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ABSTRACT

I stress the importance of retaining a healthy classical limit while we search
for an ultraviolet completion to quantum gravity. A key problem with
negative-norm quantizations of higher derivative Lagrangians is that their
classical limits do not correspond to real-valued metrics evolving in a real-
valued spacetime. I also demonstrate that no completion based on the flat
spacetime background S-matrix can suffice by providing an explicit exam-
ple of a theory with unit S-matrix which still shows interesting changes in
single-particle kinematics and in the evolution of its background. I discuss
the implications of these considerations for the program of Asymptotic Safety.
Finally, I urge that some attention be given to the possibility that quantum
general relativity might make sense if only we could go beyond conventional
perturbation theory.
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1 A Thought-Provoking Question

What is wrong with proclaiming that we have solved the problem of quantum

gravity, and the answer is the 1-dimensional simple harmonic oscillator?

H =
p2

2m
+

1

2
mω2q2 . (1)

This is an exemplary quantum theory: all its states are normalizable, with
positive energies and positive norms. Indeed, we can explicitly write down a
complete set of energy eigenstates with En = (n+ 1

2
)~ω,

ψn(q) =
[mω

π~

]
1

4 (a†)n√
n!

exp
[

−mω

2~
q2
]

, a† ≡
√

mω

2~

(

q − ~

mω

d

dq

)

. (2)

Of course there is one little problem: our theory of “quantum gravity” fails
to describe the tides — or the solar system, or gravitational redshift, or
the precession of the perihelion of Mercury, or the bending of starlight, or
Shapiro delay, or gravitational lensing, or the spin-down of the binary pulsar,
or the existence of gravitational radiation, or cosmology — or any of the other
phenomena which are explained by classical general relativity.

We thereby come to an important realization: any proposal for “quantum

gravity” had better represent the quantization of classical gravitation. Note
also that the phenomena I have listed are not described by a gravitational S-
matrix. All available data [1] indicate that their explanation derives instead
from a local, generally coordinate invariant field theory of a real-valued metric
which exists on a real-valued spacetime, with unobservably small quantum
gravitational fluctuations at currently attainable energy scales. Any proposal
for “quantum gravity” which fails to obey this Correspondence Principle
amounts to throwing the baby out with the bath water.

I do not mean to imply that there are no quantum gravitational data.
The simplest explanation of the primordial scalar power spectrum is as the
gravitational response to quantum fluctuations in whatever matter field(s)
drove primordial inflation at a scale as much as 55 orders of magnitude
higher than the present day [2]. Something like 107 pixels of data on this
exist [3], with estimates as high as 1016 potentially recoverable from highly
redshifted 21 centimeter radiation [4–6]. The tensor power spectrum [7] is
also potentially observable, although it has yet to be resolved [8]. At the
current level of sensitivity, both spectra can be explained as tree order effects
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in quantum general relativity. The full development of 21-cm cosmology may
eventually permit 1-loop corrections to be resolved [9], but these would arise
from the finite, nonlocal part of quantum general relativity regarded as a low
energy effective field theory [10–15]. There is no prospect of soon acquiring
data which can resolve the ultraviolet completion of general relativity.

We should recall why people believe general relativity requires an ultravi-
olet completion. In D = 4 spacetime dimensions the Lagrangian of the most
general, invariant, metric theory of dimension four includes four terms,

L =
(R− 2Λ)

√−g

16πG
+

α

2
R2

√
−g +

β

2
CρσµνCρσµν

√
−g , (3)

where R is the Ricci scalar and Cρσµν is the Weyl tensor. Kelly Stelle long ago
proved that a certain quantization of this model is perturbatively renormal-
izable [16], provided all four terms are allowed. The first two terms comprise
general relativity with a cosmological constant, and they not only allowed,
but required in order to explain current data [1]. The Eddington (R2) term
is also permitted as long as its coefficient α is positive. Indeed, this term
plays a crucial role in Starobinsky’s model of primordial inflation [17], which
so far agrees with all data from the epoch of primordial inflation [8, 18, 19].
The problem is the Weyl (CρσµνCρσµν) term. No matter the sign of β, it
gives rise to a massive spin two degree of freedom which renders the classi-
cal theory virulently unstable [20]. The problem of quantum gravity is that

the Weyl term is not permitted, even though it is required for perturbative

renormalizability [21–32].
The Weyl counterterm would so neatly solve the problem of quantum

gravity that there is a long history of attempts to rehabilitate it [33–47].
Many of these efforts involve modifications such as the Lee-Wick mecha-
nism [48–51] and PT-symmetric quantization [52, 53]. Section 2 explains
that these violate the Correspondence Principle stated above. Much of the
pro-Weyl argumentation is based on the assumption that quantum gravity
can be defined by its perturbative S-matrix on flat space background. Sec-
tion 3 presents a nonlinear sigma model whose S-matrix is unity but which
still shows interesting changes in both its background and in the spectrum
of single particle states. Section 4 discusses why we really want a theory
of quantum gravity, and the possibility that it might be nothing more than
quantum general relativity. My conclusions comprise Section 5, which in-
clude comments on the consequences of the Correspondence Principle for the
program of Asymptotic Safety [54–56].
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2 Why the Weyl Counterterm Is Forbidden

There are really three points to make here. The first is that any local, invari-
ant, metric extension of general relativity, except for f(R) gravity, endows
the classical theory with a virulent kinetic instability. Second, the quanti-
zation which was employed in Stelle’s proof [16] amounts to regarding the
negative energy creation operators of (3) as positive energy annihilation op-
erators. The resulting Fock “states” have positive energy but some of them
have negative norm. These “states” are not normalizable under canonical
quantization, but might be so in some alternate quantization scheme. How-
ever, and third, the classical limit of the resulting theory cannot be any local,
invariant, metric theory of gravitation.

2.1 Why the Classical Theory Is Unstable

The fundamental problem of higher derivatives has nothing to do with grav-
ity, or even field theory, so I will review it in the context of a point particle
whose position is q(t). Suppose the Lagrangian L(q, q̇, q̈) contains not just
first derivatives q̇ but also second derivatives q̈. Suppose also that it is nonde-
generate, meaning that ∂L

∂q̈
is monotonic in q̈. Ostrogradsky long ago showed

that the canonical formalism of such a theory requires two coordinates and
two momenta [57, 58],

Q1 ≡ q , P1 ≡
∂L

q̇
− d

dt

∂L

∂q̈
, (4)

Q2 ≡ q̇ , P2 ≡
∂L

∂q̈
. (5)

Note that the assumption of nondegeneracy means we can solve for q̈ as some
function a(Q1, Q2, P2), without involving P1. Ostrogradsky’s Hamiltonian is,

H
(

Q1, Q2, P1, P2

)

≡ Q2P1 + a
(

Q1, Q2, P2

)

P2 − L
(

Q1, Q2, a(Q1, Q2, P2)
)

.

(6)
One can easily show that the canonical evolution equations just reproduce
the definitions (4-5) and the Euler-Lagrange equation [58],

Q̇i =
∂H

∂Pi

, Ṗi = − ∂H

∂Qi

. (7)
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There are a number of things to note about Ostrogradsky’s Hamiltonian
(6). First, because it is linear in the independent canonical coordinate P1, H
can never be bounded, either below or above. Second, adding more higher
derivatives just makes the problem worse: if the Lagrangian contains up to
N derivatives of q, and is nondegenerate in the highest one, then there will be
N canonical coordinates Qi and the Hamiltonian will be linear in (N − 1) of
their conjugate momenta Pi. Third, this problem is very general, completely
independent of any approximation technique such as perturbation theory. As
long as there are nondegenerate higher derivatives, the Hamiltonian cannot
be bounded. This is the most compelling explanation for why Newton’s
assumption about physics being defined by second order equations of motion
has not been contradicted in 336 years since the Principia.

We can now understand why the only permitted extension of general
relativity is f(R) models. Note first that adding a nondegenerate higher
derivative makes the Hamiltonian linear in the new conjugate momentum
which results. This means it is unbounded below, but also unbounded above.
The usual case is that the Hamiltonian of the lower derivative theory was
bounded below, so the new higher derivative degree of freedom is negative
to make the higher derivative Hamiltonian unbounded below. But if the
lower derivative theory was already negative energy then the new, higher
derivative degree of freedom would be positive energy. That is exactly what
happens for nonlinear functions of the Ricci scalar because the only higher
time derivative in R is of h ≡ ln[det(gij)],

R = −g00ḧ + f
(

g, ∂g, ∂iġ
)

. (8)

This degree of freedom corresponds to the Newtonian potential, and it would
indeed destabilize general relativity were it not for the Hamiltonian con-
straint. So we get a positive energy degree of freedom when the Lagrangian
depends nonlinearly on R. However, unconstrained negative energy degrees
of freedom arise from more general contractions of the Riemann tensor, or
from derivatives of R [59].

Before closing I should comment on some misconceptions:

• The Ostrogradsky problem is a kinetic energy instability, not a potential
energy one, so it manifests from the dynamical variable being driven
towards wild time dependence, not some particular value.

• Negative energy states are no problem unless there are interactions

which allow balancing positive and negative energy excitations.
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• The really crippling instability is driven by the infinite entropy of the
high momentum phase space of an interacting continuum field theory.
Indeed, the only way to get a finite decay rate in this case is by arti-
ficially cutting off the integration over possible momenta [60]. On the
other hand, stable higher derivative theories with a finite number of
discrete degrees of freedom can exist [61].

• The problem is not that the energy decays to negative infinity — the
energy of any solution is conserved. It is rather that solutions de-
velop a wild time dependence as more and more positive and balancing
negative energy degrees of freedom are excited. This is why a global
constraint on the energy does no good [62]. What one needs instead
is a constraint on the local negative degrees of freedom, such as the
Hamiltonian constraint which controls the Newtonian potential.

• Continuum negative energy particles with a high mass do not decouple
from low energy physics. Rather they couple more strongly because
there are more ways to produce them, and balance energy by producing
positive energy particles.

• The Ostrogradskian instability must survive canonical quantization be-
cause it afflicts a large part of the classical phase space.

2.2 How the Quantum Theory Got Negative Norms

I have just commented that the Ostrogradskian instability must survive
canonical quantization. Yet the higher derivative gravity theory in Stelle’s
theorem has no negative energy states [16]. Even more surprising, it does
have negative norm states, which of course violates the probabilistic inter-
pretation of quantum mechanics. How did this happen? The answer is that
Stelle employed a noncanonical quantization, and he was right to do so be-
cause it is only this formulation of (3) which leads to a renormalizable theory.

To understand what happened it is useful to work in the context of a
quadratic, higher derivative oscillator,

L =
m

2ω2

[

−gq̈2 + ω2q̇2 − ω4q2
]

. (9)

The general (classical and quantum) solution is a sum of two oscillators,
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q(t) =
∑

λ=±

[

Cλ cos(kλt)+Sλ sin(kλt)
]

, k± ≡ ω
[1∓√

1−4g

2g

]
1

2

, (10)

where the canonical coordinate expressions for the coefficients are,

C± ≡ ±g√
1−4g

[k2
∓Q1

ω2
− P2

gm

]

, S± ≡ ±g√
1−4g

[ P1

gmk±
− k±Q2

ω2

]

. (11)

The Hamiltonian reveals that the k+ mode carries positive energy while the
k− mode is negative energy,

H =
m

2

√

1−4g
[

k2
+

(

C2
++S2

+

)

− k2
−

(

C2
−+S2

−

)]

. (12)

The associated lowering operators are,

A± =

√

mk±
√
1−4g

2~

[

C± ± iS±

]

. (13)

Writing the operators in the position representation Qi = qi and Pi = −i~ ∂
∂qi

allows us to find the normalizable wave function1 they annihilate,

Ω(q1, q2) = N exp
[

− mg

2~ω2

(

(k−−k+)k+k−q
2
1 − 2ik+k−q1q2 + (k−−k+)q

2
2

)]

.

(14)
Just like any harmonic oscillator (1-2), we can define a complete set of energy
eigenstates H|N+, N−〉 = ~(N+k+ −N−k−)|N+, N−〉,
∣

∣

∣
N+, N−

〉

≡ (A†
+)

N+(A†
−)

N−

√

N+!N−!

∣

∣

∣
Ω
〉

=⇒
〈

k, ℓ
∣

∣

∣
k′, ℓ′

〉

= δkk′δℓℓ′ . (15)

This is the canonical formulation of (9), and it has negative energies (just
like the classical theory) and positive norms. It also “makes sense” in that
the expectation values of positive operators are positive,

〈

Ω
∣

∣

∣
q2
∣

∣

∣
Ω
〉

=
~

2m
√
g

1

k−−k+
,

〈

Ω
∣

∣

∣
q̇2
∣

∣

∣
Ω
〉

=
~ω2

2mg

1

k−−k+
. (16)

This theory consists of a real-valued position evolving in real-valued time.
1The normalization factor is,

N =

√

m

π~

[√
g(1−2

√
g)
]

1

4

.
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Stelle’s quantization was based on regarding the negative energy creation
operator A†

− as a positive energy annihilation operator. We can easily con-

struct the state wave function Ω(q1, q2) which is annihilated by A+ and A†
−,

Ω(q1, q2) ∝ exp
[

− mg

2~ω2

(

(k++k−)k+k−q
2
1+2ik+k−q1q2−(k++k−)q

2
2

)]

. (17)

I have not given the normalization factor because this wave function is
not normalizable. It is possible to define a set of energy eigenfunctions
H|N+, N−〉 = ~(N+k+ +N−k−)|N+, N−〉 analogous to (15),

∣

∣

∣
N+, N−

〉

≡ (A†
+)

N+(A−)
N−

√

N+!N−!

∣

∣

∣
Ω
〉

=⇒
〈

k, ℓ
∣

∣

∣
k′, ℓ′

〉

= (−1)ℓδkk′δℓℓ′
〈

Ω
∣

∣

∣
Ω
〉

.

(18)
All of these eigenfunctions have positive energy, but the ones with odd N−

have a negative norm. This shows up in the expectation value of the square
of the velocity being negative,

〈

Ω
∣

∣

∣
q2
∣

∣

∣
Ω
〉

=
~

2m
√
g

〈Ω|Ω〉
k−+k+

,
〈

Ω
∣

∣

∣
q̇2
∣

∣

∣
Ω
〉

= − ~ω2

2mg

〈Ω|Ω〉
k−+k+

. (19)

It is obvious from the negative sign on the velocity that this theory does not
correspond to a real-valued position moving in real-valued time.

These sorts of eccentricities are standard in noncanonical quantization
schemes [63–65]. Note that they have nothing per se to do with higher
derivatives. One could just as easily get a purely negative energy set of
eigenstates for the simple harmonic oscillator (1) by regarding the creation
operator as an annihilation operator. Indeed, because the Schrödinger equa-
tion Hψ(q) = Eψ(q) is a second order, ordinary differential equation, there
are two linearly independent solutions for any energy: positive, negative,
imaginary, etc. Normalizability puts the quantum in quantum mechanics.

Stelle is a good physicist and he understood all of this. The reason he
quantized (3) the way he did is that perturbative renormalizability requires
propagators to fall off like the inverse fourth power of the Euclidean momen-
tum. To understand this, compare the propagator of the canonical theory,

i∆(t; t′) ≡
〈

Ω
∣

∣

∣
T
[

q(t)q(t′)
]
∣

∣

∣
Ω
〉

=
~

m
√
1−4g

{e−ik+|t−t′|

2k+
+

eik−|t−t′|

2k−

}

, (20)

with the propagator of noncanonically quantized theory,

i∆(t; t′) ≡
〈

Ω
∣

∣

∣
T
[

q(t)q(t′)
]
∣

∣

∣
Ω
〉

=
~

m
√
1−4g

{e−ik+|t−t′|

2k+
− e−ik−|t−t′|

2k−

}

. (21)
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One can express both as integrals over a dummy 0-component momentum
k0 using the identity,

∫ ∞

−∞

dk0
2π

ie−ik0(t−t′)

k2
0−k2+iǫ

=
e−ik|t−t′|

2k
. (22)

The result for the canonical propagator (20) is,

i∆(t; t′) = −~ω2

mg

∫ ∞

−∞

dk0
2π

ie−ik0(t−t′)

(k2
0−k2

++iǫ)(k2
0−k2

−−iǫ)
. (23)

The problem is that Euclideanization requires the k0 contour to be Wick
rotated into the 1st and 3rd quadrants, which will give residues from the
factor (k2

0 − k2
− − iǫ),

−~ω2

mg

i

(k2
0−k2

++iǫ)(k2
0−k2

−−iǫ)

−→ −~ω2

mg

1

(k2
E+k2

+)(k
2
E+k2

−)
+

2π~δ(k2
E−k2

−)

m
√
1−4g

. (24)

In a 3+1 dimensional field theory the residue terms only fall off like an energy
delta function divided by a single power of the 3-momentum. The advantage
of the noncanonical propagator (21) is that it avoids these residues,

i∆(t; t′) = −~ω2

mg

∫ ∞

−∞

dk0
2π

ie−ik0(t−t′)

(k2
0−k2

++iǫ)(k2
0−k2

−+iǫ)
. (25)

2.3 Why This Is Bad

The problem with the negative-norm quantization of higher derivative gravity
(3) is that it violates the Correspondence Principle defined in section 1.
The classical limit of this quantization cannot represent a local, invariant

theory of a real-valued metric existing on a real-valued spacetime. Before
discussing how bad this is, please take note of the fact that no amount of
further tinkering with quantum higher derivative theory can avoid it. The
fatal minus signs are required for the quantum theory to be renormalizable.
We also have a complete catalog of local, invariant theories of a real-valued
metric existing on a real-valued spacetime and none of them possess the
properties asserted for the quantum higher derivative theory.
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The test of any physical theory comes in its ability to explain and predict
experiment and observation. I do not rule out the possibility that some
alternate quantization of a classically unstable Lagrangian might do that.
For example, the negative norm quantization of the quadratic model (9)
cannot represent the position of a point particle evolving in real time, but
that might not pose a problem if we have no sense of being able to measure
such a particle. The problem for gravity is that, once coordinates are fixed,
we do have a strong sense of being able to measure a real-valued metric
existing on a real-valued spacetime. Abandoning canonical quantization for
gravity puts everything that we know about classical, and even semi-classical,
gravitation at risk — which is everything we know about gravity. It amounts
to throwing the baby out with the bath water.

I want to stress again that the most stringent test of noncanonical quanti-
zation is not producing a satisfactory quantum theory. This article began by
exhibiting an absurd theory of “quantum gravity” (1-2) which is completely
consistent, so there never was any doubt that a satisfactory quantum theory
could be defined. The real test is whether or not the resulting “quantum grav-
ity” theory recovers the vast array of phenomena which are explained by clas-
sical gravitation, including the data on primordial perturbations which follow
from semi-classical gravitation. Passing this test is automatic for canonical
quantization but it is highly problematic when alternate quantizations are
employed. And the burden of proof rests with the people who seek to rehabil-

itate the Weyl counterterm. Many of the rehabilitators are my friends, who
have spent as many years as I have in trying to understand quantum gravity.
I hope they will forgive me if I address them as “you” in discussing some of
the arguments they make that their formulations of quantum gravity have
satisfactory classical limits.

I often hear rehabilitators claim that recovering general relativity is guar-
anteed because their low energy perturbative S-matrix is approximately that
of quantum general relativity. There are a number of problems with this
view, starting with its reliance on the perturbative S-matrix. With the pos-
sible exception of the bending of starlight, known gravitational phenomena
are not explained using perturbative scattering theory but rather a local field
theory of a real-valued metric existing on a real-valued spacetime, and of-
ten responding to nonperturbatively strong sources such as neutron stars. I
want to see this field theory, and I want to see the exact formulation of it, not
what you think is a good approximation. By your own admission, you must
add something to the S-matrix amplitudes of quantum general relativity to
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improve their behavior at high energies; I want to see the local field theory
behind the addition, no matter how minor you believe it is.

The same comments apply for the nonlocal modifications of gravity [66–
69] which have appeared since careful study of string field theory taught us
how to reconcile gauge invariance and nonlocality [70, 71]. I don’t have any
problem with these formulations as regularization techniques, but they all
seem to fail the classical correspondence limit discussed in section 1. The
problem is not negative norm poles in the propagator, but rather that the
field equations seem to require information from arbitrarily far in the past
and the future. I want the proponents of these theories to explain how a
numerical relativist should code such equations. I suspect that any evolution
at current times could be supported, provided the far future was adjusted to
make the nonlocal form factors support it.

Another common argument is that the classical theory is that of a real-
valued metric on a real-valued spacetime whose Lagrangian is (3). That
is not true. As explained in section 2.1, the classical theory is subject to
a virulent kinetic instability whose lifetime is zero. You claim that your
alternate quantization produces a theory with only positive energies, and that
this is true for every value of ~, no matter how small. Hence the classical limit
of your theory is not that of a real-valued metric on a real-valued spacetime
whose Lagrangian is (3). Please tell me what it is.

I often hear it asserted that the negative norms only affect very short
wavelength modes, about which we know nothing. This argument ignores the
distinction between time and space. The negative norm quantization of (3)
results in negative norm modes of high mass, which implies mode functions
with high frequencies, but says nothing about the wave number. In fact,
the negative norm Fourier mode sum includes macroscopic wave lengths,
the same way that the positive norm mode sum does. One consequence
is that the square of the time derivative of the invariant length between
spacelike separated points ([

∫

ġijdx
idxj]2) is negative, even for macroscopic

separations, the same way that q̇2 is negative in expression (19). This is not
acceptable.

Finally, I have heard it claimed that the classical limit of quantum gravity
is as completely misleading as the classical limit of quantum chromodynam-
ics. I’m sure the statement was not meant this way, but it sounds like an
admission that my objections to noncanonical quantization schemes for grav-
ity are valid. I stress again that everything we know about gravity is either
classical or, in the case of primordial perturbations, semi-classical. If this
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is not recovered by your theory of “quantum gravity” then you have indeed
thrown the baby out with the bath water.

3 Objections to S-Matrix Chauvinism

Those who seek to rehabilitate the Weyl counterterm often adopt what I
call S-Matrix Chauvinism, which asserts that the perturbative S-matrix on
flat space background defines physics and is all we can ever know. Believ-
ers refuse to consider quasi-local fields such as

∫

ġijdx
idxj, whose square is

negative, even over macroscopic spacelike separations in the negative norm
quantization of (3). To them, no problem is real unless it appears in the S-
matrix. Scattering into negative norm states does not trouble them because
these states are unstable, so they cannot really be present in the asymptotic
scattering space. With some inspired tinkering such as the Lee-Wick mecha-
nism, it seems reasonable to them that a unitary and causal scattering theory
can be defined between positive norm and positive energy particles. Hope
springs eternal. While not denying the utility of the S-matrix, I do dispute
the extreme position that local fields have no meaning, and also the assertion
that the S-matrix suffices to define physics.

3.1 Abandoning Local Fields Is Not Necessary

One of my current teaching assignments is graduate electrodynamics. It’s a
fun course on what has to be the greatest story every told in physics: how
men of genius pieced together mankind’s first relativistic, unified field theory.
I use the classic text by the late J. D. Jackson [72] which takes the reader
through a bewildering variety of different solutions for electric and magnetic
fields. No one questions the validity of solving for these fields, or what the
solutions mean. Yet we are told that it all becomes meaningless nonsense
as soon as quantum effects are turned on, no matter how small they are.
For example, quantum gravity makes a fractional correction of about 10−45

to the Coulomb potential of an electron at the Compton radius. The best
human technology cannot measure an effect so small, yet we are told that it
being anything other than zero means we must abandon local fields and base
physics entirely on the S-matrix. That never made any sense to me.

The alleged incompatibility of quantum effects and local fields is certainly
not for lack of a quantum generalization of the classical Maxwell equation.
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The required generalization is based on the evocatively named “vacuum po-
larization” i[µΠν ](x; x′), which is the 1PI 2-point function of the photon,

∂νF
νµ(x) +

∫

d4x′
[

µΠν
]

(x; x′)Aν(x
′) = Jµ(x) . (26)

Here Fµν ≡ ∂µAν − ∂νAµ is the field strength tensor and Jµ(x) is the current
density. S-matrix chauvinists disparage this equation for three reasons:

• [µΠν ](x; x′) is not real;

• [µΠν ](x; x′) is nonzero for x′µ outside the past light-cone of xµ; and

• The [µΠν ](x; x′) induced by quantum gravity is highly gauge dependent.

All three of these problems occur in the dimensionally regulated, primitive
contribution from a single loop of gravitons on flat space background [73],

i
[

µΠν
]

(x; x′) = −κ2C0(D, a, b)(D−2)Γ2(D
2
−1)

32(D−1)πD

[

ηµν∂2 − ∂µ∂ν
] 1

∆x2D−2
.

(27)
Here κ2 ≡ 8π~G/c3 is the loop-counting parameter of quantum gravity, the
Lorentz interval is,

∆x2 ≡
∥

∥

∥
~x− ~x′

∥

∥

∥

2

−
(

c|t− t′| − iǫ
)2

, (28)

and the dependence on the two covariant gauge parameters a and b is,

C0(a, b,D) = 8 +
12(a−1)− 24(b−1)2

(b−2)2
+O(D−4) . (29)

The first two problems derive from the vacuum polarization of expression
(27) being an in-out matrix element appropriate to asymptotic scattering
theory. Using it in the effective field equation (26) gives the in-out matrix
element of Fµν , which is not necessarily real, even if the field operator is Her-
mitian, because the in and out vacua might differ. In 1960 Julian Schwinger
devised a diagrammatic procedure [74–79] for computing true expectation
values which is almost as easy to use as the Feynman rules are for com-
puting in-out matrix elements. When the associated vacuum polarization
is employed in equation (26) the resulting solutions are real, and the only
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contributions from the integration over x′µ are on or inside the past light-
cone of xµ [80, 81]. Further, it is very simple to convert the in-out vacuum
polarization to the in-in one [82].

That leaves only the gauge problem. One can see from expression (29)
that by taking the parameter b close to two and varying the parameter a,
we can make the quantum correction run all the way from minus infinity to
plus infinity. This is clearly unacceptable. It is also the result of a mistake.
The effective field must be excited by some physical source, and it must
be detected by some physical observer. The source and observer interact
with gravity because all things do. Ignoring the resulting quantum grav-
itational correlations is what causes the gauge dependence of the effective
field equation [83]. When proper account is taken of these correlations the
renormalized result is a completely gauge independent effective field equation
which is manifestly real and causal [84],

∂νF
νµ(x) +

5~G∂6

48π2c3

×
∫

d4x′θ(c∆t−∆r)
{

ln
[

µ2
(

c2∆t2−∆r2
)]

− 1
}

∂′
νF

νµ(x′) = Jµ(x) . (30)

Here ∆t ≡ t − t′ and ∆r ≡ ‖~x − ~x′‖. This equation can be solved the
same way the classical Maxwell equation is, and resulting electric and mag-
netic fields have the same transparent physical interpretations as in classical
electrodynamics. It was never necessary to base physics on the S-matrix.

3.2 Doubts about the S-Matrix

All of which raises the question of whether or not it is even possible to base
physics on the S-matrix. I have always thought this dubious for a theory of
long range interactions such as gravity. Indeed, infrared divergences preclude
the existence of a gravitational S-matrix on flat space background, although
inclusive rates and cross sections do exist [85]. Not all theories even have
these. This is especially true for systems in which the background continues
evolving at late times, such as a scalar with a cubic self-interaction [86]. S-
matrix chauvinists dismiss vacuum decay, but I refuse to accept that there
are no interesting quantum field theory questions to pose about such systems.
The persistence of evolution for all time sounds a lot like what happens in
cosmology.
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Cosmology poses insurmountable problems for S-matrix chauvinists be-
cause the universe did not begin in free vacuum but rather with an initial
singularity, and the phenomenon of cosmological particle production means
that it cannot end in free vacuum. A formal S-matrix can be defined for mas-
sive fields on de Sitter background [87], but causality renders it unobservable.
And the construction altogether fails when applied to realistic geometries, or
when one attempts to include massless fields which are not conformally in-
variant such as the graviton.

Cosmology also poses problems for the claim that massive, negative norm
particles disappear from physics because they are unstable. The massive
scalar degree of freedom in Starobinsky’s R+R2 model of inflation [17] is also
unstable so, by the logic of the S-matrix chauvinists, it too must be absent
from the space of scattering states. Yet the initial value data associated
with this degree of freedom matters — it controls the duration of primordial
inflation. What happened to it? And if it can have observable consequences,
why cannot the massive, negative norm particles?

Considering the pretensions of S-matrix chauvinists they should be re-
quired to explain in detail how to infer known gravitational phenomena from
the results of asymptotic scattering experiments. For example, how does
one predict the tides? What scattering experiment describes the primordial
power spectra? And it is not fair reconstructing a local field theory from the
perturbative S-matrix, then using this. S-matrix chauvinists have denied the
reality of local fields in order to avoid acknowledging the problems associated
with negative norms. Let them live by the rules they have proclaimed.

3.3 An Explicit Counter-Example

Two years ago I stumbled upon a nonlinear sigma model with a trivial S-
matrix which nonetheless shows interesting evolution of its background and
of single particle kinematics [88],

L = −1

2
∂µA∂νAg

µν
√−g − 1

2

(

1 +
λ

2
A
)2

∂µB∂νBgµν
√−g . (31)

This model can be reduced to a theory of two free scalars by making a local,
invertible field redefinition,2

X ≡ 2

λ

(

1 +
λ

2
A
)

cos
(λ

2
B
)

, (32)

2I thank Arkady Tseytlin for this observation.
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Y ≡ 2

λ

(

1 +
λ

2
A
)

sin
(λ

2
B
)

. (33)

Hence its S-matrix is unity by Borchers Theorem [89], and an S-matrix chau-
vinist would be required to dismiss the model as completely uninteresting.

In spite of having a unit S-matrix, the model (31) is still interesting on
de Sitter background,

ds2 = −c2dt2 + e2Htd~x·d~x . (34)

The Lagrangian (31) is invariant under B → −B, which precludes the field
B(x) from developing an expectation value. However, no symmetry pro-
tects A(x), and explicit computations at 1-loop [88] and 2-loop [90] reveal a
fascinating secular growth,

〈

Ω
∣

∣

∣
A(x)

∣

∣

∣
Ω
〉

=
λH2 ·Ht

24π2
+

λ3H4(Ht)2

210π4
+O(λ5) . (35)

A 1-loop computation of the self-mass also shows that A particles develop a
mass [88],

m2
A =

3λ2H4

32π2
+O(λ4) . (36)

Note that the absence of scattering between particle states in no way precludes
changes in single particle kinematics, nor does it prevent changes in the
background. Neither (35), nor (36), is derivable from the trivial S-matrix, and
it requires some hardihood to maintain that these results are uninteresting.

I should emphasize that the interesting results (35-36) happen in spite of
the field redefinition (32-33), not because of it. What the field redefinition
shows is that this theory’s S-matrix is trivial. My point is that even having
a trivial S-matrix does not preclude interesting phenomena. That said, the
field redefinition (32-33) provides the simplest way of deriving things in the
original variables. Just use the inverse field redefinition,

A = −2

λ
+
√
X2 + Y 2 , (37)

B =
2

λ
sin−1

( Y√
X2 + Y 2

)

, (38)

to express whatever quantity is of interest in terms of expectation values of
nonlinear functions of the free fields X and Y .
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Another point is that the S-matrix of this model is only trivial so long
as gravity remains nondynamical. However, even when gravity is dynamical,
one can still make the local, invertible field redefinition (32-33) to show that
scattering amplitudes have no dependence at all on the coupling constant λ,
in spite of the fact that the A background does. So important information
is still missing from the S-matrix. The addition of conformal couplings to A
and or B would disrupt the field redefinition (32-33), even for nondynamical
gravity, and it would alter the results (35) and (36). However, all of these
changes can be recognized from their dependence on the conformal couplings
ξA and ξB. For example, the S-matrix would vanish with these couplings.

The model (31) fascinated me and my collaborators (Shun-Pei Miao and
Nick Tsamis) because it taught us how to sum up the potentially large factors
of Ht engendered by loops of gravitons on de Sitter background [9, 91–95].
The method is to construct a curvature-induced effective potential by inte-
grating out differentiated B fields from the A field equation in a constant A
background [88],

δS[A,B]

δA
= ∂µ

[√−g gµν∂νA
]

− λ

2

(

1 +
λ

2
A
)

∂µB∂νBgµν
√−g , (39)

−→ ∂µ

[√−g gµν∂νA
]

−
λ
2

√−g gµν∂µ∂
′
νi∆(x; x′)|x′=x

1 + λ
2
A

. (40)

Dimensional regularization on de Sitter implies [96, 97],

gµν∂µ∂
′
νi∆(x; x′)|x′=x = − HDΓ(D)

(4π)
D

2 Γ(D
2
)
−→ −3H4

8π2
. (41)

The result is a scalar potential model for A with Veff(A) = −3H4

8π2 ln |1+ λ
2
A|.3

Starobinsky has shown that such models are equivalent, at leading order
in Ht for each loop, to a stochastic random field A(t, ~x) which obeys the
Langevin equation [98, 99],

3H
[

Ȧ − Ȧ0

]

= −V ′
eff(A) =

3λH3

16π2

1+ λ
2
A

. (42)

The stochastic jitter is supplied by the infrared-truncation of the free field
mode sum,

A0(t, ~x) =

∫

d3k

(2π)3
θ(k−H)θ(eHtH−k)H√

2k3

[

a(~k)ei
~k·~x + a†(~k)e−i~k·~x

]

. (43)

3Note that this immediately explains the mass (36).
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If we ignore the stochastic jitter, equation (42) can be solved exactly. Because
it is easier to fluctuate down the potential than up, the effect of the stochastic
jitter is just to accelerate the roll-down evident in this solution,

〈

Ω
∣

∣

∣
A(t, ~x)

∣

∣

∣
Ω
〉

=
2

λ

[

√

1 +
λ2H2 ·Ht

16π2
− 1

]

+
(

Stochastic Acceleration
)

.

(44)
Note that we can therefore sum up the secular growth factors to determine
what becomes of them after perturbation theory breaks down. Note also that
this model continues to evolve, even at arbitrarily late time.

A final point is that the knowledge we gained had nothing to do with the
model being reducible to a free theory. To see this it suffices to make a slight
change in the Lagrangian (31) [100],

L = −1

2
∂µA∂νAg

µν
√
−g − 1

2

(

1 +
λ

4
A
)4

∂µB∂νBgµν
√
−g . (45)

The field space metric of this model has nonzero curvature so it cannot be
reduced to a free theory. Yet perturbative computations show the same
secular growth factors. Integrating out the differentiated B fields results in
a very similar effective potential, Veff(A) = −3H4

4π2 ln |1+ λ
4
A|, which gives rise

to a very similar solution of the Langevin equation,

〈

Ω
∣

∣

∣
A(t, ~x)

∣

∣

∣
Ω
〉

=
4

λ

[

√

1 +
λ2H2 ·Ht

32π2
− 1

]

+
(

Stochastic Acceleration
)

.

(46)

4 The Road Less Traveled

It seems to me that we who do quantum gravity may be losing our way in
the search for an ultraviolet completion to general relativity. I have already
explained what is wrong with rehabilitating the Weyl counterterm, and with
over-reliance on the S-matrix. But without regard to the viability of these
undertakings, I question the goal itself. We do not now infer gravitational
phenomena — classical or quantum — through asymptotic scattering exper-
iments, and there is little chance that we will ever do so. The same comment
applies to understanding the last stages of black hole evaporation. I worry
that the effort to develop these aspects of the theory is diverting attention
from things we can be, and should be doing. I also suspect we are too quick
to accept the verdict of perturbation theory on quantum general relativity.
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4.1 What We Can Do with Quantum Gravity

Different people seek different things from quantum gravity. Two possibilities
which fascinate me are:

• Blurring of the light-cone; and

• Interactions with perturbations generated by primordial inflation.

Note that both of these phenomena can be studied using general relativity
as a low energy effective field theory [10–13, 15]. Neither of them relies on
asymptotic scattering theory.

4.1.1 Blurring of the Light-Cone

In general relativity it is the metric tensor which sets the light-cone. Be-
cause the metric tensor is a quantum operator, the light-cone must fluctuate
inside and outside its average value. This was recognized way back in the
1950’s [101,102], and thoughtful researchers have considered it from time to
time [103]. Now that it is no longer forbidden to consider local fields (see
Section 3.1) it is possible to study the phenomenon directly by following
the propagation of a disturbance under the impact of quantum gravitational
fluctuations.

Suppose we solve the quantum gravitationally corrected Maxwell equation
(30) with a point dipole which is created at the origin at t = 0,

J0(t, ~x) = −θ(t)~p· ~∇δ3(~x) , J i(t, ~x) = piδ(t)δ3(~x) . (47)

The resulting magnetic field consists of an outward pulse [73],

Fij(t, ~x) =
(

pi∂j − pj∂i

)θ(∆t)

2π

[

1− 10~G

3πc3
∂

∂r2
+O(G2)

]

δ(r2 − c2t2) . (48)

One can see that the derivatives push the response infinitesimally outside
the light-cone. A slightly superluminal pulse has also been reported for the
gravitational response to a transient source in the presence of the quantum
fluctuations of a scalar field [104].

The degree of superluminality present in expression (48) is very small; the
pulse gets no more than a Planck length outside the light-cone. But it does
get outside, and this makes one wonder how the effect could be strengthened.
Perhaps a sufficiently advanced technology might permit us to build starships
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which ride the outward fluctuations of the light-cone the same way that a
surfer rides a wave? A more immediate issue is whether or not it might be
possible to collect observational evidence of superluminal propagation from
astrophysical pulses traveling enormous distances.

The preceding discussion has concerned explicit, 1-loop computations of
the ultraviolet finite, nonlocal corrections to the linearized effective field equa-
tions [73,104] within the context of the Schwinger-Keldysh formalism [74–79].
It is important to distinguish this sort of analysis from studies which ex-
plore the consequences of hypothetical local corrections to the effective ac-
tion [105–107]. A simple consequence of the Schwinger-Keldysh formalism is
that there can be no true violations causality without the sorts of derivative
interactions which gravity possesses but matter theories typically do not. So
one must always wonder if nonlocal parts of the full effective action cancel
whatever effect would occur if only the local term under study were present.

4.1.2 Modifying Physics with Inflationary Gravitons

The accelerated expansion of inflation modifies the energy-time uncertainty
principle so that any sufficiently long wavelength, massless virtual particle
can persist forever. Most massless particles are classically conformally invari-
ant, which causes an exponential redshift in the rate at which they emerge
from the vacuum, however, gravitons and massless, minimally coupled scalars
are produced copiously. On de Sitter background with Hubble constant H ,
the occupation number of gravitons with one of the two possible polariza-
tions, and a single wave vector ~k out of the infinite possibilities, is,

N(t, ~k) =
[HeHt

2ck

]2

. (49)

These gravitons interact with themselves and with other particles, and the
fact that their numbers grow endows quantum corrections with temporal and
sometimes spatial variation.

One can compute the vacuum polarization −i[µΠν ](x; x′) from a loop of
gravitons on de Sitter background [108], and then use it in the quantum-
corrected Maxwell equation (26). The results for the Coulomb potential of
a static point charge Q [91], and for the electric field strength of a spatial
plane wave photon [92] are,

Φ(t, r) =
Qe−Ht

4πǫ0r

{

1 +
2~Ge−2Ht

3πc3r2
+

2~GH2

πc5
ln
[eHtHr

c

]

+ . . .

}

, (50)
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F 0i(t, ~x) = F 0i
tree(t, ~x)

{

1 +
2~GH2

πc5
ln
[

eHt
]

+ . . .

}

. (51)

The G/r2 correction in (50) represents the de Sitter extension of a flat space
effect that has long been known [109]. In contrast, the terms proportional to
GH2 in (50-51) derive from inflationary gravitons, and both grow with time.
Similar 1-loop graviton effects have been reported for the field strength of
fermions [93], for the exchange potential of a massless, minimally coupled
scalar [94], for gravitational radiation [9], and for the gravitational response
to a point mass [95].

A fascinating aspect of results such as (50-51) is that they grow stronger
the longer the de Sitter expansion persists. This must eventually overwhelm
even the smallest loop-counting parameter, at which point perturbation the-
ory breaks down. The nonlinear sigma model (31) described in Section 3.3
was introduced in order to develop a method for evolving beyond the break-
down of perturbation theory. The answer [88] combines a variant of Starobin-
sky’s stochastic formalism [98,99], based on curvature-dependent effective po-
tentials, with a variant of the renormalization group, based on the subset of
counterterms which can be viewed as curvature-dependent renormalizations
of parameters in the bare Lagrangian. It seems as if the technique can be
applied to quantum gravity [94]. Further, the technique can be implemented
for a general cosmological background which has experienced primordial in-
flation [110], and significant effects persist to arbitrarily late times [111].
Perhaps this can answer the three largest questions of cosmology:

• What caused primordial inflation?

• What caused the current phase of cosmic acceleration?

• What is responsible for the phenomena ascribed to dark matter?

4.2 Perhaps It’s Just GR

Data from Earthbound laboratories [1], all the way to the dizzying scales
of primordial inflation [3], suggest that gravity should be based on a local,
invariant theory of a real-valued metric existing on a real-valued spacetime.
However, the only stable extensions of general relativity are f(R) models,
which are not perturbatively renormalizable. This means something has
to give. I have argued that rehabilitating the Weyl counterterm is not vi-
able. Abandoning invariance allows one to employ higher spatial derivatives,
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without the problematic higher time derivatives [112–114]. This suffices for
renormalizability [115], but of course leaves the problem of recovering macro-
scopic invariance. Then again, gravity may not be fundamentally based on
a metric [116–118], but one must then explain why the metric-based theory
seems to apply up to 1014 GeV during primordial inflation. I want here to
consider the other possibility: that the problem lies with perturbation theory.

If quantum general relativity makes sense nonperturbatively one might be
able to define it by taking the continuum limit of a numerical lattice calcula-
tion [119–121]. In view of how long it took to obtain good results in the vastly
simpler problem of lattice QCD, it is not surprising that progress exploring
this possibility has been slow. A simpler, not inconsistent route might be
to develop a new perturbative expansion which incorporates logarithms and
fractional powers.

An example of some relevance to cosmology is the equation of state of a
particle of mass m at temperature T ,

w(x) =
1

3 + x− x ∂
∂x

ln[f(x)]
, x ≡ mc2

kBT
, (52)

where the function f(x) is,

f(x) =

∫ ∞

0

dt (t+ x)
√
t2 + 2xt e−t . (53)

Figure 1 shows that (52) interpolates smoothly between the ultrarelativistic
limit of w(0) = 1

3
to the nonrelativistic limit of w(∞) = 0. However, the

series expansion in powers of x is a little tricky. Expanding the integrand
would lead one to expect that the coefficient of the x3 term vanishes, and
that the x4 term diverges,

f(x) =

∫ ∞

0

dt
[

t2 + 2tx+
1

2
x2 + 0 · x

3

t
− x4

8t2
+ . . .

]

e−t . (54)

Both expectations are wrong: the x3 term has a nonzero coefficient and the
next order term is perfectly finite and proportional to x4 ln(x),

f(x) = 2 + 2x+
1

2
x2 − 1

6
x3 − 1

8
x4 ln(x) +O(x4) . (55)

If such a simple system can develop logarithms in its series expansion, why
can this not happen for quantum gravity?

21



20 40 60 80 100
x

0.05

0.10

0.15

0.20

0.25

0.30

0.35

w(x)

Figure 1: Equation of state w(x) of a particle of mass m at temperature T , where
x ≡ mc2/kBT .

The breakdown of perturbation theory might be tied to the presence of
divergences. In a renormalizable theory these divergences are canceled by
counterterms, so that the sum of a primitive diagram and the associated
counterterm can remain perturbatively small. However, that is precisely
what fails in quantum general relativity. Perhaps finiteness comes instead
from the gravitational response to divergences? Dvali’s work on classicaliza-
tion [122, 123] may be relevant.

An old classical calculation by Arnowitt, Deser and Misner provides a
thought provoking example [124]. They considered the mass of a point parti-
cle with bare mass M0 and charge Q, regulated as a spherical shell of radius
R. Although ADM solved the full general relativistic constraints, their result
can be understood using a simple model they devised,

Mc2 = M0c
2+

Q2

8πǫ0R
−GM2

2R
=⇒ M(R) =

c2R

G

[

√

1+
2GM0

Rc2
+

GQ2

4πǫ0R2c4
−1

]

.

(56)
Note that the unregulated limit is finite and, interestingly, independent of
the bare mass,

lim
R→0

M(R) =

√

Q2

4πǫ0G
. (57)

This is not at all what one finds using perturbation theory. Expanding
the square root in expression (56) reveals an escalating series of ever higher
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divergences,

M(R) =
(

M0+
Q2

8πǫ0Rc2

)

{

1− 1

4

(2GM0

Rc2
+

GQ2

4πǫ0R2c4

)

+
1

8

(2GM0

Rc2
+

GQ2

4πǫ0R2c4

)2

− 5

64

(2GM0

Rc2
+

GQ2

4πǫ0R2c4

)3

+ . . .

}

. (58)

Of course perturbation theory is not valid when the expansion parameter be-
comes infinite. Perhaps the same problem invalidates the use of perturbation
theory in quantum general relativity, which would show similar cancellations
if only we could devise a better approximation scheme? Several studies have
searched for one without success [125–128], but the amount of effort ex-
pended is minuscule compared when compared with the recurrent attempts
to rehabilitate the Weyl counterterm.

Cosmology offers an example of the gravitational constraints almost com-
pletely canceling scalar perturbations during primordial inflation. Suppose
the cosmological scale factor is a(t). Two of its derivatives are the Hubble
parameter H(t) and the first slow roll parameter ǫ(t),

H(t) ≡ ȧ

a
, ǫ(t) ≡ − Ḣ

H2
. (59)

Single scalar inflation consists of general relativity plus a minimally coupled
inflaton ϕ whose slow roll down its potential V (ϕ) provides the stress-energy
of inflation,

L =
c4R

√−g

16πG
− 1

2
∂µϕ∂νϕg

µν
√−g − V (ϕ)

√−g . (60)

The scalar background and its potential are related to the parameters (59),

ϕ̇2
0 = − c4Ḣ

4πG
, V (ϕ0) =

c2(Ḣ+3H2)

8πG
. (61)

It is usual to employ the ADM parameterization for the metric [129],

ds2 = −N2c2dt2 + hij

(

dxi−N icdt
)(

dxj−N jcdt
)

. (62)

The 3-metric is written in terms of a component ζ and a traceless part χij ,

hij(t, ~x) ≡ a2(t)×e2ζ(t,~x)×
[

eχ(t,~x)
]

ij
, χii(t, ~x) = 0 . (63)
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Instead of the lapse N(t, ~x) and shift N i(t, ~x) being gauge choices, the gauge
conditions are,

ϕ(t, ~x) = ϕ0(t) , ∂jχij(t, ~x) = 0 . (64)

The lapse and shift are instead determined by solving the constraints. The
funny thing is, that doing so leads to the almost total cancellation of the
scalar perturbation ζ(t, ~x),

L −→ c4a3ǫ

8πG

[ ζ̇2

c2
− ∂kζ∂kζ

a2

]

+
c4a3

64πG

[ χ̇ijχ̇ij

c2
− ∂kχij∂kχij

a2

]

+
(

Interactions
)

.

(65)
Note from (60) that the scalar perturbation had unit strength before

imposing the constraints, even after gauge fixing (64). The gravitational
constraints have almost completely erased it at the quadratic level (65). De-
tailed calculations of the constrained interactions [130–133] show that each
additional one or two powers of the scalar perturbation leads to suppression
by an additional factor of ǫ. To understand how significant the cancellation
is, recall that approximate values for the scalar and tensor power spectra at
wave number k can be written in terms of the geometrical parameters (59)
evaluated at the horizon crossing time tk such that ck = H(tk)a(tk),

∆2
R(k) ≃

~GH2(tk)

πc5ǫ(tk)
, ∆2

h(k) ≃
16~GH2(tk)

πc5
. (66)

The fact that the scalar power spectrum has been observed, to three signifi-
cant figures and over a range of about 8 e-foldings [3], while the tensor power
spectrum has yet to be resolved [8], means that the first slow roll parameter
is very small, ǫ <∼ 0.0023.

5 Conclusions

The gravitational data we currently possess are all either classical [1] or else
semi-classical [3]. There is no point to defining a theory of “quantum gravity”
which fails to explain these data. This leads to the Quantum Gravitational

Correspondence Principle that the classical limit of any proposal for “quan-
tum gravity” must consist of a local, invariant theory of a real-valued metric
on a real-valued spacetime. The Correspondence Principle poses an obstacle
for modifications of general relativity because we have a complete catalog of
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such theories and, with the exception of f(R) models, all of them are subject
classically to a virulent kinetic energy instability which prevents them even
having a finite decay rate. Alternate quantization schemes which claim to
avoid this instability fail to obey the Correspondence Principle, and obligate
their advocates to explain, in some detail, how they recover the vast body of
gravitational phenomena.

These considerations apply to the dimension four Lagrangian (3) which is
the focus of many efforts to quantize gravity. In Section 2 I explain how the
procedure of regarding negative energy creation operators as positive energy
annihilation operators produces the renormalizable, negative norm quanti-
zation. This quantization massively violates the Correspondence Principle.
One manifestation of this violation is that the square of the time deriva-
tive of the geodesic length-squared along a spacelike interval is negative
([
∫

ġijdx
idxj ]2 < 0), even over macroscopic separations. This is not some

tiny, Planck-suppressed effect; it occurs at order one in the classical limit,
and it is totally unacceptable. Note that the negative sign cannot be avoided
by careful mathematics, or by further tinkering with the field theory, because
it is required for renormalizability.

People who seek to rehabilitate the Weyl counterterm in (3) argue that
local fields such as ġij(t, ~x) are not observable, that the theory can only be
defined by the perturbative S-matrix on flat space background, and that the
negative norm states are no problem because they not even present in the
asymptotic scattering space. Section 3 criticizes this view, pointing out that
it is perfectly reasonable to study local fields, and that all current gravita-
tional data — including even the primordial power spectra — are analyzed
in precisely this manner. I challenge S-matrix extremists to explain these
data using asymptotic scattering theory, without recourse to local fields. It
is also worth noting that the quantum gravitational S-matrix fails to exist on
flat space background owing to the infrared problem, and that even inclusive
rates and cross sections are unlikely to exist or be observable in cosmol-
ogy. Note that the problem with observability is not some subtle issue which
might be circumvented with careful mathematics; it is rather that causality
and spacetime expansion preclude performing the required measurements.

The really crushing argument against S-matrix chauvinism comes in Sec-
tion 3.3 where I present a nonlinear sigma model (31) on de Sitter background
which is reducible to a free theory by a local, invertible field redefinition (32-
33). This means that its S-matrix is unity and, if we adhere to S-matrix chau-
vinism, nothing interesting happens in the theory. But the scalar background
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still shows a fascinating evolution (35), leading to corresponding changes in
the masses (36) of single particles, all despite the absence of scattering.

It seems to me that the attention devoted to high energy scattering theory
and to black hole evaporation have led us away from the testable and exciting
things quantum gravity can do for us in the context of low energy effective
field theory [10–15]. Section 4 reviews my own favorites. I also discuss the
possibility that we should take seriously the difficulty of modifying general
relativity and focus instead on the inappropriate application of perturbation
theory such as expression (58) when the actual series expansion includes
fractional powers or logarithms of G.

Finally, I should comment that either possibility for the viability of the
dimension four Lagrangian (3) is problematic for the program of Asymptotic
Safety [54–56]. Either the Weyl counterterm is permitted or it is not. If it is
allowed then (3) is perturbatively renormalizable, and we have the ultraviolet
completion of general relativity, without the need for any higher countert-
erms. On the other hand, if the Weyl counterterm is not permitted then
most of the higher counterterms are also forbidden, and those from f(R) ex-
tensions will not suffice to absorb all divergences. Either way, motivation is
lacking to search for fixed points of the infinite collection of higher countert-
erms. If we instead treat the higher counterterms perturbatively, in the sense
of low energy effective field theory [10–15], then their unknown coefficients
pose no problem to predictability, in any existing or projected data sets, as
long as their coefficients are of order one in Planck units.

That last caveat, about the unknown coefficients being of order one in
Planck units, is significant because violations have been proposed for f(R)
models, which are the sole allowed extensions of general relativity. In partic-
ular, permitting the R2 coefficient α to be as large as 1010 provides a model
of inflation [17] which agrees well with existing data [19]. f(R) models can
also explain late time acceleration within observational limits [134]. It would
be a huge triumph for Asymptotic Safety to justify these models.

In more general terms, it seems to me that the Asymptotic Safety program
suffers from three problems:

• The full program can never be realized owing to the impossibility of
treating a completely general action. This is why the only results ob-
tainable are based on truncations of the full action [135].

• When these truncations include the Weyl counterterm, its coefficient is
not driven to zero [136].
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• The functional renormalization group equation upon which the pro-
gram is based does not correspond to a local action [137].

Of course the 2nd and 3rd points are critical for me because they entail vio-
lations of the Correspondence Principle enunciated at the beginning of this
paper. So I do not believe that Asymptotic Safety can provide a nonpertur-
bative definition of quantum gravity, although I believe there is some hope
that it might help justify Starobinsky inflation.
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