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1 Introduction

Cosmology is characterized by scale factor a(t), Hubble parameter H(t) and
first slow roll parameter ǫ(t),

ds2 = −dt2 + a2(t)d~x·d~x =⇒ H(t) ≡ ȧ

a
, ǫ(t) ≡ − Ḣ

H2
. (1)

Inflation is the special case for which both the first and second time deriva-
tives of the scale factor are positive (H(t) > 0 and 0 ≤ ǫ(t) < 1). It is the
accelerated expansion of inflation which produces the primordial spectra of
scalars [1] and gravitons [2] by ripping these quanta out of the vacuum.

At some level these quanta must interact with themselves and with other
particles. These interactions can change single particle kinematics and long
range forces, and one might expect that the changes grow because more and
more quanta are ripped out of the vacuum as time progresses. For example,
a single loop of gravitons on de Sitter background (ǫ(t) = 0) corrects the
electric field strength of a plane wave photon [3] and the Coulomb potential
of a point charge [4] to,

F 0i(t, ~x) = F 0i
tree(t, ~x)

{

1 +
2GH2

π
ln(a) +O(G2)

}

, (2)

Φ(t, r) =
Q

4πar

{

1 +
2G

3πa2r2
+

2GH2

π
ln(aHr) +O(G2)

}

. (3)

Similar results have been reported for fermions [5], for massless, minimally
coupled scalars [6], and for gravitons [7, 8].

A fascinating aspect of these results is that they continue to grow for as
long as inflaton persists. For sufficient inflation, the factors of ln[a(t)] must
eventually overwhelm the loop-counting parameter GH2 causing perturba-
tion theory to break down. Evolving past this point requires a nonperturba-
tive resummation technique of the sort recently developed for nonlinear sigma
models on de Sitter background [9–11]. The technique combines a variant
of Starobinsky’s stochastic formalism [12,13], based on curvature-dependent
effective potentials, with a variant of the renormalization group, based on the
subset of counterterms which can be viewed as curvature-dependent renor-
malizations of parameters in the bare theory. The latter part of the technique
is not encountered in renormalizable matter theories, where the curvature-
independent renormalization group explains large secular logarithms [14].
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Even better, the technique can be generalized to a arbitrary cosmological
background (1) which has undergone primordial inflation [15], and applying
it transmits inflationary effects to late times [16].

It seems entirely possible to generalize this technique from nonlinear
sigma models to quantum gravity. The first step has been taken by us-
ing a variant of the renormalization group to explain the large logarithm
in the 1-graviton loop correction to the exchange potential of a massless,
minimally coupled scalar [6]. The purpose of this paper is to do the same
for the 1-graviton loop corrections (2-3) to electrodynamics. In section 2 we
review the exact calculation. Section 3 uses the renormalization group to
explain the factors of ln[a(t)] in both results. We do not believe there is any
curvature-dependent effective potential for this system, and we suspect that
the factor of ln(Hr) in (3) is not a leading logarithm effect. The case for that
is made in section 4. Our conclusions comprise section 5.

2 The Exact Calculation

The purpose of this section is to review the exact calculation of the 1-graviton
loop contribution to the vacuum polarization i[µΠν ](x; x′) [17] from which the
results (2-3) were derived [3,4]. These results were obtained by perturbatively
solving the quantum-corrected Maxwell equation,

∂ν

[√−g gνρgσµFρσ(x)
]

+

∫

d4x′
[

µΠν
]

(x; x′)Aν(x
′) = Jµ(x) , (4)

where Fµν ≡ ∂µAν − ∂νAµ is the field strength tensor and Jµ is the current
density. We begin by explaining how the vacuum polarization is represented
and why de Sitter breaking is unavoidable. Next the counterterms are given.
The section closes by giving the structure functions and isolating those terms
which are responsible for the large logarithms in (2-3). Throughout we em-
ploy conformal coordinates (based on dη ≡ dt/a(t)) so that the de Sitter
metric gµν = a2ηµν is proportional to Minkowski metric of flat space.

Of the ten graviton loops which have so far been evaluated on de Sitter
background [17–26], 1 all but one of them [24] used the simplest gauge [29,30].
The great thing about the dimensionally regulated (spacetime dimension D)
propagator in this gauge is that it consists of three scalar propagators (with

1See also the computation of graviton corrections to massless, conformally coupled
scalars [27, 28] which disagrees with our result [26].
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masses M2
A = 0, M2

B = (D − 2)H2 and M2
C = 2(D − 3)H2) multiplied by

constant tensor factors which are formed using the Minkowski metric ηµν and
δ0µ (with ηµν ≡ ηµν + δ0µδ

0
ν),

i
[

µν∆ρσ

]

(x; x′) =
∑

I=A,B,C

i∆I(x; x
′)×

[

µνT
I
ρσ

]

, (5)

[

µνT
A
ρσ

]

= 2ηµ(ρησ)ν −
2ηµνηρσ
D−3

,
[

µνT
B
ρσ

]

= −4δ0(µην)(ρδ
0
σ) , (6)

[

µνT
C
ρσ

]

=
2[ηµν + (D−3)δ0µδ

0
ν ][ηρσ + (D−3)δ0ρδ

0
σ]

(D−3)(D−2)
. (7)

Another huge advantage of this gauge is that the D = 4 dimensional limits
of the three scalar propagators are simple,

i∆A(x; x
′) −→ 1

4π2

[ 1

aa′∆x2
− H2

2
ln
(1

4
H2∆x2

)]

, (8)

i∆B(x; x
′) −→ i∆C(x; x

′) −→ 1

4π2

1

aa′∆x2
, (9)

where ∆x2 = −(|η − η′| − iǫ)2 + ‖~x− ~x′‖2, with ǫ > 0 infinitesimal.
Although the propagator (5-7) is the easiest to use, this gauge does break

de Sitter invariance, which means that noninvariant counterterms can and do
occur. The inevitability of de Sitter breaking for the graviton propagator on
de Sitter background has been a contentious issue for decades [31–39]. How-
ever, the presence of noninvariant counterterms seems to have been settled
by the computation of the vacuum polarization in a general class of de Sitter
invariant gauges [40]. In spite of the de Sitter invariant gauge, noninvariant
counterterms still arise due to the unavoidable breaking in the time-ordered
interactions [24]. So we will just go ahead with the result [17] derived in the
simplest gauge.

General relativity plus Maxwell is not perturbatively renormalizable [41,
42], however, the 1PI (one-particle-irreducible) n-point functions of any quan-
tum field theory can be renormalized, order-by-order in perturbation theory,
using BPHZ (Bogoliubov, Parasiuk [43], Hepp [44] and Zimmermann [45,46])
counterterms. The ones needed to renormalize the 1-loop vacuum polariza-
tion on de Sitter background are [17, 24],

∆L = ∆CH2FijFkℓg
ikgjℓ

√
−g + CH2FµνFρσg

µρgνσ
√
−g

+C4DαFµνDβFρσg
αβgµρgνσ

√−g , (10)
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where Dα represents the covariant derivative operator. In the simplest gauge
the divergent coefficients are [17],

∆C = −1× κ2µD−4

16π2(D−4)
, C =

7

6
× κ2µD−4

16π2(D−4)
, C4 =

1

6
× κ2µD−4

16π2(D−4)
,

(11)
where κ2 ≡ 16πG is the loop-counting parameter of quantum gravity and µ
is the mass scale of dimensional regularization.

Owing to the unavoidable breaking of de Sitter invariance, the vacuum
polarization requires two structure functions [47]. Various representations
are possible [48], of which we chose the one first employed for the vacuum
polarization induced by scalar quantum electrodynamics [49, 50],

i
[

µΠν
]

(x; x′) =
[

ηµνηρσ − ηµσηνρ
]

∂ρ∂
′
σF (x; x′)

+
[

ηµνηρσ − ηµσηνρ
]

∂ρ∂
′
σG(x; x′) . (12)

We employed the Schwinger-Keldysh formalism [51–59] in order to keep the
effective field equations real and causal. With a convenient choice of the finite
parts of ∆C, C and C4, the Schwinger-Keldysh structure functions are [4],

iF (x; x′) =
κ2H2

8π2

{

− ln
( µa

2H

)

− ∂0
3aH

+
ln( µa

2H
)

3H2
∂µ

1

a2
∂µ

}

δ4(x−x′)

+
κ2∂6

384π3aa′

{

θ(∆η−∆r)
[

ln[H2(∆η2−∆r2)]− 1
]

}

− κ2H2

128π3

{

[

∂4+4∂2∂2
0

]

×
[

θ(∆η−∆r) ln[H2(∆η2−∆r2)]
]

−
[

∂4−4∂2∂2
0

]

θ(∆η−∆r)

}

, (13)

iG(x; x′) =
κ2H2

6π2
ln
( µa

2H

)

δ4(x−x′)

+
κ2H2∂4

96π3

{

θ(∆η−∆r)
[

ln
(

H2(∆η2−∆r2)
)

− 1
]

}

, (14)

where ∆η ≡ η−η′ and ∆r ≡ ‖~x−~x′‖. The flat space result [60] is recovered by
the terms which contain no net factors of H . The terms which contain factors
of H represent the new, de Sitter corrections which represent inflationary
particle production.
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It remains to comment on the gauge issue. Any quantity with a graviton
propagtor, such as the 1-graviton loop contribution to the vacuum polariza-
tion, is liable to depend on the gauge fixing function. This dependence is
easy to quantify in the flat space result [60] and it must therefore be present
at least in the flat space limit of the de Sitter results we have just presented.
Presumably there is also gauge dependence in the new, de Sitter contribu-
tions [24]. Eliminating this gauge dependence is an important problem for
the physical interpretation of results such as (2-3), and a procedure has been
developed for accomplishing this which works in flat space [61,62] and is be-
ing generalized to de Sitter [6, 63]. However, the issue of gauge dependence
has no relevance for the study we are making here, of how to explain the
large logarithms which occur in a specific gauge.

3 Renormalization Group Explanation

The purpose of this section is to show how the factors of ln(a) in expressions
(2-3) can be explained as the renormalization group flow of a curvature-
dependent renormalization of the electromagnetic field strength. We ac-
cordingly identify the appropriate counterterm and compute the associated
gamma function. Then the Callan-Symanzik equation for Green’s functions
is written down.

The structure functions (13) and (14) include all information about 1-
graviton loop corrections to the linearized Maxwell equation (4). However,
the factors of ln(a) and ln(Hr) evident in expressions (2-3) derive from just
two terms in F (x; x′),2

F (x; x′) −→ −κ2H2

8π2
ln
( µa

2H

)

δ4(x−x′)

−κ2H2∂4

128π3

{

θ(∆η−∆r) ln
[

H2(∆η2−∆r2)
]

}

, (15)

G(x; x′) −→ 0 . (16)

The factors of ln(a) in (2-3) come entirely from the local term on the first
line of (15), whereas it is the nonlocal term on the last line of (15) which
produces the factor of ln(Hr) in the Coulomb potential.

2For the Coulomb potential, see equation (30) of [4]; for the photon field strength, see
Table 1 of [3].
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The Renormalization Group is associated with the dependence on the
dimensional regularization mass scale µ which enters through the coefficients
(11) of the counterterms (10). To understand how this scale affects the
structure functions F (x; x′) and G(x; x′) we exploit conformal coordinates to
exhibit the scale factors, and we expand the covariant derivatives of the C4

counterterm so that they give ordinary derivatives plus terms which can be
combined with the ∆C and C counterterms,

∆L =
[

∆C − (D−6)C4

]

aD−4H2FijFij

+
[

C − (3D−8)C4

]

aD−4H2FµνF
µν + C4a

D−6∂αFµν∂
αF µν . (17)

Note that we use the Minkowski metric to raise indices on the field strength
(F µν ≡ ηµρησνFρσ) and the partial derivative operator (∂α ≡ ηαβ∂β).

From expression (17) we can read off how the coefficient of each coun-
terterm affects the structure functions,

C − (3D−8)C4 = +
1

2
× κ2µD−4

16π2(D−4)

=⇒ ∆F1 = −κ2H2

8π2
ln
( µa

2H

)

δ4(x−x′) , (18)

C4 = +
1

6
× κ2µD−4

16π2(D−4)

=⇒ ∆F2 = +
κ2

24π2
ln
( µa

2H

)

∂µ
1

a2
∂µδ4(x−x′) , (19)

∆C − (D−6)C4 = −2

3
× κ2µD−4

16π2(D−4)

=⇒ ∆G = +
κ2H2

6π2
ln
( µa

2H

)

δ4(x−x′) . (20)

Comparison with (15-16) reveals that neither (19) nor (20) is responsible for
the factors of ln(a) in (2-3). The factors of ln(a) all come from (18), which
can be regarded as the coefficient of a curvature-dependent field strength
renormalization,

δZ ≡ −4
[

C − (3D−8)C4

]

H2 = −κ2H2

8π2
× µD−4

D−4
+O(κ4H4) . (21)

The associated gamma function is,

γ ≡ ∂ ln(1+δZ)

∂ ln(µ2)
= −κ2H2

16π2
+O(κ4H4) . (22)
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The Callan-Symanzik equation for n-point Green’s functions is,3

[ ∂

∂ ln(µ)
+ βκ2

∂

∂κ2
+ nγ

]

Gn

(

x1; x2; . . . ; xn;µ; κ
2
)

= 0 . (23)

The beta function for this theory goes like βκ2 ∼ κ4H2, so it does not affect
1-loop results. As one can see from (13-14), the factors of ln(µ) are always
associated with factors ln(a) in the form ln(µa). This is because primitive
divergences produce no D-dependent scale factors, whereas the counterterms
which absorb them not only contain a factor of µD−4 but also a factor of aD−4,

1

D−4
− µD−4aD−4

D−4
= − ln(µa) +O(D−4) . (24)

Hence we can replace the derivative with respect to ln(µ) in expression (23)
with a derivative with respect to ln(a). If we then regard the photon field
strength (2) and the Coulomb potential (3) as 2-point Green’s functions it
will be seen that the Callan-Symanzik equation (23), with gamma function
(22), explains the factors of ln(a) in both results.

4 Search for A Stochastic Explanation

The previous section demonstrated that the factors of ln(a) in the photon field
strength (2) and the Coulomb potential (3) can be explained using a variant
of the Renormalization Group. The purpose of this section is to explain why
there seems to be no compelling variant of the stochastic formalism which
explains the factor of ln(Hr) in the Coulomb potential. We begin by noting
the characteristics of the ln(Hr) term. In particular, it may not even count
as a “leading logarithm” effect as the factors of ln(a) do. We then discuss
the problems with developing a compelling stochastic explanation for it.

4.1 Peculiarities of the ln(Hr) Term

We have already mentioned that the factor of ln(Hr) in the Coulomb po-
tential (3) derives from the nonlocal part of the vacuum polarization on the
second line of expression (15). This descends from the “tail” part of gravi-
ton propagator [64]; that is, from the logarithm part of i∆A(x; x

′) visible

3Change +nγ to −nγ for one-particle-irreducible n-point functions.
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in expression (8). Its origin from the finite, nonlocal part of the graviton
propagator means that the factor of ln(Hr) is not explainable by the Renor-
malization Group. If it is to be understood as a “large logarithm” we must
seek a stochastic explanation based on a curvature-dependent correction to
the electromagnetic field equation, similar to the curvature-dependent ef-
fective potentials which served to explain many of the large logarithms in
nonlinear sigma models [9].

Before searching for a stochastic explanation we should discuss whether
or not the factor of ln(Hr) qualifies as a “large logarithm” which should
appear in the leading logarithm approximation. Many perfectly valid loop
corrections are not recovered in this approximation. One example is the
fractional correction of 2G/(3πa2r2) in the Coulomb potential (3). This is
the de Sitter descendant of a well-known flat space correction which was
discovered by Radkowski in 1970 [65]. It has nothing to do with inflationary
particle production and clearly does not belong to the leading logarithm
approximation.

Because the initial manifold has coordinate radius comparable to the
Hubble length [66], we do not have access to the regime of Hr ≫ 1. Hence
the factor of ln(Hr) can only become large for Hr ≪ 1. That looks more like
an ultraviolet effect than an infrared one. In the same sense, the Radkowski
correction only becomes significant for small r. On the other hand, the two
effects depend very differently on the physical separation length a(t)Hr,

Radkowski −→
[ 1

a(t)Hr

]2

versus Inflation −→ ln
[

a(t)Hr
]

. (25)

The Radkowski effect only becomes large when the physical separation is
small, and for aHr ≪ 1 it overwhelms the logarithm contribution, whereas
the inflationary effect is large when the physical separation becomes enor-
mous.

4.2 Problems with a Stochastic Explanation

To understand our problems in deriving a stochastic formulation of electro-
dynamics it is good to contrast the Lagrangian of electromagnetism plus
gravity,

LEMGR =
(R−2Λ)

√−g

16πG
− 1

4
FρσFµνg

ρµgσν
√
−g , (26)
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with the nonlinear sigma model [9, 10] for which a compelling stochastic
formulation exists,

LAB = −1

2
∂µA∂νAg

µν
√−g − 1

2

(

1+
λ

2
A
)2

∂µB∂νBgµν
√−g . (27)

Both theories involve two fields, one of which engenders large logarithms and
the other not,

hµν −→
(

Logs
)

, A −→
(

Logs
)

, (28)

Aµ −→
(

No Logs
)

, B −→
(

No Logs
)

. (29)

(The graviton field hµν is defined by conformally transforming the metric,
gµν ≡ a2(ηµν + κhµν).) The stochastic formulation of the nonlinear sigma
model (27) was derived by integrating out the “No Logs” field B from the
equation of the “Logs” field A in the presence of a constant A background,

δS[A,B]

δA
= ∂µ

[√−g gµν∂νA
]

− λ

2

(

1+
λ

2
A
)√−g gµν∂µB∂νB , (30)

−→ ∂µ

[√−g gµν∂νA
]

− λ

2

(

1+
λ

2
A
)√−g gµν×∂µ∂

′
νi∆A(x; x

′)|x′=x

(1+ λ
2
A)2

, (31)

−→ ∂µ

[√
−g gµν∂νA

]

+
3λH4

16π2

√−g

1+ λ
2
A

. (32)

This is a scalar potential model with potential Veff(A) = −3H4

8π2 ln |1+ λ
2
A| and

it can be treated using Starobinsky’s stochastic formalism [12, 13]. Doing so
recovers large logarithms in 1-loop corrections to the scalar mode function
and the exchange potential [9], as well as 1-loop and 2-loop contributions to
the expectation value of A [9, 10].

The analog of the reduction (30-32) for our model (26) would be to inte-
grate out the “No Logs” photon field from the “Logs” metric field equation,

16πG√−g

δSEMGR

δgµν
= Rµν−

1

2
gµνR+gµνΛ−8πG

[

δαµδ
β
νg

ρσ− 1

4
gµνg

αβgρσ
]

FαρFβσ .

(33)
This might describe large logarithms affecting the graviton field [67], but
it cannot capture the large logarithms (2-3) induced by the graviton in the
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photon field. A stochastic explanation of those logarithms would presumably
derive from integrating out the graviton from the photon field equation,

δSEMGR

δAµ

= ∂ν

[√−g gνρgµσFρσ

]

. (34)

In the nonlinear sigma model (27) this would be like integrating out the A
field from the B equation,

δSAB

δB
= ∂µ

[(

1+
λ

2
A
)2√−g gµν∂νB

]

. (35)

That is exactly what was not done. Nor was there any stochastic explanation
for the explicit 1-loop and 2-loop results which were obtained for the field
B [9]. These results were all explained using the Renormalization Group.
Moreover, integrating out the metric field would result in an electromag-
netic equation that still has derivative interactions, precluding the stochastic
formalism from being applied directly.

It is nevertheless undeniable that the graviton infrared modes are hugely
enhanced, and one might try to apply a perturbative version of the stochastic
approximation without integrating out any fields. For scalar potential models
this amounts to approximating the real part of the A-type scalar propagator
in (5) by the corresponding infrared stochastic sum,

Re
{

i∆A(x; x
′)
}

−→ S(x; x′) ≡
∫

d3k

(2π)3
ei
~k·(~x−~x ′) (36)

×θ(εHa−k)θ(εHa′−k)θ(k−δH)U(η, k)U∗(η′, k) , ε, δ ≪ 1 ,

where the Chernikov-Tagirov-Bunch-Davies mode funtion is [68, 69],

U(η, k) =
H√
2k3

[

1 + ikη
]

e−ikη −kη≪1−−−−→ H√
2k3

. (37)

This implies that the late time limit of (36) is,

S(x; x′) =
H2

4π2
× ln(A) , A = min[a, a′] . (38)

The imaginary part of the propagator descends from inverting kinetic opera-
tors of the equation of motion and should be kept as is. This approximation
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is known to capture the leading infrared logarithms in massless scalar po-
tential models to all loops [70–72], while the variant of this approximation
adapted for light massive scalars is known to capture leading H2/m2 ≫ 1
corrections to 2-loop order [73].

Applying this approximation to the one-graviton-loop correction to elec-
tromagnetism on de Sitter first requires expanding the photon field equa-
tion (34) in powers of graviton fluctuations,

−ηµ[ρησ]ν∂νFρσ −
κ

2
V µρνσαβ∂ν

[

hαβFρσ

]

−κ2

2
Uµρνσαβγδ∂ν

[

hαβhγδFρσ

]

+O(κ3) = Jµ . (39)

Here the 3- and 4-point vertex tensor structures are [17],

V µρνσαβ = ηµ[ρησ]νηαβ + 4ηα)[µην][ρησ](β , (40)

Uµρνσαβγδ =

[

1

4
ηαβηγδ − 1

2
ηα(γηδ)β

]

ηµ[ρησ]ν + ηγ)[µην][ρησ](δηαβ

+ηα)[µην][ρησ](βηγδ + ηµ(αηβ)[ρησ](γηδ)ν + ηµ(γηδ)[ρησ](αηβ)ν + ηµ[ρησ](αηβ)(γηδ)ν

+ηµ[ρησ](γηδ)(αηβ)ν + ηµ(δηγ)(αηβ)[ρησ]ν + ηµ(αηβ)(γηδ)[ρησ]ν . (41)

We subsequently look for a perturbative solution of the field strength,

Fµν = F (0)
µν + κF (1)

µν + κ2F (2)
µν +O(κ3) . (42)

This is done by iterating the equation (39) to order κ2, 4

−ηµ[ρησ]ν∂νF
(2)
ρσ (x) =

κ2

2
Uµρνσαβγδ∂ν

[

〈hαβ(x)hγδ(x)〉F (0)
ρσ (x)

]

(43)

−κ2

2
∂ν

{
∫

d4x′ ∂′
σ∂

′
λG(x; x′)V µρνσαβηρκV

κθλφγδ〈hαβ(x)hγδ(x
′)〉F (0)

θφ (x′)

}

,

where the inverse of the flat space d’Alembertian ∂2=−∂2
0+∇2 is,

G(x; x′) = −θ(∆η)

4π

δ(∆η−‖∆~x‖)
‖∆~x‖ . (44)

4Note that in (43) we have not included the contribution formally of the same order
descending from the Einstein equation (33). This contribution corresponds to the gravi-
tational response to the photon, and does not harbor any large logarithms.
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The stochastic approximation then affects the graviton 2-point function (5),
where the only contributing part is the one containing the A-type propagator,

〈hµν(x)hρσ(x
′)〉 −→

[

2ηµ(ρησ)ν − 2ηµνηρσ

]

S(x; x′) , (45)

where the stochastic sum S(x; x′) is defined in (36). Applying this pre-
scription to the plane wave photon and to the Coulomb potential gives the
following contributions,

F 0i
(2) = F 0i

(0) ×
κ2H2

2π2
ln(a) , Φ(2) = Φ(0) ×

κ2H2

2π2
ln(a) . (46)

in the limit ε ≪ 1. These contributions descend only from the first term
on the right-hand-side of Eq. (43), while the remaining nonlocal term pro-
vides no leading order contributions. Not only does the Coulomb potential
contribution in (46) fail to capture the ln(Hr) term, but both contributions
overestimate the ln(a) corrections (2–3) from the full computation, that are
completely captured by the RG explanation of Sec. 3. Upon closer exam-
ination, this discrepancy can be attributed to the lack of control over the
cutoff parameter ε. While for scalar potential models taking the limit ε≪1
remarkably works out to capture the leading contributions, in theories with
derivative interactions this is not so,5 and the Hubble scale modes contribute
relevant corrections, that for the system at hand have to cancel the contri-
butions in (46).

The issue with applying the stochastic sum approximation to the graviton
propagator is ultimately tied to derivative interactions, that are ubiquitous in
gravity. The issues arising from derivative interactions are well illustrated by
the mixed second derivative of the coincident propagator. The dimensionally
regulated computation gives,

〈∂µφ(x)∂νφ(x)〉 = − HD

(4π)
D

2

Γ(D)

2 Γ(D+2
2

)
gµν

D→4−−−→ − 3H4

32π2
gµν . (47)

However, when we apply the stochastic sum truncation to this quantity one
finds,

〈∂µφ(x)∂νφ(x)〉 a→∞−−−→ H4

8π2

[

1

2
a2δ0µδ

0
νε

4 +
1

3
gµνε

2

]

, (48)

5Another example is 1-scalar loop corrections to the photon wave function of scalar
quantum electrodynamics [50, 74].
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where gµν = gµν + a2δ0µδ
0
ν . Whereas the exact result (47) has a negative

definite µ = i, ν = j component, any stochastic mode sum such as (48) must
produce positive definite results for the squares of operators. Derivative
interactions prevent the affected fields from carrying infrared logarithms, in
which case these fields make nonzero contributions of order one such as (47)
that come as much from the ultraviolet as from the infrared. No stochastic
mode sum can correctly describe these effects.

Another signal of problems in expression (48) is its strong dependence on
the cutoff. This arises in the stochastic formalism when the approximate scale
invariance of the super-Hubble modes is either not present at tree level, or is
suppressed by derivative interactions. For example, applying the stochastic
formalism to vector fields in axion inflation results in a truncation which
is sensitive to the cutoff [75, 76]. Capturing large logarithms in these cases
requires a systematic approach such as [9–11, 70–72, 77, 78].

5 Conclusions

The continuous production of gravitons during inflation is responsible for the
tensor power spectrum [2] and for secondary effects involving interactions
with themselves and other particles. In chronological order there have so far
been six secondary, 1-loop effects reported on de Sitter background:

• Enhancement of the fermion field strength [5];

• Growth of the Coulomb potential in space and time [4];

• Enhancement of the photon field strength [3];

• Enhancement of the graviton field strength [7];

• Spatial suppression of the massless, minimally coupled scalar exchange
potential [6]; and

• Suppression of the Newtonian potential [8].

Prior to this work only the penultimate result had been given a Renormal-
ization Group interpretation analogous to the stochastic-RG synthesis that
was recently developed for nonlinear sigma models [9]. The terrific advantage
of such an interpretation is that it permits an all-orders re-summation the
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series of leading logarithms. So it is wonderful news that we have here been
able to provide a Renormalization Group explanation for the factors of ln(a)
discovered in 1-graviton loop corrections to the Coulomb potential (3) and
the photon field strength (2). This was done in section 3.

We were not able to achieve a similar explanation for the factor of ln(Hr)
in the Coulomb potential (3). Because this term derives from the nonlocal
part of the vacuum polarization (see the second line of equation expression
(15) for the structure function F (x; x′)) the ln(Hr) does not appear to be
associated with the mass scale µ, the way the scale factor a(t) is through
relation (24). In section 4 we searched for a compelling stochastic explana-
tion for the factor of ln(Hr). We concluded that none exists. The successful
stochastic formulation of nonlinear sigma models [9] was derived by integrat-
ing out the derivative interactions (30-32), whereas it is the vector potential
which is differentiated in the electromagnetic field equation (34). Derivative
interactions resist a stochastic interpretation because they mediate order one
effects which derive from all parts of the dimensionally regulated mode sum,
rather than just from the leading infrared part. On the other hand, we cannot
integrate the vector potential out of its own equation (34), both because we
want the resulting equation to describe electromagnetic effects and because
the equation is linear in the vector potential. We suspect that the lack of
an explanation for the factor of ln(Hr) may indicate that it should not be
considered a leading logarithm effect.

In nonlinear sigma models, which show both stochastic and RG effects
[9–11], there are really three things going on:

• The generation of curvature-dependent, effective forces by integrating
out differentiated fields in the presence of an approximately constant
background;

• The generation of stochastic jitter in the approximately constant back-
ground by the continual redshift of sub-horizon modes to the super-
horizon; and

• The generation of secular logarithms through the incomplete cancella-
tion (24) between curvature-dependent primitive divergences and coun-
terterms.

As noted above, the first of these receives contributions from both ultraviolet
and infrared, whereas the second is a purely infrared effect. We lump them
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both under the rubric of “stochastic” because the second cannot occur with-
out the first, and we note again that there is no mechanism for producing
the first thing in the present analysis. The third thing does happen in our
analysis and it is driven by the combination of ultraviolet electromagnetic
modes with the ultraviolet “tail” part of graviton modes.

The next step in our program is to attempt a similar explanation for the
three remaining 1-graviton loop enhancements: the growing fermion field
strength [5], and the effects on gravitational radiation [7] and on the force
of gravity [8]. We anticipate that the fermionic effect will have a Renormal-
ization Group explanation, as did the electromagnetic effects we considered
here. However, explaining the two gravitational results may well require a
stochastic analysis. That is as it should be because the graviton field is
analogous to the single field Φ in the nonlinear sigma model analysis, and
the factors of ln(a) in its mode function, exchange potential and expectation
value all had a stochastic origin [9].

Another step in our program is deriving the beta function βκ2 ≡ µ∂δκ2

∂µ
so

that we can use the Renormalization Group to derive all-orders results. This
requires the portion of δκ2 determined by a single loop of photons. A single
matter loop of any sort induces two gravitational counterterms [79, 80],

∆LGR = c1R
2
√
−g + c2C

αβγδCαβγδ

√
−g , (49)

where R is the Ricci scalar and Cαβγδ is the Weyl tensor. The counterterm
proportional to c2 makes a higher derivative contribution term of no relevance
to leading inflationary logarithms, however, the counterterm proportional to
c1 can be rewritten so that it contains a part proportional to the Einstein-
Hilbert Lagrangian,

R2 =
[

R−D(D−1)H2
]2

+2D(D−1)H2
[

R−(D−1)(D−2)H2
]

+D(D−1)2(D−4)H4.

(50)
Just as we regarded the middle term of (17) as a curvature-dependent field
strength renormalization so too we can think of the middle term of (50) as a
curvature-dependent renormalization of Newton’s constant,

δκ2 = −2D(D−1)c1κ
4H2 . (51)

Because the factors of ln(µ) are associated with ln(a) according to relation
(24), it should be noted that physical significance of our beta function differs
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from the usual sense in which a negative sign means that the theory be-
comes perturbative at high energy scales. For us it is the positive sign which
betokens a perturbative theory at late times.

A final point is that this analysis has been made in the context of the
simplest graviton gauge [29, 30]. We did not resolve the gauge problem, nor
must we do so in order to explain the large logarithms generated within
a single gauge. Of course we should eventually employ the procedure for
purging gauge dependence [61, 62] to establish that the large logarithms are
real, and to fix their numerical coefficients. Work on this is far advanced [6,63]
but analyses in quantum gravity are so difficult that it is best to report on
one at a time.
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