2 is the Ricci scalar. Section 3 will determine the various coefficients
in expressions (10-11) as functions of λ, D and the dimensional regularization scale µ.

In D spacetime dimensions, the propagators of both fields obey the equation,

∂µ
[
aD−2∂µi∆(x; x′)

]
≡ Di∆(x; x′) = iδD(x− x′). (12)

The solution consists of a de Sitter invariant part plus a de Sitter breaking logarithm [24,25],

i∆(x; x′) = F
(
Y(x; x′)

)
+ k ln(aa′) , k ≡ HD−2

(4π)D/2

Γ(D−1)

Γ(D
2
)

. (13)
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Here Y(x; x′) ≡ aa′H2∆x2(x; x′) ≡ aa′H2(x − x′)2 is the de-Sitter length function, and the
first derivative of F (Y(x; x′)) obeys,

F ′(Y) = − HD−2

4(4π)D/2

{
Γ
(D
2

)(
4

Y

)D
2

+ Γ
(D
2
+1

)(
4

Y

)D
2
−1

+

∞∑

n=0

[
Γ(n+D

2
+2)

Γ(n+3)

(Y
4

)n−D
2
+2

− Γ(n+D)

Γ(n+D
2
+1)

(Y
4

)n
]}

. (14)

In dimensional regularization the coincidence limits of the propagator and its derivatives are,

i∆(x; x) = k

[
−π cot

(
Dπ

2

)
+ 2 ln(a)

]
, ∂µi∆(x; x′)

∣∣∣
x=x′

= kHaδ0µ , (15)

∂µ∂
′
νi∆(x; x′)

∣∣∣
x′=x

= −
(
D − 1

D

)
kH2gµν , ∂µi∆(x; x) = 2kHaδ0µ . (16)

We close by commenting on notation. Because the de Sitter metric gµν = a2ηµν is con-
formal to the Minkowski metric ηµν , we adopt a notation where ∂µ stands for ∂

∂xµ , no matter
what sort of tensor it acts upon. Further, we raise and lower its indices using the Minkowski
metric, ∂µ ≡ ηµν∂ν . And we define ∂2 ≡ ηµν∂µ∂ν . To save space we sometimes write co-
ordinate arguments of the metric and its scale factor using a subscript or a superscript,
as in

√
−g(x) ≡ √−gx ≡ aDx and gµν(y) ≡ gµνy ≡ a−2

y ηµν . The same notation applies to

derivatives, as in ∂
∂zµ

≡ ∂z
µ.

3 Explicit Results

The purpose of this section is to carry out the same explicit calculations for (8) that were
done for the old model (5) [15,16]. We begin with the 1-loop and 2-loop expectation values
of A(x). Next, the self-masses of A and B are computed and renormalized at 1-loop order.
Finally, we evaluate the 1-loop vertex function.

3.1 The 1-Loop and 2-Loop Background

We start with the 1-loop expectation value of A(x) whose diagrammatic representation is
shown in Figure 3. Because the 3-point couplings of the old and new models agree, this

Figure 3: 1-loop contribution to the expectation value of A(x).

diagram is unchanged from the old result [15],

〈Ω |A(x)|Ω〉 = λH2

16π2

[
ln(a)− 1

3
+

1

3a3

]
+O(λ3) . (17)
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The 2-loop contributions are shown in Figure 4. The first 7 diagrams (which we label

Figure 4: Contributions to the expectation value of A(x) at 2-loop order.

A2a through A2g) were calculated in [15]. We need only include a relative factor of 3
2
for each

4-point coupling to express their final contributions, at leading logarithm order, as multiples
of the factor S ≡ λ3H4 ln2(a)/210π4,

A2a −→ −3 · S , A2b −→ +8 · S , A2c −→ 0 · S , A2d −→ −6 · S , (18)

A2e −→ +
3

2
· S , A2f −→ −2 · S , A2g −→ 0 · S . (19)

Only the last diagram, A2h is really new. It has a symmetry factor of 1
4
and its initial

expression is,

A2h =
−i

4
· 3λ

3

8
·
∫

dDy
√

−g(y) gµν(y) · i∆(x; y) · i∆(y; y) · ∂z
µ∂

y
ν i∆(y; z)

∣∣∣
y=z

. (20)

The two coincidence limits can be read from (15-16) to give,

A2h =
3iλ3

25
(D − 1)kH2I2, (21)

where I2, and its leading logarithm result, was given in [18],

I2 ≡
∫

dDy
√
−g(y)i∆(x; y)i∆(y; y) −→ − i

24π2
× ln2(a). (22)

This is finite and does not require renormalization, so we can set D = 4,

A2h −→ 3

2
· S. (23)

Adding this to the leading logarithm results for the first seven diagrams gives,

A2a −→ −3 · S , A2b −→ +8 · S , A2c −→ 0 · S , A2d −→ −6 · S , (24)

A2e −→ +
3

2
· S , A2f −→ −2 · S , A2g −→ 0 · S , A2h −→ +

3

2
· S . (25)

At leading logarithm order the eight diagrams of Figure 4 sum to zero, so our result for the
expectation value of A is,

〈Ω |A(x)|Ω〉 = λH2 ln(a)

16π2

[
1 + 0

]
+O(λ4) . (26)
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3.2 The 1-Loop Self-Masses

We now move on to the 1-loop self-masses. Absorbing the divergences of these reveals
curvature-dependent field strength renormalizations ZA and ZB from the terms proportional
to C2A2 and C2B2 in expression (10). These give the γ functions that will be used in the
Renormalization Group (RG) analysis of Section 4.

The 1-loop contributions to −iM2
A(x; x

′) are shown in Figure 5. The first diagram is

Figure 5: 1-loop contributions to the A self mass −iM2

A
(x;x′).

unchanged from the old model, and the second diagram is just 3
2
times the previous result [5],

−iM2
A3
(x; x′) =

(−iλ)2

2

{
1

4
DD′

[
i∆(x; x′)

]2

−1

2
D
[
i∆(x; x)iδD(x−x′)

]
− kHaD−1∂0iδ

D(x−x′)

}
, (27)

−iM2
A4
(x; x′) = −i3λ2

8
δD(x−x′) · −(D−1)kH2aD . (28)

The counterterm is i times the second variation of (10),

−iM2
Ac(x; x

′) = −C1A2DD′

[
iδD(x−x′)

(aa′)
D
2

]
+ C2A2∂µ

[
RaD−2∂µiδ

D(x−x′)
]
. (29)

Because only (27) diverges in dimensional regularization, and this diagram is identical to the
old model, so too are the coefficients CA1

and CA2
,

C1A2 = −λ2µD−4

32π
D
2

Γ(D
2
−1)

2(D−3)(D−4)
, C2A2 =

λ2µD−4

4(4π)
D
2

Γ(D−1)

Γ(D
2
)

π cot(Dπ
2
)

D(D−1)
. (30)

We move to the B self-mass, whose 1-loop contributions are shown in Figure 6. As before,

Figure 6: 1-loop contributions to the B self-mass −iM2

B
(x;x′).

the 3-point diagram is unchanged from the old model and the 4-point diagram is just the
result from the old model times 3

2
,

−iM2
B3

=
(iλ)2

2
DD′

[
i∆(x; x′)

]2
− (iλ)2∂µ∂′ρ

[
(aa′)D−2∂µi∆(x; x′)∂′

ρi∆(x; x′)
]

(31)
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−iM2
B4

= −3λ2kπ cot(Dπ
2
)D

8

[
iδD(x−x′)

]
+
3λ2H2∂µ

32π2

[
ln(a)a2∂µiδ

4(x−x′)
]
+O(D−4). (32)

The counterterm is i times the second variation of (10) with respect to B,

−iM2
Bc
(x; x′) = −C1B2DD′

[
iδD(x−x′)

(aa′)
D
2

]
+ C2B2∂µ

[
RaD−2∂µiδ

D(x−x′)
]
. (33)

Multiplying the divergences from (32) by 3
2
and combining with those from (31) gives,

C1B2 = −λ2µD−4

16π
D
2

Γ(D
2
−1)

2(D−3)(D−4)
, (34)

C2B2 =
3λ2µD−4

8(4π)
D
2

Γ(D−1)

Γ(D
2
)

π cot(Dπ
2
)

D(D−1)
− λ2µD−4

32π
D
2

Γ(D
2
−1)

2(D−3)(D−4)

D−2

D−1
. (35)

3.3 The 1-Loop Vertex Function

In this subsection we first isolate the primitive divergences of the 3-point vertex −iV (x; y; z)
at 1-loop order. These divergences are removed by the counterterm (11), which determines
the coefficients C1AB2 , C2AB2 , C3AB2 and C4AB2 . We regard the C4AB2 counterterm as a
curvature-dependent renormalization of the bare 3-point coupling and infer the corresponding
beta function as,

δλ = C4AB2×R +O(λ5) =⇒ β ≡ ∂δλ

∂ ln(µ)
. (36)

The tree order vertex can be inferred from the Feynman rules,

−iV0(x; y; z) = −iλ
√

−g(x) gµνx ∂µδ
D(x− y)∂νδ

D(x−z). (37)

The various 1-loop contributions are shown in Figure 7. Because the leftmost diagram

Figure 7: 1-loop contributions to the ABB vertex −iV (x; y; z).

involves only 3-point couplings, it is unchanged from the old model [16],

−iV1a(x; y; z) =
iλ3

2
Dx∂

y
σ∂

z
β

{
√
−gy g

ρσ
y ∂y

ρ i∆(x; y)
√−gz g

αβ
z ∂z

αi∆(x; z)i∆(y; z)

}

+
λ3

4
DyDz

{[
i∆(y; z)

]2[
δD(x−y) + δD(x−z)

]}

−λ3

2
∂y
σ∂

z
β

{
√

−gy g
ρσ
y ∂y

ρ i∆(y; z)
√−gz g

αβ
z ∂z

αi∆(y; z)
[
δD(x−y) + δD(x−z)

]}
. (38)
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The 2nd and 3rd diagrams involve a single 4-point coupling and are therefore 3
2
times the

results of the old model [16],

−iV1b(x; y; z) =
3λ3

8
Dy

{
√−gx g

µν
x ∂x

µ

[
i∆(x; y)

]2
∂νδ

D(x−z)

}

+
3λ3

4
∂z
ν∂

y
β

{
√−gz g

µν
z ∂z

µi∆(z; y)
√
−gy g

αβ
y ∂y

αi∆(z; y)δD(x−z)

}
, (39)

−iV1c(x; y; z) =
3λ3

8
Dz

{
√−gx g

µν
x ∂x

µ[i∆(x; z)]2∂νδ
D(x−y)

}

+
3λ3

4
∂y
σ∂

z
β

{
√
−gy g

ρσ
y ∂y

ρ i∆(y; z)
√−gz g

αβ
z ∂z

αi∆(y; z)δD(x−y)

}
. (40)

Before considering the 4th diagram, we combine and reduce expressions (38-40). Because
the last two differ from the old model, the reduction is more complicated. Adding all three
terms and performing some judicious partial integrations gives,

−iV1abc =
iλ3

2
Dx∂

ρ
y∂

α
z

{
(ayaz)

D−2i∆(y; z)∂y
ρ i∆(x; y)∂z

αi∆(x; z)
}

+
3λ3

8
Dy∂

α
z

{
aD−2
z

[
i∆(y; z)

]2
∂z
αδ

D(x−z)
}
+

3λ3

8
Dz∂

α
y

{
aD−2
y

[
i∆(y; z)

]2
∂y
αδ

D(x−y)
}

−λ3

8
DyDz

{[
i∆(y; z)

]2[
δD(x−y) + δD(x−z)

]}

+
λ3

4
∂ρ
y∂

α
z

{
(ayaz)

D−2∂y
ρ i∆(y; z)∂z

αi∆(y; z)
[
δD(x−y) + δD(x−z)

]}
. (41)

After considerable manipulations explained in the Appendix expression the divergent part
of (41) can be brought to the form,

−iV1abc(x; y; z) −→ −iλ3Γ(D
2
+1)µD−4H2a2x

32π
D
2 (D−3)(D−4)

∂µδD(x−y)∂µδ
D(x−z)− iṼ (x; y; z), (42)

where −iṼ (x; y; z) consists of higher derivative divergences,

−iṼ (x; y; z) =
iλ3µD−4

16π
D
2

Γ(D
2
−1)

D(D−3)(D−4)
Dx

[
∂µδ

D(x−y)∂µδD(x−z)

aD−2
x

]

+
5iλ3µD−4Γ(D

2
−1)

128π
D
2 (D−3)(D−4)

{
Dy∂

µ
x

[
δD(x−y)∂µδ

D(x−z)

aD−2
x

]
+Dz∂

µ
x

[
∂µδ

D(x−y)·δD(x−z)

aD−2
x

]}

− λ3Γ(D
2
−1)µD−4

64π
D
2 (D−3)(D−4)

DyDz

[
iδD(x−z)δD(x−y)

a2D−4
x

]
. (43)

We call the new diagram −iV1d(x; y; z) and its contribution is,

−iV1d = −i
3λ3

16

√
−g(x) gµν(x)∂µδ

D(x−y)∂νδ
D(x−z) · i∆(x; x) . (44)
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This is just the bare vertex (37) times the simple factor 3λ2

16
i∆(x; x). Recall that the coinci-

dent propagator is given in equation (15),

−iV1d = −i
3λ3

16
aD−2
x ∂µδD(x−y)∂µδ

D(x−z)k

[
−π cot

(Dπ

2

)
+ 2 ln(a)

]
, (45)

= −i
3λ3k

16
×−π cot

(Dπ

2

)
×a2x ∂

µδD(x−y)∂µδ
D(x−z) +O(D−4) . (46)

Adding the primitive divergences from (42) to this gives,

−iV1pdiv(x; y; z) = −i
λ3H2a2x

8
∂µδD(x−y)∂µδ

D(x−z)

×
[

3k

2H2
×−π cot

(Dπ

2

)
+

µD−4Γ(D
2
+1)

4π
D
2 (D−3)(D−4)

]
− iṼ (x; y; z). (47)

The primitive divergences (47) are absorbed by the third variation of (11),

iδ3SAB2 [A,B]

δA(x)δB(y)δB(z)
= −iC1AB2Dx

[
∂µδD(x−y)∂µδ

D(x−z)

a2x

]

+iC2AB2Dy∂
µ
x

[
δD(x−y)∂µδ

D(x−z)

a2x

]
+ iC2AB2Dz∂

µ
x

[
∂µδ

D(x−y)×δD(x−z)

a2x

]

−iC3AB2DyDz

[
δD(x−y)δD(x−z)

aDx

]
− iC4AB2Ra2x ∂

µδD(x−y)∂µδ
D(x−z) . (48)

Adding (48) to (47) and demanding regularity as D → 4 implies,

C1AB2 =
λ3µD−4 Γ(D

2
−1)

16π
D
2 D(D−3)(D−4)

, (49)

C2AB2 = − 5λ3µD−4 Γ(D
2
−1)

128π
D
2 (D−3)(D−4)

, (50)

C3AB2 = − λ3µD−4 Γ(D
2
−1)

64π
D
2 (D−3)(D−4)

, (51)

C4AB2 =
λ3µD−4

32π
D
2 D(D−1)

[
3π cot(Dπ

2
)Γ(D−1)

8Γ(D
2
)

− Γ(D
2
+1)

(D−3)(D−4)

]
. (52)

Because we have suppressed the finite contributions the renormalized result will not be given
but let us take note of the fact that logarithms of µ come in the form ln(µa

H
). We can regard

C4AB2 × R = δλ as a curvature-dependent renormalization. The associated 1-loop beta
function (36) is,

β =
∂δλ

∂ ln(µ)
= −λ3H2

64π2
+O(λ5) . (53)

9



4 Summing the Logarithms

Here we demonstrate that the results of the previous section for the new model (8) can
be explained using the same combination of Starobinsky’s stochastic formalism and the
renormalization group that worked for the old model (5). We begin by deriving the curvature-
dependent effective potential and showing that it explains the evolution of the background.
We next apply our explicit results for the 1-loop counterterms to work out the curvature-
dependent renormalization group corrections.

4.1 Curvature-Dependent Effective Potential

The shift symmetry of the field B(x) evident in (8) prevents it from developing an effective
potential. However, A(x) does acquire one from integrating out the differentiated B fields
from the A field equation in the presence of a constant A(x) = A0 background,

δS[A,B]

δA(x)
= ∂µ

[√
−g gµν∂νA

]
− λ

2

(
1+

λ

4
A
)3

∂µB∂νBgµν
√
−g = 0 . (54)

One can see from the Lagrangian (8) that a constant A(x) = A0 background just renormalizes
the B field strength,

〈
Ω
∣∣∣T

[
B(x)B(x′)

]∣∣∣Ω
〉
A=A0

=
i∆(x; x′)

(1 + λ
4
A0)4

. (55)

Hence the A equation can be recognized as that of a scalar potential model,

δS[A,B]

δA(x)
−→ ∂µ

[√
−g gµν∂νA

]
− λ

2

(
1+

λ

4
A
)3

×
√−g gµν∂µ∂

′
νi∆(x; x′)|x′=x

(1+ λ
4
A)4

, (56)

= ∂µ

[√
−g gµν∂νA

]
+

(D−1
2

)λkH2√−g

1+ λ
4
A

≡ ∂µ

[√
−g gµν∂νA

]
− V ′

eff(A)
√
−g . (57)

Note that we have employed expression (16) to evaluate the coincidence limit of the doubly
differentiated propagator. This is free of divergences, so we can set D = 4 to find,

V ′
eff(A) = −3λH4

16π2

(
1 +

λ

4
A
)−1

=⇒ Veff(A) = −3H4

4π2
ln
(
1+

λ

4
A
)
. (58)

We see that the new model’s curvature-dependent effective potential (58) is almost the same
as the old model’s result of −3H4

8π2 ln(1 + λ
2
A) [15].

Starobinsky long ago showed how to sum the leading logarithms of a scalar potential
model like (57) [13,14]. The leading logarithms contained in correlators of the quantum field
A(t, ~x) turn out to agree, to all orders [9], with those of stochastic random field A(t, ~x) which
obeys the Langevin equation,

3H
[
Ȧ − Ȧ0

]
= V ′

eff(A) . (59)
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The “stochastic jitter” in this equation is supplied by the time derivative of the infrared-
truncated, free field expansion of A(t, ~x),

A0(t, ~x) ≡
∫ aH

H

d3k

(2π)3
H√
2k3

{
α(~k)ei

~k·~x + α†(~k)e−i~k·~x
}

,
[
α(~k), α†(~k′)

]
= (2π)3δ3(~k−~k′) .

(60)
If we turn off the stochastic jitter then equation (59) is simple to solve, adopting the initial
condition A(0, ~x) = 0 and noting that ln(a) = Ht,

A(t, ~x)
∣∣∣
A0=0

=
4

λ

[√
1+

λ2H2 ln(a)

32π2
− 1

]
=

λH2 ln(a)

16π2
− λ3H4 ln2(a)

211π4
+O(λ5) . (61)

Because it is easier to fluctuate down the potential than up, we expect that the effect of
adding stochastic jitter is to accelerate the evolution of A down its potential. Solving (59)
perturbatively gives,

A = A0+
λH2 ln(a)

16π2
− λ2H3

26π2

∫ t

0

dt′A0(t
′, ~x)− λ3H4 ln2(a)

211π4
+
λ3H3

28π2

∫ t

0

dt′A2
0(t

′, ~x)+O(λ4) . (62)

By taking the expectation value of the previous equation, and using the mode sum (60) to
conclude, 〈

Ω
∣∣∣A0(t, ~x)

∣∣∣Ω
〉
= 0 ,

〈
Ω
∣∣∣A2

0(t, ~x)
∣∣∣Ω

〉
=

H2 ln(a)

4π2
, (63)

we find, 〈
Ω
∣∣∣A(t, ~x)

∣∣∣Ω
〉
=

λH2 ln(a)

16π2
+O(λ5) . (64)

This is exactly the result (26) we got by explicit computation, which is impressive confirma-
tion of the stochastic prediction.

4.2 Curvature-Dependent Renormalization Group

In a theory with derivative interactions not all of the large logarithms derive from stochastic
effects. Some of them arise instead from the incomplete cancellation between primitive
divergences — which have no D-dependent powers of the scale factor — and counterterms
— which inherit a aD from the measure factor

√−g,

(HD−4

D−4

)
−

(µD−4aD−4

D−4

)
= − ln

(µa
H

)
+O(D−4) . (65)

These logarithms can be recovered using the renormalization group, which follows factors of
ln(µ). Because we are only interested in cases where the factors of ln(a) are not suppressed by
inverse powers of the scale factor, the counterterms of concern are those which can be viewed
as curvature-dependent renormalizations of bare parameters [15]. Of the four counterterms
(11) required to renormalize the vertex function at 1-loop order we have already seen that the
contribution proportional to C4AB2 can be viewed as a curvature-dependent renormalization
of the bare vertex, and we used this to compute the associated beta function (36). Of the

11



four counterterms (10) required to renormalize the 1-loop self-masses it is the contributions
proportional to C2A2 and C2B2 which can be regarded as curvature-dependent field strength
renormalizations,

ZA ≡ 1 + C2A2×R +O(λ4) , ZB ≡ 1 + C2B2×R +O(λ4) . (66)

Our explicit results (30) and (35) give the associated gamma functions,

γA ≡ ∂ ln(ZA)

∂ ln(µ2)
=

λ2H2

32π2
+O(λ4) , γB ≡ ∂ ln(ZB)

∂ ln(µ2)
= −λ2H2

64π2
+O(λ4) . (67)

We are ready to investigate the Callan-Symanzik equations for the n-point Green’s func-
tions Gn(x1; x2; . . . ; xn;λ;µ) of the field A,2

[
µ
∂

∂µ
+ β

∂

∂λ
+ nγA

]
Gn

(
x1; x2; . . . ; xn;λ;µ

)
= 0 . (68)

This equation can be solved using the method of characteristics. We first find a running
coupling constant λ̄(µ) which obeys the differential equation and initial condition,

µ
dλ̄

dµ
= −β

(
λ̄(µ)

)
, λ̄(µ0) = λ =⇒ β(λ)

∂λ̄

∂λ
= β(λ̄) . (69)

We can then write the solution as,

Gn

(
x1; x2; . . . ; xn;λ;µ

)
= Gn

(
x1; x2; . . . ; xn; λ̄(µ);µ0

)
×exp

[
−n

∫ µ

µ0

dµ′

µ′
γ
(
λ̄(µ′)

)]
. (70)

Inserting the β function (53) into (69), and ignoring higher loop corrections yields,

λ̄(µ) =
λ√

1− λ2H2

32π2 ln( µ
µ0
)
. (71)

Substituting (71) and (67) into (70), and again ignoring higher loop corrections, gives,

Gn

(
x1; x2; . . . xn;λ;µ

)
= Gn

(
x1; x2; . . . ; xn; λ̄(µ);µ0

)
×
[
1−λ2H2

32π2
ln
( µ

µ0

)]n
. (72)

Similar results could be derived for Green’s functions which also, or even exclusively, involve
the field B(x).

Having a negative beta function traditionally means that the theory runs towards weak
coupling in the ultraviolet because logarithms of the scale µ are associated with inverse
factors of some characteristic momentum in the process. In cosmology we are interested
in how things behave at late times, and we note from expression (65) that the scale µ is
associated with the scale factor a(t) in the form ln[µa/H ]. It should therefore be that having
a negative beta function means the theory evolves towards strong coupling at late times.

21PI n-point functions obey a similar equation with the last term replaced by −nγA.
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5 Conclusion

In this work, we examined a nontrivial nonlinear sigma model (defined in section 2) whose
loop corrections on de Sitter background show the same large logarithms as have been re-
ported from inflationary gravitons [3–8]. Previous work [15, 16] on nonlinear sigma models
which can be reduced to free theories has shown that these large logarithms can be resummed
by combining a variant of Starobinsky’s stochastic formalism [13,14] — based on curvature-
dependent effective potentials — with a variant of the renormalization group — based on
the subset of counterterms which can be viewed as curvature-dependent renormalizations of
bare parameters. Our analysis confirms that these techniques continue to apply for mod-
els whose S-matrix is nontrivial. In section 3.1, we explicitly computed the evolution of the
background (26) at 1-loop and 2-loop orders. In section 4.1 we showed that the resummation
techniques correctly predict these results.

One significant difference associated with a nontrivial S-matrix is that the beta function
does not vanish. The 1-loop beta function (53) was derived in section 3.3. The 1-loop gamma
functions (67) were derived in section 3.2, and combined with the beta function in section
4.2, to solve the Callan-Symanzik equation for n-point Green’s functions (72). Because the
beta function (53) is negative, the running coupling constant λ̄(µ) grows with the scale µ as
shown in equation (71). From (65) we see that logarithms of µ are associated with the scale
factor a(t) in the form ln[µa(t)/H ]. This implies that the model becomes strongly coupled
at late times.

An interesting higher loop phenomenon is that there can be mixing of large stochastic
logarithms with large logarithms from the renormalization group. We speculate that the
correct way to include these is to use the renormalization group to improve the curvature-
dependent effective potential and then use that, without any extra RG corrections. From
(67) we observe that, because γA ∼ λ2, an RG-improvement to the effective potential (58)
will include lowest order corrections of the form λ3A. Those would not engender any changes
in the background evolution at leading logarithm order.
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A Reduction of the 1-loop vertex function

The aim of this appendix is to reduce the last line of equation (41) for −iV1abc(x; y; z),

I(x; y; z) ≡ λ3

4
∂ρ
y∂

α
z

{
(ayaz)

D−2∂y
ρ i∆(y; z)∂z

αi∆(y; z)
[
δD(x−y) + δD(x−z)

]}
. (73)

Note that ∂y
ρ i∆(y; z)∂z

αi∆(y; z) is quadratically divergent, so extracting just the divergent
part of I(x; y; z) requires only the two terms given on the first line of expansion (14) for each
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propagator,

∂y
ρ i∆(y; z) = − Γ(D

2
)

2π
D
2 (ayaz)

D
2
−1

[
(y−z)ρ
(y−z)D

+
ayHδ0ρ

2(y−z)D−2
+

DayazH
2(y−z)ρ

8(y−z)D−2
+ . . .

]
, (74)

∂z
αi∆(y; z) = − Γ(D

2
)

2π
D
2 (ayaz)

D
2
−1

[
− (y−z)α
(y−z)D

+
azHδ0α

2(y−z)D−2
− DayazH

2(y−z)α
8(y−z)D−2

+ . . .

]
. (75)

Multiplying (74) and (75), and retaining only potentially divergent terms yields,

∂y
ρ i∆(y; z)×∂z

αi∆(y; z) =
Γ2(D

2
)

4πD(ayaz)D−2

{
−(y−z)ρ(y−z)α

(y−z)2D
+

azHδ0alpha(y−z)ρ

2(y−z)2D−2

−
ayHδ0ρ(y−z)α

2(y−z)2D−2
+

ayazH
2δ0ρδ

0
α

4(y−z)2D−4
−DayazH

2(y−z)ρ(y−z)α
4(y−z)2D−2

+ . . .

}
. (76)

The terms highlighted in red and blue require separate reductions which we give below.
We first extract two derivatives from the red terms of expression (76),

Γ2(D
2
)

16πD(ayaz)D−2

{
−(y−z)ρ(y−z)α

(y−z)2D
+

azHδ0α(y−z)ρ
2(y−z)2D−2

−
ayHδ0ρ(y−z)α

2(y−z)2D−2
+

ayazH
2δ0ρδ

0
α

4(y−z)2D−4

}

=
Γ2(D

2
−1)

64πD

{
∂y
ρ∂

z
α

[
1

(ayaz)D−2(y−z)2D−4

]
+

[∂y
ρ∂

y
α−ηρα∂

2
y ]

(D−1)(ayaz)D−2

[
1

(y−z)2D−4

]}
. (77)

The denominator (y−z)2D−4 is logarithmically divergent so we can extract a local divergence
from it by adding the flat space propagator equation [24, 25],

1

(y−z)2D−4
=

µD−4

2(D−3)(D−4)

4π
D
2 iδD(y−z)

Γ(D
2
−1)

−
∂2
y

4

[
ln[µ2(y−z)2]

(y−z)2

]
+O(D−4) . (78)

Substituting (78) in (77), and retaining only the divergences, reduces the red terms of ex-
pression (76) to,

Γ2(D
2
)

16πD(ayaz)D−2

{
−(y−z)ρ(y−z)α

(y−z)2D
+

azHδ0α(y−z)ρ
2(y−z)2D−2

−
ayHδ0ρ(y−z)α

2(y−z)2D−2
+

ayazH
2δ0ρδ

0
α

4(y−z)2D−4

}

=
Γ(D

2
−1)µD−4

32π
D
2 (D−3)(D−4)

{
∂y
ρ∂

z
α

[
iδD(y−z)

(ayaz)D−2

]
+

[∂y
ρ∂

y
α−ηρα∂

2
y ] iδ

D(y−z)

(D−1)(ayaz)D−2

}
+
(
Finite

)
. (79)

We now extract derivatives from the blue term in (76),

−Γ(D
2
)Γ(D

2
+1)H2

8πD(ayaz)D−3
× (y−z)ρ(y−z)α

(y−z)2D−2

= −Γ(D
2
−1)Γ(D

2
+1)H2

32πD(ayaz)D−3
×
[

∂y
ρ∂

y
α

2(D−3)
+

ηρα∂
2
y

2(D−3)(D−4)

]
1

(y − z)2D−6
. (80)
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Of the two terms inside the square brackets at the end of (80), only the one proportional to
ηρα∂

2
y is divergent. Using the same reduction as (78) we therefore reduce the blue term of

expression (76) to,

−Γ(D
2
)Γ(D

2
+1)H2

8πD(ayaz)D−3
×(y−z)ρ(y−z)α

(y−z)2D−2
= −Γ(D

2
+1)

16π
D
2

µD−4ηραH
2iδD(y−z)

(D−3)(D−4)(ayaz)D−3
+
(
Finite

)
. (81)

We are now ready to employ expressions (79) and (81) in (73). Note that the transverse
projection operator in the second term of (79) vanishes upon canceling the scale factors and
exploiting the iδD(y − z) to reflect derivatives where necessary,

λ3

4
∂ρ
y∂

α
z

{
(ayaz)

D−2× Γ(D
2
−1)µD−4

32π
D
2 (D−3)(D−4)

[∂y
ρ∂

y
α−ηρα∂

2
y ]iδ

D(y−z)

(D−1)(ayaz)D−2

[
δD(x−y) + δD(x−z)

]}

=
λ3µD−4Γ(D

2
−1)∂ρ

y∂
α
z

128π
D
2 (D−1)(D−3)(D−4)

{[
∂z
ρ∂

z
α−ηρα∂

2
z

]
iδD(y−z)×δD(x−y)

+
[
∂y
ρ∂

y
α−ηρα∂

2
y

]
iδD(y−z)×δD(x−z)

}
= 0 . (82)

The divergent part of I(x; y; z) comes from the first term of (79) and from (80). After some
judicious partial integrations it can be written as,

Idiv =
iλ3µD−4Γ(D

2
−1)

128π
D
2 (D−3)(D−4)

{
2DyDz

[
δD(x−y)δD(x−z)

(ayaz)D−2

]
−Dy∂

α
z

[
δD(y−z)∂z

αδ
D(x−z)

aD−2
y

]

−Dz∂
ρ
y

[
δD(y−z)∂y

ρδ
D(x−y)

aD−2
z

]}
− iλ3H2a2xµ

D−4Γ(D
2
+1)

32π
D
2 (D−3)(D−4)

∂µ
x δ

D(x−y)∂x
µδ

D(x−z) . (83)
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