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Abstract— This paper proposes a novel robust reinforce-
ment learning framework for discrete-time linear systems
with model mismatch that may arise from the sim-to-real
gap. A key strategy is to invoke advanced techniques from
control theory. Using the formulation of the classical risk-
sensitive linear quadratic Gaussian control, a dual-loop pol-
icy optimization algorithm is proposed to generate a robust
optimal controller. The dual-loop policy optimization algo-
rithm is shown to be globally and uniformly convergent, and
robust against disturbances during the learning process.
This robustness property is called small-disturbance input-
to-state stability and guarantees that the proposed policy
optimization algorithm converges to a small neighborhood
of the optimal controller as long as the disturbance at
each learning step is relatively small. In addition, when
the system dynamics is unknown, a novel model-free off-
policy policy optimization algorithm is proposed. Finally,
numerical examples are provided to illustrate the proposed
algorithm.

Index Terms— Robust reinforcement learning, policy op-
timization, risk-sensitive LQG.

I. INTRODUCTION

By optimizing a specified accumulated performance index,
reinforcement learning (RL), as a branch of machine learning,
is aimed at learning optimal decisions from data in the absence
of model knowledge. Policy optimization (PO) plays a pivotal
role in the development of RL algorithms [1, Chapter 13]. The
key idea of PO is to parameterize the policy and update the
policy parameters along the gradient ascent direction of the
performance index for maximization, or gradient descent for
minimization. Since the system model is unknown, the policy
gradient should be estimated by data-driven methods through
sampling and experimentation. Consequently, accurate policy
gradient can hardly be obtained because of various errors
that may be induced by function approximation, measurement
noise, and external disturbance. Therefore, both convergence
and robustness properties of PO should be theoretically studied
in the presence of gradient estimation error.
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Since linear quadratic regulator (LQR) is theoretically
tractable and widely applied in various engineering fields,
it stands out as providing an ideal benchmark for study-
ing RL problems. For the LQR problem, the control pol-
icy is parameterized as a linear function of the state, i.e.
ut = −Kxt. The corresponding performance index is
JLQR(K) =

∑∞
t=0 E(xT

t Qxt + uT
t Rut). PO for the LQR

problem aims at solving the constrained optimization problem
minK∈W JLQR(K), where W is the admissible set of sta-
bilizing control policies. Since JLQR(K) can be expressed
in terms of a Lyapunov equation, which depends on K,
JLQR(K) is differentiable in K. Based on this result, standard
gradient descent, natural policy gradient, and Newton gradient
algorithms have been developed to minimize the performance
index JLQR(K) [2]–[7]. Interestingly, the Newton gradient
algorithm with a step size of 1

2 is equivalent to the cel-
ebrated Kleinman’s policy iteration algorithm [8]–[11]. By
the coercive property of the performance index JLQR(K)
(JLQR(K) → ∞ as K → ∂W), the stability of the updated
control policy is maintained during PO. Furthermore, the
global linear convergence rate of the algorithms is theoretically
demonstrated by the gradient dominance property which is
shown in [4, Remark 2] and [5, Lemma 3]. One of the reasons
for using PO in these model-based approaches (perhaps the
most important one) is that it provides a natural pathway to
model-free analysis, where the RL techniques come into play.
For example, when the system model is unknown, zeroth-
order methods are applied to approximate the gradient of
the performance index, supported by a sample complexity
analysis [4], [5], [7]. Since the estimation error of policy
gradient is inevitable at each iteration, whether the error will
accumulate and whether the adopted algorithms still converge
in the presence of estimation error should be further studied.
By considering the PO algorithm as a nonlinear discrete-time
system and invoking input-to-state stability [12], the authors of
[13], [14] show that the Kleinman’s policy iteration algorithm
can still find a near-optimal control policy even under the
influence of estimation error. A similar robustness property is
investigated for the steepest gradient descent algorithm [15].

The aforementioned PO for the LQR problem cannot guar-
antee the robustness of the closed-loop system. For example,
the obtained controller may fail to stabilize the system in
the presence of model mismatch that may be induced by
the sim-to-real gap and parameter variation. Risk-sensitive
linear quadratic Gaussian (LQG) control was first proposed by
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[16], [17], which generalizes the risk-neutral optimal control
(i.e. LQR) by minimizing the expectation of the accumulative
quadratic cost transformed by the exponential function. It was
shown in [18] and [19] that the risk-sensitive LQG control
is equivalent to the mixed H2/H∞ control and the linear
quadratic zero-sum dynamic game. Therefore, it can guarantee
the stability of the closed-loop system even under model
mismatch. The authors of [20]–[22] proposed RL algorithms
for solving the model-free risk-sensitive control, but the meth-
ods are only applicable to Markov decision processes whose
state and action spaces are finite. In [23], [24], the authors
proposed Q-learning algorithms for linear quadratic zero-sum
dynamic games. The paper [25] proposed PO methods for
mixed H2/H∞ control to guarantee robust stability of the
closed-loop system. Through the concept of implicit regular-
ization, it was shown that the proposed PO algorithms can
find the globally optimal solution of mixed H2/H∞ control
at globally sublinear and locally superlinear rates. As there
is a fundamental connection between mixed H2/H∞ control
and linear-quadratic zero-sum dynamic games (LQ ZSDGs),
the natural policy gradient and Newton algorithms have been
equivalently transformed into provably convergent dual-loop
PO algorithms for the LQ ZSDG [26]–[28]. The outer loop is
to learn a protagonist under the worst-case adversary while
the inner loop is to learn a worst-case adversary. In this
way, the protagonist can robustly perform the control tasks
under the disturbances created by the adversary. Interestingly,
the Newton algorithm with a step size of 1

2 is equivalent to
the policy iteration algorithm for ZSDG [23], [29], [30]. In
the aforementioned papers, the convergence of the learning
algorithms for the risk-sensitive control has been analyzed
under the ideal noise-free case. Besides the convergence, a
useful learning algorithm should be robust and is capable of
finding a near-optimal solution even in the face of noise that
may be induced by noisy experimental data, rounding errors of
numerical computation, or the finite-time stopping of the inner
loop in the dual-loop learning setup. However, the issues of
uniform convergence and robustness of the dual-loop learning
algorithm are still unsolved.

A. Our Contributions in this Paper

A fundamental challenge of the convergence of the dual-
loop PO algorithm is to address the uniform convergence
issue tied to the inner loop. Specifically, the required num-
ber of inner-loop iterations should be independent of the
outer-loop iteration. Otherwise, as the outer-loop iteration
increases, the required number of inner-loop iterations may
grow explosively, thus making the dual-loop algorithm not
practically implementable. To the best of our knowledge, the
uniform convergence of the dual-loop algorithm has not been
theoretically analyzed heretofore.

In addition, PO algorithm cannot be implemented accurately
in practical applications, due to the influence of various errors
arising from gradient estimation error, sensor noise, external
disturbance, and modeling error. Hence, a fundamental ques-
tion arises: Is the PO algorithm robust to the errors? In partic-
ular, does the PO algorithm still converge to a neighbourhood

of the optimal solution in the presence of various errors and,
if yes, what is the size of the neighborhood? For both the
outer and inner loops, the iterative process is nonlinear, and the
robustness of the PO algorithm has not been fully understood
in the present literature.

In this paper, we investigate uniform convergence and
robustness of the dual-loop iterative algorithm for solving
the problem of risk-sensitive linear quadratic Gaussian con-
trol. Even though the convergence of the dual-loop iterative
algorithm is analyzed separately in [5], [25], [28], uniform
convergence and robustness of the overall algorithm are still
open problems. To analyze the uniform convergence of the
dual-loop algorithm, the key idea is to demonstrate global
linear convergence of the inner-loop iteration and find an
upperbound on the linear convergence rate. To address the
robustness issue, a key strategy of the paper is to invoke
techniques from advanced control theory, such as input-to-
state stability (ISS) [12] and its latest variant called “small-
disturbance ISS” [13], [31] to analyze the robustness of the
proposed discrete-time iterative algorithm. In the presence
of noise during the learning process, it is demonstrated that
the PO algorithm still converges to a small neighbourhood
of the optimal solution, as long as the noise is relatively
small. Furthermore, based on these results and the technique
of approximate dynamic programming [32], [33], an off-policy
data-driven RL algorithm is proposed when the system is dis-
turbed by an immeasurable Gaussian noise. Several numerical
examples are given to validate the efficacy of our theoretical
results.

To sum up, our main contributions in this paper are three-
fold: 1) the uniform convergence of the dual-loop iterative
algorithm is theoretically analyzed; 2) under the framework of
the small-disturbance ISS, the robustness of both the outer and
inner loops is theoretically demonstrated; 3) a novel learning-
based off-policy policy optimization algorithm is proposed.

A shorter and preliminary version of this paper was pre-
sented at the conference L4DC 2023 [34]. Compared with the
conference paper, in this paper, we provide rigorous proofs
for all the theoretical results. In addition, in Section V-A,
we propose a method to learn an initial admissible controller.
Finally, a benchmark example known as cart-pole system is
provided to demonstrate the effectiveness of the proposed dual-
loop algorithm.

B. Organization of the Paper

Following this Introduction section, Section II provides
some preliminaries on linear exponential quadratic Gaussian
(LEQG) control problem, linear quadratic zero-sum dynamic
game, and robustness analysis. Section III introduces the
model-based dual-loop iterative algorithm to optimize the pol-
icy for LEQG control, and the convergence of the algorithm is
analyzed. Section IV analyzes robustness of the dual-loop iter-
ative algorithm to various errors in the learning process within
the framework of ISS. Section V presents a learning-based
policy optimization algorithm for LEQG control. Section VI
provides two numerical examples to illustrate the proposed
algorithm. The paper ends with the concluding remarks of
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Section VII and seven appendices which include proofs of the

main results in the main body of the paper.

C. Notations
R and C are the sets of real and complex numbers,

respectively. Z (Z+) is the set of (positive) integers. S
n is

the set of n-dimensional real symmetric matrices. |a| denotes

the Euclidean norm of a vector a. ‖·‖ and ‖·‖F denote the

spectral norm and the Frobenius norm of a matrix. �2 is

the space of square-summable sequences equipped with the

norm ‖·‖2. �∞ is the space of bounded sequences equipped

with the norm ‖·‖∞. σ̄(·) and σ(·) are respectively the

maximum and minimum singular values of a given matrix.

For a transfer function G(z), its H∞ norm is defined as

‖G‖H∞ := supω∈[0,2π] σ̄(G(ejω)), which is equivalent to

‖G‖H∞ := supu∈�2
‖Gu‖2

‖u‖
2

.

For a matrix X ∈ R
m×n, vec(X) := [xT

1 , · · · , xT
n ]

T ,

where xi is the ith column of X . For a matrix P ∈ S
n,

vecs(P ) := [p1,1, p1,2, · · · , p1,n, p2,2, p2,3, · · · , pn,n]T , where

pi,j is the ith row and jth column entry of the matrix P .

[X]i dentotes the ith row of X . [X]i,j denotes the submatrix

of the matrix X that is comprised of the rows between the

ith and jth rows of X . For a vector a ∈ R
n, vecv(a) :=

[a21, 2a1a2, · · · , 2a1an, a22, 2a2a3, · · · , a2n]T . In denotes the n-

dimensional identity matrix.

II. PRELIMINARIES

In this section, we begin with the problem formulation of

LEQG control. Then, we discuss its relation to linear quadratic

zero-sum dynamic games (DG) and its robustness analysis.

A. Linear Exponential Quadratic Guassian Control
Consider the discrete-time linear time-invariant system

xt+1 = Axt +But +Dwt x0 ∼ N (0, In), (1a)

yt = Cxt + Eut, (1b)

where xt ∈ R
n is the state of the system; ut ∈ R

m is the

control input; x0 ∈ R
n is the initial state; wt ∈ R

q ∼ N (0, Iq)
is independent and identically distributed random variable;

yt ∈ R
p is the controlled output. A, B, C, D, E are constant

matrices with compatible dimensions. The LEQG control

problem entails finding an input sequence u := {ut}∞t=0,

depending on the current value of the state, that is {ut =
μt(xt)}∞t=0 where μ := {μt : R

n → R
m}∞t=0 is a sequence of

appropriately defined measurable control policies, such that the

following risk-averse exponential quadratic cost is minimized

JLEQG(μ) := lim
τ→∞

2γ2

τ
log

[
E exp

(
1

2γ2

τ∑
t=0

yTt yt

)]
(2)

where γ is a positive constant. For proper formulation of

the optimization problem, the following two assumptions are

standard:

Assumption 1: (A,B) is stabilizable, CTC = Q � 0, and

γ > γ∞, where γ∞ > 0 is the minimal value of γ such that for

γ > γ∞ the solution to (6) given below exists, or equivalently

there exists a control policy under which (2) is finite.

Assumption 2: The matrices in (1b) satisfy ETE = R � 0,

and CTE = 0.

Assumptions 1 and 2 are used throughout the paper. Assump-

tion 1 ensures the existence of a stabilizing solution to the

LEQG control problem. As demonstrated in [19, Theorem

3.8], γ∞ is finite. In addition, the positive definiteness of Q
can be relaxed to Q � 0, as long as (A,C) is taken to be

detectable. Assumption 2 has two parts. The first, positive

definiteness of the weighting matrix on control, is standard

even in LQR. The second one is also a standard condition to

simplify the LEQG control problem by eliminating the cross

term in the cost (2) between the control input u and state

x. Stabilizability of the pair (A,B) implies that there exists

a feedback gain K ∈ R
m×n such that the spectral radius

ρ(A−BK) < 1. Henceforth, a matrix is stable if its spectral

radius is less than 1, and K is stabilizing if A−BK is stable.

A feedback gain K is called admissible if it belongs to the

admissible set W defined in (11).

As investigated by [16] and [35, Lemma 2.1], for any

admissible linear control policy μt(xt) = −Kxt, the cost

admits the closed-form:

JLEQG(K) = −γ2 log det(In − γ−2PKDDT ), (3)

where the matrix PK = PT
K � 0 is the unique solution to

(A−BK)TUK(A−BK)− PK +Q+KTRK = 0, (4a)

UK := PK + PKD(γ2Iq −DTPKD)−1DTPK . (4b)

Furthermore, the LEQG problem admits a unique optimal

controller u∗
t = −K∗xt, where

K∗ = (R+BTU∗B)−1BTU∗A. (5)

with P ∗ = (P ∗)T � 0 the unique solution to the generalized

algebraic Riccati equation (GARE)

(A−BK∗)TU∗(A−BK∗)− P ∗ +Q+ (K∗)TRK∗ = 0,
(6a)

U∗ = P ∗ + P ∗D(γ2Iq −DTP ∗D)−1DTP ∗. (6b)

B. Linear Quadratic Zero-Sum Dynamic Game
The dynamic game can be mathematically formulated as

min
μ

max
ν

JDG(μ, ν) := Ex0

( ∞∑
t=0

yTt yt − γ2wT
t wt

)
,

subject to (1), (7)

where u := {ut}∞t=0 and w := {wt}∞t=0 are the input

sequences for the minimizer and the maximizer, respectively,

generated by state-feedback policies μ := {μt}∞t=0 and ν :=
{νt}∞t=0. Note that in (1a), w is no longer a Gaussian random

sequence, but a second control variable, at the disposal of the

maximizer.

For any admissible controller μt(xt) = −Kxt, and with

γ > γ∞, the closed-form cost is

JDG(K, ν∗(K)) = max
ν

JDG(−Kxt, ν) = Tr(PK), (8)

where PK is the solution of (4). From [19, Equation 3.51],

it follows that the optimizers for the minimax problem are
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Fig. 1: Robust control design with model mismatch Δ.

μ∗
t (xt) = −K∗xt and ν∗t (xt) = L∗xt, where K∗ is defined

in (5) and L∗ is given by

L∗ = (γ2Iq −DTP ∗D)−1DTP ∗(A−BK∗). (9)

Furthermore, (A−BK∗) is stable, Iq−γ−2DTP ∗D � 0, and

(A−BK∗ +DL∗) is stable.

Therefore, the minimizer of DG shares the same optimal

controller as the optimizer in the LEQG problem. Also note

that, PK is critical for determining the closed-from costs of

JLEQG(K) and JDG(K, ν∗).

C. Robustness Analysis

With w taken as a deterministic input in (1), and taking

any stabilizing feedback μt(xt) = −Kxt, the discrete-time

transfer function from w to y can be expressed as

T (K) := (C − EK)[zIn − (A−BK)]−1D. (10)

where z ∈ C is the z-transform variable.

Now consider the depiction in Fig. 1, where Δ denotes the

model mismatch that may be induced by the sim-to-real gap,

and satisfies ‖Δ‖H∞ ≤ 1
γ . Thanks to the small-gain theorem

[36]–[38], when subjected to model mismatch, the system

remains stable as long as ‖T (K)‖H∞ < γ. Consequently, the

controller μt(xt) = −Kxt is robust to the model mismatch

Δ if K lies within the admissible set W defined as

W := {K ∈ R
m×n|ρ(A−BK) < 1, ‖T (K)‖H∞ < γ}.

(11)

As investigated in [19, Theorem 3.8], the LEQG control in (5)

satisfies K∗ ∈ W , and therefore, it is optimal with respect to

(2) and robust to the model mismatch. This motivates us to

pose the following problem.

Problem 1: Design a learning-based control algorithm such

that near-optimal control gains, i.e. approximate values of K∗,

can be learned from the input-state data.

We will first introduce the model-based PO algorithm whose

convergence and robustness properties are instrumental for the

learning-based algorithm.

III. MODEL-BASED POLICY OPTIMIZATION

In this section, by resorting to the PO method, a dual-loop

iterative algorithm is proposed.

A. Introduction of the Outer Loop

The outer-loop iteration is developed based on the New-

ton PO algorithm in [35]. For any K ∈ W , the gradient

∇KJ (K) = ∇KJLEQG(K) = ∇KJDG(K, ν∗(K)) can be

computed to be

∇KJ (K) = 2[(R+BTUKB)K −BTUKA]ΣK , (12)

where

ΣK =
∞∑
t=0

[(A−BK +DLK,∗)T ]tD (13)

(Iq − γ−2DTPKD)−1DT (A−BK +DLK,∗)t.

and

LK,∗ := (γ2Iq −DTPKD)−1DTPK(A−BK), (14)

It is noticed that given ut = −Kxt, LK,∗ is considered as a

worst-case feedback gain for w. 1 By the Newton’s method

with a step size of 1
2 , to iteratively minimize J (K), the

updated feedback gain is

K ′ = K − 1

2
(R+BTUKB)−1∇KJ (K)Σ−1

K

= (R+BTUKB)−1BTUKA.
(15)

Let i denote the iteration index for the outer loop and we

introduce the following variables to simplify the notation

Ai := A−BKi, Qi := Q+KT
i RKi, (16a)

where Ai is the closed-loop transition matrix with ut =
−Kixt, and Qi is the cost weighting matrix. Then, by (4)

and (15), the outer-loop iteration can be expressed as

AT
i UiAi − Pi +Qi = 0, (17a)

Ui := Pi + PiD(γ2Iq −DTPiD)−1DTPi, (17b)

Ki+1 = (R+BTUiB)−1BTUiA. (17c)

In (17), from the policy iteration perspective [33], we consider

(17a) as the policy evaluation step under the worst-case

disturbance and (17c) as the policy improvement step. Pi is

the cost matrix of (7) for the controller ut = −Kixt under

the worst-case disturbance.

As seen in Lemma 3, for each iteration, the controller Ki

generated by (17) preserves robustness to model mismatch,

i.e. Ki ∈ W . Pi converges to P ∗ with a globally sublinear

and locally quadratic rate [25, Theorems 4.3 and 4.4]. We

further investigate the convergence rate of (17) and rigorously

demonstrate that Pi monotonically converges to the optimal

solution P ∗ with a globally linear convergence rate. The proof

of the following theorem can be found in Appendix B.

Theorem 1: Let H := {Tr(PK) − Tr(P ∗)|K ∈ W}. For

any h ∈ H and K1 ∈ Gh, where Gh = {K ∈ W|Tr(PK) ≤
Tr(P ∗) + h}, there exists α(h) ∈ [0, 1), such that

Tr(Pi+1 − P ∗) ≤ α(h) Tr(Pi − P ∗), ∀i ∈ Z+. (18)

1Henceforth, we write μt(xt) = −Kxt simply as ut = −Kxt, and
likewise for w, as appropriate.
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Since Pi+1−P ∗ � 0 and ‖Pi+1−P ∗‖F ≤ Tr(Pi+1−P ∗) ≤√
n‖Pi+1 −P ∗‖F (Lemma 2), the following inequality holds

‖Pi+1 − P ∗‖F ≤
√
nαi(h)‖P1 − P ∗‖F . (19)

Since JDG(Ki, ν
∗(Ki)) = Tr(Pi) from (8), it follows that

JDG(Ki+1, ν
∗(Ki+1))− JDG(μ

∗, ν∗) ≤
α(h)[JDG(Ki, ν

∗(Ki))− JDG(μ
∗, ν∗)].

(20)

Hence, the cost of the dynamic game (under the worst-

case disturbance) converges to the saddle point at a linear

convergence rate α(h) ∈ [0, 1).
In the following subsection, given Ki, by maximizing

JDG(Ki, ν) over ν, the inner-loop iteration is developed to

get the worst-case disturbance ν∗(Ki).

B. Introduction of the Inner Loop
Given the feedback gain of the minimizer K ∈ W , the inner

loop iteratively finds the optimal controller for the maximizer

w∗(K) by solving 2

max
w

JDG(K,w) =

∞∑
t=0

yTt yt − γ2wT
t wt, (21)

subject to xt+1 = (A−BK)xt +Dwt, x0 ∼ N (0, In).

The optimal solution is w∗
t (K) = LK,∗xt, where LK,∗ is

defined in (14). For any admissible controller wt = Lxt (with

(A−BK +DL) stable), by [5] the closed-form cost is

JDG(K,L) = Tr(PK,L), (22)

where PK,L = PT
K,L � 0 is the solution to

(A−BK +DL)TPK,L(A−BK +DL)

− PK,L +Q+KTRK − γ2LTL = 0.
(23)

The gradient of ∇LJDG(K,L) is

∇LJDG(K,L) = 2
[
(γ2Iq −DTPK,LD)L

−DTPK,L(A−BK)
]
ΣK,L,

(24)

where

ΣK,L =
∞∑
t=0

(A−BK +DL)t[(A−BK +DL)T ]t. (25)

By Newton’s method, the updated feedback gain is

L′ = L− 1

2
(γ2Iq −DTPK,LD)−1∇JDG(K,L)Σ−1

K,L

= (γ2Iq −DTPK,LD)−1DTPK,L(A−BK). (26)

Let j denote the iteration index of the inner loop, and we

introduce the following variables to simplify the notation:

Ai,j := A−BKi +DLi,j , Qi := Q+KT
i RKi, (27a)

Ai,∗ := A−BKi +DLi,∗, A∗ := A−BK∗ +DL∗. (27b)

By (23) and (26), the inner loop is designed as

AT
i,jPi,jAi,j − Pi,j +Qi − γ2LT

i,jLi,j = 0, (28a)

Li,j+1 = (γ2Iq −DTPi,jD)−1DTPi,jAi. (28b)

2Here and below, we have used the control w instead of the policy ν, for
simplicity of the notation.

From the policy iteration perspective, we consider (28a) as

the policy evaluation step and (28b) as the policy improvement

step for the inner loop. Pi,j is the cost matrix of JDG(Ki, Li,j)
with the state-feedback policies μt(xt) = −Kixt and νt(xt) =
Li,jxt. The inner-loop policy iteration possesses the mono-

tonicity property and preserves stability, that is the sequence

{Pi,j}∞j=1 is monotonically increasing and upper bounded by

Pi, and A−BKi+DLi,j is stable. These results are stated in

Lemma 10. We prove that the inner loop globally and linearly

converges to the optimal solution Pi. The details of the proof

are given in Appendix C. This brings us to the following

theorem, whose proof is in Appendix C.

Theorem 2: Given Li,1 = 0, for any Ki ∈ W , there exists

a constant β(Ki) ∈ [0, 1), such that

Tr(Pi − Pi,j+1) ≤ β(Ki) Tr(Pi − Pi,j), ∀j ∈ Z+. (29)

Based on Theorem 2, we can further obtain that

‖Pi − Pi,j+1‖F ≤
√
nβj(Ki)‖Pi − Pi,1‖F . (30)

In addition, since JDG(Ki, Li,j) = Tr(Pi,j) and

JDG(Ki, Li,∗) = Tr(Pi), from Theorem 2, we have

JDG(Ki, Li,∗)− JDG(Ki, Li,j+1) ≤
β(Ki)[JDG(Ki, Li,∗)− JDG(Ki, Li,j)].

(31)

Hence, the cost of the dynamic game with Ki is monotonically

increasing and converges to the maximum at a linear rate

β(Ki) ∈ [0, 1).
The dual-loop policy iteration algorithm is in Algorithm 1.

Ideally, Pi,j generated by the inner loop converges to Pi, and

then the control gain for the minimizer is updated to Ki+1 by

(17c). In practice, the inner loop stops after j̄ iterations, and

Pi,j̄ , instead of Pi, is used for updating the control gain at line

13. Ki,j̄ denotes the control gain updated at the outer loop.

C. Convergence Analysis for the Dual-Loop Algorithm
For the dual-loop algorithm, the inner-loop iteration linearly

converges to the optimal solution PK with the rate dependent

on K. Since K is updated iteratively, it is required that the

inner loop enters the given neighborhood of PK within a

constant number of steps, regardless of K. Otherwise, as the

outer-loop iteration proceeds, the required number of inner-

loop iterations may grow explosively, thus making the dual-

loop algorithm not practically implementable. The uniform

convergence rate of the overall algorithm is given in the

following theorem, whose proof is given in Appendix D.

Theorem 3: For any h ∈ H, K ∈ Gh, and ε > 0, there

exists j̄(h, ε) ∈ Z+ independent of K, such that for all j ≥
j̄(h, ε), ‖PK,j − PK‖F ≤ ε.

IV. ROBUSTNESS ANALYSIS FOR THE DUAL-LOOP
ALGORITHM

In the previous section, the exact PO algorithm was in-

troduced in the sense that an accurate knowledge of system

matrices was required to implement the algorithm. In practice,

however, we do not have access to such an accurate model.

Therefore, Algorithm 1 has to be implemented in a model-

free setting. For example, we can approximate the gradient
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Algorithm 1 Model-Based Policy Optimization

1: Initialize K1,j̄ ∈ W
2: Set ī, j̄ ∈ Z+

3: for i ≤ ī do
4: Initialize j = 1 and Li,1 = 0
5: Qi,j̄ = CTC +KT

i,j̄
RKi,j̄

6: for j ≤ j̄ do
7: Ai,j = A−BKi,j̄ +DLi,j

8: Get Pi,j by solving (28a)

9: Update Li,j+1 by (28b)

10: j ← j + 1
11: end for
12: Ui,j̄ = Pi,j̄ + Pi,j̄D(γ2Iq −DTPi,j̄D)−1DTPi,j̄

13: Ki+1,j̄ = (R+BTUi,j̄B)−1BTUi,j̄A
14: i ← i+ 1
15: end for

by zeroth-order method or approximate the value function

(parameterized by cost matrix PK) by approximate dynamic

programming. The updates for the controllers in (17c) and

(28b) are subjected to noise. In this section, using the well-

known concept of input-to-state stability in control theory, we

will analyze the robustness of the dual-loop policy iteration

algorithm in the presence of disturbance.

A. Notions of Input-to-State Stability
Consider the general nonlinear discrete-time system

χk+1 = f(χk, ρk), (32)

where χk ∈ X , ρk ∈ V , and f is continuous. χe is the

equilibrium state of the unforced system, that is 0 = f(χe, 0).
Definition 1: [39] A function ξ(·) : R+ → R+ is a K-

function if it is continuous, strictly increasing and vanishes at

zero. A function κ(·, ·) : R+ ×R+ → R+ is a KL-function if

for any fixed t ≥ 0, κ(·, t) is a K-function, and for any r ≥ 0,

κ(r, ·) is decreasing and κ(r, t) → 0 as t → ∞.

Definition 2: [40] System (32) is ISS if there exist a KL-

function κ and a K-function ξ such that for each input ρ ∈ �∞
and initial state χ1 ∈ X , the following holds

‖χk − χe‖ ≤ κ(‖χ1 − χe‖, k) + ξ(‖ρ‖∞). (33)

for any k ∈ Z+.

Generally speaking, input-to-state stability characterizes the

influence of input ρ to the evolution of state χ. The deviation

of the state χ to the equilibrium is bounded as long as the

input ρ is bounded. Furthermore, the influence of the initial

deviation ‖χ1 − χe‖ vanishes as time tends to infinity.

B. Robustness Analysis for the Outer Loop
The exact outer loop iteration is shown in (17), and in the

presence of disturbance, it is modified as

ÂT
i ÛiÂi − P̂i + Q̂i = 0, (34a)

Ûi = P̂i + P̂iD(γ2Iq −DT P̂iD)−1DT P̂i, (34b)

K̂i+1 = (R+BT ÛiB)−1BT ÛiA+ΔKi+1, (34c)

where ΔKi is the disturbance at the ith iteration, and “hat” is

used to distinguish the sequences generated by the exact (17)

and inexact (34) outer-loop iterations. By considering (34) as

a discrete-time nonlinear system with the states P̂i and inputs

ΔKi, it can be shown that (34) is inherently robust to ΔK in

the sense of small-disturbance ISS [13], [14].

Theorem 4: Given K1 ∈ Gh, there exists a constant d(h) >
0, such that if ‖ΔK‖∞ < d(h), (34) is small-disturbance ISS.

That is, there exist a KL-function κ1(·, ·) and a K-function

ξ1(·), such that

‖P̂i − P ∗‖F ≤ κ1(‖P̂1 − P ∗‖F , i) + ξ1(‖ΔK‖∞). (35)

We note that ΔK = {ΔKi}∞i=1 is a sequence of disturbance

signals, and its �∞-norm is ‖ΔK‖∞ = supi∈Z+
‖ΔKi‖F .

If the outer-loop update in (17) can be computed exactly,

which requires Pi to be exact, then the iterations of the exact

update will not leave the admissible set W . In contrast, the

dual-loop algorithm (Algorithm 1) has access only to Pi,j̄ ,

which is close to Pi but not exact. There is the possibility that

this inaccuracy could drive the outer-loop iteration away from

the optimal solution or even beyond the admissible region W .

As a direct corollary to Theorems 3 and 4, we state below that

Algorithm 1 can still find a near-optimal solution if ī and j̄
are large enough.

Corollary 1: For any h ∈ H, K1 ∈ Gh, and ε > 0, there

exist ī(h, ε) ∈ Z+ and j̄(h, ε) ∈ Z+, such that ‖Pī,j̄−P ∗‖F <
ε.

C. Robustness Analysis for the Inner Loop

As a counterpart of the inexact outer-loop iteration, the

inexact inner-loop iteration can be developed as

ÂT
i,jP̂i,jÂi,j − P̂i,j + Q̂i − γ2L̂T

i,jL̂i,j = 0, (36a)

L̂i,j+1 = (γ2Iq −DT P̂i,jD)−1DT P̂i,jÂi +ΔLi,j+1. (36b)

Here, ΔLi,j+1 denotes the disturbance to the inner loop iter-

ation and “hat” emphasizes that the corresponding sequences

are generated by the inexact iteration. With the inexact inner

loop at hand, the following theorem shows that the inner-loop

iteration (36) is robust to disturbance ΔLi in the sense of

small-disturbance input-to-state stability [13], [14].

Theorem 5: For any K̂i ∈ W , there exists a constant

e(K̂i) > 0, such that if ‖ΔLi‖∞ < e(K̂i), (36) is small-

disturbance ISS. That is, there exist a KL-function κ2(·, ·)
and a K-function ξ2(·), such that

‖P̂i,j − P̂i‖F ≤ κ2(‖P̂i,1 − P̂i‖F , j) + ξ2(‖ΔLi‖∞). (37)

We note that ΔLi = {ΔLi,j}∞j=1 is a sequence of distur-

bance signals, and ‖ΔLi‖∞ = supj∈Z+
‖ΔLi,j‖F . The results

of these last two theorems guarantee robustness of the dual-

loop PO algorithm. Literally speaking, when the dual-loop PO

algorithm is implemented in the presence of disturbance, it still

finds the near optimal solution, and the deviation between the

generated policy and the optimal one is determined by the

magnitude of the disturbance. To be more specific, as iteration

i (j for inner loop) goes to infinite, the cost matrix P̂i (P̂i,j)

enters a small neighborhood of the optimal solution P ∗ (P̂i).
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V. LEARNING-BASED OFF-POLICY POLICY
OPTIMIZATION

We will develop a learning-based algorithm to learn from

data a robust suboptimal controller (i.e. an approximation of

K∗) without requiring any accurate knowledge of (A,B,D)
under the setting of zero-sum dynamic game with additive

Gaussian noise. The input-state data from the following system

will be utilized for learning:

xt+1 = Axt +But +Dwt + vt, (38)

where vt ∼ N (0,Σ) with Σ = ΣT � 0 denotes independent

and identically distributed noise.

A. Learning-Based Policy Optimization
Suppose that the exploratory policies for the minimizer and

maximizer are

ut = −K̂expxt + σ1ξ1, ξ1 ∼ N (0, Im), (39a)

wt = L̂expxt + σ2ξ1, ξ2 ∼ N (0, Iq), (39b)

where K̂exp ∈ R
m×n and L̂exp ∈ R

q×n are exploratory

feedback gains, and σ1, σ2 > 0 are the standard deviations

of the exploratory noise. Let zt := [xT
t , u

T
t , w

T
t ]

T . For any

given matrices X ∈ S
n, let

Γ(X) :=

⎡
⎣Γxx(X) Γxu(X) Γxw(X)
Γux(X) Γuu(X) Γuw(X)
Γwx(X) Γwu(X) Γww(X)

⎤
⎦

=

⎡
⎣ATXA+Q ATXB ATXD

BTXA BTXB +R BTXD
DTXA DTXB DTXD − γ2Iq

⎤
⎦ .

(40)

Along the trajectories of system (38), xT
t+1Xxt+1 can be

computed to be

xT
t+1Xxt+1 = zTt Γ(X)zt − rt + vTt Xvt

+ 2vTt X(Axt +But +Dwt).
(41)

where rt := xT
t Qxt + uT

t Rut − γ2wT
t wt is the stage cost of

the zero-sum dynamic game. Taking the expectation of (41)

results in

E
[
zTt Γ(X)zt +Tr(ΣX)− rt − xT

t+1Xxt+1|zt
]
= 0. (42)

To simplify the notations, let

z̄t := [vecv(zt)
T , 1]T (43)

θ(X) := [vecs(Γ(X))T ,Tr(ΣX)]T . (44)

By pre-multiplying (42) with z̄t, one can obtain

E
[
z̄tz̄

T
t θ(X)− z̄trt − z̄t vecv(xt+1)

T vecs(X)|zt
]
= 0.

(45)

Assumption 3: There exists an ergodic stationary probabil-

ity measure π on R
n+m+q for system (38) with controller

(39).

Remark 1: Assumption 3 is widely used in approximate

dynamic programming and in the RL literature [41], [42].

Assumption 4: Eπ

[
ztz

T
t

]
and Eπ

[
z̄tz̄

T
t

]
are invertible.

Remark 2: Assumption 4 is reminiscent of the persistent

excitation (PE) condition [43], [44]. As in the literature of

data-driven control [10], [45], one can satisfy it by means of

added exploration noise, such as sinusoidal signals or random

noise.

Under Assumptions 3 and 4, taking the expectation of (45)

with respect to the invariant probability measure π, we have

θ(X) = Φ†Ξvecs(X) + Φ†Ψ. (46)

where

Φ := Eπ

[
z̄tz̄

T
t

]
, Ξ := Eπ

[
z̄t vecv(xt+1)

T
]
,

Ψ := Eπ [z̄trt] .
(47)

Therefore, Γww(X) and Γ(X) can be reconstructed as

vecs(Γww(X)) = [Φ†]n1,n2Ξvecs(X) + [Φ†]n1,n2Ψ, (48a)

vecs(Γ(X)) = [Φ†]1,n2
Ξvecs(X) + [Φ†]1,n2

Ψ, (48b)

where

n1 =
(n+m+ q)(n+m+ q + 1)

2
+ 1− (q + 1)q

2
,

n2 =
(n+m+ q)(n+m+ q + 1)

2
.

(49)

In practice, we use a finite number of trajectory samples to

estimate Φ, Ξ, and Ψ, that is,

Φ̂τ :=
1

τ

τ∑
t=1

z̄tz̄
T
t , Ξ̂τ :=

1

τ

τ∑
t=1

z̄t vecv(xt+1)
T ,

Ψ̂τ :=
1

τ

τ∑
t=1

z̄trt.

(50)

By the Birkhoff Ergodic Theorem [46, Theorem 16.2], the

following relations hold almost surely

lim
τ→∞ Φ̂τ = Φ, lim

τ→∞ Ξ̂τ = Ξ, lim
τ→∞ Ψ̂τ = Ψ. (51a)

Then, by (48b), Γ(X) is estimated by a data-driven approach

as follows:

vecs(Γ̂(X)) = [Φ̂†
τ ]1,n2

Ξ̂τ vecs(X) + [Φ̂†
τ ]1,n2

Ψ̂τ , (52)

With the data-driven estimate Γ̂(X), we will transform

model-based PO in Algorithm 1 to a learning-based algorithm.

Considering (40), we can rewrite (28a) as

[In,−KT
i , L

T
i,j ]Γ(Pi,j)[In,−KT

i , L
T
i,j ]

T − Pi,j = 0. (53)

Vectorizing (53) and plugging (46) into (53) result in{(
[In,−KT

i , L
T
i,j ]⊗ [In,−KT

i , L
T
i,j ]

)
Tn+m+q

[Φ†]1,n1Ξ− Tn

}
vecs(Pi,j) = (54)

−
(
[In,−KT

i , L
T
i,j ]⊗ [In,−KT

i , L
T
i,j ]

)
Tn+m+q[Φ

†]1,n1
Ψ,

where Tn and Tn+m+q are the duplication matrices defined

in [47, pp. 56]. One can view (54) as a linear equation

with respect to vecs(Pi,j). Hence, at each inner-loop iteration,

vecs(Pi,j) can be computed by solving (54). With Pi,j , ac-

cording to (28b) and (40), the feedback gain of the maximizer

can be updated as

Li,j+1 = −Γww(Pi,j)
−1(Γwx(Pi,j)− Γwu(Pi,j)Ki). (55)
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Next, we will develop a data-driven approach for the outer-

loop iteration. According to the expression of Γww(X) in (40),

and the duplication matrices defined in [47, pp. 56], we have

vecs(Γww(X)) = T †
q (D

T ⊗DT )Tn vecs(X)− γ2T †
q vec(Iq).

(56)

Since (48a) and (56) hold for any X ∈ S
n, it follows that

T †
q (D

T ⊗DT )Tn = [Φ†]n1,n2
Ξ. (57)

Then, from (57), we obtain

(TT
q Tq)[Φ

†]n1,n2Ξ(T
T
n Tn)

−1 = TT
q (DT ⊗DT )(T †

n)
T (58)

For any Y ∈ S
q , let

Ω(Y ) = DYDT . (59)

According to the duplication matrices defined in [47, pp. 56]

and (58), it holds

vecs(Ω(Y )) = T †
n(D ⊗D)Tq vecs(Y )

= (TT
n Tn)

−1ΞT [Φ†]Tn1,n2
(TT

q Tq) vecs(Y ).
(60)

Now, Ω(Y ) can be computed by (60) without knowing D. By

(17c), the feedback gain for the minimizer is updated as

Ui = Pi − PiΩ(Γww(Pi)
−1)Pi,

Ki+1 = Γuu(Ui)
−1Γux(Ui).

(61)

The learning-based PO algorithm is given in the table

labeled as Algorithm 2. It should be noticed that in Algorithm

2, the system matrices (A, B, and D) are not involved

in computing vecs(Pi,j), Li,j+1 and Ki+1. In addition, the

updated controller Ki is not applied for the data collection.

Therefore, it is a learning-based off-policy algorithm for PO.

B. Learning an Initial Admissible Controller
In Algorithm 2, an initial admissible feedback gain is

required to start the learning-based PO algorithm. In this

section, we will develop a data-driven method for learning

such an initial feedback gain.

Taking the expectation of (38) with respect to the invariant

probability measure π in Assumption 3, we have

Eπ

[
xT
t+1 − zTt [A,B,D]T

]
= 0. (62)

Pre-multiplying (62) by zt and using Assumption 4 yield

[A,B,D]T = (Φ′)†Ξ′, (63)

where

Φ′ = Eπ

[
ztz

T
t

]
, Ξ′ = Eπ [ztxt+1] . (64)

In practice, we can utilize a finite number of trajectory samples

to estimate Φ′ and Ξ′, i.e.

Φ̂′
τ :=

1

τ

τ∑
t=1

ztz
T
t , Ξ̂′

τ :=
1

τ

τ∑
t=1

zt(xt+1)
T . (65)

By the Birkhoff Ergodic Theorem [46, Theorem 16.2], the

following relations hold almost surely

lim
τ→∞ Φ̂′

τ = Φ′, lim
τ→∞ Ξ̂′

τ = Ξ′. (66)

Algorithm 2 Learning-Based Policy Optimization

1: Initialize K̂1 ∈ W
2: Set ī, j̄ ∈ Z+.

3: Set the length of the sampled trajectory τ , and the explo-

ration variances σ2
1 and σ2

2

4: Collect data from (38) with exploratory input (39)

5: Construct Φ̂τ , Ξ̂τ , and Ψ̂τ defined in (50)

6: Get the expressions of Γ̂(X) and Ω̂(X) by (52) and (60).

7: for i ≤ ī do
8: Set L̂i,1 = 0
9: for j ≤ j̄ do

10: Get P̂i,j by solving (54)

11: Update L̂i,j+1 by (55)

12: j ← j + 1
13: end for
14: Update K̂i+1 by (61)

15: i ← i+ 1
16: end for

By Assumption 4, (66) and the definition of limit, if τ is large

enough, Φ̂′
τ is invertible almost surely. As a result, we obtain

the estimates of the system matrices

[Âτ , B̂τ , D̂τ ]
T = (Φ̂′

τ )
†Ξ̂τ . (67)

With the identified system matrices, the linear matrix inequal-

ities (LMIs) in (68) can be solved for an initial admissible

controller design. The admissibility of the obtained initial

controller is guaranteed by Theorem 6 below, which is proved

in Appendix G.

Theorem 6: There exist ε > 0, μ > 0, and τ∗(ε, μ) > 0,

such that for any τ > τ∗(ε, μ), the following LMIs⎡
⎢⎢⎣

−W ∗ ∗ ∗
0 −γ2Iq ∗ ∗

ÂτW − B̂τV D̂τ −W ∗
CW − EV 0 0 −Ip

⎤
⎥⎥⎦ ≺ −εI, (68a)

−

⎡
⎣ In ∗ ∗
μW In ∗
μV 0 Im

⎤
⎦ ≺ 0, (68b)

have a solution and K = VW−1 that belongs to W almost
surely.

The following corollary shows that whenever the LMIs (68)

have a solution, the controller derived is admissible, which can

be directly obtained from the proof of Theorem 6.

Corollary 2: For any ε > 0, any μ > 0, and any τ >
τ∗(ε, μ), if the LMIs (68) have a solution, then K = VW−1

belongs to W almost surely.

VI. NUMERICAL SIMULATIONS

A. An Illustrative Example
We apply Algorithms 1 and 2 to the system studied in [48]

with the same A and B matrices as there. The matrices related

to the output are C = [I3, 03×3]
T and E = [03×3, I3]

T . The

H∞ norm threshold is γ = 5. ī = 10 and j̄ = 20.

The robustness of Algorithm 1 in the presence of dis-

turbance is validated first. For each outer and inner loop
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Fig. 2: Robustness of Algorithm 1 when ‖ΔK‖∞ = 0.09 and

‖ΔLi‖∞ = 0.09.

Fig. 3: Using Algorithm 2, the solutions of each iteration

approach the optimal solution, and the H∞ norm is smaller

than the threshold.

iteration, the entries of the disturbances ΔKi and ΔLi,j

are taken as samples from a standard Gaussian distribution

and then their Frobenius norms are normalized to 0.09. The

algorithm is run independently for 50 times. The results are

shown in Fig. 2, where the bold line is the mean of the

trials and the shaded region denotes the variance. It is seen

that with the disturbances at both the outer and inner loop

iterations, the generated controller and the corresponding cost

matrix approach to the optimal solution and finally enter a

neighborhood of the optimal controller K∗ and cost matrix

P ∗, respectively. The H∞ norm of the closed-loop system is

smaller than the threshold throughout the policy optimization.

These numerical results are consistent with the developed

theoretical results in Theorems 4 and 5.

Algorithm 2 is implemented independently for 50 trials to

validate its performance. The length of the trajectory samples

is τ = 5000. The standard deviation of the system additive

noise is Σ = I3. The standard deviation of the exploratory

noise is σ1 = σ2 = 1. The relative errors of the gain matrix

and cost matrix are shown in Fig. 3. The proposed off-policy

RL algorithm can still approximate the optimal solution when

the system is disturbed by an additive Gaussian noise.

B. Cart-Pole Example
We next consider the cart-pole system in [49], where the

inverted pendulum is hinged to the top of a wheeled cart that

moves along a straight line. The system is discretized under

the sampling period Δt = 0.01sec. Considering the noise for

the system, the system can be described by a linear system

with x = [s, ṡ, φ, φ̇]T ,

A =

⎡
⎢⎢⎣
1 0.01 0 0
0 1 −0.01 0
0 0 1 0.01
0 0 0.16 1

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0
0.01
0

−0.015

⎤
⎥⎥⎦ ,

C = [I4, 01×4]
T , D = 0.001I4, E = [01×4, 1]. The H∞ norm

threshold is γ = 10.

The robustness evaluation of Algorithm 1 is shown in Fig. 4,

where the mean-variance curves are plotted for 50 independent

Fig. 4: For the cart-pole system, the robustness of Algorithm

1 when ‖ΔK‖∞ = 0.7 and ‖ΔLi‖∞ = 0.1.

Fig. 5: For the cart-pole system, as the iteration of Algorithm

2 proceeds, the gain and cost matrices approach the optimal

solution, and the H∞ norm is smaller than the threshold.

trials. At each iteration, the entries of the disturbances ΔKi

and ΔLi,j are randomly sampled from a standard Gaussian

distribution, and then ‖ΔKi‖F and ‖ΔLi,j‖F are normalized

to 0.7 and 0.1, respectively. The relative errors approach zero

even in the presence of the disturbance, demonstrating the

small-disturbance ISS properties of the outer and inner loops

in Theorems 4 and 5. In addition, the H∞ norm of the system

is below the given threshold, and the robustness of the closed-

loop system is guaranteed during the iteration.

When the matrices (A,B,D) are unknown, Algorithm 2

is implemented independently for 50 times. The length of the

sampled trajectory is τ = 10000. The standard deviation of the

system additive noise is Σ = 0.1I4. The standard deviation of

the exploratory noise is σ1 = σ2 = 20. It is seen from Fig. 5

that using the noisy data, the learning-based PO developed in

Algorithm 2 still finds a near-optimal solution.

VII. CONCLUSIONS

In this paper, we have proposed a novel dual-loop policy

optimization algorithm for data-driven risk-sensitive linear

quadratic Gaussian control whose convergence and robustness

properties have been analyzed. We have shown that the it-

erative algorithm possesses the property of small-disturbance

input-to-state stability, that is, starting from any initial admis-

sible controller, the solutions of the proposed policy optimiza-

tion algorithm ultimately enter a neighbourhood of the optimal

solution, given that the disturbance is relatively small. Based

on these model-based theoretical results, when the accurate

system knowledge is unavailable, we have also proposed a

novel off-policy policy optimization RL algorithm to learn

from data robust optimal controllers. Numerical examples are

provided and the efficacy of the proposed methods are demon-

strated by an academic example and a benchmark cart-pole

system. Future work will be directed toward investigating the

input-to-state stability of standard gradient descent and natural

gradient descent algorithms. In addition, by invoking small-

gain theory, the application of learning-based risk-sensitive

LQG control to decentralized control design of complex

systems will be studied.
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APPENDIX A: USEFUL AUXILIARY RESULTS

Some fundamental lemmas are introduced to assist in the

development of the results in the main body of the paper.

Lemma 1 (Bounded Real Lemma): Given a matrix K ∈
R

m×n and the transfer function T (K) for the linear system

(1) under Assumptions 1 and 2, the following statements are

equivalent:

1) K is stabilizing and ‖T (K)‖H∞ < γ;

2) The algebraic Riccati equation (4) admits a unique stabiliz-

ing solution PK = PT
K � 0 such that i) Iq−γ−2DTPKD � 0;

ii) [A − BK + D(γ2Iq − DTPKD)−1DTPK(A − BK)] is

stable;

3) There exists PK = PT
K � 0 such that

Iq − γ−2DTPKD � 0, (A.1)

(A−BK)TUK(A−BK)− PK +Q+KTRK ≺ 0.

4) There exist W = WT � 0 and V = KW , such that⎡
⎢⎢⎣

−W ∗ ∗ ∗
0 −γ2Iq ∗ ∗

AW −BV D −W ∗
CW − EV 0 0 −Ip

⎤
⎥⎥⎦ ≺ 0. (A.2)

Proof: The first three statements are from [35, Lemma

2.7]. The last one follows from Schur complement lemma.

Lemma 2: For any positive semi-definite matrix P ∈ S
n,

‖P‖F ≤ Tr(P ) ≤ √
n‖P‖F and ‖P‖ ≤ Tr(P ) ≤ n‖P‖.

Proof: Let σ1 ≥ · · · ≥ σn denote P ’s singular values.

Then, ‖P‖F =
√∑n

i=1 σ
2
i , Tr(P ) =

∑n
i=1 σi, and ‖P‖ =

σ1(P ). Hence, the lemma holds by noting that
∑n

i=1 σ
2
i ≤

(
∑n

i=1 σi)
2 ≤ n

∑n
i=1 σ

2
i and σ1 ≤ ∑n

i=1 σi ≤ nσ1.

APPENDIX B: PROOF OF THEOREM 1
The following lemma shows that the cost matrix Pi gener-

ated by the outer-loop iteration (17) is monotonically decreas-

ing and all the updated feedback gains are admissible given

an initial admissible feedback gain.

Lemma 3: Under Assumptions 1 and 2, if K1 ∈ W , then

for any i ∈ Z+,

1) Ki ∈ W;

2) P1 � · · · � Pi � Pi+1 � · · · � P ∗;

3) limi→∞‖Ki−K∗‖F = 0 and limi→∞‖Pi−P ∗‖F = 0.

Proof: The statements 1) and 3) are shown in [35,

Theorem 4.3 and Theorem 4.6]. The statement 2) follows from

[35, Equation (5.27)].

Lemmas 4-8 provide the preliminaries for Theorem 1, and

further details on their proofs can be found in [50].

Lemma 4: For any K ∈ W and K ′ := (R +
BTUKB)−1BTUKA, we have

K ′ −K∗ = R−1BT (ΛK)−T (PK − P ∗)A∗, (B.1)

ΛK := In +BR−1BTPK − γ−2DDTPK . (B.2)

Proof: By the expression of UK in (4b), we have

(R+BTUKB)−1BTUKA = R−1BTPKΛ−1
K A. (B.3)

Using the expressions of K ′ and K∗ in (5), and noting that

A∗ = (Λ∗)−1A, we can obtain (B.1).

The following lemma presents the expression of the differ-

ence between UK and U∗.

Lemma 5: For any K ∈ W , (UK − U∗) satisfies

UK − U∗

= (In − γ−2P ∗DDT )−1(PK − P ∗)(In − γ−2DDTP ∗)−1

+ (In − γ−2P ∗DDT )−1(PK − P ∗)D(γ2Iq −DTPKD)−1

DT (PK − P ∗)(In − γ−2DDTP ∗)−1 (B.4)
Proof: The variable U∗ in (6) can be rewritten as

U∗ = −(In − γ−2P ∗DDT )−1(PK − P ∗)(In − γ−2DDTP ∗)−1

+ (In − γ−2P ∗DDT )−1(PK − γ−2P ∗DDTP ∗)
(In − γ−2DDTP ∗)−1

(B.5)

To simplify the notation, define SK as

SK := UK − (In − γ−2P ∗DDT )−1(PK − γ−2P ∗DDTP ∗)

(In − γ−2DDTP ∗)−1. (B.6)

By noting UK − PK = PKD(γ2Iq − DTPKD)−1DTPK ,

completing the squares, and using the matrix inversion lemma,

it can be verified that

(In − γ−2P ∗DDT )SK(In − γ−2DDTP ∗)

= (PK − P ∗)D(γ2Iq −DTPKD)−1DT (PK − P ∗).
(B.7)

The proof is thus completed by following (B.5) and (B.7).
Lemma 6: For any K ∈ W , PK is continuous with respect

to K, where PK is the unique positive-definite solution to (4).
Proof: Consider the function

F (K,PK) := (A−BK)TUK(A−BK)− PK

+Q+KTRK.
(B.8)

Let F(vec(K), vec(PK)) := vec(F (K,PK)). By following

[51, Theroem 9] and [35, Equation (B.10)], we have

∂F(vec(K), vec(PK))

∂ vec(PK)
= [(A−BK +DLK,∗)T

⊗ (A−BK +DLK,∗)T ]− In2 .

(B.9)

Since K ∈ W , by Lemma 1, (A − BK +DLK,∗) is stable.

Since σ̄(A − BK + DLK,∗) < 1,
∂F(vec(K),vec(PK))

∂ vec(PK) is

invertible. By the implicit function theorem, PK is continuous

with respect to K for any K ∈ W .
Lemma 7: Let K ∈ W , PK be the positive-definite solution

of (4a), and K ′ = (R + BTUKB)−1BTUKA. Then, (K −
K ′)TR(K −K ′) = 0 is equivalent to K = K∗.

Proof: (⇒): (K−K ′)TR(K−K ′) = 0 implies K = K ′.
It follows from (4a) that PK = PT

K � 0 is the solution of (6).

Due to the uniqueness of the positive-definite solution to (6),

it is deduced that PK = P ∗ and K = K∗.
(⇐): Since K = K∗ and PK = P ∗, it follows that K ′ =

(R + BTUKB)−1BTUKA = K. Hence, we have K = K ′.

Lemma 8: For any h ∈ H, Gh := {K ∈ W|Tr(PK) ≤
Tr(P ∗) + h} is compact.

Proof: It can be checked that Gh is bounded and closed.

The compactness of Gh is demonstrated using the Heine–Borel

theorem [52, p. 81].
Lemma 9: For any h ∈ H and K ∈ Gh, let K ′ :=

(R + BTUKB)−1BTUKA, and EK := (K ′ − K)T (R +
BTUKB)(K ′ −K). Then, there exists a(h) > 0, such that

‖PK − P ∗‖F ≤ a(h)‖EK‖F . (B.10)
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Proof: It follows from (4) that

(A−BK∗)TUK(A−BK∗)− PK +Q+KTRK

+ATUKB(K∗ −K) + (K∗ −K)TBTUKA

+KTBTUKBK − (K∗)TBTUKBK∗ = 0.

(B.11)

Subtracting (6a) from (B.11), and considering BTUKA =
(R+BTUKB)K ′, we have

(A−BK∗)T (UK − U∗)(A−BK∗)− (PK − P ∗) + EK

− (K ′ −K∗)T (R+BTUKB)(K ′ −K∗) = 0. (B.12)

It follows from (In − γ−2DDTP ∗)−1(A − BK∗) = (A −
BK∗ +DL∗) = A∗ and Lemma 5 that

(A∗)TΔPK(A∗)−ΔPK + EK

− (K ′ −K∗)T (R+BTUKB)(K ′ −K∗) (B.13)

+ (A∗)TΔPKD(γ2Iq −DTPKD)−1DTΔPKA∗ = 0,

where ΔPK := PK − P ∗. According to [53, Theorem 5.D6],

we have

ΔPK �
∞∑
t=0

(A∗)T,t
[
EK + (A∗)TΔPKD

(γ2Iq −DTPKD)−1DTΔPKA∗] (A∗)t.

(B.14)

Taking the trace of (B.14) and using the cyclic property of

trace and trace inequality in [54, Lemma 1] yield

Tr(ΔPK) ≤ Tr

[ ∞∑
t=0

(A∗)t(A∗)T,tEK

]
+Tr

[ ∞∑
t=1

(A∗)t

(A∗)T,tΔPKD(γ2Iq −DTPKD)−1DTΔPK

]
≤ a1 Tr(EK) + a2γ

−2 Tr[ΔPK

(In − γ−2DDTPK)−1DDTΔPK ], (B.15)

where

a1 = ‖
∞∑
k=0

(A∗)k(A∗)T,k‖, a2 = ‖
∞∑
k=1

(A∗)k(A∗)T,k‖.

By Neumann series, for any X ∈ R
n×n with ‖X‖ < 1,

‖(I −X)−1‖ ≤ 1
1−‖X‖ . Therefore, for small ΔPK , we have

‖(In − γ−2DDTPK)−1‖
= ‖(In − γ−2DDTP ∗ − γ−2DDTΔPK)−1‖ (B.16)

≤ ‖(In − γ−2DDTP ∗)−1‖
1− a3‖ΔPK‖ .

where

a3 = γ−2‖(In − γ−2DDTP ∗)−1‖‖DDT ‖. (B.17)

Using the trace inequality in [54, Lemma 1], it follows from

(B.15) and (B.16) that(
1− a2a3‖ΔPK‖

1− a3‖ΔPK‖

)
Tr(ΔPK) ≤ a1 Tr(EK). (B.18)

Therefore, if

‖ΔPK‖ ≤ 1

a3 + 2a2a3
=: h1, (B.19)

it follows from Lemma 2 that

‖ΔPK‖F ≤ 2a1 Tr(EK) ≤ 2a1
√
n‖EK‖F . (B.20)

When ‖ΔPK‖ ≥ h1, if follows from Lemma 7 that

‖EK‖F �= 0. Since EK is continuous with respect to

K (Lemma 6) and the set Gh ∩ {K ∈ W|‖ΔPK‖ ≥
h1} is compact (Lemma 8), there exists a4(h) > 0, such

that ‖EK‖F ≥ a4(h). Hence, ‖ΔPK‖F ≤ Tr(ΔPK) ≤
h

a4(h)
‖EK‖F . By taking a(h) = max(2a1

√
n, h

a4(h)
), we

obtain that ‖ΔPK‖F ≤ a(h)‖EK‖F .

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. We can rewrite (17a) as

AT
i+1UiAi+1 +KT

i B
TUiBKi −KT

i+1B
TUiBKi+1

+ (Ki+1 −Ki)
TBTUiA+ATUiB(Ki+1 −Ki)

− Pi +Q+KT
i RKi = 0.

(B.21)

Since (R+BTUiB)Ki+1 = BTUiA from (17c), by complet-

ing the squares, we have

AT
i+1UiAi+1 − Pi +Q+KT

i+1RKi+1 + Ei = 0, (B.22)

where Ei = EKi
= (Ki+1−Ki)

T (R+BTUiB)(Ki+1−Ki).
Writing out (17a) for the (i+1)th iteration, subtracting it from

(B.22), we can obtain that

AT
i+1(Ui − Ui+1)Ai+1 − (Pi − Pi+1) + Ei = 0. (B.23)

From (17b) and using [35, Lemma B.1], it holds

Ui+1 = (In − γ−2Pi+1DDT )−1Pi+1

� Ui − (In − γ−2Pi+1DDT )−1(Pi − Pi+1)

(In − γ−2DDTPi+1)
−1,

(B.24)

Combining (B.23) and (B.24), we have

AT
i+1(In − γ−2Pi+1DDT )−1(Pi − Pi+1) (B.25)

(In − γ−2DDTPi+1)
−1Ai+1 − (Pi − Pi+1) + Ei � 0.

Considering the expression of Li+1,∗ in (14), we have

(In − γ−2DDTPi+1)
−1Ai+1

=
[
In + γ−2DDTPi+1(In − γ−2DDTPi+1)

−1
]
Ai+1

= Ai+1,∗, (B.26)

As a consequence, (B.25) can be rewritten as

AT
i+1,∗(Pi − Pi+1)Ai+1,∗ − (Pi − Pi+1) + Ei � 0, (B.27)

By Lemma 3, it follows that {Pi} is monotonically decreas-

ing and Tr(Pi) ≤ Tr(P1) for any i ∈ Z+. Hence, given

K1 ∈ Gh, Ki ∈ Gh for any i ∈ Z+. Following (B.27) and

[53, Theorem 5.D6], we have

(Pi − Pi+1) �
∞∑
t=0

(AT
i+1,∗)

tEiA
t
i+1,∗ (B.28)

Subtracting P ∗ from both sides of (B.28) and taking the trace

of (B.28), we have

Tr(Pi+1 − P ∗) ≤ Tr(Pi − P ∗)− Tr(Ei)

≤ Tr(Pi − P ∗)− ‖Ei‖F ,
(B.29)
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where the last inequality is from Lemma 2. Considering

Lemmas 2 and 9, (B.29) can be further derived as

Tr(Pi+1 − P ∗) ≤
(
1− 1√

na(h)

)
Tr(Pi − P ∗). (B.30)

The theorem is thus proved by setting α(h) = 1 − 1√
na(h)

.

From Lemma 3, P ∗ � Pi+1 � Pi, and thus 0 ≤ Tr(Pi+1 −
P ∗) ≤ Tr(Pi − P ∗). As a result, α(h) ∈ [0, 1).

APPENDIX C: PROOF OF THEOREM 2

Given an admissible feedback K ∈ W , and starting from

LK,1 = 0, the inner-loop iteration is

AT
K,jPK,jAK,j − PK,j +QK − γ2LT

K,jLK,j = 0 (C.1a)

LK,j+1 = (γ2Iq −DTPK,jD)−1DTPK,jAK (C.1b)

Recall that QK = Q+KTRK, AK = A−BK and AK,j =
A−BK + LK,j . The following lemma states the monotonic

convergence of the inner-loop iteration.

Lemma 10: Suppose that the inner loop starts from the

initial condition LK,1 = 0. For any K ∈ W , and j ∈ Z+,

the following statements hold

1) AK,j := A−BK + LK,j is stable;

2) PK � · · · � PK,j+1 � PK,j � · · · � PK,1;

3) limj→∞‖PK,j − PK‖F = 0 and limj→∞‖LK,j −
LK,∗‖F = 0.

Proof: The lemma can be proved by following [8].

Lemma 11: Given K ∈ W , let L be admissible, i.e. A −
BK +DL is stable, and recall from (26) that L′ = (γ2Iq −
DTPK,LD)−1DTPK,LAK , where PK,L is defined in (23) .

Define EK,L := (L−L′)T (γ2Iq−DTPK,LD)(L−L′). Then,

there exists a constant b(K) > 0, such that

Tr(PK − PK,L) ≤ b(K)‖EK,L‖, (C.2)

and

b(K) := Tr

( ∞∑
t=0

(AK,∗)t(AT
K,∗)

t

)
. (C.3)

Proof: Subtracting (23) from (4a) results in

AT
K,∗(PK − PK,L)AK,∗ − (PK − PK,L) + EK,L−

(LK,∗ − L′)T (γ2Iq −DTPK,LD)(LK,∗ − L′) = 0.
(C.4)

As AK,∗ is stable, by [53, Theorem 5.D6] we have

PK − PK,L �
∞∑
t=0

(AT
K,∗)

tEK,L(AK,∗)t. (C.5)

Taking the trace of (C.5) and using the cyclic property of the

trace and [54, Lemma 1], we can obtain (C.2).

Now, we are ready to prove Theorem 2.

Proof of Theorem 2. Let EK,j = EK,Lj
= (LK,j+1 −

LK,j)
T (γ2Iq −DTPK,jD)(LK,j+1 − LK,j). Subtracting the

jth iteration of (C.1a) from (C.1a) at the (j + 1)th iteration,

considering (γ2Iq − DTPK,jD)LK,j+1 = DTPK,jAK in

(28b), and completing the squares, we have

AT
K,j+1(PK,j+1 − PK,j)AK,j+1 − (PK,j+1 − PK,j)

+ EK,j = 0.
(C.6)

By (C.6) and [53, Theorem 5.D6], we have

Tr(PK,j+1 − PK,j) = Tr

[ ∞∑
t=0

(AT
K,j+1)

tEK,j(AK,j+1)
t

]
.

(C.7)

Consequently,

Tr(PK − PK,j+1) ≤ Tr(PK − PK,j)− Tr(EK,j) (C.8)

≤ Tr(PK − PK,j)− ‖EK,j‖ ≤ β(K) Tr(PK − PK,j),

where β(K) = 1−1/b(K) and the last inequality comes from

Lemma 11. Since PK � PK,j , Tr(PK −PK,j+1) ≥ 0. Hence,

β(K) ∈ [0, 1).

APPENDIX D: PROOF OF THEOREM 3
We will first show that b(K) is continuous in K. Let MK :=∑∞
t=0(AK,∗)t(AT

K,∗)
t, where AK,∗ = A−BK +DLK,∗ and

LK,∗ = (γ2Iq−DTPKD)−1DTPK(A−BK). Since K ∈ W ,

AK,∗ is stable by Lemma 1. By [53, Theorem 5.D6], MK is

the unique solution to

AK,∗MKAT
K,∗ −MK + In = 0. (D.1)

Since PK is continuous in K ∈ W (Lemma 6), AK,∗ is

continuous in K ∈ W . Hence, MK is continuous in K ∈ W ,

and b(K) = Tr(MK) is continuous in K. In addition, the set

Gh := {K ∈ W|Tr(PK) ≤ Tr(P ∗) + h} is compact (Lemma

8). Therefore, the upperbound of b(K) = Tr(MK) exists on

K ∈ Gh, that is b(K) ≤ b̄(h) for any K ∈ Gh. Consequently,

for any K ∈ Gh, β(K) ≤ β̄(h), which is defined as

β̄(h) := 1− 1

b̄(h)
. (D.2)

Given K ∈ Gh, following Lemma 2 and Theorem 2, we

have

‖PK − PK,j‖F ≤ β̄j−1(h) Tr(PK − PK,1)

≤ β̄j−1(h) Tr(PK) ≤ β̄j−1(h)(Tr(P ∗) + h). (D.3)

Therefore, for any K ∈ Gh and ε > 0, if j ≥ j̄(h, ε) =

log
ε

Tr(P∗)+h

β̄
+1, ‖PK,j − PK‖F ≤ ε. Noticing that j̄(h, ε) is

independent of K, the uniform convergence of the dual-loop

algorithm follows readily.

APPENDIX E: PROOF OF THEOREM 4
Recall that Gh := {K ∈ W|Tr(PK) ≤ Tr(P ∗) + h}.

The following lemma ensures that for K ∈ Gh and small

perturbation ΔK ∈ R
m×n, the updated policy becomes

K ′ + ΔK that still belongs to Gh. In other words, Gh is an

invariant set under small disturbance.
Lemma 12: Let K ∈ Gh, K ′ := (R +

BTUKB)−1BTUKA, and K̂ ′ := K ′ + ΔK. Then,

there exists d(h) > 0, such that K̂ ′ ∈ Gh if ‖ΔK‖F < d(h).
Proof: Since K ∈ Gh, it follows from Lemma 3 that

K ′ ∈ W . Suppose that K̂ ′ ∈ W . According to Lemma 1,

there exists a unique solution P̂K′ = P̂T
K′ � 0 to

(A−BK̂ ′)T ÛK′(A−BK̂ ′)− P̂K′

+Q+ (K̂ ′)TRK̂ ′ = 0, (E.1a)

ÛK′ = P̂K′ + P̂K′D(γ2Iq −DT P̂K′D)−1DT P̂K′ . (E.1b)
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In addition, we can rewrite (4a) as

(A−BK̂ ′)TUK(A−BK̂ ′)− PK +Q

+ (K̂ ′ −K)TBTUKA+ATUKB(K̂ ′ −K)

+KT (R+BTUKB)K − (K̂ ′)TBTUKBK̂ ′ = 0.

(E.2)

Noticing (R+BTUKB)K ′ = BTUKA and K̂ ′ = K ′+ΔK,

(E.2) implies

(A−BK̂ ′)TUK(A−BK̂ ′)− PK +Q

+ (K ′ −K)T (R+BTUKB)K ′ (E.3)

+ (K ′)T (R+BTUKB)(K ′ −K)

+ ΔKT (R+BTUKB)K ′ + (K ′)T (R+BTUKB)ΔK

+KT (R+BTUKB)K − (K̂ ′)TBTUKBK̂ ′ = 0.

Subtracting (E.1a) from (E.3) and completing the squares yield

(A−BK̂ ′)T (UK − ÛK′)(A−BK̂ ′) (E.4)

− (PK − P̂K′) + EK −ΔKT (R+BTUKB)ΔK = 0.

From Lemma 9, EK = (K ′ −K)T (R+BTUKB)(K ′ −K).
Using [35, Lemma B.1] and following the derivation of (B.27),

we have

(A−BK̂ ′ +DLK̂′,∗)
T (PK − P̂K′)(A−BK̂ ′ +DLK̂′,∗)

− (PK − P̂K′) + EK −ΔKT (R+BTUKB)ΔK � 0,
(E.5)

where LK̂′,∗ = (γ2Iq−DT P̂K′D)−1DT P̂K′(A−BK̂ ′). Since

K̂ ′ ∈ W , by Lemma 1, (A−BK̂ ′+DLK̂′,∗) is stable. Using

[53, Theorem 5.D6], we have

Tr(PK − P̂K′) ≥ Tr

{ ∞∑
t=0

{
(A−BK̂ ′ +DLK̂′,∗)

T,t[EK

−ΔKT (R+BTUKB)ΔK](A−BK̂ ′ +DLK̂′,∗)
t
}}

.

(E.6)

Let

c(K̂ ′) =‖
∞∑
t=0

(A−BK̂ ′ +DLK̂′,∗)
t

(A−BK̂ ′ +DLK̂′,∗)
T,t‖

(E.7)

and d1(h) = supK∈Gh
‖R + BTUKB‖. Then, by Lemmas 2

and 9, and [54, Lemma 1], (E.6) implies

Tr(P̂K′ − P ∗) ≤ (1− 1√
na(h)

) Tr(PK − P ∗)

+ c(K̂ ′)d1(h)‖ΔK‖2F .
(E.8)

Therefore, if ‖ΔK‖2F ≤ h
c(K̂′)d1(h)

√
na(h)

, it is ensured that

Tr(P̂K′ − P ∗) ≤ h, i.e. K̂ ′ ∈ Gh. Let c̄(h) = supK∈Gh
c(K).

Since PK is continuous in K (Lemma 6) and LK,∗ defined

in (14) is continuous in PK and K, c(K) is continuous with

respect to K and c̄(h) < ∞. Hence, if

‖ΔK‖F ≤
(

h

c̄(h)d1(h)
√
na(h)

) 1
2

=: d(h), (E.9)

it is ensured that K̂ ′ ∈ Gh. In other words, B(K ′, d(h)) =
{K ∈ R

m×n|‖K −K ′‖F ≤ d(h)} ⊂ Gh.

Next, we prove that K̂ ′ ∈ W by contradiction. If K̂ ′ /∈ W ,

it follows that K̂ ′ /∈ B(K ′, d(h)). Hence, ‖ΔK‖F > d(h),
which contradicts with the condition ‖ΔK‖ < d(h).

Now, we prove Theorem 4 and Corollary 1.

Proof of Theorem 4. From Lemma 12 and given an initial

admissible policy K̂1 ∈ Gh, it is seen that if ‖ΔK‖∞ ≤ d(h),
K̂i < Gh for any i ∈ Z+. In (E.8), considering P̂i and P̂i+1

as PK and P̂K′ , respectively, we have

Tr(P̂i+1 − P ∗) ≤ (1− 1√
na(h)

) Tr(P̂i − P ∗)

+ c̄(h)d1(h)‖ΔKi+1‖2F .
(E.10)

Repeating the above inequality from i = 1 yields

Tr(P̂i+1 − P ∗) ≤ (1− 1√
na(h)

)i Tr(P̂1 − P ∗)

+
√
na(h)c̄(h)d1(h)‖ΔK‖2∞ (E.11)

From Lemma 2, it follows that

‖P̂i − P ∗‖F ≤ (1− 1√
na(h)

)i−1
√
n‖P̂1 − P ∗‖F

+
√
na(h)c̄(h)d1(h)‖ΔK‖2∞.

(E.12)

Thus, κ1(·, ·) defined by κ1(‖P̂1 − P ∗‖F , i) := (1 −
1√

na(h)
)i−1

√
n‖P̂1 − P ∗‖F is a KL-function, and ξ1(·) de-

fined by ξ1(‖ΔK‖∞) =
√
na(h)c̄(h)d1(h)‖ΔK‖2∞ is a K-

function. Therefore, the inexact outer-loop iteration is small-

disturbance ISS.

Proof of Corollary 1. For each outer-loop iteration of

Algorithm 1, Pi,j̄ instead of Pi is used to update the policy.

This leads to the disturbance at each iteration

ΔKi+1 = (R+BTUi,j̄B)−1BTUi,j̄A

− (R+BTUiB)−1BTUiA.
(E.13)

As K ′ = (R + BTUKB)−1BTUKA is continuously dif-

ferentiable in UK , and UK is continuously differentiable in

PK , K ′ is Lipschitz continuous in PK ∈ {P � 0|Tr(P ) ≤
Tr(P ∗) + h}. Consequently, there exists d2(h) > 0,

‖ΔKi+1‖F ≤ d2(h)‖Pi − Pi,j̄‖F . (E.14)

By Theorem 4, for any ε > 0, there exist d3(h, ε) > 0
and ī ∈ Z+, such that, if K1 ∈ Gh and ‖ΔK‖∞ ≤ d3(h, ε),
Ki ∈ Gh for all i ∈ Z+ and

‖Pī − P ∗‖F ≤ (1/2)ε. (E.15)

By Theorem 3, there exists j̄(h, ε) ∈ Z+, such that for any

i ∈ Z+

‖Pi − Pi,j̄‖F ≤ min[d3/d2, (1/2)ε]. (E.16)

Therefore, (E.14) and (E.16) imply ‖ΔK‖∞ ≤ d3(h, ε). By

norm’s triangle inequality, (E.15) and (E.16), we have

‖Pī,j̄ − P ∗‖F ≤
‖Pī,j̄ − Pī‖F + ‖Pī − P ∗‖F ≤ ε.

(E.17)
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APPENDIX F: PROOF OF THEOREM 5
Lemma 13: Given K̂i ∈ W , there exists a constant e(K̂i) >

0, such that Âi,j = A−BK̂i+DL̂i,j is stable for all j ∈ Z+,

as long as ‖ΔLi‖∞ < e(K̂i).
Proof: This lemma is proven by induction. To simplify

the notation, the following variables are defined to denote the

inner-loop update without disturbance

L̃i,j+1 := (γ2Iq −DT P̂i,jD)−1DT P̂i,jÂi,

Âi = A−BK̂i.
(F.1)

Then, L̂i,j+1 = L̃i,j+1 + ΔLi,j+1. Since K̂i ∈ W and

L̂i,1 = 0, Âi,1 = A − BK̂i + DL̂i,1 is stable by Lemma

1. By induction, assume that Âi,j = A − BK̂i + DL̂i,j is

stable for some j ∈ Z+. We can rewrite (34a) as

(A−BK̂i +DL̂i,∗)T P̂i(A−BK̂i +DL̂i,∗)

− P̂i + Q̂i − γ2L̂T
i,∗L̂i,∗ = 0.

(F.2)

Subtracting the jth iteration of (36a) from (F.2) and complet-

ing the squares, we have

ÂT
i,j(P̂i − P̂i,j)Âi,j − (P̂i − P̂i,j)+

(L̂i,∗ − L̂i,j)
T (γ2Iq −DT P̂iD)(L̂i,∗ − L̂i,j) = 0.

(F.3)

Since Âi,j is stable, from [53, Theorem 5.D6], P̂i � P̂i,j ,

where P̂i is from (34a). By completing the squares, (F.2)

implies

0 = ÂT
i,j+1P̂iÂi,j+1 − P̂i + Q̂i − γ2L̃T

i,j+1L̃i,j+1 − Ω̂i,j+1

+ (L̃i,j+1 − L̂i,∗)T (γ2Iq −DT P̂iD)(L̃i,j+1 − L̂i,∗), (F.4)

where

Ω̂i,j+1 = ΔLT
i,j+1D

T P̂iDL̃i,j+1 + L̃T
i,j+1D

T P̂iDΔLi,j+1

+ΔLT
i,j+1D

T P̂iDΔLi,j+1 (F.5)

+ ÂT
i P̂iDΔLi,j+1 +ΔLT

i,j+1D
T P̂iÂi.

Since P̂i � P̂i,j , it follows that L̂T
i,∗L̂i,∗ � L̃T

i,j+1L̃i,j+1 and

‖L̂i,∗‖ ≥ ‖L̃i,j+1‖. As a consequence,

‖Ω̂i,j+1‖ ≤ e1(K̂i)‖ΔLi,j+1‖+ e2(K̂i)‖ΔLi,j+1‖2. (F.6)

where

e1(K̂i) = (2‖DT P̂iD‖‖L̂i,∗‖+ 2‖DT P̂iÂi‖),
e2(K̂i) = ‖DT P̂iD‖.

Following Lemma 1, we know that P̂i � 0 and Âi,∗ =
A−BK̂i+DL̂i,∗ is stable. Therefore, by [53, Theorem 5.D6]

and (F.2), Q̂i − γ2L̂T
i,∗L̂i,∗ � 0, and e3(K̂i) := σ(Q̂i −

γ2L̂T
i,∗L̂i,∗) > 0. Hence, if ‖ΔLi,j+1‖ satisfies

‖ΔLi,j+1‖ ≤ −e1 +
√
e21 + 2e2e3
2e2

:= e(K̂i), (F.7)

we have

Q̂i − γ2L̂T
i,∗L̂i,∗ − Ω̂i,j+1 � 1

2
e3(K̂i)In. (F.8)

As L̂T
i,∗L̂i,∗ � L̃T

i,j+1L̃i,j+1, Q̂i−γ2L̃T
i,j+1L̃i,j+1− Ω̂i,j+1 �

0. Âi,j+1 is stable as a result of (F.4) and [55, Theorem 8.4].

Therefore, for any j ∈ Z+, Âi,j is stable.

Proof of Theorem 5. Rewrite the jth iteration of (36a) as

ÂT
i,j+1P̂i,jÂi,j+1 − P̂i,j + Q̂i − γ2L̃T

i,j+1L̃i,j+1

− (L̂i,j − L̃i,j+1)
T (γ2Iq −DT P̂i,jD)(L̂i,j − L̃i,j+1)

− γ2ΔLT
i,j+1L̃i,j+1 − γ2L̃T

i,j+1ΔLi,j+1

−ΔLT
i,j+1D

T P̂i,jDΔLi,j+1 = 0. (F.9)

Subtracting (F.9) from the (j + 1)th iteration of (36) yields

ÂT
i,j+1(P̂i,j+1 − P̂i,j)Âi,j+1 − (P̂i,j+1 − P̂i,j) + Êi,j

−ΔLT
i,j+1(γ

2Iq −DT P̂i,jD)ΔLi,j+1 = 0. (F.10)

where

Êi,j = (L̂i,j − L̃i,j+1)
T (γ2Iq −DT P̂i,jD)(L̂i,j − L̃i,j+1).

When ‖ΔLi‖∞ < e(K̂i), by Lemma 13, Âi,j+1 is stable.

Following [53, Theorem 5.D6], we have

Tr(P̂i,j+1 − P̂i,j) = Tr

{ ∞∑
t=0

(ÂT
i,j+1)

t
[
Êi,j

−ΔLT
i,j+1(γ

2Iq −DT P̂i,jD)ΔLi,j+1

]
(Âi,j+1)

t
}
.

(F.11)

Consequently, by Lemma 11,

Tr(P̂i − P̂i,j+1) ≤ (1− 1/b(K̂i)) Tr(P̂i − P̂i,j)

+ γ2‖ΔLi‖2∞ Tr(M̂i,j+1).
(F.12)

where M̂i,j+1 :=
∑∞

t=0(Â
T
i,j+1)

t(Âi,j+1)
t. By [53, Theorem

5.D6], M̂i,j+1 satisfies

ÂT
i,j+1M̂i,j+1Âi,j+1 − M̂i,j+1 + In = 0. (F.13)

Multiplying both sides of (F.13) by 1
2e3(K̂i) and subtracting

it from (F.4), we have

ÂT
i,j+1(P̂i −

1

2
e3M̂i,j+1)Âi,j+1 − (P̂i −

1

2
e3M̂i,j+1)

+ Q̂i − γ2L̃T
i,j+1L̃i,j+1 − Ω̂i,j+1 −

1

2
e3In (F.14)

+ (L̃i,j+1 − L̂i,∗)T (γ2Iq −DT P̂iD)(L̃i,j+1 − L̂i,∗) = 0.

By (F.8) and [53, Theorem 5.D6], P̂i − 1
2e3(K̂i)M̂i,j+1 � 0.

As a consequence Tr(M̂i,j+1) ≤ 2/e3 Tr(P̂i).
From (F.12), we have

Tr(P̂i − P̂i,j+1) ≤ (1− 1/b(K̂i)) Tr(P̂i − P̂i,j)

+ 2/e3(K̂i) Tr(P̂i)γ
2‖ΔLi‖2∞.

(F.15)

Using Lemma 2 and repeating the above argument for j, j −
1, · · · , 1, it follows that

‖P̂i − P̂i,j‖F ≤ (1− 1

b(K̂i)
)j−1

√
n‖P̂i − P̂i,1‖F

+
2

e3(K̂i)
b(K̂i) Tr(P̂i)γ

2‖ΔLi‖2∞.
(F.16)

Clearly, κ2(‖P̂i − P̂i,1‖F , j) = (1 − 1
b(K̂i)

)j−1
√
n‖P̂i −

P̂i,1‖F is a KL-function, and ξ2(‖ΔLi‖∞) =
2

e3(K̂i)
b(K̂i) Tr(P̂i)γ

2‖ΔLi‖2∞ is a K-function. Therefore,

we can conclude that the inexact inner-loop iteration is ISS.



CUI et al.: ROBUST REINFORCEMENT LEARNING FOR RISK-SENSITIVE LINEAR QUADRATIC GAUSSIAN CONTROL 15

APPENDIX G: PROOF OF THEOREM 6
Since when ε = μ = 0 and τ → ∞, the feasible set of

the LMIs (68a) and (68b) is nonempty, by continuity, (68a)

and (68b) has a solution for sufficiently small ε and μ and

sufficiently large τ . Equation (68a) implies that

L.H.S. of (A.1) +

⎡
⎢⎢⎣

εIn ∗ ∗ ∗
0 εIq ∗ ∗

ÃτW − B̃τV D̃τ εIn ∗
0 0 0 εIp

⎤
⎥⎥⎦ ≺ 0,

(G.1)

where Ãτ = Âτ −A, B̃τ = B̂τ −B, and D̃τ = D̂τ −D. By

Schur complement lemma, it follows from (68b) that

In − μ2[W,−V T ]

[
W
−V

]
� 0. (G.2)

Since the following relation holds almost surely

lim
τ→∞ Ãτ = 0, lim

τ→∞ B̃τ = 0, lim
τ→∞ D̃τ = 0, (G.3)

by the definition of limit, there exists τ∗(ε, μ) > 0, such that

for all τ > τ∗(ε, μ), the following holds almost surely:

‖Ãτ‖F ≤ εμ√
2
, ‖B̃τ‖F ≤ εμ√

2
, ‖D̃τ‖F ≤ ε

2
. (G.4)

Consequently, ‖[Ãτ , B̃τ ]‖ ≤ εμ√
2

, and

[0,WÃT
τ − V T B̃T

τ ]

[
εIq D̃T

D̃ εIn

]−1 [
0

ÃτW − B̃τV

]

= [W,−V T ]

[
ÃT

τ

B̃T
τ

]
(εIn − 1

ε
D̃D̃T

τ )
−1

[
Ãτ B̃τ

] [ W
−V

]
� εμ2[W,−V T ][W,−V T ]T . (G.5)

Therefore, by combining (G.2), (G.5), and Schur complement

lemma, the second term in (G.1) is positive semi-definite, and

the first term in (G.1) is negative definite. By Lemma 1, it

follows that K = VW−1 ∈ W .
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[50] L. Cui, T. Başar, and Z. P. Jiang, “Robust reinforcement learning
for risk-sensitive linear quadratic Gaussian control,” arXiv preprint
arXiv:2212.02072, 2023.

[51] J. R. Magnus and H. Neudecker, “Matrix differential calculus with
applications to simple, Hadamard, and Kronecker products,” Journal
of Mathematical Psychology, vol. 29, no. 4, pp. 474–492, 1985.

[52] C. C. Pugh, Real Mathematical Analysis. Switzerland: Springer, 2nd ed.,
2015.

[53] C.-T. Chen, Linear System Theory and Design. New York, NY: Oxford
University Press, 3rd ed., 1999.

[54] S.-D. Wang, T.-S. Kuo, and C.-F. Hsu, “Trace bounds on the solution
of the algebraic matrix Riccati and Lyapunov equation,” IEEE Trans.
Autom. Control, vol. 31, no. 7, pp. 654–656, 1986.

[55] J. P. Hespanha, Linear Systems Theory. Princeton, NJ: Princeton Press,
Feb. 2018.

Leilei Cui received the B.Sc. degree in Automa-
tion from Northwestern Polytechnical University,
Xian, China, in 2016, and the M.Sc. degree in
Control Science and Engineering from Shanghai
Jiao Tong University, Shanghai, China, in 2019.
He is currently a Ph.D. candidate in the Control
and Networks Lab, Tandon School of Engineer-
ing, New York University. His research interests
include optimal control, reinforcement learning,
and adaptive dynamic programming.
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