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Two species of mutually interacting ultracold bosonic atoms are studied in a ring-shaped trap
with a species-selective azimuthal lattices which may rotate. We examine the spectrum and the
states in a collective spin formalism. The system can be modeled as a pair of coupled Lipkin-
Meshkov-Glick (LMG) Hamiltonians, and can be used to generate a high degree of entanglement.
The Hamiltonian has two components, a linear part that can be controlled by manipulating the
azimuthal lattice, and an interaction-dependent quadratic part. Exact solutions are found for the
quadratic part for equal strengths of intra-species and the inter-species interactions. In different
regimes the Hamiltonian can emulate a beam-splitter or a two-mode squeezer of quantum optical
systems. We study entanglement properties of the ground state of the Hamiltonian in dependence
on various parameters in prospect of possible quantum information and metrology applications.

I. INTRODUCTION

Coherent state in a closed loop is a defining paradigm
of quantum mechanics, tracing back to de Broglie’s ex-
planation of quantization of electronic states in atoms
[1]. With the creation of coherence in many body sys-
tems, such as with Bose-Einstein condensates (BEC), and
progress in trapping them in toroidal configurations, that
seminal configuration can be translated to macroscopic
scales. The closed topology and the natural superfluid-
ity associated with degenerate cold gases have focussed
most of the interest in this matter on the physics of per-
sistent flows [2, 3]. However, the coherent flow in a loop
intrinsically comes with angular momentum, and with
the circulating modes, parallels can be drawn with states
of electrons within atoms, including spin and orbital mo-
menta [4]. The many body nature [5] of such macroscopic
coherent media and rich nonlinear behavior due to inter-
actions [6] means that such ring systems can be a versatile
simulator of collective spin states [7] and the rich physics
associated with them. This paper aims to explore the
features of entanglement generated in such systems.

Multiple pathways exist for creating ring traps for
atoms [2, 8–16], some conveniently adaptable to in-
clude an azimuthal lattice structures, such as the use
of Laguerre-Gaussian beams [17, 18]. While numerous
experiments [3, 19, 20] have been conducted with cold
atoms in ring traps, proportionate effort with the in-
clusion of lattices are overdue, notwithstanding the rich
physics indicated by continuing theoretical works [21–36].

In previous work, we have shown that a single species
in a ring can lead to rich physics: The dynamics can
display coherent oscillations between various modes cou-
pled by a lattice [4], nonlinear dynamical behavior like
self trapping is evident [6, 36], creation of spin squeezed
states and simulation of Lipkin-Meshkov-Glick dynam-
ics are possible [35, 37]. However, to examine quantum
correlations, associated with multiparticle entanglement
[38] that touch on the most intriguing aspects of quan-
tum mechanics, such as EPR and Bell inequalities, that
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FIG. 1. (Color online) Two species of atoms labelled i = 1, 2
are trapped in a toroidal trap with the option of an azimuthal
lattice potential of period 2π/q. The two lowest counter-
propagating modes for each species are denoted by letters
a, b. The torus is taken as a wrapped cylinder with our choice
of co-ordinates r = (s, r, φ) shown.

analog in a ring is best implemented with two species
of atoms. Simulation of such intrinsically quantum phe-
nomena with the macroscopic states of a ring motivates
this work. The common collective spin description also
allows for analogous macroscopic realizations of nonclas-
sical states of collective atomic spins for applications in
metrology [39, 40] and for quantum computation [41].
Here, we focus on the spectrum and the degree of entan-
glement of the relevant quantum states in the system,
preliminary to examining the dynamics in our continu-
ing work.

In Sec. II, we describe our system and derive the two-
species Hamiltonian, and transform it to a collective spin
description; subsequently in Sec. III we provide physical
interpretation of the various features of the model and
justify some of the assumptions we make in our analysis.
We set up the states and the measure of entanglement for
the system in Sec. IV. Then in Sec. V, we derive analyti-
cal expressions for the eigenvalues and for the associated
states for the quadratic Hamiltonian that creates entan-
glement, and we consider various special cases. Section
VI highlights limiting cases where the system behavior is
analogous to a beam-splitter and a spin-squeezer in turn.
In Sec. VII, the density of states for the full Hamiltonian
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is shown to display features of a phase transition as the
Hamiltonian is continuously changed from the linear limit
to the quadratic limit. In Sec. VIII, we present analysis
and estimates, using parameters based on existing tech-
nologies, to demonstrate feasibility of implementation of
our model in experiments. We conclude in Sec. IX with a
discussion of the broader relevance and with and outlook
of our ongoing work on dynamical applications of these
results.

II. SYSTEM AND MODEL

We consider two species of BEC comprising of N1 and
N2 atoms in a toroidal trap as shown in Fig. 1. The vari-
ables for the two species will be indexed by subscripts
i = 1, 2. We take the minor radius r of the torus to be
much smaller than its major radius R so that the system
can be treated as a cylinder r = (s, r, φ) with periodic
boundary condition on the circumferential co-ordinate s.
We assume the confinement along (r, φ), transverse to
the ring circumference to be sufficiently strong to keep
the atoms in the ground state ψi(r, φ) for those degrees of
freedom, so that the three-dimensional bosonic field oper-
ator can be written in the factorized form Ψ̂i(s)ψi(r, φ).
Integrating over the transverse degrees of freedom yields
an effective one dimensional Hamiltonian

Ĥ =

∫ 2πR

0

ds

∑
i=1,2

Ψ̂†
i

(
− h̄2

2mi
∂2s + Ui +

gi
4πl2i

Ψ̂†
i Ψ̂i

)
Ψ̂i

+
g12
2πl212

Ψ̂†
1Ψ̂

†
2Ψ̂1Ψ̂2

]
. (1)

where gα = 4πh̄2aα/mα is the interaction strength de-
fined by the s-wave scattering length aα, with α ∈
{1, 2, 12}; and li are the harmonic oscillator length for

the transverse confinement for the two species. The inter-
species counterparts are l12 =

√
l1l2 and the reduced

mass of the two species m12 = m1m2/(m1 +m2).
The potential along the ring is taken to be a periodic

lattice. Assuming species selective lattice potential we
allow for different strengths for the potentials Ui expe-
rienced by each species. However, we assume the same
rate of rotation for both, which will allow us to treat the
Hamiltonian as stationary,

Ui(s, t) = h̄uxi cos
[
2q( s

R − Ωt)
]

+h̄uyi sin
[
2q( s

R − Ωt)
]
. (2)

We have allowed for two lattices, one symmetric (x) and
one antisymmetric (y) relative to the co-ordinate origin.
This allows for a general formalism in terms of collective
spin operators.
We can eliminate the explicit dependence on the time

in the Hamiltonian, by transforming to a frame rotating
with the lattice. This transforms the potential to have
arguments s

R −Ωt→ s
R , but adds an angular momentum

term to the Hamiltonian

Ĥ → Ĥ + ih̄Ω

∫ 2πR

0

dsΨ̂†
i∂sΨ̂i. (3)

We now expand the field operator in the eigenstates of
the ring,

Ψ̂i(s) =
∑
n

ĉinψn(s) ψn(z) =
1√
2πR

ein(s/R),(4)

where the field amplitudes ĉin for the modes for each
species satisfy the bosonic commutator rules [ĉin, ĉjm] =
δijδmn. The first index is the species index while the
second index is the mode index. Thereby, we can write
time-independent Hamiltonian in the rotating frame as

Ĥ =
∑
n

(h̄ωn − h̄nΩ)(ĉ†1nĉ1n + ĉ†2nĉ2n) +
1
2 h̄

∑
n,m,k,p

n+m−k−p=0

[
χ1ĉ

†
1nĉ

†
1mĉ1k ĉ1p + χ2ĉ

†
2nĉ

†
2mĉ2k ĉ2p + 2χ12ĉ

†
1nĉ

†
2mĉ1k ĉ2p

]
+

∑
n

h̄
[
u1−ĉ

†
1nĉ1(n−2q) + u1+ĉ

†
1nĉ1(n+2q)

]
+

∑
n

h̄
[
u2−ĉ

†
2nĉ2(n−2q) + u2+ĉ

†
2nĉ2(n+2q)

]
, (5)

Here eigenenergies associated with the circulating modes

of the ring are h̄ωn = h̄2n2

2mR2 , and we have defined the
effective 1D interaction strengths χα = gα

4h̄π2l2αR and the

linear combination of the lattice depths ui± = 1
2 (uxi ±

iuyi). Note, we put a parentheses around (n ± 2q) to
indicate that the ‘2’ inside is a multiplicative factor and
not a species index unlike the other numerical subscripts.

At this point, we assume that the ring is sufficiently
small and the density low enough such that the en-
ergy gaps h̄ωn are large compared to the energy scale of

the interatomic interactions χαNα/(2πR), where N12 =√
N1N2. This means the interaction will not significantly

couple modes with different energies. We therefore con-
sider two degenerate modes that match the lattice pe-
riodicity n = ±q in Eq. (4), that is e±iqs/R. Then in
the nonlinear terms, if we set the indices n,m, k = ±q
the fourth index p = ±q,±3q. Likewise the lattice also
couple ±q,±3q, but we assume a weak lattice that only
couples mutually degenerate modes. Therefore, we will
neglect the coupling to the ±3q and consider only the
subspace of two modes ±q. We have previously shown
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[36], that for experimentally feasible parameters, single
species dynamics justifies this assumption, with neglig-
ble loss of population from the two mode subspace as the

system evolved. By focussing on the two-mode subspace,
we can remove the modal summation in Eq. (5) and have
the effective Hamiltonian

Ĥeff =
∑
i=1,2

[
−h̄qΩ(â†i âi − b̂†i b̂i) + h̄

(
ui−â

†
i b̂i + ui+b̂

†
i âi

)
+ 1

2 h̄χi

(
â†i â

†
i âiâi + 4â†i b̂

†
i âib̂i + b̂†i b̂

†
i b̂ib̂i

)]
h̄χ12

[
â†1â

†
2â1â2 + â†1b̂

†
2â1b̂2 + â†1b̂

†
2b̂1â2 + b̂†1â

†
2â1b̂2 + b̂†1â

†
2b̂1â2 + b̂†1b̂

†
2b̂1b̂2

]
. (6)

Here we have set h̄ωq = 0 as the energy reference and
we re-labelled the operators for the ±q modes for each

species ĉi(n=+q) = âi and ĉi(n=−q) = b̂i respectively. The
terms in the Hamiltonian has ready physical interpre-
tation: As regards the linear terms, the lattice couples
counter-propagating modes of the same species, while the
rotation shifts the relative energies of modes. The non-
linear terms describe the mutual scattering of two modes
of the same species or of different species.

In order to continue the analysis, we recast the Hamil-
tonian in terms of the collective spin operators

Ĵxi ≡
1

2

(
â†i b̂i + âib̂

†
i

)
,

Ĵyi ≡
1

2i

(
â†i b̂i − âib̂

†
i

)
,

Ĵzi ≡
1

2

(
â†i âi − b̂†i b̂i

)
, (7)

so that the Hamiltonian takes the form

Ĥeff =
∑
i=1,2

[
−2h̄qΩĴzi + h̄uxiĴxi + h̄uyiĴyi

]
(8)

+h̄
∑
i=1,2

χi

[
Ĵ2
xi + Ĵ2

yi

]
+ 2h̄χ12

[
Ĵx1Ĵx2 + Ĵy1Ĵy2

]
where some constant terms have been left out taking into
account that Ĵ2

xi+ Ĵ
2
yi+ Ĵ

2
zi =

Ni

2

(
Ni

2 + 1
)
commute with

the Hamiltonian and do not influence the dynamics. For
each species separately, the linear terms together with the
self-interaction quadratic terms form a generalized ver-
sion of the so called Lipkin-Meshkov-Glick (LMG) Hamil-
tonian that was originally introduced to model particular
systems in nuclear physics [37], but later found applica-
tion in many other branches of physics. For collective
spins, the quadratic part corresponds to the one-axis-
twisting dynamics proposed by Kitagawa and Ueda [7]
that was used to generate spin squeezing in cold atomic
samples [39, 40]. We have studied the LMG dynamics in
ring traps with bosons in our previous work [35, 36]. The
bi-linear terms proportional to χ12 containing the cross-
terms Ĵx1Ĵx2 + Ĵy1Ĵy2 are new and represent a further
generalization of the LMG model to two coupled LMG
systems. Although similar coupling of two collective spin
samples through an interaction Ĵz1Ĵz2 has been proposed
for trapped atoms inside coupled optical resonators by

one of us [41], the inter-species coupling in Eq. (8) for or-
bital/external degree of freedom has not been previously
explored and will be in the center of further considera-
tions in this paper.

III. PHYSICAL PICTURE AND ASSUMPTIONS

The linear part of the Hamiltonian in Eq. (8) gener-
ates rotations of the Bloch spheres of the two species. It
can be controlled and even completely turned off with
the lattice strength and the rotation Ω. Whereas the
rotations around the Jx and Jy can be performed inde-
pendently for the two species, rotation around the Jz axis
is common and governed by the physical rotation of the
system. Nevertheless, this does not inhibit the option to
achieve independent rotations around Jzi by sequences
of switching on and off the uxi and uyi lattices, realizing
the Trotter sequence of Jzi = i(JyiJxi − JxiJyi) (see for
example in Ref. [42]). The quadratic part can be likewise
controlled or made to vanish with the interaction induced
nonlinearity.

In an experiment, it would be convenient to initialize
the system in the ground state of the linear Hamilto-
nian and adiabatically transition to the ground state of
the quadratic Hamiltonian. For example, we can start
with Ω = 0, a static lattice, and choose uy1 = uy2 = 0
and parameterize the non-vanishing amplitudes by ux1 =
−ux2 = 1 − w. Then we can write the Hamiltonian as
(1 − w)ĤL + wHQ, with a linear part ĤL = Ĵx1 − Ĵx2
and a quadratic part HQ defined as in the second line of
Eq. (8), with χα → χα/w. Physically this choice means
that in the limit of only linear interaction, the two species
have ground states that are standing waves that avoid
each other (on the corresponding Bloch spheres, on the
equator but on opposite sides). Adiabatic transition from
the linear to the quadratic regime would then keep the
system in the ground state with the two species avoiding
each other, and arrive at the maximally entangled state
analogous to the singlet state of two particles.

It is implicit that the nonlinear strengths χα change
proportionately to w; in practice, that can be accom-
plished by any number of ways, such as tuning close to
Feshbach resonances or reducing density, creating rel-
ative displacement of the two species, or by adjusting
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FIG. 2. (Color online) (a,b) The eigenvalues of the Hamilto-
nian in Eq. (8) are plotted as the weight w of quadratic Hamil-
tonian is varied form the linear limit to the quadratic limit.
In the quadratic limit the ground state, marked by a red cir-
cle, is (a) non-degenerate when N1 = N2 and (b) degenerate
when N1 ̸= N2; true even different values for the interaction
strengths as used here, χ1 = 1, χ2 = 1.5 and χ12 = 2. In the
linear limit, we use ĤL = (Ĵx1 − Ĵx2) in Eq. (8), correspond-
ing to an azimuthal lattice with no rotation.

the transverse confinement. The parameter w therefore
serves as a measure of the relative strengths of the linear
and the quadratic part, and we plot the variation of the
spectrum as a function of this parameter in Fig. 2. In
order to maintain comparable scales, the quadratic part
is scaled in the figure by the average particle number
ĤQ → 2ĤQ/(N1 +N2).
The ground state is found to have two distinct be-

havior. For N1 = N2, the ground state remains non-
degenerate from purely linear to purely quadratic, where
as for N1 ̸= N2 at the quadratic limit, the ground state
is always double degenerate. However, when linear limit
has co-propagating modes in the two species, gap may
close before reaching the quadratic limit. Still, the state
can be initially prepared to sustain the gap so that almost
total adiabatic transfer can be achieved from the ground
state of the linear Hamiltonian to that of the quadratic
Hamiltonian for systems with equal number of particles
of both species.

If the intra and inter species couplings are identical,
χ1 = χ2 = χ12 = χ, which can be true to a good approx-
imation for example for 87Rb atoms [43], we can express
the Hamiltonian as the sum of linear and quadratic parts
Ĥ = ĤL + ĤQ

ĤL =
∑
i=1,2

[
−2qΩĴzi + uxiĴxi + uyiĴyi

]
ĤQ = χ

(
Ĵx1 + Ĵx2

)2

+ χ
(
Ĵy1 + Ĵy2

)2

(9)

This form assumes units to be used in all our numerical
simulations, we will take the major radius R as the length

unit, energy of the lowest circulating mode h̄ω1 = h̄2

2mR2

as the energy unit and associated frequency ω1 as the
frequency unit.

We define the collective operators Ĵp± = Ĵp1±Ĵp2, with
p ∈ {x, y, z} so the quadratic part simply becomes ĤQ =

Ĵ2
x+ + Ĵ2

y+. The quadratic part is of more significance
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FIG. 3. (Color online) The effect of imbalance in particle
number of the two species is illustrated for the ground state
of the quadratic Hamiltonian ĤQ, by plotting the associated
entropy of entanglement as a function of particle number N2

of the second species, with that of he first one fixed at N1 =
50. The maximum entropy is set by that of the lower particle
count. The dotted red line is computed analytically from
the exact ground state in Eq. (18); the dashed green line
has ln|2| added to account for the two fold degeneracy, which
however is an overestimate close N1 = N2. The circle markers
are numerical calculation for an optimal superposition of the
degenerate states in Eq. (18).

because it changes the shape of the states, and we will
focus on that. In addition to N1, N2, the quadratic part
also clearly commutes with Ĵz+ ≡ Ĵz1 + Ĵz2. In the rest
of the paper when we primarily focus on the quadratic
Hamiltonian, without loss of generality, we set χ = 1,
which would simply imply a rescaling of the energy units.

IV. STATES AND ENTANGLEMENT ENTROPY

The system can be described in Fock basis, that speci-
fies the occupation of each of the four modes |na1, nb1⟩⊗
|na2, nb2⟩. More specifically, we can write the basis as a
direct product of Dicke states, the collective spin analog
of Fock states, of the two species |j1,m1⟩ ⊗ |j2,m2⟩. For
fixed particle number, we have ji = Ni/2. The second
quantum number specifies eigenstates of

Ĵzi|ji,mi⟩ = mi|ji,mi⟩, mi = −Ni

2 ,−
Ni

2 + 1, · · · Ni

2 .(10)

We can further simplify to a basis of eigenstates of Ĵz±
that we denote by

Ĵz±|z+, z−⟩ = z±|z+, z−⟩. (11)

Since z+ is a conserved quantum number for the
quadratic part of the Hamiltonian in Eq. (8), we can con-
sider subspaces of fixed z+ independently within which
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FIG. 4. (Color online) The entanglement entropy of the ground state of the quadratic Hamiltonian is seen to be maximized
when all the interaction strengths are the same χ1 = χ2 = χ12 as assumed in Eq. (9). (a) The rate of decline with deviation from
that is faster at (a) larger values of an intra-species χ2 and (b) smaller values of inter-species interactions χ12. For N1 ̸= N2

optimizing the superposition (green dashed line) can raise the entanglement entropy to be almost the same as for equal particle
numbers (solid purple line with markers). (c) Degeneracies in the spectrum that mark crossing of spectral lines that include
the ground state, coincide with discontinuous jumps in the entropy, shown here for an example in panel (b).

the states are uniquely labelled by a single quantum num-
ber z−:

na1 = 1
2 (N1 + z+ + z−),

nb1 = 1
2 (N1 − z+ − z−),

na2 = 1
2 (N2 + z+ − z−),

nb2 = 1
2 (N2 − z+ + z−). (12)

The density matrix ρ corresponding to the ground
state of the quadratic Hamiltonian of the composite sys-
tem can be expressed in this basis. We measure the de-
gree of entanglement between the two species by comput-
ing the von Neumann entanglement entropy [44] using
the reduced density matrices ρ2 = Tr1(ρ) or ρ1 = Tr2(ρ)

S(ρ2) = −Tr[ρ2 ln(ρ2)] = −
∑
i

[ϵi ln(ϵi)] (13)

The last step follows from assuming the density matrix
can be diagonalized and ϵi are its eigenvalues. The en-
tropy is not sensitive to the choice of the reduced density
matrix S(ρ1) = S(ρ2).
We compute the variation of the entropy with respect

to the imbalance of the particle number and present them
in Fig. 3. This underscores another advantage of a sys-
tem of equal number of particles in both species. The
entropy is maximized when N1 = N2, as shown for
two separate values of N1 fixed as N2 is varied. The
maximum entropy is set by the smaller particle number
Smax = ln |min(N1, N2)|. The entanglement entropy is
computed analytically form the solution that appears in
Eq. (18) in the next section. An inherent degeneracy
present in the ground state for unequal particle num-
ber underestimates the entropy for any specific ground
state. We correct for this by adding ln |2| to allow for the
degeneracy. When the imbalance is high, we find this
match almost exactly the numerically computed entropy
that optimizes for the linear combination of the degen-
erate ground states, suggesting equal weights maximizes
the entropy. However, close to equal number of particles,

addition of ln |2| generally overestimates the entropy and
the optimal entropy is not necessarily and equal weight
combination the degenerate analytical solutions.
In Fig. 4, we probe the sensitivity to our assumption

equal interaction strengths, by plotting the entanglement
entropy as we vary one of χα keeping the other two fixed.
When we vary χ2 keeping χ1 and χ12 fixed, for both equal
and unequal number of atoms, we find as seen in panel
(a) the entropy decreases faster when χ2 is larger. On
the other hand when we vary χ12 with other two fixed,
panel (b) shows that the entropy drops off faster when
χ12 is larger. Therefore we can conclude that if there is a
difference in the interaction strengths, it is better to have
the inter-species interaction to be stronger than the intra-
species ones. The numerical computation of the entropy
occasionally displays discontinuous jumps. We illustrate
in Fig. 4(c) that those jumps correspond to degeneracies
where the ground state changes identity due to different
spectral lines crossing.

V. ANALYTICAL EIGENVALUES AND STATES

In the case of all the couplings being the same, the
quadratic Hamiltonian ĤQ in Eq. (9) can be diagonalized
exactly. In the basis |z+, z−⟩ defined above the Hamilto-
nian acquires a block tridiagonal structure

ĤQ|z+, z−⟩ =
(
na1nb1 + na2nb2 − 1

2N
)
|z+, z−⟩ (14)

+
√
na1(nb1 + 2)(na2 + 2)nb2|z+, z− − 2⟩

+
√
(na1 + 2)nb1na2(nb2 + 2)|z+, z− + 2⟩,

where the ni are given by Eq. (12), and we define the
total particle number N = N1 +N2. Each block of fixed
z+ has triadiagonal form comprising set by the allowed
z− values. We determine the eigenvalues to be given by

En = n(n+ 1) + |z+|(2n+ 1) (15)

z+ = 0,±1,±2, · · · ± 1
2N even N

z+ = ± 1
2 ,±

3
2 , · · · ±

1
2N odd N
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particle number N1 ̸= N2 when a gap emerges for lower z+ values.

where n ∈ {nmin, nmin + 2, · · · , nmax}, with

nmin = max
(
1
2 |N2 −N1| − |z+|, 0

)
,

nmax = 1
2N − |z+|. (16)

This confirms explicitly some of the conclusions of the
numerical results displayed in Fig. 2: WhenN1 = N2, the
expressions above shows that the ground state is indeed
unique corresponding to z+ = 0, n = 0 and energy E0 =
0. But, when N1 ̸= N2, the lowest energy state is doubly
degenerate, corresponding to n = 0, but with

z+ = ±N1 −N2

2
, E0 =

|N1 −N2|
2

. (17)

The eigenvalues depend on the atomic numbers N1,2 only
through the limits for the index n, as illustrated in Fig. 5.
Since all the eigenvalues are integers or semi-integers with
their smallest nonzero difference being 1, the evolution
of any state is periodic with period 2π, assuring periodic
behavior. This contrasts with a semiclassical description
that will be reported in an upcoming work which suggests
that the period should go to infinity.

Without loss of generality, we assume N1 ≤ N2, the
ground state for arbitrary particle numbers for the two
species can be expressed in terms of the basis states
|z+, z−⟩ as

|ψ0,±⟩ =
N1∑
k=0

αk

∣∣± 1
2 (N2 −N1),∓

[
1
2 (N2 − 3N1) + 2k

]〉
αk

αk−1
= −

√
N2 −N1 + k

k
, (18)

where the coefficients αk are defined recursively. This
formula also covers the special case N1 = N2 = 1

2N ,
when the ground state becomes nondegenerate, with en-
ergy E0 = 0 and z+ = 0. The expressions then reduce to
a simpler from which can be written as a superposition

of states |z−⟩

|ψ0⟩ =
√
2√
N

1
2N∑
k=0

(−1)k
∣∣− 1

2N + 2k
〉
. (19)

Beyond the ground state, in the special case of equal
number of particles, N1 = N2 = 1

2N and in the sub-
space of z+ = 0, which means there are equal number of
counter-propagating atoms as well, the energy is simply
En = n(n + 1) and all the complete set of states in the
subspace are given by

|z−⟩ = | − 1
2N + 2n⟩, n ∈ {0, 1, · · · 1

2N}. (20)

This has an interesting implication for the dynamics.
Since now all the eigenvalues are even integers and the
minimum energy difference is 2, the evolution of any state
is periodic with half the period compared to the more
general case above, where the level spacing is unity as
seen Eq. (15)
For minimal asymmetry, N2 = N1 + 1 the ground

states have energy E0 = 1
2 and correspond to z+ = ± 1

2 .
Expressed as superpositions of states |z+, z−⟩ they are

|ψ0,±⟩ =
√
2√

N(N + 1)
(21)

×
N1∑
k=0

(−1)k
√
k + 1

∣∣± 1
2 ,±

(
N1 − 1

2 − 2k
)〉
.

We conclude the section with an intuitive picture of the
reason for the degeneracy of the ground state when par-
ticle numbers are different. With equal particle numbers
there are complete pairs of counter-propagating modes,
but with unequal numbers, there can be unbalanced
modes but in the absence of rotation, both orientations
of rotation have identical energies leading to a degener-
acy. There can be interesting dynamical effects of the
degeneracy, for example if the system is prepared in the
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groundstate of the linear Hamiltonian as in Fig. 2(b),
adiabatic change w = 0 to w = 1 to the completely non-
linear regime and back again to the linear regime can
result in superposition of the lowest pair of states that
happen to be degenerate when w = 1.

VI. LIMITING CASES

We now underscore the broad relevance of this
Hamiltonian by identifying some limiting cases for the
quadratic part ĤQ. For this purpose, it is more transpar-
ent to express it in terms of the creation and annihilation
operators

ĤQ = â†1â1b̂
†
1b̂1 + â†2â2b̂

†
2b̂2 +

1
2 (N1 +N2)

+â1b̂
†
1â

†
2b̂2 + â†1b̂1â2b̂

†
2. (22)

Beam splitter limit : If almost all the atoms in both
species are circulating in the same direction, such that

b-modes, b1 ≈ b†1 ≈
√
N1, b2 ≈ b†2 ≈

√
N2, then the

Hamiltonian reduces to

ĤQ ≈ N1â
†
1â1 +N2â

†
2â2 +

1
2 (N1 +N2)

+
√
N1N2(â1â

†
2 + â†1â2). (23)

The last term corresponds to a beam splitter (or linear
coupler) which destroys one quantum (photon, for optical
implementation) in one mode while creating one quan-
tum in another mode (for details of the transformation,
see, e.g., [45]). The first two terms are responsible for
the time dependent change of phase in the two modes,
the prefactors N1,2 playing the role of frequencies of the
modes. For N1 = N2 ≡ N (matched frequencies) the
Hamiltonian leads to oscillations of the mode occupa-
tions with period π/N so that for time equal to π/(2N)
the atomic states are exchanged and for time equal to
π/(4N) the transformation corresponds to a 50/50 beam
splitter which can be used as a component to implement
a Mach-Zehnder interferometer. In Bloch sphere repre-
sentation, the two species would be both lined towards
the same pole.

Two-mode squeezer limit : If almost all the atoms in the
two species are circulating in opposite directions modes

b̂1 ≃ b̂†1 ≃
√
N1 and â2 ≃ â†2 ≃

√
N2 (in Bloch sphere rep-

resentation, the two species would be both lined towards
opposite poles), we have

ĤQ ≈ N1â
†
1â1 +N2b̂

†
2b̂2 +

1
2 (N1 +N2)

+
√
N1N2(â1b̂2 + â†1b̂

†
2). (24)

Here the last term crates or destroys pairs of quanta in
analogy to a parametric amplifier or a two-mode squeezer
[45]. This element could be used, e.g., to create highly en-
tangled states of the atomic samples which metrological
applications. If one can vary the sign of the nonlinearity,
one can build a SU(1,1) interferometer [46] as a sequence
of steps where first a squeezing Hamiltonian is applied,
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FIG. 6. (Color online) The distribution of energies, is shown
for the case of N1 = N2 = 59, as we vary the full Hamiltonian
in Eq. (9) from being purely linear, Ĥ = ĤL in panel (a) to

being purely quadratic Ĥ = ĤQ in panel (f). In the linear

limit, we assume ĤL = (Ĵx1 − Ĵx2) in Eq. (9), corresponding
to a rotating ring with no azimuthal lattice.

then a phase shifter (the phase of which is to be deter-
mined), and finally an un-squeezing Hamiltonian, which
will require the opposite sign of the nonlinearity χ12.

VII. DENSITY OF STATES

While the variation of the spectrum in ranging from
the linear to the quadratic Hamiltonian showed the de-
generacy structure of the ground state, other significant
differences can be identified by examining the density of
states. In Fig. 6, we plot the distribution of the energies
as we adjust from purely linear to the purely quadratic
Hamiltonian. There is a marked difference. In the linear
limit, the distribution shows a peak in the middle of the
spectrum stemming from the fact that the energy eigen-
states are the Dicke states of the two species with flat
energy spectra. Combining these two individual spectra
yields the largest number of possibilities for the middle
value of the energy. In the purely quadratic limit, the
distribution is strongly skewed towards the ground state.
This follows from the energy function as shown in Fig. 5
where large areas of parameters z+ and n correspond
to small energy values. There is a gradual morphing of
the distribution as we transition from one limit to the
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other. The disappearance of the peak and occurrence
of a monotonously decreasing spectrum is suggestive of
an excited state quantum phase transition in the system
[47].

VIII. EXPERIMENTAL FEASIBILITY

We now confirm the feasibility of our model and its
assumptions in the context of experimental parame-
ters currently available. The analytical results for the
quadratic Hamiltonian assume the interatomic interac-
tions strengths to be equal χ1 = χ2 = χ12. This is not an
essential or limiting assumption, as we will further elab-
orate on later in this section. However, regimes close to
equal strengths can be accessed for example with the hy-
perfine states |F,mF ⟩ = |1,−1⟩ and |F,mF ⟩ = |2, 1⟩ for
87Rb, taken as the two species, for which all the scatter-
ing lengths are close to a = 100 a0 [43]. We will assume
this value for our estimates of experimental parameters.

We consider a ring of major radius R ∼ 10 µm such
as used in recent experiment with ring traps [2], and a
strong transverse trap frequency of ωr = 2π × 2000 Hz
along the minor radius r, noting that such kilohertz range
confinement is typical for creating quasi-1D systems [48].
Assuming 87Rb, our energy unit set by the lowest cir-
culating mode evaluates to h̄ω1 = 3.85 × 10−34 J, with
corresponding frequency unit ω1 = 3.65 Hz. These yield
interaction energy scale of h̄χ = ah̄ωr/(πR) = 1.10h̄ω1,
and puts the system definitely in the 1D regime with the
ratio of the azimuthal to transverse energy scale being
ω1/ωr ≃ 3× 10−4.
If we take the lattice to have periodicity q = 5, the sys-

tem can be easily maintained in the two-mode regime: As
discussed in Sec. II, for the inter-atomic interactions we
ignored scattering to ±3q, which for our value of q will
imply an minimal energy gap between the relevant modes
of h̄ω1((3q)

2 − q2)/2 = 100h̄ω1 far larger than the inter-
action energy h̄χ estimated above. By Bloch’s theorem,
for q = ±5 the energetically closest modes the lattice can
couple are n = 0 and n = ±10 so that the minimal energy
gap separating ±q modal subspace from other possible
coupled modes is h̄ω1(q

2/2) = 12.5h̄ω1. Using a separate
independently tunable potential to generate it, the lattice
can be made sufficiently weak to satisfy this condition.
In general current technology allows for all of the param-
eters to be adjusted substantially, but this underscores
the general experimental feasibility of our results.

With two species there can be phase separation, with
Thomas-Fermi estimates that neglect the kinetic energy,
setting the criterion ∆χ = χ12 − √

χ1χ2 that sepa-
rates regimes of miscibility (∆χ < 0) and immiscibil-
ity (∆χ > 0) [49]. In our model the two species need
to maintain inter-species interaction implying reasonable
overlap of the densities of the two species. We provide
a brief analysis to show that remains valid within our
assumptions, by computing the density-density correla-
tion as a function ∆χ. Defining the two-mode density
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FIG. 7. Overlap of the densities of the two atomic species are
plotted in units of N1N2/(4π), with the solid red line showing
exact quantum values, and the dashed horizontal blue lines
marking the semi-classical estimates for limiting cases of the
inter-species interaction χ12, in ascending order: strongly re-
pulsive, zero, and strongly attractive. The inset highlights
that the transition in the neighborhood of the critical point
∆χ = 0 (marked by vertical blue line) is gradual over a rele-
vant regime.

operator for each species i = 1, 2,

ρ̂i(s) ≡
1

2π

(
â†ie

−is + b̂†ie
is
)(

âie
is + b̂ie

−is
)
, (25)

the overlap of the species can be gauged by

Ô ≡
∫
2π

⟨ρ̂1ρ̂2⟩ds =
N1N2

2π
+

1

π
⟨Ĵx1Ĵx2 + Ĵy1Ĵy2⟩,(26)

where we have assumed length unit of R and expecta-
tion is taken with respect to the ground state of the
quadratic part of the Hamiltonian in Eq. (8), but setting
χ1 = χ2 = χ so that ∆χ = χ12 − χ. The maximum and
minimum eigenvalues of the operator Ĵx1Ĵx2+ Ĵy1Ĵy2 de-
termine through the above expression the range in which
the overlap of the two species can occur.
We benchmark our results with a semi-classical ap-

proximation of the density operator in Eq. (25)

O =

∫
2π

ρ1ρ2ds

ρi(s) =
Nk

2π
[1 + Vi cos(2s+ γi)] , (27)

where Vk ∈ [0, 1] is a measure of visibility of the inter-
ference pattern and γi is a phase determining the angu-
lar orientation of the pattern. For pure states, the case
Vi = 0 corresponds to a uniform density for all atoms
orbiting in the same direction, whereas Vi = 1 corre-
sponds to a standing wave where half of the atoms orbit
clockwise and the other half counterclockwise.
Three special cases are relevant: (i) For strongly re-

pulsive interaction, ∆χ/χ ≫ 1, two species form pro-
nounced standing waves where the density minima of
one species coincide with the maxima of the other, such
that γ1 − γ2 = π. (ii) For a strongly attractive interac-
tion, ∆χ < 0 and |∆χ/χ| ≫ 1, the interference patterns
of the two species will tend to maximally overlap with
γ1 − γ2 = 0. (iii) For vanishing interaction χ12 = 0, or
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∆χ/χ = −1, each species will have a uniform distribution
with Vi = 0. These cases yield:

χ12 ≫ χ :O =
N1N2

4π

χ12 ≪ −|χ| :O =
3N1N2

4π

χ12 = 0 :O =
N1N2

2π
. (28)

We plot our results in Fig. 7 for two different number of
particlesN1 = N2 = 8 and 25, with the exact calculations
using Eq. (26) plotted in solid red lines, with horizontal
dashed blue lines marking the three semiclassical limiting
cases above. One can see that with increasing particle
number quantum calculations approach the semi-classical
estimates in the corresponding limits.

What is relevant for us is that even though there is
clearly a transition in the density correlation at ∆χ = 0
when all the interaction strengths are identical, the over-
lap remains finite and non-vanishing, set by the lowest
semiclassical values in Eq. (28). This means that our
assumption of equal non-linear strengths is not a con-
straint at all, although that regime can be experimentally
accessed and allows for analytical calculations. The pri-
mary physical impact will be a reduction in the degree of
entanglement possible in proportion to any decline in the
inter-species interaction strength. The inset in Fig.7 also
shows that in a small ring where the kinetic energy can-
not necessarily be neglected, the transition is not sharp
at ∆χ = 0, but gradual over a relevant range of variation
of about |∆χ/χ| ≤ 20%. Finally, we should note that
these calculations here and similar ones in much of the
literature are done in the absence of a lattice, but there
have been several experiments such as in Ref. [48] with
two interacting species of atoms without phase separa-
tion being a limiting obstacle, and the lattice can have
an impact in suppressing phase separation.

IX. CONCLUSIONS AND OUTLOOK

Our analysis here shows that two species of ultra-
cold atoms in a ring trap can provide a viable alternate

platform to examine non-trivial quantum features that
rely on entanglement. The model can be viewed as two
Lipkin-Meshkov-Glick systems coupled by two bi-linear
terms formed as products of components of collective spin
operators. Here we mapped out the static and spectral
properties as a necessary preliminary to examining the
dynamical phenomena that can exploit the entanglement,
which we are actively exploring in our continuing work.
Among such applications, we already identified here cer-
tain limiting cases that can be adapted for interferometry
as well as for generating two-mode squeezing.

One relevant way to use the entangled states in this
system would be to implement quantum teleportation
[50], particularly the transition regime from small to large
atomic numbers where the continuous variable limit for
teleportation [51] can be expected. With regards to all
such quantum phenomena involving entangled states, the
ring system offers the opportunity to study them in the
context of motional states encapsulated in circulating
modes in the ring, rather than with internal states like
spin typically utilized in the majority of platforms stud-
ied. This can facilitate a natural scaling up of the system
size and the time scales involved, that can help better un-
derstand some of the most intriguing aspects of quantum
mechanics.
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