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ABSTRACT

We consider the classic question posed by Pardo and Spergel about the price
of abandoning dark matter in the context of an invariant, metric-based theory
of gravity. Our answer is that the price is nonlocality. This has been known
for some time in the context of the quasi-static regime. We show that it also
applies for cosmology and we exhibit a model which reproduces standard
CDM successes such as perturbations in the cosmic microwave background,
baryon acoustic oscillations and structure formation.
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1 Introduction

Despite increasingly aggressive efforts at direct detection [1–7], the evidence
for dark matter is still restricted to its impact on gravity. It is therefore
worthwhile considering whether or not the same gravitational phenomena
might be instead signal some modification of gravity. Milgrom’s MOdified
Newtonian Dynamics (MOND) [8–10] does an excellent job of explaining,
and even predicting observed features of galactic structure which are usu-
ally attributed to dark matter [11–23]. MOND has mixed success explaining
galactic clusters [24–26], but its real challenge is to reproduce the successes
of dark matter in cosmology, including the anisotropies in the cosmic ray
microwave background (CMB), baryon acoustic oscillations (BAO) and lin-
earized structure formation.

If dark matter is abandoned in favor of modified gravity, it must be that
MOND represents the static limit of some larger, relativistic theory. So it
is perhaps not surprising that extrapolations of MOND should encounter
problems as one approaches the time-dependent regime of cosmology. And
it is significant that relativistic extensions of MOND such as Bekenstein’s
TeVeS [27] do a much better job of reproducing cold dark matter (CDM)
cosmology [28–31]. In particular, the AeST model of Skordis and Zlosnik [32]
is internally consistent and agrees with those phenomenological checks which
have so far been made [33–36].

The only metric-based modification of gravity which is both stable and
generally coordinate invariant consists of changing the Einstein-Hilbert La-
grangian from R to some nonlinear function f(R) [37]. This induces a new
scalar degree of freedom which could be regarded as a sort of dark matter [38].
Within the context of locality, the other options for modifying gravity involve
either abandoning the metric as the sole gravitational field variable — such
as TeVeS [27] and AeST [32] — or else abandoning full general coordinate
invariance [39, 40]. We will here explore the option of abandoning locality.

Our result can be regarded as an answer to the question posed in the title
of the recent paper by Pardo and Spergel, “What is the price of abandoning
dark matter?” [41]. We demonstrate that the price is nonlocality, provided
one maintains both general coordinate invariance and the metric’s status as
the sole gravitational field. This has already been shown for gravitationally
bound systems [42, 43], but cosmological extensions of that model involve
fitting a free function just to recover the correct expansion history [44], and
in any case fail to provide the extra gravitational force need for structure
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formation without dark matter [45]. In this new effort we exploit the equa-
tions which describe cold dark matter (CDM) cosmology in the regime of
linearized perturbations, in particular, the fact that there is no strong evi-
dence for self-interactions [46–48]. This means that the CDM stress tensor
must be separately conserved, which permits us to express it in terms of
linearized scalar gravitational perturbations. We accomplish this in section
2, and also infer a gravitational effective action whose variation gives the
CDM stress tensor. In section 3 we devise a generally coordinate invariant
expression for this effective action. This approach is guaranteed to reproduce
the cosmology of CDM. In our Conclusion (section 4) we discuss the possi-
bility that this action arises from secular interactions between inflationary
gravitons which became nonperturbatively strong [49]. We also discuss the
prospects for a single effective action which describes both cosmology and
gravitationally bound systems.

2 Reconstructing the Effective Action

The purpose of this section is to derive a purely gravitational effective ac-
tion whose variation is guaranteed to reproduce CDM phenomenology in the
linearized regime. We begin by giving the metric perturbations and the two
variables which characterize the CDM stress tensor. The fact that the CDM
stress tensor is separately conserved permits us to express the density con-
trast and momentum divergence in terms of the metric. The section closes by
constructing a gravitational effective action whose variation gives the CDM
stress tensor.

2.1 Linearized Perturbations

It is simple to reproduce the CDM contribution to the expansion history
because this is just a single degree of freedom. The real challenge is getting
the infinite number of degrees of freedom characterized by linearized pertur-
bations. Although there are four scalar perturbations about the Friedmann-
Lemâıtre-Robertson-Walker (FLRW) geometry, gauge transformations can
be used to set any two to zero. We choose the two nonzero perturbations as,

ds2 = −
[

1 + 2Ψ(t, ~x)
]

dt2 + 2∂iB(t, ~x)dtdxi + a2(t)d~x · d~x . (1)

The first order connections are,
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Γ0

00
= Ψ̇ , Γ0

0i = ∂i

[

Ψ+HB
]

, Γ0

ij = Ha2δij

[

1−2Ψ
]

− ∂i∂jB , (2)

Γi
00

=
∂i

a2

[

Ψ+Ḃ
]

, Γi
j0 = Hδij , Γi

jk = −H∂iBδjk . (3)

The CDM stress tensor ∆Tµν is characterized (at linearized order) by its
background energy density ρ(t), the density contrast δ(t, ~x) ≡ δρ(t, ~x)÷ ρ(t)
and the momentum divergence θ(t, ~x),

∆T00 = ρ
[

1+δ+2Ψ+ . . .
]

, ∆T0i = ρ∂i

[

0−θ+ . . .
]

, ∆Tij = ρ
[

0+0+ . . .
]

.

(4)

2.2 Eliminating CDM

We now exploit the fact that the CDM stress tensor is separately conserved.
Relations (2-3) can be used to derive two equations,

0 = Dµ∆Tµ0 = −(∂t+3H)ρ+ ρ
{

−δ̇+
∇2

a2

[

B−θ
]}

+ . . . , (5)

0 = Dµ∆Tµi = 0 + ρ∂i

{

θ̇+Ψ
}

+ . . . . (6)

The 0th order part of equation (5) implies that the background CDM energy
density has the equation of state of pressureless matter,

ρ(t) =
ρ0

a3(t)
, (7)

where ρ0 is a constant. Equation (6) allows us to express the momentum
divergence as the time integral of the Newtonian potential,

θ(t, ~x) = − 1

∂t
Ψ(t, ~x) ≡ −

∫ t

0

dt′Ψ(t′, ~x) . (8)

Substituting (8) in equation (5) gives the density contrast,

δ =
1

∂t

[∇2

a2

(

B+
1

∂t
Ψ
)]

. (9)

2.3 Reconstructing the Effective Action

We seek an effective action ∆S whose variation gives the CDM stress tensor
(4), considered as a functional of the metric. The general relation between
an induced stress tensor and variations is,
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∆Tµν = − 2√−g

δ∆S

δgµν
⇐⇒ δ∆S

δgµν
= −1

2

√
−g∆Tµν . (10)

Because our metric (1) depends only on the two scalar perturbations Ψ(t, ~x)
and B(t, ~x) we must specialize relation (10) to variations with respect to
these two fields,

δ∆S

δΨ
= −2

∂gµν

∂g00
×∂∆S

δgµν
= −

√
−g g0µg0ν∆Tµν , (11)

δ∆S

δB
= −2∂i

{∂gµν

∂g0i
×∂∆S

δgµν

}

= −∂i

{√
−g g0µgiν∆Tµν

}

. (12)

Substituting (1) and (4), and retaining only terms up to first order gives,

δ∆S

δΨ
= −a3ρ

{

1−Ψ+δ+. . .
}

,
δ∆S

δB
= −a3ρ

∇2

a2

{

−B+θ+. . .
}

. (13)

There are two ways to reconstruct an effective Lagrangian ∆L whose vari-
ations reproduce (13). The first is to consider δ(t, ~x) and θ(t, ~x) as auxiliary
fields whose equations of motion enforce relations (8-9). In that case the
result is,

∆L1 = −ρ0

{

1 + Ψ− 1

2
Ψ2 −

[

B − θ
]∇2

2a2

[

B − θ
]

+ δ(θ̇ +Ψ) + . . .
}

. (14)

Note that we have used ρ(t)× a3(t) = ρ0, and that the variation of (14) with
respect to δ enforces (8) while the variation with respect to θ gives (9).

The second way to realize (13) is through a nonlocal Lagrangian which
depends only on Ψ and B,

∆L2 = −ρ0

{

1 + Ψ− 1

2
Ψ2 −

[

B +
1

∂t
Ψ
]∇2

2a2

[

B +
1

∂t
Ψ
]

+ . . .
}

. (15)

In this case one must interpret the variation of 1

∂t
Ψ in the sense of nonlocal

cosmology [50]. That means replacing the “advanced” integral, which is what
really results from the variation, with the “retarded” integral which obeys
the same differential equation,

∫ ∞

t

dt′F (t′) −→ −
∫ t

0

dt′F (t′) . (16)

The actual genesis of a nonlocal model would be through the Schwinger-
Keldysh formalism [51–56], with (16) rigorously justified through the in-
terference between contributions from forward and backwards propagating
effective fields [57–59].
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3 Invariant Formulation

The purpose of this section is to construct an invariant effective action whose
variation produces the full CDM stress tensor. We begin with a convenient
representation for the general metric. Then it is shown how the full CDM
stress tensor can be expressed in terms of two scalar fields which obey simple,
first order differential equations. The section closes by giving an invariant
Lagrangian whose variation reproduces the full CDM stress tensor.

3.1 The ADM Metric

Because of the crucial role played by time evolution, it is convenient to carry
out this analysis using the representation for the full metric introduced by
Arnowitt, Deser and Misner [60],

ds2 = −N2dt2 + γij

(

dxi −N idt
)(

dxj −N jdt
)

. (17)

The various components are known as the lapse N(t, ~x), the shift N i(t, ~x)
and the 3-metric γij(t, ~x). In these variables the measure and the inverse
metric are,

√
−g = N

√
γ , gµν =

(

− 1

N2 −Nn

N2

−Nm

N2 γmn − NmNn

N2

)

. (18)

For the scalar perturbation geometry (1) we have,

N2 = 1 + 2Ψ +
∂iB

a

∂iB

a
, N i = −∂iB

a2
, γij = a2δij . (19)

3.2 Representing the Full CDM Stress Tensor

Because cold dark matter has zero pressure and is collisionless, its stress
tensor can be written in terms of an energy density ρ(t, ~x) and a timelike
4-velocity field uµ(t, ~x)

Tµν = ρ uµuν , gµνuµuν = −1 . (20)

Comparison with (4) and (8) implies an intriguing expansion for the 4-
velocity,

u0 = −1 −Ψ+ . . . = −∂t

[

t+
1

∂t
Ψ+ . . .

]

, (21)

ui = 0 + ∂iθ + . . . = −∂i

[

t +
1

∂t
Ψ+ . . .

]

. (22)
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This suggests that uν can be written as minus the gradient of a scalar whose
expansion resides within the square brackets.

We can understand the expansions (21-22) using the fact that the CDM
stress tensor is separately conserved,

DµT
µ
ν = Dµ

(

uµρ
)

uν + ρ uµDµuν = 0 . (23)

Conservation implies two distinct equations,

∂µ

(√
−g gµνuνρ

)

= 0 , (24)

gµρuµDρuν = 0 . (25)

Relation (25) can indeed be solved as uν = −∂νφ,
1 where the scalar field

φ(t, ~x) obeys the nonlinear, first order differential equation,

gµν∂µφ∂νφ = −1 . (26)

The correctness of this solution can be seen by substituting uν = −∂νφ in
relation (25) and then using (26),

gµρuµDρuν = gµρ∂µφDρ∂νφ = gµρ∂µφDν∂ρφ =
1

2
Dν

[

gµρ∂µφ∂ρφ
]

= 0 . (27)

Expressions (26) and (24) give well-posed evolution equations for φ(t, ~x)
and ρ(t, ~x), respectively. To see this for φ(t, ~x), substitute (17) into (26) and
then solve for φ̇ with an irrelevant sign choice,

φ̇ = N
√

1 + γij∂iφ∂jφ−N i∂iφ . (28)

Equation (28) obviously has a unique solution which will agree with our
weak field expansions (21-22) if we choose the initial condition φ(0, ~x) = 0.
Substituting (17) into (24) and then eliminating φ̇ using (28) gives a similarly
well-posed evolution equation for ρ(t, ~x),

∂t

[

ρ
√
γ

√

1+γjk∂jφ∂kφ
]

= ∂i

[

Nρ
√
γ γij∂jφ−N iρ

√
γ

√

1+γjk∂jφ∂kφ
]

.

(29)
This also has a unique solution which will agree with (9) if we begin with,

ρ(0, ~x) =
ρ0

√

γ(0, ~x)
. (30)

Note finally that the method of characteristics gives a solution for ρ(t, ~x) in
terms of φ(t, ~x) and gµν(t, ~x).

1A normalized, timelike 4-velocity has three degrees of freedom, so our representation

in terms of a single scalar represents the minimal solution.
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3.3 Nonlocal Effective Action

We can reproduce the full CDM stress tensor (20), for a general metric, using
a local effective Lagrangian with auxiliary fields ρ(t, ~x) and φ(t, ~x),

L1 = −1

2

[

∂µφ∂νφg
µν + 1

]

ρ
√
−g . (31)

The variation with respect to φ gives the ρ equation (24), while the variation
with respect to ρ implies the φ equation (26),

δS1

δφ
= ∂µ

[

ρ
√
−g gµν∂νφ

]

= 0 , (32)

δS1

δρ
= −1

2

[

∂µφ∂νφg
µν + 1

]√
−g = 0 . (33)

The variation with respect to the metric reproduces the full CDM stress
tensor (20) when equation (33) is used and we recall that the 4-velocity is
uµ = −∂µφ,

Tµν ≡ − 2√−g

δS1

δgµν
= ρ ∂µφ∂νφ = ρ uµuν . (34)

Lagrangian (31), localized in terms of auxiliary scalars φ and ρ, is anal-
ogous to the weak field result (14) which was localized in terms of auxiliary
scalars θ and δ. We stress that the fields φ(t, ~x) and ρ(t, ~x) in the CDM
stress tensor (34) are not independent dynamical variables but rather nonlo-
cal functionals of the metric which solve the well-posed evolution equations
(28) and (29), with initial value data φ(0, ~x) = 0 and (30), respectively. It
would be possible to derive a purely gravitational effective action, analogous
to the weak field expression (15), as a surface term. However, it is really
equation (34) which defines the model.

4 Conclusions

We have derived a nonlocal, metric-based effective action which exactly re-
produces cold dark matter. For linearized scalar perturbations in cosmology
(1) our result can be expressed either as a localized form (14), using aux-
iliary scalars θ and δ, or else as a nonlocal, purely gravitational form (15).
Either way, the effective CDM stress tensor takes the form (4), with (8-9).
For a general metric (17) the localized form is (31), with auxiliary scalars φ
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and ρ. The nonlocal, purely gravitational form analogous to (15) would be
a surface term. Either way, the effective CDM stress tensor takes the form
(34), with the auxiliary scalars defined as nonlocal functionals for the metric
which obey the well-posed evolution equations (28) and (29), starting from
initial values,

φ(0, ~x) = 0 , ρ(0, ~x) =
ρ0

√

γ(0, ~x)
. (35)

We stress that φ(t, ~x) and ρ(t, ~x) are precisely defined, nonlocal functionals
of the metric, without the independent initial value data which local fields
would possess.

We stress that there can be no doubt about this model reproducing all
the successes of CDM in cosmology. Those successes include the anisotropies
of the cosmic microwave background, baryon acoustic oscillations, and lin-
earized structure formation. All of this must come out right because this
model was constructed by using the separate conservation of the CDM stress
tensor to express it as a nonlocal functional of the metric. The only way this
model can be falsified is by showing that CDM interacts with fields other
than gravity, the evidence for which is weak [46–48]. This model should
put to rest the frequent claims that no modified gravity theory can supplant
dark matter. It also demonstrates that the answer to the question of Pardo
and Spergel [41] about the price of abandoning dark matter: the price is
nonlocality.

A key principle in constructing modified gravity models is that gravi-
tational radiation in vacuum should move at the speed of light so as not to
conflict with the simultaneous detection of optical and gravitational radiation
from the binary neutron star merger GW170817 approximately 40 Mpc dis-
tant [61]. This is usually accomplished by making each term in the effective
action involve at least two factors of the Ricci tensor. We did not need to do
that here because our model exactly reproduces the result of the CDM stress
tensor. So any change our model predicts in the kinematics of gravitational
radiation is limited to one already predicted by cold dark matter.

One thing our model does not do is to agree with the nonlocal extension
of MOND [42, 43] which was constructed to reproduce the baryonic Tully-
Fisher relation [62], with sufficient weak lensing, in gravitationally bound
structure. One can see this by simply counting derivatives and weak fields
in the CDM stress tensor. At least in cosmological perturbation theory, our
model’s change in the gravitational field equations is linear in the weak fields

8



Ψ(t, ~x) and B(t, ~x), and every inverse differential operator is compensated by
a positive power. In contrast, the model which works inside gravitationally
bound structures is quadratic in the weak fields and involves three derivatives
[42,43]. It would be desirable to have a single formalism which connects both
regimes.

It would also be desirable to derive these nonlocal models from funda-
mental theory. We believe they might arise from resumming the secular
logarithms that are induced by loops of inflationary gravitons and which
must eventually become nonperturbatively large during a prolonged period
of inflation [49]. Such a resummation has been accomplished for the similar
logarithms produced by nonlinear sigma models on de Sitter background [63].
The curvature-induced effective potentials which enable the resummation
have been generalized from de Sitter to an arbitrary cosmological background
which experiences primordial inflation [64]. And when the generalized effec-
tive potentials are used to evolve to late times, certain results do retain a
strong memory of the inflationary epoch [65]. It remains to generalize the
resummation technique from nonlinear sigma models to gravity.

Finally, one should keep in mind the possibility that MOND might be
realized as a modification of inertia rather than as a modification of gravity
[66]. In this regard it is worth noting that inflationary gravitons not only
induce secular changes in the force of gravity [67], they also modify the
kinematics (and hence the inertia) of massless fermions [68] and photons [69].
It would be interesting to explore changes to the inertia, and particularly the
response to gravity, of massive particles [70].
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Note Added

As this paper was going to press we learned of “Mimetic Matter” models
[71, 72] which have the same field equations (24) and (26) as the invariant
model of section 3. The chief difference is that our auxiliary scalars ρ(t, ~x)
and φ(t, ~x) are functionals of the metric, with fixed initial value data (35),
whereas the mimetic fields have independent (and sometimes ghost) initial
value data.
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