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Abstract— This paper proposes a novel robust reinforce-
ment learning framework for discrete-time linear systems
with model mismatch that may arise from the sim-to-real
gap. A key strategy is to invoke advanced techniques from
control theory. Using the formulation of the classical risk-
sensitive linear quadratic Gaussian control, a dual-loop pol-
icy optimization algorithm is proposed to generate a robust
optimal controller. The dual-loop policy optimization algo-
rithm is shown to be globally and uniformly convergent, and
robust against disturbances during the learning process.
This robustness property is called small-disturbance input-
to-state stability and guarantees that the proposed policy
optimization algorithm converges to a small neighborhood
of the optimal controller as long as the disturbance at
each learning step is relatively small. In addition, when
the system dynamics is unknown, a novel model-free off-
policy policy optimization algorithm is proposed. Finally,
numerical examples are provided to illustrate the proposed
algorithm.

Index Terms— Robust reinforcement learning, policy op-
timization, risk-sensitive LQG.

[. INTRODUCTION

By optimizing a specified accumulated performance index,
reinforcement learning (RL), as a branch of machine learning,
is aimed at learning optimal decisions from data in the absence
of model knowledge. Policy optimization (PO) plays a pivotal
role in the development of RL algorithms [1, Chapter 13]. The
key idea of PO is to parameterize the policy and update the
policy parameters along the gradient ascent direction of the
performance index for maximization, or gradient descent for
minimization. Since the system model is unknown, the policy
gradient should be estimated by data-driven methods through
sampling and experimentation. Consequently, accurate policy
gradient can hardly be obtained because of various errors
that may be induced by function approximation, measurement
noise, and external disturbance. Therefore, both convergence
and robustness properties of PO should be theoretically studied
in the presence of gradient estimation error.
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Since linear quadratic regulator (LQR) is theoretically
tractable and widely applied in various engineering fields,
it stands out as providing an ideal benchmark for study-
ing RL problems. For the LQR problem, the control pol-
icy is parameterized as a linear function of the state, i.e.
uy = —Kuzy. The corresponding performance index is
Jror(K) = Y72 E(z{ Qzy + uf Ruy). PO for the LQR
problem aims at solving the constrained optimization problem
mingew Jror(K), where W is the admissible set of sta-
bilizing control policies. Since Jror(K) can be expressed
in terms of a Lyapunov equation, which depends on K,
Jror(K) is differentiable in K. Based on this result, standard
gradient descent, natural policy gradient, and Newton gradient
algorithms have been developed to minimize the performance
index Jror(K) [2]-[7]. Interestingly, the Newton gradient
algorithm with a step size of % is equivalent to the cel-
ebrated Kleinman’s policy iteration algorithm [8]-[11]. By
the coercive property of the performance index Jnor(K)
(JLor(K) — o0 as K — OW), the stability of the updated
control policy is maintained during PO. Furthermore, the
global linear convergence rate of the algorithms is theoretically
demonstrated by the gradient dominance property which is
shown in [4, Remark 2] and [5, Lemma 3]. One of the reasons
for using PO in these model-based approaches (perhaps the
most important one) is that it provides a natural pathway to
model-free analysis, where the RL techniques come into play.
For example, when the system model is unknown, zeroth-
order methods are applied to approximate the gradient of
the performance index, supported by a sample complexity
analysis [4], [5], [7]. Since the estimation error of policy
gradient is inevitable at each iteration, whether the error will
accumulate and whether the adopted algorithms still converge
in the presence of estimation error should be further studied.
By considering the PO algorithm as a nonlinear discrete-time
system and invoking input-to-state stability [12], the authors of
[13], [14] show that the Kleinman’s policy iteration algorithm
can still find a near-optimal control policy even under the
influence of estimation error. A similar robustness property is
investigated for the steepest gradient descent algorithm [15].

The aforementioned PO for the LQR problem cannot guar-
antee the robustness of the closed-loop system. For example,
the obtained controller may fail to stabilize the system in
the presence of model mismatch that may be induced by
the sim-to-real gap and parameter variation. Risk-sensitive
linear quadratic Gaussian (LQG) control was first proposed by
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[16], [17], which generalizes the risk-neutral optimal control
(i.e. LQR) by minimizing the expectation of the accumulative
quadratic cost transformed by the exponential function. It was
shown in [18] and [19] that the risk-sensitive LQG control
is equivalent to the mixed Ho/H., control and the linear
quadratic zero-sum dynamic game. Therefore, it can guarantee
the stability of the closed-loop system even under model
mismatch. The authors of [20]-[22] proposed RL algorithms
for solving the model-free risk-sensitive control, but the meth-
ods are only applicable to Markov decision processes whose
state and action spaces are finite. In [23], [24], the authors
proposed Q-learning algorithms for linear quadratic zero-sum
dynamic games. The paper [25] proposed PO methods for
mixed Ha/H~ control to guarantee robust stability of the
closed-loop system. Through the concept of implicit regular-
ization, it was shown that the proposed PO algorithms can
find the globally optimal solution of mixed Hs/Hoo control
at globally sublinear and locally superlinear rates. As there
is a fundamental connection between mixed Ha/H, control
and linear-quadratic zero-sum dynamic games (LQ ZSDGs),
the natural policy gradient and Newton algorithms have been
equivalently transformed into provably convergent dual-loop
PO algorithms for the LQ ZSDG [26]-[28]. The outer loop is
to learn a protagonist under the worst-case adversary while
the inner loop is to learn a worst-case adversary. In this
way, the protagonist can robustly perform the control tasks
under the disturbances created by the adversary. Interestingly,
the Newton algorithm with a step size of % is equivalent to
the policy iteration algorithm for ZSDG [23], [29], [30]. In
the aforementioned papers, the convergence of the learning
algorithms for the risk-sensitive control has been analyzed
under the ideal noise-free case. Besides the convergence, a
useful learning algorithm should be robust and is capable of
finding a near-optimal solution even in the face of noise that
may be induced by noisy experimental data, rounding errors of
numerical computation, or the finite-time stopping of the inner
loop in the dual-loop learning setup. However, the issues of
uniform convergence and robustness of the dual-loop learning
algorithm are still unsolved.

A. Our Contributions in this Paper

A fundamental challenge of the convergence of the dual-
loop PO algorithm is to address the uniform convergence
issue tied to the inner loop. Specifically, the required num-
ber of inner-loop iterations should be independent of the
outer-loop iteration. Otherwise, as the outer-loop iteration
increases, the required number of inner-loop iterations may
grow explosively, thus making the dual-loop algorithm not
practically implementable. To the best of our knowledge, the
uniform convergence of the dual-loop algorithm has not been
theoretically analyzed heretofore.

In addition, PO algorithm cannot be implemented accurately
in practical applications, due to the influence of various errors
arising from gradient estimation error, sensor noise, external
disturbance, and modeling error. Hence, a fundamental ques-
tion arises: Is the PO algorithm robust to the errors? In partic-
ular, does the PO algorithm still converge to a neighbourhood

of the optimal solution in the presence of various errors and,
if yes, what is the size of the neighborhood? For both the
outer and inner loops, the iterative process is nonlinear, and the
robustness of the PO algorithm has not been fully understood
in the present literature.

In this paper, we investigate uniform convergence and
robustness of the dual-loop iterative algorithm for solving
the problem of risk-sensitive linear quadratic Gaussian con-
trol. Even though the convergence of the dual-loop iterative
algorithm is analyzed separately in [5], [25], [28], uniform
convergence and robustness of the overall algorithm are still
open problems. To analyze the uniform convergence of the
dual-loop algorithm, the key idea is to demonstrate global
linear convergence of the inner-loop iteration and find an
upperbound on the linear convergence rate. To address the
robustness issue, a key strategy of the paper is to invoke
techniques from advanced control theory, such as input-to-
state stability (ISS) [12] and its latest variant called “small-
disturbance ISS” [13], [31] to analyze the robustness of the
proposed discrete-time iterative algorithm. In the presence
of noise during the learning process, it is demonstrated that
the PO algorithm still converges to a small neighbourhood
of the optimal solution, as long as the noise is relatively
small. Furthermore, based on these results and the technique
of approximate dynamic programming [32], [33], an off-policy
data-driven RL algorithm is proposed when the system is dis-
turbed by an immeasurable Gaussian noise. Several numerical
examples are given to validate the efficacy of our theoretical
results.

To sum up, our main contributions in this paper are three-
fold: 1) the uniform convergence of the dual-loop iterative
algorithm is theoretically analyzed; 2) under the framework of
the small-disturbance ISS, the robustness of both the outer and
inner loops is theoretically demonstrated; 3) a novel learning-
based off-policy policy optimization algorithm is proposed.

A shorter and preliminary version of this paper was pre-
sented at the conference L4DC 2023 [34]. Compared with the
conference paper, in this paper, we provide rigorous proofs
for all the theoretical results. In addition, in Section V-A,
we propose a method to learn an initial admissible controller.
Finally, a benchmark example known as cart-pole system is
provided to demonstrate the effectiveness of the proposed dual-
loop algorithm.

B. Organization of the Paper

Following this Introduction section, Section II provides
some preliminaries on linear exponential quadratic Gaussian
(LEQG) control problem, linear quadratic zero-sum dynamic
game, and robustness analysis. Section III introduces the
model-based dual-loop iterative algorithm to optimize the pol-
icy for LEQG control, and the convergence of the algorithm is
analyzed. Section IV analyzes robustness of the dual-loop iter-
ative algorithm to various errors in the learning process within
the framework of ISS. Section V presents a learning-based
policy optimization algorithm for LEQG control. Section VI
provides two numerical examples to illustrate the proposed
algorithm. The paper ends with the concluding remarks of
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Section VII and seven appendices which include proofs of the
main results in the main body of the paper.

C. Notations

R and C are the sets of real and complex numbers,
respectively. Z (Z,) is the set of (positive) integers. S™ is
the set of n-dimensional real symmetric matrices. |a| denotes
the Euclidean norm of a vector a. ||-|| and ||| denote the
spectral norm and the Frobenius norm of a matrix. {5 is
the space of square-summable sequences equipped with the
norm ||-||2. ¢~ is the space of bounded sequences equipped
with the norm |||. &(-) and o(-) are respectively the
maximum and minimum singular values of a given matrix.
For a transfer function G(z), its Hoo norm is defined as

[Gll#. = sup,eo2q d(G(e?*)), which is equivalent to
Gl — \IGUM2
Hoo = SUPuct, o, -

For a matrix X € R™" vec(X) := [z, 217,

where x; is the ith column of X. For a matrix P € S",
vecs(P) == [p1,1, P12, »P1,nsP2,2,P2,3, " » Pyl » Where
D;,; is the ith row and jth column entry of the matrix P.
[X]; dentotes the ith row of X. [X]; ; denotes the submatrix
of the matrix X that is comprised of the rows between the
ith and jth rows of X. For a vector a € R", vecv(a) =
[a2,2a1a2, -+ ,2a1a,,a3, 2aza3, - -+ ,a2]T. I,, denotes the n-
dimensional identity matrix.

[I. PRELIMINARIES

In this section, we begin with the problem formulation of
LEQG control. Then, we discuss its relation to linear quadratic
zero-sum dynamic games (DG) and its robustness analysis.

A. Linear Exponential Quadratic Guassian Control
Consider the discrete-time linear time-invariant system
Ti41 = Al’t + B’Ltt + Dwt g ~ N(O, In)7

yr = Cy + By,

(Ta)
(1b)

where z; € R"™ is the state of the system; u; € R™ is the
control input; ro € R™ is the initial state; w; € R? ~ N(0, Iq)
is independent and identically distributed random variable;
yr € RP is the controlled output. A, B, C, D, E are constant
matrices with compatible dimensions. The LEQG control
problem entails finding an input sequence w := {u;}2,,
depending on the current value of the state, that is {u; =
pe () 52 where = {uy : R™ — R™}£°, is a sequence of
appropriately defined measurable control policies, such that the
following risk-averse exponential quadratic cost is minimized

2 T

JreQa(p) = lim. 2% log lE exp (2; ; v ytﬂ 2)
where v is a positive constant. For proper formulation of
the optimization problem, the following two assumptions are
standard:

Assumption 1: (A, B) is stabilizable, CTC = @Q > 0, and
Y > Yoo, Where 7o, > 0 is the minimal value of ~ such that for
Y > Yoo the solution to (6) given below exists, or equivalently
there exists a control policy under which (2) is finite.

Assumption 2: The matrices in (1b) satisfy ETE =R 0,
and CTE = 0.
Assumptions 1 and 2 are used throughout the paper. Assump-
tion 1 ensures the existence of a stabilizing solution to the
LEQG control problem. As demonstrated in [19, Theorem
3.8], Voo is finite. In addition, the positive definiteness of @
can be relaxed to @ = 0, as long as (A,C) is taken to be
detectable. Assumption 2 has two parts. The first, positive
definiteness of the weighting matrix on control, is standard
even in LQR. The second one is also a standard condition to
simplify the LEQG control problem by eliminating the cross
term in the cost (2) between the control input u and state
x. Stabilizability of the pair (A, B) implies that there exists
a feedback gain K € R™*" such that the spectral radius
p(A — BK) < 1. Henceforth, a matrix is stable if its spectral
radius is less than 1, and K is stabilizing if A— BK is stable.
A feedback gain K is called admissible if it belongs to the
admissible set W defined in (11).

As investigated by [16] and [35, Lemma 2.1], for any
admissible linear control policy p;(x;) = —Kuy, the cost
admits the closed-form:

Jreoc(K) = —~*logdet(I,, — v 2PxDD™),  (3)
where the matrix P = P} - 0 is the unique solution to

(A— BK)"Ug(A - BK) — Px + Q+ KTRK =0, (4a)

Uk := Px + PxD(v*1, — DT Px D) ' D" Pg. (4b)

Furthermore, the LEQG problem admits a unique optimal
controller u;y = —K*x;, where

K*=(R+ BTU*B)"'BTU* A. (5)

with P* = (P*)T » 0 the unique solution to the generalized
algebraic Riccati equation (GARE)

(A— BK*)'U*(A— BK*) — P* +Q + (K*)TRK* =0,
(6a)

U* = P*+ P*D(y*1, - D" P*D)"'D" P*. (6b)

B. Linear Quadratic Zero-Sum Dynamic Game
The dynamic game can be mathematically formulated as

oo
minmax Jpa (i, v) := Eg, <Z vl ye — Vzthwt> ,

e t=0
subject to (1), (7

where u = {u;}2, and w = {w;}{2, are the input
sequences for the minimizer and the maximizer, respectively,
generated by state-feedback policies p := {p;};2, and v :=
{vi}32,. Note that in (1a), w is no longer a Gaussian random
sequence, but a second control variable, at the disposal of the
maximizer.

For any admissible controller p(x;) = —Kuay, and with
Y > Yo, the closed-form cost is

Ipc(K, v (K)) = max Ipg(— Ky, v) = Tr(Pk),  (8)

where Py is the solution of (4). From [19, Equation 3.51],
it follows that the optimizers for the minimax problem are
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Fig. 1: Robust control design with model mismatch A.

wi(xy) = —K*x; and v/ (xy) = L*x;, where K* is defined
in (5) and L* is given by

L* = (y*I,— D"P*D)"'D"P*(A— BK*).  (9)

Furthermore, (A— BK™) is stable, I, —~72DTP*D » 0, and
(A— BK* + DL") is stable.

Therefore, the minimizer of DG shares the same optimal
controller as the optimizer in the LEQG problem. Also note
that, P is critical for determining the closed-from costs of

Jreqa(K) and Jpa (K, v¥).

C. Robustness Analysis

With w taken as a deterministic input in (1), and taking
any stabilizing feedback p;(x;) = —Kuy, the discrete-time
transfer function from w to y can be expressed as

T(K) := (C — EK)|[zI, — (A — BK)]"'D. (10)
where z € C is the z-transform variable.

Now consider the depiction in Fig. 1, where A denotes the
model mismatch that may be induced by the sim-to-real gap,
and satisfies ||[Ally, < % Thanks to the small-gain theorem
[36]-[38], when subjected to model mismatch, the system
remains stable as long as ||7(K)||3.. < ~. Consequently, the

controller () = —Kay is robust to the model mismatch
A if K lies within the admissible set WV defined as

W= {K e R"""|p(A - BK) <L, [|[T(K)lln. <~}
(1)

As investigated in [19, Theorem 3.8], the LEQG control in (5)
satisfles K* € W, and therefore, it is optimal with respect to
(2) and robust to the model mismatch. This motivates us to
pose the following problem.

Problem 1: Design a learning-based control algorithm such
that near-optimal control gains, i.e. approximate values of K™,
can be learned from the input-state data.

We will first introduce the model-based PO algorithm whose
convergence and robustness properties are instrumental for the
learning-based algorithm.

[1l. MODEL-BASED PoLICY OPTIMIZATION

In this section, by resorting to the PO method, a dual-loop
iterative algorithm is proposed.

A. Introduction of the Outer Loop

The outer-loop iteration is developed based on the New-
ton PO algorithm in [35]. For any K € W, the gradient
VKJ(K) = VKJLEQg(K) = ijDg(K, V*(K)) can be
computed to be

VkJ(K)=2[(R+ BTUxB)K — BTUxA]Sk, (12)

where
Sk =Y [(A—BK + DLk.)"'D
t=0
(I, =y >D"PxD)™'DT(A — BK + DLk ..)".

13)

and

L= (¥’ I, — D" Pg D) 'DTPx(A - BK), (14)

It is noticed that given u; = —Kuwx;, L . is considered as a
worst-case feedback gain for w. ! By the Newton’s method
with a step size of %, to iteratively minimize J(K), the
updated feedback gain is

1
K'= K~ 5(R+ B"UxB) "' Vi J (K)Sy!
= (R+ B"UxB) 'B"UkA.

(15)

Let ¢ denote the iteration index for the outer loop and we
introduce the following variables to simplify the notation

Aj:=A-BK;, Q;:=Q+K!RK;, (16a)

where A; is the closed-loop transition matrix with uw; =
— Kz, and @Q; is the cost weighting matrix. Then, by (4)
and (15), the outer-loop iteration can be expressed as

ATUA; — P+ Qi =0, (17a)
U, := P, + P,D(y*I, - D"P,D)"'DTP,, (17b)
Kiy1 = (R+B"U;B)'BTU, A. (17¢)

In (17), from the policy iteration perspective [33], we consider
(17a) as the policy evaluation step under the worst-case
disturbance and (17c) as the policy improvement step. P; is
the cost matrix of (7) for the controller u; = —K,;x; under
the worst-case disturbance.

As seen in Lemma 3, for each iteration, the controller K;
generated by (17) preserves robustness to model mismatch,
ie. K; € W. P; converges to P* with a globally sublinear
and locally quadratic rate [25, Theorems 4.3 and 4.4]. We
further investigate the convergence rate of (17) and rigorously
demonstrate that P; monotonically converges to the optimal
solution P* with a globally linear convergence rate. The proof
of the following theorem can be found in Appendix B.

Theorem 1: Let H := {Tr(Px) — Tr(P*)|K € W}. For
any h € H and K; € G, where G, = {K € W|Tr(Pk) <
Tr(P*) + h}, there exists a(h) € [0,1), such that

TI‘(PH_l - P*) S a(h) TI‘(PZ‘ - P*),

VieZ,. (18)

"Henceforth, we write pt(x;) = —Kxy simply as uy = —Kazy, and
likewise for w, as appropriate.
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Since Pi-i—l — P* > 0 and ||PL'+1 —P*HF < TI‘(PH_l —P*) <
/n||Piy1 — P*||F (Lemma 2), the following inequality holds

|Pix1 — P*|lp < Vo (h)|| Py — P*||p. (19)
Since Jpe(K;, v*(K;)) = Tr(P;) from (8), it follows that

Ipc(Kit1, v (Kiq1)) — Ipa(p*,v*) <
a(h)[Ipc (K, v (K;)) — Ipa(p*,v")].

Hence, the cost of the dynamic game (under the worst-
case disturbance) converges to the saddle point at a linear
convergence rate a(h) € [0, 1).

In the following subsection, given K;, by maximizing
Jpa(K;,v) over v, the inner-loop iteration is developed to
get the worst-case disturbance v*(K;).

(20)

B. Introduction of the Inner Loop

Given the feedback gain of the minimizer K € W, the inner
loop iteratively finds the optimal controller for the maximizer
w*(K) by solving ?

max Ipa (K, w)

Zyt Y — 7wl w, @1)

subject to x4 1 = (A — BK)x; + Dwg,xg ~ N (0, 1,,).

The optimal solution is w;(K) = Lk .z where Lg . is
defined in (14). For any admissible controller w; = Lx; (with
(A — BK + DL) stable), by [5] the closed-form cost is

Ipa(K,L) = Tr(Pxk.1), (22)
where Pk 1, = P ; > 0 is the solution to
(A—BK + DL)" Py 1,(A — BK + DL)
~Pg+Q+K'RK —~+*LTL = 0. @3)
The gradient of V  pa (K, L) is
ViJIpa(K, L) =2[(v*1, — D" Pk D)L 24
—D" Pk (A — BK)| Sk 1,
where
o
Sk =Y (A-BEK+DL)'[(A- BK + DL)"]". (25)
t=0

By Newton’s method, the updated feedback gain is
1
L'=1- 5(72@ — D" Py D) 'V Ipa(K,L)S!,
= (y*I, — D" P D) 'D" Py 1 (A — BK).  (26)

Let 7 denote the iteration index of the inner loop, and we
introduce the following variables to simplify the notation:

Aij=A-BK;+DL;;Q; :=Q+ K!RK;, (27a)

Aj.=A—-BK;,+DL;, A" :==A—BK"+ DL*. (27b)
By (23) and (26), the inner loop is designed as

Lijy1 = (v*I,— D"P,;D)"'D" P, ; A;. (28b)

2Here and below, we have used the control w instead of the policy v, for
simplicity of the notation.

From the policy iteration perspective, we consider (28a) as
the policy evaluation step and (28b) as the policy improvement
step for the inner loop. P; ; is the cost matrix of Jpa (K, L; ;)
with the state-feedback policies p(x;) = —K;x; and vy (xy) =
L; jx;. The inner-loop policy iteration possesses the mono-
tonicity property and preserves stability, that is the sequence
{P,; };‘;1 is monotonically increasing and upper bounded by
P;,and A— BK;+ DL, ; is stable. These results are stated in
Lemma 10. We prove that the inner loop globally and linearly
converges to the optimal solution P;. The details of the proof
are given in Appendix C. This brings us to the following
theorem, whose proof is in Appendix C.

Theorem 2: Given L; ;1 = 0, for any K; € W, there exists
a constant $(K;) € [0,1), such that

Tr(P; — P j41) < B(KG) Te(Py — Piy), Vj€Zy. (29)
Based on Theorem 2, we can further obtain that
|Pi = Pijialle < VnB (K)||Pi = Piallp.  (30)
In addition, since jDG(Ki, Lz,]) = TI‘(P%J) and
JIpc (K, L; ) = Tr(P;), from Theorem 2, we have
Ipc(Ki, Li «) — Ipc (K, Li j41) < a1

B(K;)[Ipc (K, Li+) — Ipa (K, Li ;).

Hence, the cost of the dynamic game with K; is monotonically
increasing and converges to the maximum at a linear rate
B(K;) €10,1).

The dual-loop policy iteration algorithm is in Algorithm 1.
Ideally, P; ; generated by the inner loop converges to P;, and
then the control gain for the minimizer is updated to K;; by
(17¢). In practice, the inner loop stops after j iterations, and
PZ j» instead of P, is used for updating the control gain at line

. K; j denotes the control gain updated at the outer loop.

C. Convergence Analysis for the Dual-Loop Algorithm

For the dual-loop algorithm, the inner-loop iteration linearly
converges to the optimal solution Px with the rate dependent
on K. Since K is updated iteratively, it is required that the
inner loop enters the given neighborhood of Py within a
constant number of steps, regardless of K. Otherwise, as the
outer-loop iteration proceeds, the required number of inner-
loop iterations may grow explosively, thus making the dual-
loop algorithm not practically implementable. The uniform
convergence rate of the overall algorithm is given in the
following theorem, whose proof is given in Appendix D.

Theorem 3: For any h € ‘H, K € Gy, and € > 0, there
exists j(h,€) € Z, independent of K, such that for all j >
J(h,€), |Pk; — Pxllr <€

IV. ROBUSTNESS ANALYSIS FOR THE DUAL-LOOP
ALGORITHM

In the previous section, the exact PO algorithm was in-
troduced in the sense that an accurate knowledge of system
matrices was required to implement the algorithm. In practice,
however, we do not have access to such an accurate model.
Therefore, Algorithm 1 has to be implemented in a model-
free setting. For example, we can approximate the gradient
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Algorithm 1 Model-Based Policy Optimization
I: Initialize Ky ; € W
2: Seti,j € Ly
3: for 1 < i do
4: Initialize j =1 and L;; =0

5 ;=CTC+ KT RK =

6: for j <jdo

7: z,] =A- BKL& + DLiJ'

8: Get P; ; by solving (28a)

9: Update L; j+1 by (28b)

10: j—i+1

11: end for

12: Ui,j = Pi,j + Pi,jD(’y2Iq — DTPiJD) 1l)TPlj
13: Ki-‘rlJ = (R + BTUijB)_lBTUijA
14: 14—1+1

15: end for

by zeroth-order method or approximate the value function
(parameterized by cost matrix Px) by approximate dynamic
programming. The updates for the controllers in (17c¢) and
(28b) are subjected to noise. In this section, using the well-
known concept of input-to-state stability in control theory, we
will analyze the robustness of the dual-loop policy iteration
algorithm in the presence of disturbance.

A. Notions of Input-to-State Stability
Consider the general nonlinear discrete-time system

Xet+1 = f (s o), (32)

where x, € X, pr € V, and [ is continuous. y. is the
equilibrium state of the unforced system, that is 0 = f(x.,0).

Definition 1: [39] A function £(-) : Ry — Ry is a K-
function if it is continuous, strictly increasing and vanishes at
zero. A function x(-,-) : Ry x Ry — Ry is a L-function if
for any fixed ¢ > 0, k(-,t) is a KC-function, and for any r > 0,
k(r,-) is decreasing and x(r,t) — 0 as t — oo.

Definition 2: [40] System (32) is ISS if there exist a KL-
function x and a C-function £ such that for each input p €
and initial state xy; € X, the following holds

= Xell: k) +&(lplle).  (33)

Ik = Xell < &(lIx2

for any k € Z..

Generally speaking, input-to-state stability characterizes the
influence of input p to the evolution of state . The deviation
of the state x to the equilibrium is bounded as long as the
input p is bounded. Furthermore, the influence of the initial
deviation ||x1 — X.|| vanishes as time tends to infinity.

B. Robustness Analysis for the Outer Loop

The exact outer loop iteration is shown in (17), and in the
presence of disturbance, it is modified as

ATUA; — P+ Qi =0, (34a)
U :]52-+}A7iD(’y2Iq *DTPiD)ilDTPi’ (34b)
Kiy1 = (R+ BTU,B)'BTU; A+ AK; 4, (34c)

where A K is the disturbance at the 4th iteration, and “hat” is
used to distinguish the sequences generated by the exact (17)
and inexact (34) outer-loop iterations. By considering (34) as
a discrete-time nonlinear system with the states P, and inputs
AKj;, it can be shown that (34) is inherently robust to AK in
the sense of small-disturbance ISS [13], [14].

Theorem 4: Given K, € Gy, there exists a constant d(h) >
0, such that if [|AK||o < d(h), (34) is small-disturbance ISS.
That is, there exist a L-function x1(-,-) and a K-function
&1(+), such that

1P = P*|lp < ma([[PL = P¥llp, 1) + &([AKlo). (35)
We note that AK = {AK;}5°, is a sequence of disturbance
signals, and its {ec-norm is [|[AK||lec = sup;cy, [|AK;[|F.

If the outer-loop update in (17) can be computed exactly,
which requires P; to be exact, then the iterations of the exact
update will not leave the admissible set WV. In contrast, the
dual-loop algorithm (Algorithm 1) has access only to P 3,
which is close to P; but not exact. There is the possibility that
this inaccuracy could drive the outer-loop iteration away from
the optimal solution or even beyond the admissible region W.
As a direct corollary to Theorems 3 and 4, we state below that
Algorithm 1 can still find a near-optimal solution if 7 and j
are large enough.

Corollary 1: For any h € H, K1 € Gy, and € > 0, there
exist i(h,€) € Zy and j(h,€) € Z, such that || P; ;- P*||p <
€.

C. Robustness Analysis for the Inner Loop

As a counterpart of the inexact outer-loop iteration, the
inexact inner-loop iteration can be developed as

AT P A — P+ Qi —7*LE;Lij =0, (36a)
Li,j+1 = (’y Iq — DTPZ'JD) 1DTP1'7in + ALi_j_;,_l. (36b)

Here, AL; j41 denotes the disturbance to the inner loop iter-
ation and “hat” emphasizes that the corresponding sequences
are generated by the inexact iteration. With the inexact inner
loop at hand, the following theorem shows that the inner-loop
iteration (36) is robust to disturbance AL; in the sense of
small-disturbance input-to-state stability [13], [14].

Theorem 5: For any K, € W, there exists a constant
e(K;) > 0, such that if |AL;|lec < e(K;), (36) is small-
disturbance ISS. That is, there exist a KL-function ra(-, ")
and a IC-function &»(-), such that

1Pi; — Billr < k2(l|Pig — Billry ) + &2([|ALilloo). (37)

We note that AL; = {AL; ;}32, is a sequence of distur-
bance signals, and [|AL;|[oc = supjez, [|AL; ;|| . The results
of these last two theorems guarantee robustness of the dual-
loop PO algorithm. Literally speaking, when the dual-loop PO
algorithm is implemented in the presence of disturbance, it still
finds the near optimal solution, and the deviation between the
generated policy and the optimal one is determined by the
magnitude of the disturbance. To be more specific, as iteration
1 (7 for inner loop) goes to infinite, the cost matrix P, (PZ )
enters a small neighborhood of the optimal solution P* (P)).
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V. LEARNING-BASED OFF-PoLicy PoLicy
OPTIMIZATION

We will develop a learning-based algorithm to learn from
data a robust suboptimal controller (i.e. an approximation of
K*) without requiring any accurate knowledge of (A, B, D)
under the setting of zero-sum dynamic game with additive
Gaussian noise. The input-state data from the following system
will be utilized for learning:

Ti41 = Axt + But + D’U}t + Vt, (38)

where v; ~ N(0,%) with ¥ = £7 = 0 denotes independent
and identically distributed noise.

A. Learning-Based Policy Optimization

Suppose that the exploratory policies for the minimizer and
maximizer are

Uy = _Kexpxt + Jlfla

wy = Lewpmt + 02517

61 NN(Ovlm)a
52 NN(Ovlq)’

where f(exp € R™*™ and I:exp € RI*"™ are exploratory
feedback gains, and o;,02 > 0 are the standard deviations

(39a)
(39b)

of the exploratory noise. Let z; := [z}, u],w]]|T. For any
given matrices X € S", let
Ppz(X) Tou(X)  Daw(X)
Pwz(X) Tuu(X) Tuw(X)
(40)
ATXA+Q  ATXB ATXD
= BTXA BTXB+R BTXD
DTXA DTXB  DTXD —~%I,

Along the trajectories of system (38), xtTHthH can be

computed to be
i Xwepr = 2/ T(X) 2 — 1 + vf Xoy @)
+ 20l X (Az; + Buy + Dwy).

where r; ;= xtTth + utTRut — 72thwt is the stage cost of
the zero-sum dynamic game. Taking the expectation of (41)
results in

E [2/T(X)z + Tr(EX) — ry — 2y X2 ]ze] = 0. (42)
To simplify the notations, let

(43)
(44)

Z = [veev(z) T, 1)
O(X) := [vecs(T'(X))T, Tr(2X)]T.
By pre-multiplying (42) with z;, one can obtain

E [ZtEtTG(X) — 2Tt — 2t Vecv(ost+1)T VeCS(X)|Zt] =0.
(45)

Assumption 3: There exists an ergodic stationary probabil-
ity measure 7 on R"T™*4¢ for system (38) with controller
(39).

Remark 1: Assumption 3 is widely used in approximate
dynamic programming and in the RL literature [41], [42].

Assumption 4: B (22} | and Er [2.2]'] are invertible.

Remark 2: Assumption 4 is reminiscent of the persistent
excitation (PE) condition [43], [44]. As in the literature of

data-driven control [10], [45], one can satisfy it by means of
added exploration noise, such as sinusoidal signals or random
noise.

Under Assumptions 3 and 4, taking the expectation of (45)
with respect to the invariant probability measure 7, we have

H(X) = d' = vecs(X) + 1. (46)
where
[ORES ]Eﬂ- [_ZtitT} 5 == Eﬂ- [Et VGCV(QL't+1)T] s (47)
U =K, [Zr].

Therefore, I, (X) and I'(X) can be reconstructed as

vees(Fyw (X)) = [(I)T]nhanVQCS(X) + [(I)T]m,nz U, (48a)

vees(T'(X)) = [fI)T]ljnZEvecs(X) + [@T]anllf, (48b)
where
p = ntmtogtmtetl) o (g+1)g
o (ntmtgntmtqg+tl)
9 = .
2

In practice, we use a finite number of trajectory samples to

estimate @, =, and W, that is,

. 1 o

b, = — ZtZy
t=1

. 1 <
\IJT == E ZiTy.
T
t=1

By the Birkhoff Ergodic Theorem [46, Theorem 16.2], the
following relations hold almost surely

(1

1 T
— - T
= E zZrveev(xiyr)',
t=1

(50)

lim 2, ==, lim ¥, = V.
T—00 T—00

lim &, = ®, (51a)

T—00
Then, by (48b), I'(X) is estimated by a data-driven approach
as follows:

vees(I'(X)) = [®1]1,0, =, vees(X) + [@1]10, U7, (52)

With the data-driven estimate I'(X), we will transform
model-based PO in Algorithm 1 to a learning-based algorithm.
Considering (40), we can rewrite (28a) as

L, =K LTI0(Py ), =K LT = Py =0 (53)
Vectorizing (53) and plugging (46) into (53) result in

{([Ina _K;T» L;F]] @ [Inv _KiTv LZJ]) Tn+m+q

[®1]; ,,2 — T, } vecs(P; ;) = (54)

— ([, =K LT}) @ [T, = KT, LT)]) Trpmeg[®']10, 7,

where T;, and T),1,,, are the duplication matrices defined
in [47, pp. 56]. One can view (54) as a linear equation
with respect to vecs(FP; ;). Hence, at each inner-loop iteration,
vecs(P; ;) can be computed by solving (54). With P ;, ac-
cording to (28b) and (40), the feedback gain of the maximizer
can be updated as

Li,jJrl = _Fww(Pi,j)_l(me(Pi,j) - qu(B,j)Ki)- (55)
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Next, we will develop a data-driven approach for the outer-
loop iteration. According to the expression of I',,,, (X)) in (40),
and the duplication matrices defined in [47, pp. 56], we have
vees(Tyw (X)) = TqT(DT ® DT, vecs(X) — WQT; vec(Iy).

(56)
Since (48a) and (56) hold for any X € S”, it follows that
THD" @ DT, = [@1]n, 1, = (57)
Then, from (57), we obtain

(T T (@ 0nS(TET) ™ = T (DT @ DTY(THT (58)

For any Y € S9, let

Q(Y)=DYDT. (59)

According to the duplication matrices defined in [47, pp. 56]
and (58), it holds
vees(Q(Y)) = T (D @ D)T, vecs(Y)

= (T)T,) 'ET @ | (TTT,)vecs(Y).
Now, (Y") can be computed by (60) without knowing D. By
(17c), the feedback gain for the minimizer is updated as

Ui = P, — PQ(Two(P) ™ MP,;
Ki+1 - Fuu(Ui)ilrum(Ui)

The learning-based PO algorithm is given in the table
labeled as Algorithm 2. It should be noticed that in Algorithm
2, the system matrices (A, B, and D) are not involved
in computing vecs(P; ;), Li j+1 and K,yq. In addition, the
updated controller K; is not applied for the data collection.
Therefore, it is a learning-based off-policy algorithm for PO.

(60)

(61)

B. Learning an Initial Admissible Controller

In Algorithm 2, an initial admissible feedback gain is
required to start the learning-based PO algorithm. In this
section, we will develop a data-driven method for learning
such an initial feedback gain.

Taking the expectation of (38) with respect to the invariant
probability measure 7 in Assumption 3, we have

Er [/ — 214, B,D]"] = 0. (62)
Pre-multiplying (62) by z; and using Assumption 4 yield
[4,B, D" = ()=, (63)

where
@l = ]Eﬂ- [ZtZtT} 5 E/ = Eﬂ— [tht-‘rl] . (64)

In practice, we can utilize a finite number of trajectory samples
to estimate ®’ and =’, i.e.

T T
& 1 ooz 1 T
= ; 2ty == ; Zt(l't+1) .
t=1 t=1

By the Birkhoff Ergodic Theorem [46, Theorem 16.2], the
following relations hold almost surely

lim & =&, lim = =%’ (66)

T
T—00 T—00

(65)

Algorithm 2 Learning-Based Policy Optimization

1: Initialize K; € W

2: Set ZJ S Z+.

3: Set the length of the sampled trajectory 7, and the explo-
ration variances o and o2

4: Collect data from (38) with exploratory input (39)

5: Construct <i>7, ET, and \i/T defined in (50)

6: Get the expressions of f(X) and Q(X) by (52) and (60).

7

8

9

. for i < i do

Set i@l =0
for j < j do
10: Get Pi’j by solving (54)
11: Update L; ;11 by (55)
12: j—Ji+1
13: end for
14 Update K; 41 by (61)
15: 1 1+1
16: end for

By Assumption 4, (66) and the definition of limit, if 7 is large
enough, @/ is invertible almost surely. As a result, we obtain
the estimates of the system matrices

[AT) B-,—, -DT]T = (é;)TéT (67)

With the identified system matrices, the linear matrix inequal-
ities (LMIs) in (68) can be solved for an initial admissible
controller design. The admissibility of the obtained initial
controller is guaranteed by Theorem 6 below, which is proved
in Appendix G.

Theorem 6: There exist € > 0, p > 0, and 7*(e, pt) > 0,
such that for any 7 > 7*(e, i), the following LMIs

-w * * *
0 —, *
AW-BV D. -w o« |7 (8
CW — EV 0 0 —I,]
1, * * ]
— W I, x| <0, (68b)
Voo 0 Ly
have a solution and K = VW ! that belongs to W almost

surely.

The following corollary shows that whenever the LMIs (68)
have a solution, the controller derived is admissible, which can
be directly obtained from the proof of Theorem 6.

Corollary 2: For any € > 0, any g > 0, and any 7 >
7*(e, ), if the LMIs (68) have a solution, then K = VW 1!
belongs to W almost surely.

VI. NUMERICAL SIMULATIONS
A. An lllustrative Example

We apply Algorithms 1 and 2 to the system studied in [48]
with the same A and B matrices as there. The matrices related
to the output are C' = [I3,03x3]7 and E = [03x3, I3]7. The
H oo norm threshold is v = 5. 7 = 10 and j = 20.

The robustness of Algorithm 1 in the presence of dis-
turbance is validated first. For each outer and inner loop
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Fig. 2: Robustness of Algorithm 1 when ||AK||o = 0.09 and
[|AL;|| s = 0.09.
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Fig. 3: Using Algorithm 2, the solutions of each iteration
approach the optimal solution, and the H., norm is smaller
than the threshold.

iteration, the entries of the disturbances AK; and AL,
are taken as samples from a standard Gaussian distribution
and then their Frobenius norms are normalized to 0.09. The
algorithm is run independently for 50 times. The results are
shown in Fig. 2, where the bold line is the mean of the
trials and the shaded region denotes the variance. It is seen
that with the disturbances at both the outer and inner loop
iterations, the generated controller and the corresponding cost
matrix approach to the optimal solution and finally enter a
neighborhood of the optimal controller K* and cost matrix
P, respectively. The H~, norm of the closed-loop system is
smaller than the threshold throughout the policy optimization.
These numerical results are consistent with the developed
theoretical results in Theorems 4 and 5.

Algorithm 2 is implemented independently for 50 trials to
validate its performance. The length of the trajectory samples
is 7 = 5000. The standard deviation of the system additive
noise is > = I3. The standard deviation of the exploratory
noise is o1 = oy = 1. The relative errors of the gain matrix
and cost matrix are shown in Fig. 3. The proposed off-policy
RL algorithm can still approximate the optimal solution when
the system is disturbed by an additive Gaussian noise.

B. Cart-Pole Example

We next consider the cart-pole system in [49], where the
inverted pendulum is hinged to the top of a wheeled cart that
moves along a straight line. The system is discretized under
the sampling period At = 0.01sec. Considering the noise for
the system, the system can be described by a linear system
with x = [s, $, ¢, Q'S}T,

1 0.01 0 0 0

0 1 -001 O 0.01
A= 0 0 1 0.01 B = 0 ’

0 0 0.16 1 —0.015

C = [I4,01x4]T, D = 0.00114, E = [01x4, 1]. The Ho, norm
threshold is v = 10.

The robustness evaluation of Algorithm 1 is shown in Fig. 4,
where the mean-variance curves are plotted for 50 independent

Gain Matrix Error
— I = K[l /|1 []#

Cost Matrix Error H. Norm

— [T (K]

—IIZ = P*ll¢/I1P*lI¢

Error

Norm
o
b -

0
12 3 4 5 6 7 8 910
Iterations

0
1.2 3 4 5 6 7 8 9 10
Iterations

1.2 3 4 5 6 7 8 9 10
Iterations

Fig. 4: For the cart-pole system, the robustness of Algorithm
1 when ||AK || = 0.7 and ||AL;||s = 0.1.

Gain Matrix Error Cost Matrix Error H.. Norm

—|IKi = K*||p /|| K*||# — 1P, = P*|¢/||P||¢ — T ()l
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1.2 3 4 56 7 8 9 10
Iterations

123 45678910
Iterations

0
1.2 3 4 5 6 7 8 9 10
Iterations

Fig. 5: For the cart-pole system, as the iteration of Algorithm
2 proceeds, the gain and cost matrices approach the optimal
solution, and the H ., norm is smaller than the threshold.

trials. At each iteration, the entries of the disturbances AK;
and AL; ; are randomly sampled from a standard Gaussian
distribution, and then ||AK;| p and ||AL; ;||r are normalized
to 0.7 and 0.1, respectively. The relative errors approach zero
even in the presence of the disturbance, demonstrating the
small-disturbance ISS properties of the outer and inner loops
in Theorems 4 and 5. In addition, the H ., norm of the system
is below the given threshold, and the robustness of the closed-
loop system is guaranteed during the iteration.

When the matrices (A, B, D) are unknown, Algorithm 2
is implemented independently for 50 times. The length of the
sampled trajectory is 7 = 10000. The standard deviation of the
system additive noise is ¥ = 0.1/4. The standard deviation of
the exploratory noise is 01 = o9 = 20. It is seen from Fig. 5
that using the noisy data, the learning-based PO developed in
Algorithm 2 still finds a near-optimal solution.

VIlI. CONCLUSIONS

In this paper, we have proposed a novel dual-loop policy
optimization algorithm for data-driven risk-sensitive linear
quadratic Gaussian control whose convergence and robustness
properties have been analyzed. We have shown that the it-
erative algorithm possesses the property of small-disturbance
input-to-state stability, that is, starting from any initial admis-
sible controller, the solutions of the proposed policy optimiza-
tion algorithm ultimately enter a neighbourhood of the optimal
solution, given that the disturbance is relatively small. Based
on these model-based theoretical results, when the accurate
system knowledge is unavailable, we have also proposed a
novel off-policy policy optimization RL algorithm to learn
from data robust optimal controllers. Numerical examples are
provided and the efficacy of the proposed methods are demon-
strated by an academic example and a benchmark cart-pole
system. Future work will be directed toward investigating the
input-to-state stability of standard gradient descent and natural
gradient descent algorithms. In addition, by invoking small-
gain theory, the application of learning-based risk-sensitive
LQG control to decentralized control design of complex
systems will be studied.
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APPENDIX A: USEFUL AUXILIARY RESULTS

Some fundamental lemmas are introduced to assist in the
development of the results in the main body of the paper.
Lemma 1 (Bounded Real Lemma): Given a matrix K €
R™*™ and the transfer function 7 (K) for the linear system
(1) under Assumptions 1 and 2, the following statements are
equivalent:
1) K is stabilizing and |7 (K)]|j2. <7
2) The algebraic Riccati equation (4) admits a unique stabiliz-
ing solution Py = P% > 0 such that i) Iq—'y*2DTPKD = 0;
ii) [A — BK + D(y*I, — DT P D)"'DT P (A — BK)] is
stable;
3) There exists Px = PE = 0 such that

I, — v 2DTPxD » 0, (A.1)
(A— BK)"Ug(A - BK) — Pk +Q + K'RK < 0.
4) There exist W = W7 = 0 and V = KW, such that

-W * * *
0 -2, * *
AW -BY D —-W <0 (A-2)
CW — EV 0 0 -,

Proof: The first three statements are from [35, Lemma
2.7]. The last one follows from Schur complement lemma. W
Lemma 2: For any positive semi-definite matrix P € S,
|P|lp < Te(P) < v/n|[P||p and [[P[| < Tr(P) < n||P|.
Proof: Let 0y > --- > o0, denote P’s singular values.
Then, [|P||r = /S, 07, Te(P) = S0, oy, and |[P|
o1(P). Hence, the lemma holds by noting that >, o7
(Z?Zl 0;)? < nZ?Zl o? and 0 < Z?:l o; < noy.

mIA

APPENDIX B: PROOF OF THEOREM 1

The following lemma shows that the cost matrix P; gener-
ated by the outer-loop iteration (17) is monotonically decreas-
ing and all the updated feedback gains are admissible given
an initial admissible feedback gain.

Lemma 3: Under Assumptions | and 2, if K; € W, then
for any ¢ € Z,

1) K; e W,

) Pi=m- =P =Py == P

Proof: The statements 1) and 3) are shown in [35,
Theorem 4.3 and Theorem 4.6]. The statement 2) follows from
[35, Equation (5.27)]. [ |

Lemmas 4-8 provide the preliminaries for Theorem 1, and

further details on their proofs can be found in [50].

Lemma 4: For any K € W and K' = (R +
BTUrB)"'BTUk A, we have

K' — K* = R'BY(Ax) "(Px — P*)A*, (B.1)

Ag =1, + BR BT Px — v 2DDT Py. (B.2)

Proof: By the expression of Uy in (4b), we have

(R+B"UxB) 'B"Ux A= R 'BTPr A A (B3)

Using the expressions of K’ and K* in (5), and noting that
A* = (A*)71 A, we can obtain (B.1). ]

The following lemma presents the expression of the differ-
ence between Ux and U™.

Lemma 5: For any K € W, (U — U*) satisfies
U —-U"
= (I, =y 2P*DD")"Y(Px — P*)(I, — vy 2DDT P*)~!
+ (I, =y 2P*DD") Y (Px — P*)D(v*I, — D" Px D)™ !
DT (Pg — P*)(I,, —y 2DDTP*)~! (B.4)
Proof: The variable U™ in (6) can be rewritten as
U* = —(In —~ ?P*DDT) (P — P*)(In —» 2DDT P*)~!
+(In — 7 ?P*DD") Y (Pg — 4 2P*DD" P¥)
(In — v 2DDT p*)~1 (B.5)
To simplify the notation, define S as
Sk :=Ug — (I, — v *P*DD") " (Px — v *P*DD" P*)
(I, —y2DDTP*)~1, (B.6)
By noting Uy — Pg = PKD(WQLJ — DT P D)~'DT Py,
completing the squares, and using the matrix inversion lemma,
it can be verified that
(I, — v ?P*DD")Sk (I, — v >DD* P*)
= (Px — P*)D(v*1, — D" Px D)"' DT (Px — P*).
The proof is thus completed by following (B.5) and (B.7). &
Lemma 6: For any K € W, Py is continuous with respect

to K, where Py is the unique positive-definite solution to (4).
Proof: Consider the function

F(K,Pg):=(A—BK)"Ug(A - BK) — Px
+Q+ K"RK.
Let F(vec(K),vec(Pk)) := vec(F(K, Pk)). By following
[51, Theroem 9] and [35, Equation (B.10)], we have
OF (vec(K), vec(Pk))
0 vec(Pg)
® (A~ BK + DLg )" — L.

Since K € W, by Lemma 1, (A — BK + DLk ) is stable.
Since 5(A — BK + DLg,) < 1, 2F0etiaecBol
invertible. By the implicit function theorem, Py is continuous
with respect to K for any K € W. [ |
Lemma 7: Let K € W, Py be the positive-definite solution
of (4a), and K’ = (R+ BTUxB) 'BTUkA. Then, (K —
K)TR(K — K') = 0 is equivalent to K = K*.
Proof: (=): (K—K")TR(K—K') = 0implies K = K.
It follows from (4a) that Px = P% > 0 is the solution of (6).
Due to the uniqueness of the positive-definite solution to (6),
it is deduced that P = P* and K = K*.
(«<): Since K = K* and Py = P*, it follows that K’ =
(R+ BTUxB) 'BTUx A = K. Hence, we have K = K'.
|
Lemma 8: For any h € H, G, = {K € W|Tr(Px) <
Tr(P*) + h} is compact.
Proof: Tt can be checked that G, is bounded and closed.
The compactness of Gj, is demonstrated using the Heine—Borel
theorem [52, p. 81]. |
Lemma 9: For any h € H and K € Gy, let K/ =
(R + BTUxB) 'BTUKA, and Er = (K' — K)T(R +
BTUkB)(K' — K). Then, there exists a(h) > 0, such that

[Pk = P*||lr < a(h)| Ex|p- (B.10)

B.7)

(B.8)

=[(A— BK + DLk )"

(B.9)
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Proof: 1t follows from (4) that
(A— BK")TUg(A - BK*) — Px + Q + KTRK
+ ATUgB(K* — K) + (K* — K)'BTUK A
+ K'BT"UxBK — (K*)'BT"UxBK* = 0.

(B.11)

Subtracting (6a) from (B.11), and considering BTUx A =
(R+ BTUgB)K', we have

(A— BK*)T(Ux —U*)(A - BK*) — (Px — P*) + Eg

—(K' = K" (R+ B"UkB)(K' — K*) = 0. (B.12)
It follows from (I, — v 2DDTP*)~Y(A — BK*) = (A —
BK* + DL*) = A* and Lemma 5 that

(AT APk (A*) — APy + Ex

—(K' - K*)"(R+ B"UgB)(K' — K*) (B.13)

+ (AT AP D(121, — DT P D) ' DT APK A* = 0,

where APy := Pg — P*. According to [53, Theorem 5.D6],
we have

(o)
APk 2> (A" [Eg + (A")"APgD
t=0
(v*I, — D" Pk D) ' DT APk A*] (A*)".

(B.14)

Taking the trace of (B.14) and using the cyclic property of
trace and trace inequality in [54, Lemma 1] yield

Tr(APx) < Tr | Y (A)(A) Y Ex | +Tr > (A7)
t=0 t=1

(AT AP D(v*1, — D" Px D) ' D" APk ]|
< ay Tr(Eg) + ayy 2 Tr[APg

(I, =y 2DD* Pg) ' DDT APy], (B.15)

where
ay = || (AFA)TH, ag = D (A")F(A)THF.
k=0 k=1

By Neumann series, for any X € R™*™ with || X|| < 1,
(I —-X)7Y < ﬁ Therefore, for small AP, we have

I(Zn =y ~2DDT Pre) ™|

= (I, =y 2DDTP* —y2DDTAPK)™'|  (B.16)
|(I, =y 2DD"P*)~|]
- 1 — a3||APK||
where
as =y 2||(I, — v 2DDTP*)~1|||DDT]|. (B.17)

Using the trace inequality in [54, Lemma 1], it follows from
(B.15) and (B.16) that

(1_ azas||APk||
1 — as||APk||

Therefore, if

) Tr(APk) < a1 Tr(Eg).  (B.18)

|APk] < =: hq, (B.19)

as + 2asas

it follows from Lemma 2 that

When [|APk|| > hy, if follows from Lemma 7 that
|Ex|lr # 0. Since Ej is continuous with respect to
K (Lemma 6) and the set G, N {K € W||APk]| >
hi} is compact (Lemma 8), there exists a4(h) > 0, such
that ||Ex||r > a4(h). Hence, ||APk|lr < Tr(APg) <
#(h)HEKHF By taking a(h) = max(2a1+/n, %(h)), we
obtain that ||APk||r < a(h)||Ex||r. |

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. We can rewrite (17a) as

AL U Aji + K'B"U,BK; — K[, \B"U;BK; 11
+ (Kip1 — K)"BTUA+ ATU,B(Kiy 1 — K;)
- P +Q+K!'RK; =0.

(B.21)

Since (R+ BTU;B)K;,1 = BTU; A from (17c), by complet-
ing the squares, we have

AL UAii — P+ Q+ K \RK; 11 + E; =0, (B.22)

where Ei = EKL = (KiJrl —Kl)T<R+BTU,LB)(Kl+1 —K,L)
Writing out (17a) for the (i+ 1)th iteration, subtracting it from
(B.22), we can obtain that

AL (Ui = Uig1)Aiy1 — (P — Piy1) + B; = 0. (B.23)
From (17b) and using [35, Lemma B.1], it holds
U1 = (I, — v 2P, DDT) 1Py
= U; — (I, =y 2Pi1DDT) (P, — Piy1) (B.24)
(I, =y 2DDTP, 1)1,
Combining (B.23) and (B.24), we have
Al (In =y 2Py DDT) (P = Pigq) (B.25)

(In — 7_2DDTP1'+1)_1A1'+1 - (Pl - PiJrl) + Ez j 0.
Considering the expression of L;11 . in (14), we have

(In =y 2DD"Piy1) ' A

= [I, + v *DD" P i1 (I, — v *DD" Piy1) '] Aia

— A, (B.26)

As a consequence, (B.25) can be rewritten as

Al (P = Piy1)Ais1s — (P — Piy) + E; 20, (B.27)

By Lemma 3, it follows that { P;} is monotonically decreas-
ing and Tr(P;) < Tr(P,) for any ¢ € Z,. Hence, given

Ky, € Gn, K; € Gy, for any i € Z,. Following (B.27) and
[53, Theorem 5.D6], we have

(oo}

(P; — Piy1) = Z(Agl,*)tEiAgH,*
t=0

Subtracting P* from both sides of (B.28) and taking the trace
of (B.28), we have

Tr(Py1 — P*) < Tr(P; — P*) — Tr(E;)

< Te(P; = P7) = ||EillF,

(B.28)

(B.29)
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where the last inequality is from Lemma 2. Considering
Lemmas 2 and 9, (B.29) can be further derived as

1
Tr(Py1 —P)<([1— —— ) Tx(P,— P*). (B.30
i 7)< (1= g ) B - ). @20
The theorem is thus proved by setting a(h) = 1 — ﬁ(h)

From Lemma 3, P* < P, < P, and thus 0 < Tr(P;yq —
P*) < Tr(P; — P*). As aresult, a(h) € [0, 1).

APPENDIX C: PROOF OF THEOREM 2

Given an admissible feedback K € W, and starting from
Lk, = 0, the inner-loop iteration is

A?J'PKJAKJ = Pgj+Qk — yzL};’jLKyj =0
L1 = (7*I, = D" P ;D) D" Py j A

(C.1a)
(C.1b)

Recall that Qx = Q + K"RK, Ax = A— BK and Ak ; =
A — BK + Lk ;. The following lemma states the monotonic
convergence of the inner-loop iteration.

Lemma 10: Suppose that the inner loop starts from the
initial condition Ly, = 0. For any K € W, and j € Z,
the following statements hold

1) Ak j:=A— BK + L is stable;

2) Pk == Pgj1=Pgj; == Pga;

3) hmj*)OOHPKJ — PK”F = 0 and hmJ%OOHLK’j —

Li.|lr=0.
Proof: The lemma can be proved by following [8]. H

Lemma 11: Given K € W, let L be admissible, i.e. A —
BK + DL is stable, and recall from (26) that L' = (v2I, —
DTPK,LD)_lDTPKJ,AK, where PK,L is defined in (23) .
Define Ex 1, := (L— L") (v*I,— DT Pg 1 D)(L—L'). Then,
there exists a constant b(KX') > 0, such that

Tr(Pr — Pr,r) < b(K)| Ex,Ll; (C.2)
and
b(K) :=Tr | Y (Ax.)'(Af.)" (C.3)
t=0
Proof: Subtracting (23) from (4a) results in
Aq;;,*(PK — Prr)Ark s — (Px — Pr.p)+ Er,.— 4
(Lgs— L)' (%I, — D" P D)(Lg.—L')=0.
As Ak . is stable, by [53, Theorem 5.D6] we have
Pg — Pgp = Z(A};"*)tEK,L(AK,*)t- (C.5)

t=0
Taking the trace of (C.5) and using the cyclic property of the
trace and [54, Lemma 1], we can obtain (C.2). [ |

Now, we are ready to prove Theorem 2.

Proof of Theorem 2. Let Ex; = Exr, = (Lij 1 —
LK)j)T(’yQIq — DTPK’jD)(LK)j+1 — LK,]) Subtracting the
jth iteration of (C.la) from (C.la) at the (j + 1)th iteration,
considering (v2I, — DT Pk jD)L j+1 = DT Py jAk in
(28b), and completing the squares, we have

A% i1 (Pr i1 — Prj)Ak j41 — (P j41 — Pij)

C.6
+ Ex; =0. (€0

By (C.6) and [53, Theorem 5.D6], we have

Tr(Pkji1 — Prj) = Tr | > (A% j11) Exj(Ak i)'
= .7
Consequently,
Te(Px — Pji1) < Tr(Px — Pi;) — Tr(Ex;)  (C.8)

< Tr(Px — Pkj) — [|Ex || < B(K) Tr(Px — Pk j),

where (K) = 1—1/b(K) and the last inequality comes from
Lemma 1. Since Px > Pk ;, Tr(Px — Pk j4+1) > 0. Hence,
B(K) € [0,1).

APPENDIX D: PROOF OF THEOREM 3

We will first show that b(K) is continuous in K. Let My :=
Yoo (A ) (AL )Y, where Ag . = A— BK + DL, and
Li.. = (v2I,— DT Px D)~ DT P (A— BK). Since K € W,
Af  is stable by Lemma 1. By [53, Theorem 5.D6], M is
the unique solution to

Ag Mg Al — Mg + 1, = 0. (D.1)

Since Py is continuous in KX € W (Lemma 6), Ak . is
continuous in K € V. Hence, Mg is continuous in K € W,
and b(K) = Tr(Mp) is continuous in K. In addition, the set
Gy = {K € W|Tr(Pk) < Tr(P*) + h} is compact (Lemma
8). Therefore, the upperbound of b(K) = Tr(My) exists on
K € Gy, that is b(K) < b(h) for any K € Gj,. Consequently,
for any K € Gy, B(K) < B(h), which is defined as

Blh) =1 —

1—=—.
b(h)
Given K € Gy, following Lemma 2 and Theorem 2, we
have
1Pk — Prjllp < B~ (h) Tr(Px — Pk1)
< B77YH(h) Tr(Pk) < B2 (h)(Te(P*) + h).
Therefore, for any K € G, and € > 0, if j > j(h,e) =
loggr(m)“‘ +1, | Pk ; — Pk||r < €. Noticing that j(h,€) is

independent of K, the uniform convergence of the dual-loop
algorithm follows readily.

(D.2)

(D.3)

APPENDIX E: PROOF OF THEOREM 4

Recall that G, = {K € W|Tr(Px) < Tv(P*) + h}.
The following lemma ensures that for K € G, and small
perturbation AK € R™*™  the updated policy becomes
K’ + AK that still belongs to Gy. In other words, G, is an
invariant set under small disturbance.

Lemma 12: Let K c Gn, K’ = (R +
BTUkB)'BTUxA, and K’ := K’ + AK. Then,
there exists d(h) > 0, such that K’ € Gy, if [|AK ||z < d(h).

Proof: Since K € Gy, it follows from Lemma 3 that
K’ € W. Suppose that K’ € W. According to Lemma 1,
there exists a unique solution Pr: = PL, = 0 to

(A— BK"Y'Uy/(A - BK') — Pg

+Q+ (K"TRK' =0, (E.1a)

Uk = pK’ + PK/D(’Y2Iq — DTPK/D)_lDTpK/. (E.1b)
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In addition, we can rewrite (4a) as

(A— BK")"Ug(A— BK') — Pk +Q

+ (K" — K)TBTUx A + ATUxB(K' — K) (E.2)

+ KT(R+ BTUxB)K — (K'Y ' BTUxBK' = 0.
Noticing (R+ BTUxB)K' = BTUg A and K' = K' + AK,
(E.2) implies

(A— BK")'Ug(A - BK') — Px + Q

+ (K" = K)'(R+ B"UxB)K' (E.3)

+(K"'(R+ BT"UB)(K' — K)

+AKT(R+ B"UxkB)K' + (K')" (R + B"Ux B)AK

+ KT(R+ BT"UxB)K — (K'\TBTUxBK' = 0.

Subtracting (E.la) from (E.3) and completing the squares yield
(A— BK")(Ugx — Ug/)(A — BK') (E.4)
— (Px — Px/) + Ex — AKT(R+ BTUxB)AK = 0.

From Lemma 9, Ex = (K’ — K)T(R+ BTUxB)(K' — K).

Using [35, Lemma B.1] and following the derivation of (B.27),
we have

(A— BK' + DLy, )T (Px — Px/)(A— BK' + DL, )
— (Px — Px/) + Ex — AKT(R+ BTUx B)AK <0,
(E.5)
where L, , = (v21,— D" P D)~' DT P, (A—BK’). Since

K’ € W, by Lemma 1, (A— BK'+ DL, ) is stable. Using
[53, Theorem 5.D6], we have

Tr(Px — PK/) >Tr {Z {(A _ BK' + DLK/,*)T’t[EK
t=0
~AKT(R+ BTUxB)AK](A — BK' + DLK,,*)t}}
(E.6)
Let
o(K')=||> (A= BK'+ DLg, )"
; K’ (E.7)

(A~ BK'+DLg, )™

and dy(h) = supgeg, |R + BT Uk B||. Then, by Lemmas 2
and 9, and [54, Lemma 1], (E.6) implies
TI‘(I:)K/

_Py<(1- ) T(Px — P7)

1
Vna(h) (E-8)
+ (K" )dy (h) | AK [

2 h
Therefore, if [|[AK|F < C(K,)dl( NTOL
Tr(Px: — P*) < h, ie. K’ € Gy Let &(h) = SUpPfeg, C(K).
Since Py is continuous in K (Lemma 6) and Ly . defined
in (14) is continuous in Pk and K, ¢(K) is continuous with

respect to K and ¢(h) < co. Hence, if

it is ensured that

2

=:d(h),

[AK|F < ( (E.9)

)
c(h)ds (h)/na(h)

it is ensured that K’ € Gj,. In other words, B(K’,d(h)) =
(K € R™|K — K'|[p < d(R)} C G

Next, we prove that K’ € W by contradiction. If K’ ¢ W,
it follows that K ¢ B(K’,d(h)). Hence, |AK|/p > d(h),
which contradicts with the condition ||AK| < d(h). [

Now, we prove Theorem 4 and Corollary 1.

Proof of Theorem 4. From Lemma 12 and given an initial
admissible policy K, € Gy, it is seen that if [AK |0 < d(h),
K < Gp for any 7 € Z,. In (E.8), considering P; and Pz+1
as Px and PK/ respectively, we have

. 1 .
Tr(Py1— P*) < (1-— Tr(P; — P*
P )= \/ﬁa(h)) ( ) (E.10)
+(h)dy (B) | AK 4[|
Repeating the above inequality from ¢ = 1 yields
) 1 , .
Tr(P; — P*) < (1- Ty (P, — P*
I‘( +1 ) = ( \/ﬁa(h)) 1"( 1 )
+ v/na(h)e(h)dy (R)|AK| 2, (E.11)
From Lemma 2, it follows that
. 1 . .
P —-Pr<(1- =/l Py — P*
1Pi= PPl < (0= sy alE = P
+v/na(h)e(h)di (h) [ AK )%
ThUS k1(-) defined by mi(|P — P*|lpi) = (1 -
Tral h))’ L/n||Py — P*||p is a KL-function, and &(-) de-

fined by & (|AK o) = Vaa(h)e(h)dy (W) AK |, is a K-
function. Therefore, the inexact outer-loop iteration is small-
disturbance ISS.

Proof of Corollary 1. For each outer-loop iteration of
Algorithm 1, P, 5 instead of P; is used to update the policy.
This leads to the disturbance at each iteration

AKiy1 = (R+B"U,;B)"'B"U, ;A

E.13
—(R+ BTU;B)"'BTU; A. (E13)

As K' = (R + BTUKB) 'BTUKA is continuously dif-
ferentiable in Uy, and Uy is continuously differentiable in
Py, K’ is Lipschitz continuous in Px € {P = 0| Tr(P) <
Tr(P*) + h}. Consequently, there exists da(h) > 0,

[AKis1]p < do(h)||Pi = P 5]l p- (E.14)

By Theorem 4, for any ¢ > 0, there exist ds(h,e) > 0
and i € Z,, such that, if K1 € G, and ||AK||o < d3(h,€),
K, € Gy for all i € Z, and

1P = P*lp < (1/2)e.

By Theorem 3, there exists j(h,e) € Z,, such that for any
1€ Ly

(E.15)

Therefore, (E.14) and (E.16) imply ||AK||» < d3(h,€). B
norm’s triangle inequality, (E.15) and (E.16), we have
1Pi; — P*llp <

E.17
1P — Pillp+ P — P*llr <e (E.17)
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APPENDIX F: PROOF OF THEOREM 5
Lemma 13: Given K; € W, there exists a constant e(Ki) >
0, such that Ai,j = A—Bf(ﬁ—Dﬁm is stable for all j € Z_,
as long as ||AL;||ls < e(K;).
Proof: This lemma is proven by induction. To simplify
the notation, the following variables are defined to denote the

inner-loop update without disturbance
= (’}/2_[(] — _DT_Pi’j.D)71DTF)2"]'14Z'7 (F 1)
A; = A - BK;. '

Then L”H = L”_H + AL”_H Since K; € W and
Lix =0, A“ = A — BK + DL” is stable by Lemma

1. By induction, assume that Aw — A - BK; + DLZJ is
stable for some j € Z. We can rewrite (34a) as

(A— BK,; 4+ DL; .)TP,(A — BK; + DL, )

- PA)@ + Qz ZLT 1, * O
Subtracting the jth iteration of (36a) from (F.2) and complet-
ing the squares, we have

(F2)

AAZj(Pi - P j)Ai; — (B iPm‘)f ) E3)
(Liw— Li )" (v*1, — D" P,D)(L; .« — Li ;) = 0.
Since AM is stable, from [53, Theorem 5.D6], P b P”,

where Pi is from (34a). By completing the squares, (F.2)
implies

0= Az?:j+1pi14i,j+l —- P+ Qz - “YZEZJ'HL‘JH — G+l

+ (L; jy1 — IA/i,*)T(vgfq — DTPZ-D)(Ll j41— L), (F4)
where

Qijs1=ALL, \D"PDL; i1+ LT, | \D"P,DAL; j 11

+ ALY, \D"P,DAL; j1
+ ATP,DAL; j11 + ALY

(E.5)
L DT PA;.

Since P = P”, it follows that L LZ . = L”+1Lu+1 and
[ Liell > || Lijsa - As a consequence,

19 411l < e1(Ki)|AL; j1l|l + e2(K) | AL j41|. (F6)
where
e1(K;) = (2| D" P,D||| L || + 2| DT P, Aq)),
ea(K;) = [|DTP,D).

Following Lemma 1, we know that P, >~ 0 and AH =
A— BK +DL .« 1s stable. Therefore, by [53, Theorem 5.D6]

and (F.2), Q; — VQL Li. = 0, and e3(K;) == o(Q; —
VLT Li.) > 0. Hence, if |AL; j41]| satisfies
—eq + /€2 + 2eqe .
|ALi il € ———5 "= e(R), (D)
we have
3 27T 7 ~ Lo
Qi - Li,*Li,* —Q; ij+1 > 763(K )I (E.8)

As L LZ * >' Lz ]+1Lz J+1s Ql 72Li7j+1Li,j+1 - Qi’j‘i’l -
0. Aw+1 is stable as a resultA of (F.4) and [55, Theorem 8.4].
Therefore, for any j € Zy, A; ; is stable. [ ]

Proof of Theorem 5. Rewrite the jth iteration of (36a) as

AT 1 > A 27T T
AT 1 PijAsjin — P+ Qi — VLT Li

— (Lij — Lij+1)"(+* 1, — D" P, ;D)(Lij — Lij11)
—y*ALL;  Lijo1 — VL AL ja
—AL[;(\D"P, ;DAL; j 11 = 0. (F9)

Subtracting (F.9) from the (j + 1)th iteration of (36) yields

AT (Pijir — Pij)Aij — (Prjy — Pig) + Eij
— ALl (v’I;— D" P, ;D)AL; j11 = 0. (F.10)
where
Eij=(Lij— Lij+1)" (v’ I, = D" P, ;D)(Li; — Li j1)-

When [|ALi[e < e(K;), by Lemma 13, A; ;1 is stable.
Following [53, Theorem 5.D6], we have

Tr(Pijy1— Pij) = Tr {Z(AT:JJrl)t E;;
=0 [ (F.11)
—ALL; 1 (PI — DTpi,jD)ALi7j+1} (Ai7j+1)t} :
Consequently, by Lemma 11,
(P, — P; 1—1/b T (P, — P,
(P = Pijan) < (L= DR TP = Pig) - o

+ 7| AL|[3 Tr(M,j41).

where MZJ_H =Y o (A ”H) (A; ;1) By [53, Theorem
5.D6], Mm—H satisfies

AT Mg A ji — Mgy + I, = 0. (F.13)

Multiplying both sides of (F.13) by %e;;(f(i) and subtracting
it from (F.4), we have

AT:J-H(
+Qi - 72Eg:j+1ii,j+1 -
+ (Lij

1. . A A
§€3Mz‘7j+1)Ai7j+1 — (P — §€3Mi,j+1)
(F.14)

i) =0,

563171,

— L))" (421, = DT P,D)(Li j11 —

Qi1 —

By (E.8) and [53, Theorem 5.D6], P, — geg,(K,»)Mi,j+1 = 0.
As a consequence Tr(M; j11) < 2/e3 Tr(F;).
From (F.12), we have
TP, = ) < (1= 1/b(R) T
+2/e3(K;) Te(P)7? | AL

Using Lemma 2 and repeating the above argument for j,j —
1,---,1, it follows that

H(P = Fig) (E.15)

~ ~ 1 . ~ ~
15— Pijllr < (1- b(K.))J_lx/ﬁHPi —Piilr
) ‘ (F.16)
+ ———b(K;) Tr(P)y? (| AL |2,
eg(KZ')
Clearly, ro(|1P; — Piallr.j) = (1= 5V ValP -

Piallr is a KL-function, and & (||ALills) =
(21% )b(K)Tr( V2| AL;||2, is a K-function. Therefore,
e3(fiq

we can conclude that the inexact inner-loop iteration is ISS.
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APPENDIX G: PROOF OF THEOREM 6

Since when ¢ = p = 0 and 7 — o0, the feasible set of
the LMIs (68a) and (68b) is nonempty, by continuity, (68a)
and (68b) has a solution for sufficiently small € and ;2 and
sufficiently large 7. Equation (68a) implies that

el,, * * *
0 el * *
L.H.S. of (A.1) + AW —-B.V D, el, =* <0
0 0 0 el
(G.1)

where A, = A, — A, B. =B, —B,and D. = D. — D. By
Schur complement lemma, it follows from (68b) that

I — g2 [W, ~V) Dﬂ - 0. G2)
Since the following relation holds almost surely
lim A, =0, lim B,=0, lim D,=0, (G.3)
T—00 T—00 T—00

by the definition of limit, there exists 7%(e, ) > 0, such that
for all 7 > 7*(e, 11), the following holds almost surely:

~ €L ~ €L ~ €
A < — B < — D < - 4
[A7]lF < 7’ 1B llF < 7’ ID-llp < 5. (G4
Consequently, |[[A,, B,]|| < %, and
-1
T B T 5T G{q DT B 0 ~
0. WA: - V"B, ] [D el AW - B,V
AT lecm oo - [W
o[ty 31
< e (W, =vVI[W, =V (G.5)

Therefore, by combining (G.2), (G.5), and Schur complement
lemma, the second term in (G.1) is positive semi-definite, and
the first term in (G.1) is negative definite. By Lemma 1, it
follows that K = VW1 e W.
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